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ABSTRACT 

 

Extreme value theory (EVT) has been widely applied in fields such as hydrology and insurance. It 

is a tool used to reflect on probabilities associated with extreme, and thus rare, events. EVT is 

useful in modeling the impact of crashes or situations of extreme stress on investor portfolios. It 

describes the behavior of maxima or minima in a time series, i.e., tails of a distribution. In this 

paper, we propose the use of generalised Pareto distribution (GPD) to model extreme returns in 

the gold market. This method provides effective means of estimating tail risk measures such as 

Value-at-Risk (VaR) and Expected Shortfall (ES). This is confirmed by various backtesting 

procedures. In particular, we utilize the Kupiec unconditional coverage test and the Christoffersen 

conditional coverage test for VaR backtesting, while the Bootstrap test is used for ES backtesting. 

The results indicate that GPD is superior to the traditional Gaussian and Student’s t models for 

VaR and ES estimations. 

 

Keywords: Gold Prices; Generalised Pareto Distribution; Value-At-Risk; Expected Shortfall; Kupiec; 

Christoffersen 

 

 

INTRODUCTION 

 

isk measures are used primarily to safeguard a financial position against severe losses. To 

successfully model such tail-related risks, we need to find suitable techniques to measure and capture 

these extreme events. Despite certain drawbacks, Value-at-Risk (VaR) and Expected Shortfall (ES) 

remain popular measures of financial risk among practitioners. Hence, there is a further need for the development of 

more robust methods in estimating VaR and ES. In particular, this paper aims to improve current assumptions of 

appropriate underlying distributions to capture extreme tails, and as a result, improve the estimation of VaR and ES.  

 

The implementation of VaR to identify appropriate regulatory capital requirement suffers from a number of 

setbacks, such as its inability to capture “tail loss”. Such drawbacks have recently been highlighted by the Basel 

Committee on Banking Supervision. The committee has also recommended a shift of focus to the alternative ES 

measure to address the drawbacks of VaR. Although a number of operational challenges has been identified by the 

committee for the move to ES, it is believed that the benefit outweighs the disadvantages. The use of ES has been 

proposed for the internal model-based approach, and to be utilised in determining risk weights for the standardised 

approach (Basel, 2012). In this paper, both VaR and ES are implemented under the assumption of Extreme value 

theory (EVT). In addition, backtesting procedures are also conducted to analyse the model adequacy. 

 

Formally, VaR is the maximum loss of a portfolio such that the likelihood of experiencing a loss exceeding 

that amount, over a specified risk horizon, is equal to a pre-specified tolerance level. ES measures the mean of losses 

that are equal to, or greater than, a corresponding VaR value. In order to capture the effect of market behavior under 

extreme events, EVT has been widely adopted in VaR estimation in recent years. Since EVT are derived from sound 

statistical theory and provides a parametric form for the tails of a distribution, its methodologies are attractive for 

risk assessments. 

R 
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There is a large literature that studies EVT for risk measures in areas where extreme observations are of 

interest, such as finance, insurance, hydrology, climatology and engineering. Specifically, numerous studies in 

finance and commodity markets have been conducted using EVT, including Embrechts et al. (1997), Gençay & 

Selçuk (2004) and Gilli & Këllezi (2006). Byström (2005) applied EVT to the case of extreme large electricity 

prices and declared a good fit with the generalized Pareto distribution (GPD). Bali (2003) determined the type of 

asymptotic distribution for modeling the extreme changes in US treasury yields. He found that the thin-tailed 

Gumbel and exponential distributions perform worse than the fat-tailed Frechet and Pareto distributions. Marohn 

(2005) studied the tail index in the case of generalised order statistics and determined the asymptotic properties of 

the Frechet distribution. However, to the best of our knowledge, there are limited discussions on the application of 

EVT to the gold market, which represents a crucial commodity to the world economy. Large losses are the main 

concern in the field of financial risk management. For example, it may signify the situation of stock market crash. 

While a lion’s share of the literature focuses on extreme losses, extreme gains in financial returns, on the other hand, 

are also of importance for financial leverage in the likes of security options and hedge funds. 

