
Journal of Service Science – 2009 Volume 2, Number 1

11

Foundations Of Service Science

Technology And Architecture
Harry Katzan, Jr., Savannah State University, USA

ABSTRACT

This paper concludes the conspectus of Service Science for academicians and practitioners. It

follows the two previous papers, entitled Foundations of Service Science: Concepts and Facilities

and Foundations of Service Science: Management and Business, with the express purpose of

defining the scope of the discipline. An eclectic background in service technology and service

architecture is required to fully explore the research potential of a science based on services. This

paper reviews the technical concepts needed to apply the concepts that have previously been

introduced.

Keywords: Service technology, messaging, message patterns, message topology, mail model, Web

services, service-oriented architecture.

SERVICE TECHNOLOGY CONCEPTS

he basis of service technology is really straightforward. Clients and providers communicate with one

another through the use of messages and contracts, and in many areas of service, the communication

involves information and communications technology (ICT). A client and a provider can be tightly

coupled, as when a patient is sitting in front of the doctor and they are having a give-and-take conversation, or

loosely coupled, as when you send a request to someone via email and receive a response at some undetermined

time in the future. In the former case, the client and provider are communicating in a synchronous mode without

technology, and in the later case, they are communicating in an asynchronous mode with the use of technology. The

contract is a formal or informal agreement that delineates the service in which the client and provider are engaged.

The contract can be a formal document, an informal agreement, or be implicit in the activity under consideration.

Another view of a contract is that it is a specification of how to use a service and what to expect from a service.

Messaging Basics

 Each service event requires at least one message, and each message requires a context, which gives

meaning to the interaction. Entities that participate in a service-oriented message are called the message sender, the

message intermediary, and the message receiver. When you fire up your Internet browser, for example, and enter a

World Wide Web address, such as www.ibm.com, the browser sends a message to the IBM server somewhere out in

cyberspace. The browser, acting on your behalf as the client of the Web service, is the message sender. The IBM

web site is the message receiver. When IBM sends its home page back to be rendered for you by your browser, the

roles are reversed; it is the sender and your browser is the receiver, and the Internet is the message intermediary.

 The message is the glue that ties a service together.

Conceptual Model of Service Processing

 The most profound aspect of service science is that a service is a process, as suggested by the following

message pattern:

1. A client sends a message to a service provider.

2. The provider performs the required action and returns a message to the client.

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clute Institute: Journals

https://core.ac.uk/display/268108283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Service Science – 2009 Volume 2, Number 1

12

The focus is on the data that is transmitted and not on the communications medium, which can take the form of a

human interaction or a computer-based message. The context for the message can be embedded in the message or it

can be inherent in the way that the service provider is addressed. The importance of context is suggested by the

cartoon floating around where two dogs are seated in front of a computer screen. One dog says to the other, “On the

Internet, no one knows you‟re a dog.” Two good rules of thumb are that in face-to-face services, interpersonal

communication provides the context. In human-to-computer services, the context must be inherent in the message.

For example, entering “Boston Red Sox” into your browser to get the score of the last World Series game is

probably going to generate a lot of miscellaneous information in which you are not interested, because you provided

no context.

 Initially, it is useful to recognize that we are operating at two levels: the service level and the message

level. At the service level, the message entity that receives the message is the service provider and is regarded

simply as the service. At the message level, there is some choreography involved with providing a service, as

demonstrated by the above two-step interaction. In fact, a service may involve the interchange of several messages.

Enterprise Service Technology

 Many modern enterprises (i.e., business, government, education) provide computer support to internal

users, clients, business partners, and other enterprise entities. The facilities are usually integrated into

administrative, product development, supply chain, or customer relationship operations. Because those services,

consisting of computer applications and associated procedures, are tried, tested, and dependable, it would be prudent

to use them as building blocks for new enterprise applications.

 The concept that underlies service orientation is that it is simply more efficient and reliable to identify the

bundled services and package them as reusable components than it would be to rewrite them. Bundled services

could then be used by other services, so that information system applications could be developed more rapidly and

enable the enterprise to be more responsive to external conditions. This practice is the basis of web services that are

covered in this paper.

 A typical business function that lends itself to componentization is to perform a credit check on a

prospective customer before confirming a large order. Such a check is normally performed in different operational

systems in an enterprise. After restructuring, the credit check software is packaged as a single business component

and exposed as an enterprise service for use by other enterprise service applications.

SERVICE MESSAGING

 When two service entities are engaged in communication, they are regarded as being connected. An

enterprise has two options for developing a service connection:

1. Message entity to message entity (ME → ME)

2. Message entity to enterprise entity (ME →EE)

The first option, denoted by ME → ME, refers to either a client-to-provider or a provider-to-client communication.

The second option denoted by ME →EE refers to a client-to-many-provider communication. The notion of

connectedness is needed for an appreciation of message patterns and topologies, covered in the next section. For

example, the ME →ME option may represent the case where an order-processing application sends a message to a

shipping application to have an item shipped to a customer. The ME →EE option might represent the case where an

airline‟s flight operations application sends a message to other involved computer applications, such as scheduling

and reservations, when a plane has taken off.

Journal of Service Science – 2009 Volume 2, Number 1

13

Message Patterns

 A message pattern is a model of service communications that represents a single connection between one

sender and one receiver. There are three basic patterns representing message traffic that can go only one way, both

ways but only one way at a time, and both ways simultaneously.

 The one-way message flow is regarded as a “fire-and-forget-it” send, also known as simplex and datagram

communications service in the computer community. The second model is the request/reply model, known as half

duplex, wherein only one participant communicates at a time as with the walkie-talkie type of interaction. In the

final model, called full duplex, both messaging participants can send messages at the same time, as in an ordinary

telephone conversation. Clearly, messaging can take on different patterns depending upon the operational

environment used for technical support.

Message Structure

 In its most simple form, a message is a string of characters encoded using standardized coding methods

commonly employed in computer and information technology. Messages have a uniform format consisting of a

header and a body. The header primarily concerns addressing and includes the addresses of the sender and the

receiver. In the request/reply message pattern, the return address is picked up from the message header for the

response portion of the transaction. The body of the message contains the information content of the message, and

because it is intended only for the receiver, is not usually regarded during message transmission.

 The manner in which messages are structured is similar to the way that letters are handled by the postal

service. The outside of the envelope contains addressing information and the insides are handled as private

information.

Message Topology

 Message topology refers to the manner in which messages are sent between messaging participants, and not

necessarily to the communication techniques used to send them. The most widely used form of communication is

known as point-to-point using any of the message patterns given above. Usually, point-to-point implies the

request/reply message pattern where the reply address is picked up from the message header. A variation to point-

to-point is forward-only point-to-point where a message reply is not expected.

Message Interactions

 In most cases of messaging, the sending participant needs to know that the receiving participant is listening

before the real message is transmitted. It is something like the following:

Sender: Are you listening?

Receiver: Yes.

Sender: Are you Gregory Charles Cabot?

Receiver: Yes.

Sender: You‟ve just won one million dollars.

OK, it‟s a bit contrived and also, it‟s messaging at the service level. There is also handshaking going on at the

message level, which we are going to cover in the next section.

 The following example demonstrates message interaction through instant messaging at the service level. It

demonstrates message interactions.
1
 For this instance, User A is sending an instant message to User B who

responds to User A. The interaction consists of four distinct messages, delineated as follows:

1 This example is adapted from Van Slyke and Bélanger (2003), p. 110.

Journal of Service Science – 2009 Volume 2, Number 1

14

Message 1: User A logs on to the instant messaging (IM) server. The expected response is that the IM server will

return a message with the users in A‟s group that are currently logged on. The message goes from User A through

the Internet to the IM server.