 

In this paper, we extend some of the work by Jang (2007) and Chaithep et al. (2012). Specifically, we look 

at modeling both gains (i.e., positive returns) and losses (i.e., negative returns) for short and long position of trade, 

respectively, in the gold market, while utilizing graphical analyses (such as excess distribution plots, plot of the tail 

of underlying distribution and scatter plot of residuals) and various backtesting procedures (i.e., Kupiec test, 

Chritoffersen test and Bootstrap test) to draw robust conclusions on the adequacy of GPD models for VaR and ES 

estimates. 

 

The remainder of the paper is organised as follows. In Section 2, we present a short literature review on the 

gold market. Section 3 describes the GPD and the peaks-over-threshold method for establishing extremes. Section 4 

introduces the risk measures, and their corresponding backtesting procedures, that are utilised for this study. 

Empirical results obtained in GPD estimation are discussed in Section 5. Finally, Section 6 concludes the study. 

 

GOLD 

 

Gold, as a financial indicator, is one of the most important commodities in the world and it is largely held 

by central banks. Central banks must maintain a proportion of their foreign exchange reserves in gold, as a store of 

value and as an assurance to redeem promises to pay depositors, note holders, or trading peers, or to secure a 

currency. Gold is also used by jewelers and investors as a hedging instrument (Sari et al., 2010). When currencies 

devaluate, investors move to the gold market and when currencies revaluate investors move away from the gold 

market (Capie et al., 2005). 

 

Gold has an influence on other precious metals. Sari et al. (2010) states: “Among the major precious metal 

class, an increase in the gold price seem to lead to parallel movements in the prices of the other precious metals 

which are also considered investment assets as well as industrial commodities”. The statement suggests that a model 

adequately explaining the gold prices could also contributes to models used in predicting the prices of other precious 

metals. Hence, many economists consider gold as a leading indicator in the precious metal pack. 

 

The Bretton Woods system, for which the US dollar was expressed in terms of a fixed gold price, collapsed 

in 1971 (Capie et al., 2005). Accordingly, it seems appropriate to start our investigation around this period. High 

inflation, uncertain international politics and low confidence in the US dollar are some of the main reasons advanced 

for the rapid increase in gold prices between September 1976 and January 1980. A combination of worries pushed 

investors to diversify their holdings of paper currencies into more tangible gold (Cheung & Lai, 1993). The swift 

increase in gold prices during 1980 was caused by technically driven trading in the futures market. The gold price 

reached US$700 for eleven days during 1980 but then returned to around US$300 by middle 1982. Between mid-

1982 and June 2002, gold was seen trading in the US$250-US$500 range (Mills, 2004). 

 

A number of authors have reported on the role gold plays as an inflation hedge and the role inflation plays 

on the gold price. However, according to Lawrence (2003), no significant correlations exist between returns on gold 

and changes in certain macroeconomic variables such as inflation, GDP and interest rates. Sjaastad & Scacciavillani 

(1996) reported that gold is a store value against inflation. Baker & van Tassel (1985) documented that the price of 
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gold depends on the future inflation rate. Sherman (1983) noted the log of the gold price is positively related to the 

anticipated inflation. 

 

According to Kaufmann & Winters (1989), the price of gold is based on changes in the US rate of inflation, 

as well as other variables. Traditionally, gold has played a significant role during times of political and economic 

crises and during equity market crashes, whereby gold has responded with higher prices. According to Smith (2002), 

“when the economic environment becomes more uncertain, attention turns to investigating in gold as a safe haven.” 

The author also noted that following the September 11th, 2001, attack, the FTSE All share Index decreased by 9% 

while the London gold afternoon fixing price increased by 7.45%. Lawrence (2003) reported that gold returns are 

less correlated with returns on equity and bond indices than returns of other commodities. In line with gold’s role as 

an asset last resort, Koutsoyiannis (1983) stated that the price of gold is strongly related to the state of the US 

economy and geopolitical factors. 

 

The above motivations demonstrate the importance in measuring and capturing the stylised facts exhibits in 

the gold market prices. In particular, such prices display fatter tails and excess kurtosis (shown in Section 5), which 

cannot be fully captured by the widely exhausted Gaussian and Student’s   distributions. 

 

GPD AND EVT 

 

The two-parameter GPD (with scale parameter β and shape parameter ξ) has the following representation 

(Tsay, 2013): 

 

         
     

  

 
 
    

      

   
  
 
 
 

      

  (1) 

 

where     when    ,          when    , and    . 

 

Excess Distribution 

 

For a random variable X, the excess distribution function Fu above a certain threshold u is defined as 

 

                     (2) 

 

where x represent the size of exceedances over u. Furthermore, if we denote F as the distribution function for X, then 

we may write 

 

      
           

      
 (3) 

 

A fundamental theorem in EVT, by Balkema & de Haan (1974) and Pickands (1975), identifies the 

asymptotic behavior of these exceedances with GPD. Hence, the excess distribution function Fu can be well 

approximated by GPD for large enough u. 

 

Peaks Over Threshold (POT) 

 

To fit a GPD to our data set, we adopt the peak over threshold (POT) method that focuses on the 

distribution of exceedances above some high threshold. For      , we can rewrite the excess distribution 

function (3) as 
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 (4) 

 

and, hence, deduce the following reverse expression 

 

                          (5) 

 

which allows us to apply the POT method. 

 

There are two steps in applying the POT method. Firstly, we need to choose an appropriate threshold. 

Secondly, fit the GPD function to data. Given the choice of a sufficiently high threshold, we may estimate      by 

        , where n is the total sample size and    is the amount of observations above the chosen threshold. And, 

        can be estimated by a GPD using maximum likelihood estimation (Embrechts et al., 1997). We then 

obtain the following tail estimator (Ren & Giles, 2010) 

 

        
  
 
   

  

  
      

     

 (6) 

 

Threshold Selection 

 

In this paper, we utilise the empirical mean excess plot for threshold selections. For a random variable X, 

the mean excess function is defined as  

 

                (7) 

 

i.e., the mean of exceedances over a threshold u. If the underlying distribution of     follows a GPD, then the 

corresponding mean excess is 

 

     
    

   
 ,         (8) 

 

provided    . From equation (8), we can clearly see that the mean excess function must be linear in u. More 

precisely,     follows a GPD if, and only if, the mean excess function is linear in u (Coles, 2001). This gives us a 

way of selecting an appropriate threshold. 

 

Given the data, we define the empirical mean excess function as 

 

      
              
 
 

        
 
 

 (9) 

 

where n is the sample size. The empirical excess plot is a graphical representation of the locus of           and we 

can examine this plot to choose the threshold u such that       is approximately linear for    . 

 

Parameter Estimation 

 

There are various techniques for estimating the parameters of the GPD, such as maximum likelihood 

estimation (MLE), method of moments and the method of probability-weighted moments. We adopt the MLE 

method in this paper because the maximum likelihood estimator is asymptotically normal and allows simple 

approximations for standard errors and confidence intervals (Azzalini, 1996). 
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Given that we have a sufficiently high threshold u and, assuming there are m observations with       , 

the subsample               has an underlying distribution of GPD, where        for    ,      
       for    , then the logarithm of the probability density function of    can be derived from Equation (1) as 

 

            
       

   

 
       

    

 
         

       
 

 
             

   (10) 

 

Hence, the log-likelihood function              for the GPD is the logarithm of the joint density of the m 

observations, i.e., 

 

              
        

   

 
        

    

 
   

          

        
 

 
       
 
          

   (11) 

 

Therefore, we can obtain the estimates for   and   by maximizing the log-likelihood function of the 

subsample under a suitable threshold u. 

 

Model Validation 

 

We can use quantile plots to assess the quality of a fitted generalised Pareto model (Coles, 2001). Assume 

we have a chosen threshold u, the ordered threshold excesses             and an estimated model    with 

    .  

 

The quantile (Q-Q) plot consists of the pairs 
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where 

 

          
  

  
    

 
    (13) 

 

If GPD is a reasonable fit for the exceedances above u, then the Q-Q plot should depict points that are 

approximately linear. Furthermore, we may confirm the goodness-of-fit of GPD by utilizing the excess distribution 

plot and plot of the tail of underlying distribution (McNeil et al., 2005). For a good fit, the exceedances should lie 

close to the theoretical curves. Lastly, a scatter plot of residuals should not depict any visible pattern to indicate 

independence of the exceedances. 