Message 2: The IM server sends a message to User A with the members that are logged on. The message goes from

the IM server to User A.

Message 3 : User A sends a message, such as “Hi User B,” to User B. The message goes from User A through the

Internet to the IM server. The IM server then sends the message through the Internet to User B.

Message 4: User B responds with a message, such as “Hi yourself,” to User A. The message goes through the

Internet to the IM server. Then the IM server sends the message through the Internet to User A.

Most people would regard this interaction sequence in which User A sends an instant message to User B as a service

and B‟s response to A as another service. Popping up a level, the service provider is the instant messaging server

and users A and B are clients.

SERVICES ON THE INTERNET AND THE WORLD WIDE WEB

 A service that takes place on the Internet and the World Wide Web is called a web service.
2
 A web service

is a process in which the provider and client interact to produce a value; it is a pure service. The only difference

between a web service and medical provisioning, for example, is that in the former case, the client and provider are

computer systems. Ordinary email is a web service. Requesting a home page from a provider‟s web site is a web

service. Sending an instant message over the Internet is a web service. Almost anything you can think of doing on

the web would be called a web service. However, there is another category of service known as a Web Service.

Note that Web Service is a proper noun. It is a formal process, developed by organizations such as Microsoft, IBM,

and others, for conducting business over the Internet. It is covered separately.

Simple Mail Model

 The most pervasive web service computer application on the Internet is electronic mail, commonly known

as email. It is used in two ways: (1) To communicate between email clients; and (2) To provide a record that

communication has taken place – or at least, to show that an attempt at communication has taken place. Clearly,

email is designed to be a person-to-person endeavor.
3
 There are two scenarios that are relevant to web services.

 In the first scenario, we have a desktop personal computer (PC) operating as an email client – referred to as

a PC running an email client – from which the end user sends and receives email. The email client is connected to

incoming and outgoing email servers through a local-area network or a dial-up, broadband cable, or DSL connection

to an Internet service provider (ISP) that is in turn connected to the mail servers. Email messages are normally

managed locally, which means they are downloaded and stored on the end user‟s computer. When the end user

decides to access email messages, he or she presses a receive button and incoming messages, stored on the incoming

email server, are transferred to the local email client. Similarly, when the end user constructs a message for sending,

a send key is pressed to transfer it to the outgoing email server for subsequent forwarding over the Internet. An

email client uses push technology to send email messages and pull technology to receive email messages.

 In the second scenario, we again have an email client for message management. The email client, however,

is connected to an email-service server via the Internet through a local browser. The service access point is an

2 There is another definition for web services that is slightly more specific. Cerami (2002) states, “A web service is any service

that is available over the Internet, uses a standardized XML messaging system, and is not tied to one operating system or

programming language.”
3 Email is a person-to–person construct but requires a slight interpretation. A sender can send a message to a mailing list;

however, each individual send operation is still a person-to-person operation.

Journal of Service Science – 2009 Volume 2, Number 1

15

account set up on an Internet service portal. A web based email account is used in the same manner as in the local

scenario, except that the email server is remote.

 The concept of remote service server is also a platform for other web applications, such as word processing

and spreadsheet operations. A remote service server that provides application functionality is known as an

application service provider, and exists as an alternative to purchasing infrequently used software.

Service Model for the World Wide Web

 When addressing a web service, there is a certain way that most people go about doing things. It‟s not

entirely clear whether the web service architecture determines how people use the web or, the other way around,

whether the architecture of the web reflects how people use it. We are calling it a generic web services model.

 Imagine the following scenario. You‟re interested in purchasing a pair of running shoes and don‟t know

any brands or web sites. So what do you do? You point your browser to a search engine, such as Google™, enter

the words “running shoes” in the search window and click the “search” button or press the enter key. Your message

is sent to Google‟s web server that searches an index of key words, created beforehand, and makes a list of

appropriate web sites, just for you. The web server then prepares your list in a language called HTML and sends it

back to your browser over the Internet. The browser then renders the HTML statements into a readable form. This

is an example of the first element in the web services model. It‟s known as discovery. The service process was

accomplished without regard to time, distance, or the kind of hardware and software.

 Each of the entries (known as a “hit”) on the resultant running-shoe list gives a brief description and a

hyperlink with which to obtain more definitive information. This process reflects the second element in the web

services model, and it is known as description. Various enterprises have web sites and associated web pages

containing descriptive information of interest. In a separate operation, the organization behind the search engine

searches the web sites in cyberspace and prepares indexes for fast retrieval.

 If your goal is information, then this is perhaps as far as you will go with this example. If you are going to

make a purchase over the web using an appropriate site, then the next step is to bind to that web site and go through

an interactive process for selection, payment, and delivery. Each step in the bind process requires additional web

services, so that a web service is essentially a cascading series of other web services.

 A variety of tools and techniques are required for a successful implementation of web services architecture.

Whenever there is a service, there is communication; and whenever there is communication, there are messages.

Whenever there is a message, there is a context so that the intent of the service can be sustained. These elements are

present in one form or another in all services, ranging from the more straightforward human interaction to the

operation of a sophisticated enterprise computer application.

HyperText Transfer Protocol

 HyperText Transfer Protocol (HTTP) is a collection of rules and procedures for transferring messages

between computers over the World Wide Web. Without HTTP, the web would not be the revolutionary phenomena

that it is today. When you make a service request over the web, your entry goes through your browser before it goes

over the Internet. Here‟s how.

 When you fire up your browser, you are initiating the execution of a program that runs on your personal

computer, workstation, personal digital assistant (PDA), cell phone, terminal – or whatever you choose to use. Now

that computing device is performing a service for you in the sense that you can now do things you could not possibly

do without it. In fact, you could run all manner of programs, such as productivity software that does word

processing, without any information leaving or entering your local environment. As far as the Internet is concerned,

Journal of Service Science – 2009 Volume 2, Number 1

16

however, essentially nothing has happened. You type a URL
4
 into your browser window and press the enter key,

and then things start to happen. This is when HTTP gets into the act.

 Your browser prepares a message called a HTTP request, such as
5

 GET /index.html HTTP/1.1

 Host: www.example.com

and sends it over the Internet to the web server of the “example.com” web site somewhere out in cyberspace. The

web server responds in turn to the return address obtained from your message header with

 HTTP/1.1 200 OK

 Date: Mon, 02 Dec 2007 12:38:34 GMT

 Server: Apache/1.3.27 (Unix) (Red-Hat/Linux)

 Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

 Etag: "3f80f-1b6-3e1cb03b"

 Accept-Ranges: bytes

 Content-Length: 155

 Connection: close

 Content-Type: text/html; charset=UTF-8

This response message is followed by a blank line and then the requested information that represents the contents of

the file (usually the default file, such as index.html) from the site specified in the HTTP get request. The

information content of the response message might take the form (highly unlikely but possible):

 <html>

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <h1>Hello World</h1>

 <par>

 Greetings from Cyberspace

 </par>

 </body>

 </html>

that would be rendered by your browser and displayed on your screen. The text is transmitted in a well-known

language peculiar to the web and known as HyperText Markup Language (HTML). It is introduced in the next

section.

 The HyperText Transfer Protocol has additional verbs, such as POST, PUT, and DELETE, that facilitate

the transfer of messages between a client computer and a server computer.