 

RISK MEASURES 

 

The amount of asset risk capital, reserved by financial institutes as per Basel accords, is directly associated 

to the portfolio risk level and two of the most common benchmark measure for evaluating such risk are VaR and ES. 

VaR is intended to assess the maximum possible loss of a portfolio over a given time period, and its calculations 

focus on the tails of a distribution, whereas ES evaluates the expected value of losses (or gains) that exceed a 

corresponding VaR level. Hence, the accuracies of VaR and ES estimation are dependent on how well a selected 

model portrays the extreme data observations (McNeil et al., 2005). 
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VaR 
 

For a random variable X (usually the return in some risky financial instrument) with distribution function F 

over a specified time period, the VaR, for a given probability p, can be defined as the p-th quantile of F, i.e., 

 

              (14) 

 

where     is the quantile function. VaR is a common measure of extreme risks and we use GPD to approximate this 

measure. In particular, using Equation (6) we obtain 
 

 

      

 
 
 

 
   

  

  
  

 

  
  

   

                  

         
 

  
                

   (15) 

 

where    and    are the maximum likelihood estimates of the GPD parameters (Tsay, 2010). 
 

ES 
 

Although VaR is often considered as an adequate risk measure, it does not capture all aspects of market 

risks, such as subadditivity. Hence, Artzner et al. (1999) proposed ES as a better measure of risk, which is 

subadditive and also informs us about the likely magnitude of exceedances. In contrast to VaR, ES measures the 

riskiness of an instrument by considering both the size and likelihood of losses above a particular threshold (Basel, 

2012). ES gives the expected size of return that exceeds VaR, i.e., for a probability level p, 
 

                  (16) 

 

And, equivalently, 
 

                            (17) 

 

where the second term above represent the mean of the excess distribution          (treating      as the 

threshold). Proceeding as before, if the threshold      is sufficiently large then          is a GPD, i.e., 

 

                           (18) 

 

Thus, the mean of the excess distribution          can be calculated as 

 

           

   
 (19) 

 

where    , and substituting into Equation (17) will yield 
 

     
     

    
 
      

    
 (20) 

 

Backtesting 
 

To examine the adequacy and effectiveness of VaR and ES estimates, we utilise various backtesting 

procedures. In particular, VaR backtesting is performed using the Kupiec likelihood ratio unconditional coverage test 

(Kupiec, 1995) and Christoffersen conditional coverage test (Christoffersen, 1998). While for ES, we follow the 

backtesting procedure in McNeil and Frey (2000), with and without bootstrapping. 
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The Kupiec test exploits the fact that an adequate model ought to have its proportion of violations of VaR 

estimates close to the corresponding tail probability level. The method consists of calculating the number of times x
α
 

the observed returns fall below (for long positions) or above (for short positions) the VaR estimate at level α, i.e., rt 

< VaR
α
 or rt > VaR

α
, and compare the corresponding failure rates to α. The null hypothesis is that the expected 

proportion of violations is equal to α. Under this null hypothesis, the Kupiec statistic, given by 

 

           
  

 
 

  

    
  

 
 

    

        
 
        

 
  (21) 

 

is asymptotically distributed according to a chi-square distribution with one degree of freedom. The Christoffersen 

test extends the Kupiec test to account for serial independence of violations (i.e., clustering of extremes). The 

Christoffersen test statistic can be represented by 

 

               
       

     
         

     
    

                             
 (22) 

 

where     is defined as the number of returns in state i while they have been in state j previously (state 1 indicates 

the VaR estimate is violated and state 0 indicates it is not) and    is defined as the probability of having an exception 

that is conditional on state i the previous day. This statistic is asymptotically chi-square distributed with two degrees 

of freedom. 

 

The null hypothesis of the ES backtest is that the excess conditional shortfalls (excess of the actual data 

series when VaR is violated), are i.i.d. and has zero mean. The test is a one sided t-test against the alternative that the 

excess shortfall has mean greater than zero and thus that the conditional shortfall is systematically underestimated. 