HYPERTEXT MARKUP LANGUAGE

 Aside from the Internet information super highway and the idea of linking information pages together (i.e.,

the World Wide Web), probably the coolest thing that has ever happened in the over-hyped world of computers is

the realization that it is possible to send a document from one computer to another and have that document displayed

on the receiving end in a reasonable form without regard to the brand and model of computer, kind of software, time

of day, and location. This amazing feat – and it is truly that – is possible because of hypertext markup language

4 URL stands for Uniform Resource Locator, such as www.example.com.
5 The examples are adapted from Wikipedia (see selected reading).

http://www.example.com/

Journal of Service Science – 2009 Volume 2, Number 1

17

(HTML), as introduced in the previous section. We are interested in HTML for two important reasons. First, it is a

useful thing to know something about, as long as you don‟t get hung up in the details. Secondly, HTML is a

forerunner to Extensible Markup Language (XML) that is a technology for sending messages between services.

HTML Documents

 To start off, an HTML document is nothing more than a bunch of characters that someone has entered into

a text editor or a word processor and been saved as a file on a computer employed as a web server. When you

request an answer from a web site, such as the one and only www.ibm.com, the corresponding web server goes to a

default file named index.html, retrieves the HTML file, and sends it back to your browser for rendering on your

computer‟s display. It is someone‟s job to put the right stuff into index.html, and that stuff should be written in

HTML. Now the file named index.html might have links to other pages that are returned in a similar manner when

you click on them. Those links are referred to as hot links, because we get some action when we click on them – as

we just mentioned. You can even put programs into an HTML document. These programs are executed by your

browser resulting in some visual or audio activity on the receiving end. The active behavior can result in a wide

variety of audio, video, and data-oriented interactive forms.

Tags

 The basis of an HTML is a tag, such as <html>, that provides information to the receiving browser. In the

case of <html>, for example, the tag indicates the beginning of an HTML document. Actually, a tag is only a strong

suggestion, since each browser has a mind of its own. Most tags have an enclosing tag, such as </html>, that

delineates a section of a document, such as in the following HTML snippet:

 <html>

 <head>

 <title>University of the United States</title>

 </head>

 <body>

 ●

 ● --- The content goes here

 ●

 </body>

 </html>

Tags give an HTML document structure and information on page rendering; they do not give meaning. We will use

XML for that.

Discovery

 One of the key aspects of web page design is to facilitate discovery whereby clients can find services.

Search engine companies use a technique known as “web crawling” in which a program called a web crawler or a

bot (for robot) crawls through web pages following hyperlinks to build indexes for subsequent search operations.

Without additional information, all words in a web page are treated the same. You can add additional information to

the “head” section to increase the fidelity of searching and increase the chances that a user will navigate to your web

site.

 This is where the <meta> tag comes in. With the meta tag, web page designers commonly supply three

types of descriptive items: a list of keywords, a description, and the name of the web page owner – sometimes the

name of an organization and sometimes an author. Search bots use this information when building indexes. The

following example depicts the use of meta tags:

Journal of Service Science – 2009 Volume 2, Number 1

18

 <html>

 <head>

 <title>Savannah Motor Works</title>

 <meta name=”keywords” content=”Porsche, Mercedes, BMW”>

 <meta name=”description” content=”The south‟s most prestigious

 performance car dealership”>

 <meta name=”author” content=”Gregory Cabot”>

 </head>

 <body>

 ●

 ●

 ●

 </body>

 </html>

Actually, there are no predefined meta tags in HTML, so a web page designer can create them to satisfy a particular

need. The meta tag demonstrates a tag without an enclosing tag.

Document Elements

 The HTML language has an extensive vocabulary that is a subject in its own right. A brief subset of

HTML features is covered here as a forerunner to Extensible Markup Language (XML) that is used to construct

messages between clients and service providers. Some of the most commonly used document elements are <h1>

through <h6>, <p>, , <i>,
, and <hr>, which represent headings, paragraph, bold face, italics, blank line,

and horizontal rule, respectively. Several of these elements are depicted in the following script:

 <html>

 <head>

 <title>My First Novel</title>

 </head>

 <body bgcolor="yellow">

 <h1 align="center">The Car</h1>

 <p align="center"> <i>by</i> </p>

 <p align="center"> Gregory Cabot</p>

 <p> My uncle gave me my first car. It was a 1939 Chevy with fluid

 drive. It had a flat tire and the brakes didn‟t work. It also had a

 broken window.

 </p>

 <p> My father taught me how to do the repairs and I had to do them.

 Afterwards, I didn‟t like the car and sold it for $50.

 </p>

 <hr>

 <p align="center">The End</p>

 </body>

 </html>

Of course, complete comprehension is not necessary or even expected. However, the key point has been made that

HTML is a powerful tool in the construction and communication of web-based documents.

EXTENSIBLE MARKUP LANGUAGE

 To put the virtues of HTML and XML into perspective, we can properly say that HTML is used to describe

web pages and XML is used to describe information. XML stands for eXtensible Markup Language. Both

languages use markup, a term that ostensibly is intended to imply that someone prepares a document and then

Journal of Service Science – 2009 Volume 2, Number 1

19

incorporates descriptive elements to suggest how the document should look when displayed or to communicate the

intended meaning of the document. With XML, markup gives semantic information as suggested by the following

script:

 <?xml version=”1.0” ?>

 <library>

 <library_name>Pleasure Books</ library_name>

 <book>

 <title>The DaVinci Code</title>

 <author>Dan Brown</author>

 </book>

 <book>

 <title>The Secret Servant</title>

 <author>Daniel Silva</author>

 </book>

 </library>

We will call the semantic information “tags” as we did with HTML, even though XML specialists refer to them as

“element type names.” An XML document must contain a prolog and at least one enclosing document element. In

the above example, the following statement is the prolog:

 <?xml version=”1.0” ?>and the enclosing document element is:

<library>

 ●

 ●

 ●

 </library>

This is an example of a main element that must be present in all XML documents. It is often referred to as the root

element, and it is the characteristic that gives an XML document a hierarchical structure. All opening tags in XML,

such as <book>, must have closing tags, such as </book>. With XML, we can make up our own tags, since we are

using the language to describe information that has a specific meaning.

Rendering an XML Document

 Even though an XML document, by definition, is intended for communication, we can display the contents

in a particular form by using a stylesheet. To use a stylesheet, we have to extend the prolog with a statement of the

form:

 <?xml:stylesheet href=”library.css” type=”text/css” ?>

and develop a stylesheet description file, named library.css in this example, that would have descriptive content,

such as the following:

 library_name {

 display: block;

 font: bold 24pt;

 }

 title {

 margin-top: 20px;

 display: block;

 font: italic 18pt;

 }

 author {

 display: block;

 font: 12pt;

 }

Journal of Service Science – 2009 Volume 2, Number 1

20

A rendering of the penultimate XML document would be achieved with the library.css stylesheet file.

Additional XML Features

 There is a lot more to the XML language, such as a formal means of defining data types and stylistic

structures for XML documents along with a whole host of operational facilities. If it would take one book to totally

describe HTML, it would take two books to fully give the features in XML. For a basic knowledge of service

science, complete comprehension of XML is not needed – only an idea of what it is all about.

 At this point, we have enough knowledge of service tools and techniques to proceed with Web Services,

introduced in the next section. We are going to start with a specification of the XML grammar for a form of web

messaging known as SOAP, which was initially an acronym for Simple Object Access Protocol.

WEB SERVICES

 A Web Service has been defined as any service that is available over the Internet, uses a standard XML

messaging system, and is not dependant upon any one particular operating system.
6
 This statement has the makings

of something different from the “web service” that was presented earlier when discussing HTTP. Well, it is.