The test statistics is given by 

 

  
     

     
 (23) 

 

where    and    are the mean and standard deviation of “exceedance residuals”             . The bootstrap 

techniques can also be utilised to alleviate any bias with respect to assumptions about the underlying distribution of 

the excess shortfall. For the bootstrap test, we sample     
     

       
   without replacement from the shifted residuals 

             and compute the test statistic 

 

  
  

       

       
 (24) 

 

for each bootstrap sample j (McNeil & Frey, 2000). 

 

EMPIRICAL RESULTS AND DISCUSSIONS 

 

Stylised Facts 

 

A number of facts about the volatility of financial assets have emerged over the years and have been 

confirmed in numerous studies. Hence, a good volatility model must be able to capture and reflect these stylized 

facts. These features are commonly found in financial and commodity markets. Financial returns are almost 

unpredictable; they have surprisingly large number of extreme values where both extremes and quiet periods are 

clustered in time. These features are often described as unpredictability, fat tails and volatility clustering (Engle, 

2003). 
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The Data 

 

The data used in this study are the monthly gold prices, quoted in US dollars, and is taken from the 

following website: www.gold.org/investment/statistics/gold_price_chart/. The data cover 515 observations from 

January 1969 to October 2012. The time series exhibits a number of price shocks, e.g., during the period around 

September 11, 2001, the beginning of the Iraq war in 2003 as well as the global crisis in 2008. The data are 

transformed into monthly log-returns by taking first backward differences in the logarithm of prices. For the 

observed gold prices   , the monthly log-returns are calculated using 

 

                 (25) 

 

Table 1 provides a summary of descriptive statistics for the considered return series. 

 
Table 1: Descriptive Summary Statistics of Gold Returns 

Minimum SD Skewness Kurtosis 
JB statistic 

(p-value) 
Maximum Mean N 

-0.1100 0.0251 0.3769 6.7290 
309.0970 

(<0.0001) 
0.1099 0.0033 514 

 

We observe that the mean of monthly returns is positive, indicating that the overall gold prices were 

increasing during the considered time period. The magnitude of the average return is very small compared to the 

standard deviation. Further, the large kurtosis of 6.7290 indicates the leptokurtic characteristics of returns. The series 

has a distribution with tails that are significantly fatter than those of the normal distribution. This indication of non-

normality is also supported by the Jacque-Bera test, which rejects the null hypothesis of a normal distribution at all 

levels of significance.  

 

 
Figure 1: Time Series Plot And Histogram Of Gold Returns 

 

Figure 1 provides a plot of the monthly log returns as well as a histogram of the returns distribution. The 

figures indicate heteroscedasticity and volatility clustering for the return series that also exhibits a number of 

isolated extreme occurrences caused by unforeseen events or shocks to the gold market.  

 

The unpredictability of returns and volatility clustering can also be shown by observing the 

autocorrelations. Autocorrelations are correlations calculated between the value of a random variable today and its 

value in the past. Significant autocorrelations in returns indicate predictability, and volatility clustering is evidenced 

through the significance of squared or absolute returns. Figure 2 provides the autocorrelation function plot (ACF) of 

the returns and the ACF of squared returns. Clearly, the return autocorrelations are almost all insignificant while the 

squared returns have significant autocorrelations. Furthermore, the squared returns autocorrelations are all positive 

which is highly unlikely to occur by chance. The figures give significant evidence for both the unpredictability of 

returns and volatility clustering. 
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Figure 2: ACF Of Gold Returns (Left) And Squared Returns (Right) 

 

The kurtosis is substantial at 6.7290; this is strong evidence that extremes are more substantial than one 

would expect from a normal random variable. Similar evidence is seen graphically in the Q-Q plot for gold returns 

(see Figure 2). 

 
Figure 3: Normal Q-Q Plot For Gold Returns 

 

We further test for stationarity of the return series using the Augmented Dickey-Fuller (ADF) and Philips 

Perron (PP) unit root tests. The ADF test is set to lag 0 using the Schwartz Information Criterion (SIC) and the PP 

test is conducted using the Bartlett Kernel spectral estimation method. Results are reported in Table 2 and indicate 

that the null hypothesis of unit root is rejected for both tests. Hence, the return series of gold prices can be 

considered to be stationary. 