Earlier, we described the human web wherein an end-user sends an informational request via HTTP to a web server,

and the requested information is returned, also via HTTP, to the user‟s browser for visual display. In this section,

we are going to cover the automated web, in which one computer sends information in the form of an XML

document to another computer over the Internet, and the intended result is to initiate a service of some kind. The

latter form is a well-defined web service model such that the name Web Service is a proper noun. It is important to

mention that XML is used for things other than Web Services. In just so happens that they grew up together, so that

they are naturally associated with one another.

Web Service Concepts

 There are two general approaches to using a Web Service. The first is to have one computer (the sender)

send a simple message to a second computer (the receiver) to have the receiver execute a procedure for the sender

and return the result. The procedure is known as a method and the process is referred to as an XML-RPC, which

stands for XML-Remote Procedure Call. A frequently used example to demonstrate the concept is the weather

service application: a requester sends a zip code to the weather service program and the program (i.e., the method)

returns the temperature. The initial request message can be written in XML as:

 <?xml version=”1.0”?>

 <weatherRPC>

 <weatherMethod>getTemperature</weatherMethod>

 <parameters>

 <zip_code>29909</zip_code>

 </ parameters >

 </weatherRPC>

The example is conceptual and the message headers and other information are omitted. The response from the

weather service would take the form:

 <?xml version=”1.0”?>

 <weatherResponse>

 <parameters>

 <value><int>75</int></value>

 </parameters>

 </weatherResponse>

6See E. Cerami, Web Services Essentials (Selected Reading), for much of the subject matter in this section.

Journal of Service Science – 2009 Volume 2, Number 1

21

XML-RPC can be implemented via an HTTP request/response or by embedding the informational content of the

transaction in a SOAP message, which is the second approach.

 SOAP is a protocol for exchanging information between computers where the structure of the information

is represented in XML. The basic idea underlying SOAP messaging is to make sure that programs running on two

communicating computer platforms have the capability of understanding each other. Accordingly, the XML

element definitions from several namespaces need to be specified in a standard manner and also be accessible over

the Internet. We are not going to include the definitions, per se, in the SOAP message, but instead, include a

reference to the definitions, so that if things change, every message in the world does not have to change.

 A simplex (i.e., one-way) message from a client to a server or from a server to a client is called a SOAP

message and consists of a SOAP envelope in which is placed a message header and a message body. The optional

header is intended to allow the inclusion of application-specific information, such as security and account numbers.

The required message body contains the references and informational content of the SOAP message. Here is what

the SOAP envelope looks like:

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

 ●

 ● ----- The message body would go here

 ●

 </SOAP-ENV:Envelope>

and a sample message body is

 <SOAP-ENV:Body>

 <ns1:getTemp

 xmlns:ns1=”urn:xmethods-Temperature”

 SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

 <zipcode xsi:type=”xsd:string”>29909</zipcode>

 </ns1:getTemp>

 </SOAP-ENV:Body>

 Again, comprehension is not required or expected. The scripts are exceedingly detailed, but one point is

clear, even from this simple example. Once the structure of SOAP messaging is developed, the addition of the

content can be quite straightforward.

 To sum up this section, SOAP messaging is straightforward. All one SOAP client has to do to send a

message to another SOAP client is to put the content document into a predetermined SOAP message structure and

send it through the Internet. It doesn‟t matter if the sender is a client or a server, as long as the sender and the

receiver are both SOAP clients. The message itself is not important to the messaging process. It could be a request

to have a method executed, or it could be a document, such as a financial report or a script representing a computer

graphics procedure.

Web Service Model

 In order to request a service over the Internet, a person must go through a standard procedure. We covered

this earlier. Figure 1 suggests the structure of Web Services architecture, which is another standard operational

model. There are three roles: the service provider, the service requester, and the service registry. The service

provider makes a service available over the Internet. The service requester consumes a service by sending an XML

message to the service provider over the Internet. The service registry is a centralized repository of information

about services that are available, serving as a computer-oriented version of the traditional “yellow pages.”

Journal of Service Science – 2009 Volume 2, Number 1

22

Figure 1. Structure of the Web Service Model.

 Associated with the three roles are three activities. The service provider publishes available services in the

service registry. The service requester finds out about services by accessing the service registry. The service

requester invokes a service (called bind) by sending an XML message, referred to above, to the service provider. A

familiar example of publish, find, and bind is an online book service. The prospective buyer consults the company‟s

online catalog to find a suitable book. The buyer then finalizes the purchasing process by providing the requisite

information, and the seller handles the billing and the physical transportation of the item purchased.

 There is more to it, of course. When a service provider publishes service information, it must be described

in a form that the service requester can understand. XML is used for this task by employing a document structure

known a UDDI, which stands for Universal Description, Discovery, and Integration. When a service requester

invokes a service, XML is again used in a form of descriptive language known as WSDL, which stand for Web

Services Description Language.

Web Service Goal

 The goal of Web Services was and still is the notion of having computers talk to each other to arrange for a

service without human intervention. At this stage, the Internet community has done a commendable job of

establishing the requisite technical infrastructure, but the process still requires client interaction at the service-

requester end. The focus is currently on building a service-oriented architecture to support future developments.

SERVICE ARCHITECTURE CONCEPTS

 Service architecture is a collection of design patterns for constructing services from building blocks that

can be shared between service systems. Most business processes already incorporate a form of service architecture,

since the principles are derived from ordinary common sense. For example, many accounting departments include

component services, such as credit checking and invoicing. When the objective is to align information services with

business processes, however, the design gets more complicated and has given rise to a field of study known as

service-oriented architecture (SOA). The basic idea behind service architecture is that you have a collection of

components, representing business functions or computer applications, and you want to fit them together to make a

business process or an information system. Components encapsulate services so that a service-oriented application

or a business process is assimilated from multiple components that achieve the desired functionality by collectively

orchestrating the operation of the needed services. The guiding principle behind service-oriented architecture is that

once a component is established, it can be reused in other applications or business processes. Eventually, an

organization runs out of components to build so that the synthesis of an application or a business process becomes a

matter of piecing the components together – much like the manner in which an aircraft manufacturer or automobile

company assembles relatively complicated products from off-the-shelf or specially-designed components. There are

two aspects to the idea of building functionality with components; the first is putting the components together, and

Journal of Service Science – 2009 Volume 2, Number 1

23

the second is making the inherent services interact in such a way that a desired state of business process engineering

(BPE) is achieved.

Solution Life Cycle

 An effective solution sequence for any development project incorporates a set of well-defined steps, such

as the following: requirements analysis, modeling, architectural design, detailed design, construction, and testing. In

the modern view of development, incorporating service architecture principles, these steps are divided into two

phases: the preproduction phase, wherein a set of packaged components are collected, and the production phase,

consisting of assembly and deployment.

 It is important to recognize that the term “production” in the context of service life cycle refers to the

synthesis of a business process or the development of an information system, and not to the actual utilization of the

process or system, as in everyday operations. So, in a sense, we are producing a solution and not using a solution.

Once we have the wherewithal to assemble a solution from components and not have to develop those components

from scratch, then we can spend our resources making sure that the eventual solution to whatever problem we are

dealing with actually satisfies business needs – and is developed in a reasonable time frame. This is where the term

agility comes from. The management of an enterprise, for example, perceives that it needs an IT solution to an e-

commerce opportunity, and the IT department can expeditiously deliver that solution.

On Demand

 The term “on demand” seems to have navigated its way into the business literature in at least three ways.

In the first instance, on demand refers to the access of information, such as from the World Wide Web or any other

information repository, from wherever the end user may be and whenever the interaction takes place. In the second

instance, on demand refers to access to computer application programs without specifically having to purchase them.