 
Table 2: Results For ADF And PP Unit Root Tests For Gold Return Series 

Unit root test Test statistic p-value 

ADF test  -22.0778 0.0000 

Philips-Perron test -22.0876 0.0000 
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For convenience of presentation, the data are now re-scaled as         . Further, we produce all 

analogous results for negative returns by taking into account the relation                              . 

 
Figure 4: Empirical distribution for positive returns (left) and negative returns (right) 

 

Figure 4 shows empirical distribution for both positive and negative returns. For both positive and negative 

returns, the tails are approximately linear, implying the Pareto behavior, hence we are justified in fitting GPD to the 

tails. 
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Figure 5: Mean Excess Function For Positive Returns (Left) And Negative Returns (Right) 

 

Figure 5 shows the mean excess plot (mean residual life plot) of the positive monthly gold log-returns and 

negative monthly gold log-returns. A threshold of 2.5% seems to be reasonable for both positive (monthly gain) and 

negative (monthly loss) returns, i.e., 0.025 for positive log returns and -0.025 for negative log returns. 

Table 3 shows the results of fitting a GPD to exceedances of positive and negative returns using thresholds of 0.025 

(2.5%) and -0.025 (-2.5%), respectively. 

 
Table 3: Results From Fitted GPD 

 Positive Returns Negative Returns 

Threshold 2.5% -2.5% 

Percentile of the Threshold 0.8560 0.9105 

Number of Points Exceeding Threshold 74 46 

Estimates for ξ 0.2238 0.4347 

Standard Error of Estimates for ξ 0.1699 0.2503 

Estimates for β 1.4911 0.9392 

Standard Error of Estimates for β 0.3045 0.2661 

Variance-Covariance Matrix of Estimates  
             
             

   
             
             

  

 

Diagnostic plots for threshold excess model (GPD) fitted to monthly positive log returns and negative log 

returns are shown in Figures 6 and 7. 
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Figure 6: Excess Distribution (Top Left), Tail Of Underlying Distribution (Top Right), Scatterplot Of Residuals (Bottom Left) 

And Q-Q Plot (Bottom Right) For GDP With 74 Exceedances For Positive Returns 

 

 
Figure 7: Excess Distribution (Top Left), Tail Of Underlying Distribution (Top Right), Scatterplot Of Residuals (Bottom Left) 

And Q-Q Plot (Bottom Right) For GPD With 46 Exceedances For Negative Returns 
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For positive returns, the graphs of the excess distribution and tail of underlying distribution follow the 

traces of the corresponding GPD, implying that the GPD model provides a good fit to exceedances in the upper tail 

of our data. This is further confirmed by the approximate linearity in the Q-Q plot. Thus, the positive extreme values 

(beyond 0.025) can be modeled by 

 

        
  

 
 
    

 

 

where ξ =0.1699 and β=1.4911. 

 

In Figure 7, the shape of the excess distribution graph corresponds closely to the shape of a GPD 

(Embrechts et al., 1997) and the Q-Q plot is approximately linear. Hence, we again confirm that the GPD is a good 

fit for exceedances in the lower tail of our data. This implies that the negative extreme values (beyond -0.025) can be 

modeled by: 

 

        
  

 
 
    

 

 

where ξ = 0.4347 and β= 0.9392. 

 

Table 4 provides the estimates of VaR and ES for both positive and negative returns, at various quantiles 

levels. The table presents the estimates constructed from the fitted GPD model and these are contrasted against the 

estimates drawn from the traditional Gaussian model and the Student’s t model. 

 
Table 4: Estimates For Var And ES For Positive And Negative Returns 

  Positive returns Negative returns 

Model p-values Estimate of VaR Estimate of ES Estimate of VaR Estimate of ES 

Normal 

0.9 3.5402 5.8512 2.8831 4.8983 

0.95 4.4507 6.9612 3.7936 6.0645 

0.99 6.1586 8.7573 5.5015 8.3640 

Student’s t 

0.9 3.7972 6.1173 3.1401 5.1250 

0.95 4.9257 7.9494 4.2686 6.5182 

0.99 7.4025 9.3525 6.7454 9.4670 

GPD 

0.9 3.0662 5.1506 2.3982 3.9814 

0.95 4.2793 6.7135 3.1222 5.2620 

0.99 7.9399 11.4298 5.9411 10.2482 

 