Also known as utility computing, this form of on demand would allow end user to pay only for the use of software,

rather than having to purchase it, as is typically the case with traditional office software. Finally, the third instance

of on demand and the one in which we are interested refers to the techniques for the rapid development of business

processes and computer information systems to support enterprise services.

 The flexibility inherent in on demand services provides a payback for most enterprises that is greater than

the value of the processes and applications for which the services were originally intended. Overall, on demand

processes developed through service orientation can deliver innovation, flexibility, shorter time to market, and also

serves as a vehicle for rethinking industry structures.
7
 In fact, the business value of service architecture is perhaps

best summarized by the following quotation from Cherbakov, Galambos, Harishankar, Kalyana, and Rackham:
8

What is described here is a business that is able to recognize change as it is occurring and react appropriately,

ahead of the competition, and keep pace with demands of its customers, value-net partners, and employees alike. In

trying to achieve this state, the business will need to leverage technology to the fullest. We call such a business an

“on demand business.” Fundamentally, becoming an on demand business is equivalent to achieving total business

flexibility. Two important enablers contribute to the realization by an enterprise of this vision of on demand –

componentization and service orientation.

Components are related to functions – or to be more specific, business components are related to business functions.

In a real sense, therefore, service architecture refers to the deconstruction into components of an existing business

system and subsequently its reconstruction into an operational network of cooperating and integrated elements

needed for synthesizing responsive enterprise-wide systems.

7 See Cherbakov, et al. (2005).
8 Op. cit. p. 654.

Journal of Service Science – 2009 Volume 2, Number 1

24

Components, Services, and Functions

 It‟s all relatively straightforward: most components encapsulate one or more services; many complex

services require more than one component; enterprise processes are constructed from components; and enterprise

functions are an amalgamation of corresponding services. The notion of putting components together to achieve

some enterprise function is called composability, and in order to do so, the methodology demands severe constraints

on the manner in which the components are constructed and packaged for reuse. Components must fit together in

order to operate as intended; this requirement is known as interoperability.

Service Orientation

 Many people are going to say that dealing with a collection of interacting components is just going to

increase the complexity of their everyday life. After all, they say, why not buy an application program or adopt an

established business process and be done with it? On the other hand, there is something to be said for building

systems out of packaged components. If a component fails, replace the entire assembly and let the customer – or

should be say client – pay for it. After all, that perspective has some merit with products and is widely adopted.

The point to remember is, “What‟s good for products is not necessarily good for services.” Here are some of the

reasons.

 Because services are heterogeneous and involve client interaction, most service interactions are essentially

different, so that the unrestricted use of packaged facilities does not automatically contribute to efficiency. With

both products and services, features sell packaged facilities, so that if you obtain two related packages, there would

normally be a duplication of functionality. In other words, organizations that produce packages, in the most general

sense, include as many features as possible to optimize marketability. Most of us THINK products and DO services.

Moreover, there is no guarantee that similar components in different packages operate – or interoperate – in exactly

the same manner.

 Another consideration is that in the area of professional, scientific, and technical services, the operant

process is to construct a flexible system, perhaps for a client, in which components can be replaced on a demand

basis to satisfy business conditions. In this instance, one would want each component to be designed as granular as

possible with a well-defined interface.

SERVICE DEVELOPMENT

 One of the basic tenets of service science is that service providers can participate in a service experience by

applying knowledge, skill, ingenuity, and experience, without having to invest in the usual encumbrances of product

development. In this section, we are going to cover service development, without having to necessarily develop

each and every service resource. The subject matter primarily concerns “legacy systems,” and the methodology

applies to just about any kind of service an ordinary person can imagine.

Legacy Systems

 Many, if not most, information systems used in business, education, and government are known as legacy

systems and continue to be the core of enterprise technology. For example, the “grunt” work underlying heavy duty

data processing is performed behind the scenes, often during the wee hours of the night by mainframe computers.

Linking these systems to modern Web services has been difficult, because they are difficult to change without

running the risk of upsetting the applecart of good performance. The programs are written primarily in the COBOL

programming language and precise specifications are not always available, adding another dimension to the

problem.

 Information systems that are cumbersome to change are referred to as being “brittle” and limit an

enterprise‟s ability to respond to changing business requirements. On the other hand, legacy systems are serious

assets to an organization and typically represent considerable investments. In many cases, organizations achieve a

Journal of Service Science – 2009 Volume 2, Number 1

25

level of competitive advantage through the use of legacy systems. Legacy systems support day-to-day operations

and incorporate the business logic inherent in all areas of the business model.

 Service architecture purports to leverage legacy systems by unlocking the business functionality through

loosely-coupled but well-structured service components abducted from legacy systems. The service components

can then be choreographed to adapt or extend business processes to satisfy current needs. This can be achieved in

two ways: leveraging or repurposing. With leveraging, the functions in legacy systems are exposed without

rewriting the system. With repurposing, the programs are rewritten for the modern world with a modern language,

such as Java, for use on servers designed for the Internet and the World Wide Web. Clearly, leveraging is the way

to go with legacy systems, because of the risk involved with rewriting large programs and getting it right the first

time.

Exposing Functionality in Legacy System

 Exposing business services by leveraging legacy systems is not a simple matter and it requires good

strategic planning, time, and considerable resources. Typically, the work is outsourced to IT consulting companies,

because a high level of expertise is required, but not otherwise needed to sustain enterprise operations.

 Although the task is exceedingly complex, the idea is relatively simple: put a software wrapper around the

legacy code and expose what you want to expose through well-defined interfaces. The conceptual software wrapper

is known as an adapter.

 Here‟s how it works. One component needs the services of another component, which may reside locally

or be available over the Internet residing somewhere out in cyberspace. The needy component sends an XML

message to the servicing component requesting a service of some kind. What this means is that the serving

component does something and returns the result as an XML message to the requestor. The messages adhere to an

agreed-upon format so that the programs can understand each other.

 The overall process is not much different from when one person asks another person for the time. The

requestor issues the request in a socially agreed upon language in a well-defined format. The responder accesses a

time resource and returns the time in the same language and in a related but different format. If another person asks

for the time, the process is repeated.

 There are some hidden components in the messaging scenario. The requestor needs information on who

would know the actual time. So an internal registry of “people who know about time” is implicitly consulted before

the initial message is sent by the requester to the responder. With service architecture, a registry of components is

needed to know which components to call upon when a particular service is needed. Part of the registry process

could very well involve a search process to determine which registry contains the needed information. Then,

perhaps, the requestor might engage a local registry to store pertinent information from non-local registries to

facilitate subsequent operations.

SERVICE REFERENCE ARCHITECTURE

 A certain amount of structure among components is required for the capabilities, mentioned above, to

function together as a coherent whole. It is commonly known as the SOA Reference Architecture. The reference

architecture is essentially a stack of functionality, implying that service messages flow upward and downward in the

stack.
 9

Loose Coupling

 The basic principle of service architecture is that synthesis involves composition. A business process or a

computer application is created by combining independent components that are loosely coupled. Loose coupling, in

9 The structure of the generic reference architecture is adapted from the webMethods report (see references, p. 5).

Journal of Service Science – 2009 Volume 2, Number 1

26

this instance, simply means that components – that is, the components providing the services – pass requests and

data, in the form of messages, between each other in a standard manner without the need for underlying assumptions

that would compromise component operational interdependence. Thus, a small change in the functioning of one

component would not require a change to other components that rely on the changed component. With component

architecture of this sort, it is important to recognize that components normally relate to enterprise-level processes

spanning people, systems, and information.