At a quantile level of 90%, the estimated VaR from GPD is 3.0662 for gains and 2.3982 for losses. This is, 

with the GPD model, we are 90% confidence that the expected market value of gold would not gain by more than 

3.0662% for the best case scenario or lose more than 2.3982% for the worst case scenario, within one-month 

durations. For GPD, VaR is estimated as 7.9399% at the 99
th 

percentile for the right tail, i.e., we expect the monthly 

changes in the value of gold would not increase by more than 7.9399%. Given the quantile levels, the corresponding 

VaR estimates in the right tail are larger than those in left tail. The GPD estimates of ES under different quantile 

levels exhibits analogous characteristics as observed from VaR. Similar interpretations can be made for the Gaussian 

model and the Student’s t model. 

 

In comparison of different models, it is also interesting to note that GPD produced lower VaR and ES 

estimates than the two other models, at both 90% and 95% quantile levels. However, the GPD estimates at the 99% 

level are higher than those from the normal and Student’s t models, except for the VaR estimate of the negative tail. 
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Table 5: Backtesting Of Var For Gold Returns 

  p-values for Kupiec test p-values for Chritoffersen test 

Model Level 0.9 0.95 0.99 0.9 0.95 0.99 

Normal 
Gains 0.0266 0.5783 0.0095 0.0131 0.2069 0.0029 

Losses <0.001 0.0354 0.7103 <0.001 0.0653 0.8694 

Student’s t 
Gains 0.0040 0.0354 0.1219 0.0073 0.0262 0.1019 

Losses <0.001 0.0047 0.5990 <0.001 0.0130 0.8439 

GPD 
Gains 0.9530 0.6461 0.4345 0.0870 0.4758 0.1535 

Losses 0.9530 0.9517 0.9503 0.9977 0.8407 0.9501 

 
Table 6: Backtesting Of ES For Gold Returns 

  Boot p-value p-value 

 Level 0.9 0.95 0.99 0.9 0.95 0.99 

Normal 
Gains 0.5213 0.5185 0.5110 0.5000 0.5000 0.5000 

Losses 0.5126 0.5174 0.4786 0.5000 0.5000 0.5000 

Student’s t 
Gains 0.5084 0.4962 0.5013 0.5000 0.5000 0.5000 

Losses 0.5192 0.5285 0.5177 0.5000 0.5000 0.5000 

GPD 
Gains 0.5420 0.6679 >0.999 0.5213 0.6965 >0.999 

Losses 0.6406 0.6498 0.9255 0.6486 0.6935 0.9663 

 

Tables 5 and 6 provide the results of backtesting of VaR and ES estimates from different models. Both the 

Kupiec test and the Christoffersen test suggest that the VaR estimates from GPD cannot be rejected. In particular, 

our model seems to produce very suitable VaR estimate for long positions (as indicated by high p-values for losses at 

all levels and for both tests). As for backtesting of ES, results from both tests, with and without bootstrapping, are 

presented. Again, the high p-values indicate very suitable ES estimates from GPD, at all levels. Furthermore, at all 

quantile levels and for both tails, GPD produced the highest p-value for all tests. These are strong evidence that GPD 

is a more adequate model for VaR and ES estimations, as compared to the traditional Gaussian model and the 

Student’s t model. 

 
CONCLUSION 

 

In this paper, we have illustrated the use of EVT to model tail-related risk measures, such as VaR and ES, 

for the gold market. In particular, GPD was found to be an appropriate model to describe the conditional excess 

distributions of a heteroscedastic gold log return series and provides adequate estimations for VaR and ES. These 

were confirmed by various statistical graphical analyses and backtesing procedures. Moreover, the superior 

performances of GPD were contrasted against the normal distribution and the Student’s t distribution. 

 

Further work may include comparative analyses with other heavy-tail distributions, that are suitable for the 

depiction of financial returns, and incorporation of GPD in the framework of the well-known GARCH-based VaR 

models. For example, comparisons may be drawn with the generalised logistic distribution (Tolikas & Brown, 2006) 

and the class of generalised hyperbolic distributions (Huang et al., 2014), with the inclusion of backtesting results on 

the VaR and ES estimates. 

 

R and EViews were used in this paper to produce figures and results from various tests. 
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