Services

 Services can be created or exposed. In the former case, an organization creates the business process or a

computer application from scratch. In the latter case, an existing service is insulated with a logical container and its

functionality is explicitly described so that other entities can use it. It‟s entirely possible that a service developed for

another generation doesn‟t exactly fit in with what you are doing. In this instance, an adapter is needed to make

whatever adjustments are necessary to use the service. It‟s like using your spouse as an adapter to your mother-in-

law to arrange for babysitting service. In the world of computers, an adapter is a software module that permits

access to a service through a standard messaging interface, usually created through the XML language.

 Combining diverse services and exposing them as a single service is commonplace in everyday life.

Consider, for example, a delivery service that combines three capabilities: dispatcher, driver, and accountant. The

dispatcher interacts with the customers and makes the arrangements for the deliveries. The driver organizes his or

her delivery route and makes the deliveries. The accountant records transactions, sends bills, and records payments.

Yet, to the customer, there is only one service interface, which, in fact, is the point where the package is submitted

for transportation. The delivery service has been composed from the three component services and the total process

is call composition. Facilities, sometimes called tools, are needed to put references to components and

corresponding services in the registry so that system designers can find them. All of this points to why the subject

of web services is so important. Web services with its associated XML, SOAP, UDDI, and WSDL facilities,

provide a convenient means of establishing a reference architecture.

Messaging

 The messaging layer of the service reference architecture provides the means for the components to interact

and emphasizes the need for in-between functionality to provide the requisite level of independence required by

SOA. Consider, for example, an investment firm that supports a database of up-to-the-second stock prices. An

investment advisor with a client on the line would like the latest price of AT&T stock. So he or she enters the stock

exchange code for AT&T, namely „T‟, and presses a key on the advisor‟s workstation. In a flash, the current stock

price is returned. Some in-between hardware and software, known as middleware, is required to make it all happen.

Clearly, many other services within the investment firm would also utilize the same stock price service. It‟s a

simple example but gives evidence that the component-based approach to system development has some definite

merit.

 A messaging service would normally use asynchronous messaging, which means that the requestor sends

the message to the service and the result is returned as soon as possible. While the person may be waiting for a

response operating in a synchronous mode, the underlying hardware and software goes along its merry way sending

messages back and forth asynchronously. Because of the great difference in processing speeds of humans and

computers, it appears as though the computer is sitting there waiting for a request and responds immediately. In

reality, that request may be put on a queue and processed in order of arrival, recognizing that different methods for

queue management may be used.

Registry

 The concept of a registry was introduced previously in the context of legacy systems and web services.

With web services, the registry is a general facility for storing service information that can be retrieved through

XML messaging. It‟s more complicated but that‟s the idea. With service architecture, as in the present context, the

registry is a repository for information on components, intended for persons synthesizing a composite service, and

Journal of Service Science – 2009 Volume 2, Number 1

27

additionally contains tools to assist in achieving that synthesis. The registry is a data base of components and the

services they supply.

 The registry should also contain facilities for convenient search, the import and export of entries, and

change management. In the latter instance, it is necessary for users to be informed of updates that might affect their

performance.

 The registry should additionally reflect business policy as it refers to distribution, security, and ownership.

Architecture Services Management

 In the present context, services management refers to the operation and management control over business

processes constructed with a service orientation. The efficacy of service operations is always of concern as it relates

to service-level agreements as they relate to performance and quality of service. In the former case, performance

encompasses the availability and reliability of individual services. In the latter case, quality of service refers to the

statistical analysis of specific service events.

 Management control reflects governance concepts as they apply to the operations mission, previously

mentioned. Governance should reflect the fact that service architecture is a methodology for using services to

construct services and has two major focuses: (1) The creation of processes, operating in the form of services, to

support both IT-enabled and non-IT-enabled business activities; and (2) The control and support of the business

services through a formal process for managing services. To summarize, governance provides support for

empowering people to do what they do in line with organizational objectives.

Orchestration

 Orchestration refers to the dynamic linking of services together to achieve a business purpose. The

business processes are layered on top of the services, so in a sense, the services are anchored into the processes. In

IT-enabled processes, the business process is a script written in a “business process execution language” that

successively calls the needed components in order to invoke the services constituting the business function. This

combinatory operation was earlier referred to as composition and can be conceptualized as the workflow of services.

In a non-IT enabled process, the composition is achieved through management directed policies, procedures, and

business rules.

 Actually, the term “orchestration” has two meanings in the context of service science. Let‟s take a

computer application as an example. The first meaning has to do with setting up the structure as a controlling

module that successively invokes services to achieve a business objective. The components do not have some form

of inherent stickiness that enables operational affinity among loosely-coupled components in a meaningful order.

That is where the business process execution language (BPEL), referred to just above, comes in. The application

designer has to set up the service chain beforehand.

 This is where the operational structure in Figure 7.1 comes in. The service bus effectively connects the

registry, workflow, composition, and the underlying system (called the platform) as pieces that do the work to

construct function from components viewed as services. The second meaning of the term “orchestration” refers to

the actual running of the application. The BPEL script is actually executed by an operational entity, intermediate

data is stored in an operational database (not shown), and the business result is achieved.

Analysis

 One of the facets of the service domain is that service quality is directly related to client interaction and

involvement. This requires constant tweaking, otherwise known as continuous improvement (i.e., kaizen in

operations management). Business performance is constantly monitored – there is nothing new about this. With

service systems, however, the raw operational data is frequently embedded deep down in independently constructed

loosely-coupled components. Getting this data out for analysis is a task that should be addressed at the design level.

Journal of Service Science – 2009 Volume 2, Number 1

28

User Interaction

 On the surface, the end-user interface development model seems simple. All that needs to be done is to

construct a prototype, test it, improve it, and then have the end-user group sign off on it. With service-oriented

architecture, however, the user interaction is with a business process, which is a notch up from what normally is

construed as the end-user interface. The term “user,” therefore, refers to the user of a service, and not necessarily to

the user of an application. As in the restaurant example, the user of a service doesn‟t have to be the customer.

 The user of a service can be another service, which leads to the notion of a service architecture in which

components can be assembled without the use of special adapters.

SERVICE ARCHITECTURE PRINCIPLES

 The use of design principles is paramount to the construction of a successful service project. Otherwise,

service systems development is another “random walk down Wall Street.” Here is a set of service architecture

principles.

Service Abstraction. The key benefit of service abstraction is that “inside” information about a component is

effectively hidden from the outside so that component can be used by other diverse services. This principle is

sometimes referred to as information hiding. Often, internal operational details are superfluous to a referencing

service where only a result is needed. Take the credit checking service as an example. An outside user of that

service is usually only interested in the credit worthiness of a subject and not in the procedures and file processes

necessary to ascertain that rating. In fact, operational details may change without the requester knowing or caring

about them. The concept of abstraction applies to other organizational functions and computer modules, as well.

Service Encapsulation. Service encapsulation enables a service – often bundled as part of a larger operational

entity – to be referenced via an adapter to preserve and take advantage of previously developed functionality. As

with the preceding principle, encapsulation may apply to organizational as well as informational components.

Service Loose Coupling. This principle simply demands that components are not implicitly dependent upon one

another, such that use by a non-coupled component is prohibited. Another way of expressing the concept of loose

coupling is one component does not require that another component be in a particular state at the time of invocation.

Service Contract. The concept of a service contract reflects that it is necessary that a complete specification be

made of the precise services provided by a service component and exactly how those services are to be addressed. A

service contract describes how two components are to interact. With Web services, the contract refers to a WSDL

(Web Services Definition Language) definition and a specification of the XML schema definition of precisely how

messages between a requester and the repository are to be formatted.

Service Reusability. Service reusability simply refers to the practice of designing a component so that it can be

used in more than one place. In general, the intention is to provide services that can be used by more than one

business process.

Service Composability. Service composability refers to the combining of services to form composite services.

This practice implicitly imposes a restriction on the component services so that they adhere to the specifications in

the service contract. Service composition is usually performed to synthesize a business process.

Service Autonomy. Service autonomy is conceptually modeled after the human nervous system and refers to a

component‟s capability to self-govern its own operational behavior. Autonomy reduces the complexity of business

processes composed from self-regulating components. Autonomy allows a business process to provide a higher

level of productivity by being able to manage itself. This is a tricky principle, because the implication is that a

component just operates on its own as some artificial intelligence robot. For most services, this principle simply

means that a service invoked through some form of “service bus” takes its input parameters and performs its

functions, as specified in its service contract, without requesting additional input or operating instructions.

Journal of Service Science – 2009 Volume 2, Number 1

29

Service Discoverability. Service discoverability is a complex arrangement of being describable, via the service

contract, and being accessible via a registry and a description language. Essentially, this means that the description

of a service, found through a search process, additionally provides information on how to use a service.

SERVICE ARCHITECTURE STRUCTURE AND OPERATION

 A business process is composed of one or more business services frequently implemented through

information and communications technology (ICT). Krafzig, Banke, and Slama
10

 state the modern dependence on

ICT in the following way. “… enterprises heavily depend on the IT backbone, which is responsible for running

almost all processes of modern enterprises, be they related to manufacturing, distribution, sales, customer

management, accounting, or any other type of business process.” This section introduces the concept of enterprise

systems and then presents definitive information on the structure and operation of service architecture in an

enterprise environment.

Enterprise Systems

 An enterprise system cuts across the total organization and encompasses inter-departmental dependencies

and relationships with suppliers and business partners. Accordingly, the enterprise software should be tightly

coupled with the organization, but not with itself, based on the component model. This reflects the agility and

incremental change that we referred to earlier. We require a structure that promotes loose coupling through

messaging and platform interoperability.

Service Architecture Structure

 The key structural elements in a service system are the services, a service repository, the service broker, the

service bus, the service manager, and the interface elements. The interface elements can be to end users or to

application programs.

 From a structural viewpoint, the service provides business logic and consists of an implementation and a

service contract. The service repository, operating as a virtual library, exists as a place to store service information

and how to retrieve that information. The service repository certainly has a computer flavor to it, but that need not

be the case. Many service firms have manual lists of the services they offer. In the computer version of a service

repository, however, the storage facility could be accessed manually during development and dynamically during

the execution of a component. The service broker connects services together by accessing the service repository for

information about services and providing the linkage to connect components. The service bus is the nerve center is

an enterprise system and is covered separately, as is the service manager, which is the mechanism by which

enterprise processes are constructed. The interface elements are the input and output to the system.

 The term “interface” normally implies an end-user interface with which most persons are familiar. In the

case of enterprise systems, however, an interface can be to another computer application, a database, or a legacy

system.

Enterprise Service Bus

 An enterprise service bus (ESB) is a collection of ICT facilities for routing messages between services, or

more specifically between components. The bus metaphor is apt in this case. The message gets on, goes to its

destination, and gets off. The metaphor ends there, because there are different kinds of busses and unique things

happen on different busses.

 The most straightforward kind of service bus is a high-speed data link between services, as alluded to

earlier in the stock broker example. The stock broker needs the current price of a stock for an ongoing transaction.

The stock symbol is entered into a workstation and a button is pressed. In a fraction of a second, the current price is

10 See their book in the selected readings, p.1.

Journal of Service Science – 2009 Volume 2, Number 1

30

returned by a service connected to the other end of the service bus. The service bus in this instance, is a

combination of hardware and software often referred to as middleware. In this model of bus, the service bus could

also be a specially constructed data link between business partners or between organizational units, termed

electronic data interchange (EDI).

 The most general form of ESB, however, uses the Internet with all of its inherent requirements for

interoperability. In this instance, a message, perhaps requesting a service, may go through a necessary protocol

conversion in its route from sender to receiver. Another possible function performed by an ESB is context

mediation, which refers to a change in value based on contextual differences. An example would be the change of a

price from Yen to Dollars during message processing.

 Another related topic is web based intermediary, or WBI for short. A WBI is a program that runs in

concert with a client‟s browser and acts as a form of software assistant, filtering and preparing information to satisfy

particular needs.

Service Manager

 The most prevalent use of service architecture is to construct computer applications. The service manger

ties everything together and runs the show. Clearly, this is an operational function but a structural component is

needed to do it. In a sense, the service manager is the “main program” of an application. The service manager could

be a specially written component in an enterprise system, or it could be a vendor-supplied package that successively

calls upon required services.

Service Architecture Operation

 An enterprise system is sometimes referred to as an “end to end” operation that represents a business

process. Another means of conceptualizing an enterprise system is that it is controlled process flow. As covered

above, the service manager controls the process flow through a process called orchestration. The conductor of an

orchestra controls the activity of a set of musicians through minute actions termed orchestration. The same concept

can be applied to the execution of an enterprise system.

 Orchestration is different than choreography. Choreography refers to what a collection of services can do,

and orchestration refers to precisely when and how they actually they do it.

 A business process can be scripted in a language, such as BPEL, or written in a computer programming

language. Business Process Execution Language (BPEL) is an XML-based scripting language for orchestrating

service applications.
11

QUICK SUMMARY

 The purpose of this overview is to present a bird‟s eye view of service technology and architecture. The

principles inherent in this viewpoint are summarized in the following quick summary.

1. Services are ubiquitous but require messages to communicate information between client and provider. A

client and a provider can be tightly coupled, as when a patient is sitting in front of the doctor and they are

having a give-and-take conversation, or loosely coupled, as when you send a request to someone via email

and receive a response at some undetermined time in the future. In the former case, the client and provider

are communicating in a synchronous mode without technology, and in the latter case, they are

communicating in an asynchronous mode with the use of technology.

2. The focus is on the data that is transmitted and not on the communications medium, which can take the

form of a human interaction or a computer-based message. The context for the message can be embedded

in the message or inherent in the way that the service provider is addressed. It is useful to recognize that

11

 For a good reference to BPEL, see Margolis (2007).

Journal of Service Science – 2009 Volume 2, Number 1

31

we are operating at two levels: the service level and the message level. At the service level, the message

entity that receives the message is the service provider, and in the case of a computer, it is regarded simply

as the service. At the message level, there is some choreography involved with providing a service, as

demonstrated by the above two-step interaction. In fact, a service may involve the interchange of several

messages.

3. In its most simple form, a message is a string of characters encoded using standardized coding methods

commonly employed in computer and information technology. Messages have a uniform format consisting

of a header and a body. The header primarily concerns addressing and includes the address of the sender

and the receiver. In the request/reply message pattern, the return address is picked up from the message

header for the response portion of the transaction. The body of the message contains the information

content of the message, and because it is intended only for the receiver, it is not usually inspected during

message transmission.

4. A service that takes place on the Internet and the World Wide Web is called a web service. A web service

is a process in which the provider and client interact to produce a value; it is a pure service. The only

difference between a web service and medical provisioning, for example, is that, in the former case, the

client and provider are computer systems. The most pervasive web service computer application on the

Internet is electronic mail, commonly known as email. The most widely used application on the World

Wide Web is to find information. The major web technology tools and techniques are HTTP, HTML, and

XML.

5. HyperText Transfer Protocol (HTTP) is a collection of rules and procedures for transferring messages

between computers over the World Wide Web. Without HTTP, the web would not be the revolutionary

phenomena that it is today.

6. It is possible to send a document from one computer to another and have that document displayed on the

receiving end in a reasonable form without regard to the brand and model of computer, kind of software,

time of day, and location. This feat is possible because of hypertext markup language (HTML).

7. Extensible Markup Language (XML) is a language and a standard for service messaging. Whereas HTML

describes how a document will be rendered on the receiving end of a message, XML gives the semantics

(or meaning) of a document.

8. A Web Service is any service that is available over the Internet, uses a standard XML messaging system,

and is not dependant upon any one particular operating system.

9. Service architecture is a collection of design patterns for constructing services from building blocks that

can be shared between service systems. The basic idea behind service architecture is that you have a

collection of components, representing business functions or computer applications, and you want to fit

them together to make a business process or an information system.

10. Components encapsulate services so that a service-oriented application or a business process is assimilated

from multiple components that achieve the desired functionality by collectively orchestrating the operation

of the needed services. The guiding principle behind service-oriented architecture is that once a component

is established, it can be reused in other applications or business processes. Eventually, an organization runs

out of components to build so that the synthesis of an application or a business process becomes a matter of

piecing the components together.

11. The term “on demand” seems to have navigated its way into the business literature in at least three ways.

In the first instance, on demand refers to the access of information, such as from the World Wide Web or

any other information repository, from wherever the end user may be and whenever the interaction takes

place. In the second instance, on demand refers to access to computer application programs without

specifically having to purchase them. Also known as utility computing, this form of on demand would

allow an end user to pay only for the use of software, rather than having to purchase it, as is typically the

case with traditional office software. Finally, the third instance of on demand and the one in which we are

interested refers to the techniques for the rapid development of business processes and computer

information systems to support enterprise services.

12. It‟s all relatively straightforward: most components encapsulate one or more services; many complex

services require more than one component; enterprise processes are constructed from components; and

enterprise functions are an amalgamation of corresponding services. The notion of putting components

together to achieve some enterprise function is called composability, and in order to do so, the methodology

demands severe constraints on the manner in which the components are constructed and packaged for

Journal of Service Science – 2009 Volume 2, Number 1

32

reuse. Components must fit together in order to operate as intended; this requirement is known as

interoperability.

13. An enterprise is service oriented if it can be properly viewed as a set of services connected to produce a

specific result. Similarly, a computer application or information system is service oriented if is constructed

from interacting components running on the same platform or accessible from different platforms via

networking facilities.

14. Service architecture purports to leverage legacy systems by unlocking the business functionality through

loosely-coupled but well-structured service components abducted from legacy systems. The service

components can then be choreographed to adapt or extend business processes to satisfy current needs. This

can be achieved in two ways: leveraging or repurposing. With leveraging, the functions in legacy systems

are exposed without rewriting the system. With repurposing, the programs are rewritten for the modern

world with a modern language, such as Java, for use on servers designed for the Internet and the World

Wide Web. Clearly, leveraging is the way to go with legacy systems, because of the risk involved with

rewriting large programs and getting it right the first time.

15. A certain amount of structure among components is required for the capabilities, mentioned above, to

function together as a coherent whole. It is commonly known as the SOA Reference Architecture.

16. The use of design principles is paramount to the construction of a successful service project. A set of

service architecture principles includes the following elements: service abstraction, service encapsulation,

service loose coupling, service contract, service reusability, service composability, service autonomy, and

service discoverability.

17. An enterprise system cuts across the total organization and encompasses inter-departmental dependencies

and relationships with suppliers and business partners. Accordingly, the enterprise software should be

tightly coupled with the organization, but not with itself, based on the component model. The key

structural elements in a service system are the services, a service repository, the service broker, the service

bus, the service manager, and the interface elements. The interface elements can be to end users or to

application programs. An enterprise service bus (ESB) is a collection of ICT facilities for routing messages

between services, or more specifically between components.

18. An enterprise system is sometimes referred to as an “end to end” operation that represents a business

process. As covered above, the service manager controls the process flow through a process called

orchestration. Orchestration is different than choreography. Choreography refers to what a collection of

services can do, and orchestration refers to precisely when and how they actually they do it.

ACKNOWLEDGMENT

 Thanks to William Hahn and Margaret Katzan for reading the manuscript.

REFERENCES

1. Carter, S., The New Language of Business, Upper Saddle River, NJ: IBM Press, 2007.

2. Cerami, E., Web Services Essentials, Sebastopol, CA: O‟Reilly Media, Inc., 2002.

3. Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., and G. Rackham, “Impact of service

orientation at the business level,” IBM Systems Journal, Vol. 44, No. 4, 2005, pp. 653-668.

4. Dykes, L. and E. Tittel, XML for Dummies (4
th

 Edition), Hoboken, NJ: Wiley Publishing, Inc. 2005.

5. Erl, T., Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services, Upper Saddle

River, NJ: Prentice Hall, 2004.

6. Erl, T., SOA: Principles of Service Design, Upper Saddle River, NJ: Prentice Hall, 2008.

7. Ernest, M. and J.M. Nisavic, “Adding value to the IT organization with the Component Business Model,

IBM Systems Journal, Vol. 46, No. 3, 2007, provider.387-403.

8. Gottschalk, K., Graham, S., Kreger, H., and J. Snell, “Introduction to Web services architecture,” IBM

Systems Journal (Vol. 41, No. 2), 2002, pp 170-177.

9. Hagel, J. and J.S. Brown, The Only Sustainable Edge, Boston: Harvard Business School Press, 2007.

10. Hurwitz, J., Bloor, R., Baroudi, C., and M. Kaufman, Service Oriented Architecture for Dummies,

Hoboken, NJ: Wiley Publishing, Inc., 2007.

Journal of Service Science – 2009 Volume 2, Number 1

33

11. IBM Corporation, Extend the value of your core business systems: Transforming legacy applications into

an SOA framework, Form G507-1950-00, September 2006.

12. Krafzig, D., Banke, K., and D. Slama, Enterprise SOA: Service-Oriented Architecture Best Practices,

Upper Saddle River, NJ: Prentice Hall, 2005.

13. Margolis, B. with J. Sharpe, SOA for the Business Developer: Concepts, BPEL, and SCA, Lewisville, TX:

2007.

14. McGrath, M., XML in Easy Steps, New York: Barnes & Noble Books, 2003.

15. Musciano, C. and B. Kennedy, HTML: The Definitive Guide, Sebastopol, CA: O‟Reilly Media, Inc., 1998.

16. Potts, S. and M. Kopack, Web Services in 24 Hours, Indianapolis: Sams Publishing, 2003.

17. Smith, J., Inside Windows Communication Foundation, Redmond, WA: Microsoft Press, 2007.

18. Spohrer, J., Service Science, Management, and Engineering (SSME): State of the Art – service science,

IBM Nordic Service Science Summit, Helsinki, Finland, February 28, 2007.

19. Van Slyke, C. and F. Bélanger, E-Business Technologies: Supporting the Net-Enhanced Organization, New

York: John Wiley and Sons, Inc., 2003.

20. Watt, A., Teach Yourself XML in 10 Minutes, Indianapolis: Sams Publishing, 2003.

21. webMethods, SOA Reference Architecture: Defining the Key Elements of a Successful SOA Technology

Framework, www.webMethods.com, 2006.

22. Wikipedia, HTTP, www.wikipedia.org, 2007.

23. Woods, D. and T. Mattern, Enterprise SOA: Designing IT for Business Innovation, Sebastopol, CA:

O‟Reilly Media Inc., 2006.

NOTES

http://www.webmethods.com/

Journal of Service Science – 2009 Volume 2, Number 1

34

NOTES

