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ABSTRACT 

 

Although multiples are used extensively in practice, empirical guidance in emerging markets is 

limited in this regard. In terms of valuation accuracy, the impact of peer group selection by way of 

industry classification in emerging markets has not yet been substantiated by research. This paper 

investigates the valuation performance of multiples over various industry classifications when 

valuing the equity of South African companies listed on the Johannesburg Stock Exchange for the 

period 2001 to 2010. The empirical results revealed that peer group selection based on a 

narrower industry classification could, on average, increase valuation accuracy by as much as 

19.60%.  
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1. INTRODUCTION 

 

here is increasing international interest in corporate valuation practice in emerging markets, such as 

South Africa, which highlights the need for a best practice guide for investment practitioners in 

emerging markets (Bruner, Conroy, Estrada, Kritzman & Li, 2002). However, despite the obvious 

need for greater academic rigour in this regard, very little empirical research has been conducted on valuation 

practices in emerging markets. Most of the international evidence is based on corporate valuation practice in the 

relatively deeply traded and liquid developed markets in the United States of America (USA) and Europe.  

 

 This research paper aims to make a contribution in the field of relative valuations, otherwise known as 

multiples, which are used extensively in practice (PwC, 2010; Minjina, 2008; Roosenboom, 2007; Damodaran, 

2006b; Asquith, Mikhail & Au, 2005; Bhojraj & Lee, 2002). Multiples are used to value assets, based on how 

similar assets are valued in the market (Damodaran, 2002). Traditional multiples-based valuations rely on the 

following four steps (Damodaran, 2009; Schreiner & Spremann, 2007): Firstly, the two value relevant measures are 

identified; i.e., the market price variable and a matching value driver. Secondly, a set of comparable companies, 

known as a peer group, is selected. Thirdly, a peer group multiple is estimated based on the selection in step two. 

Lastly, the peer group multiple is applied to the target company’s value driver to determine the value of the target 

company’s equity. 

 

 The focus of this paper is on the ability of the peer group selection in step two to increase the valuation 

accuracy of multiples. The primary aim is to establish whether peer group selection by narrower industry 

classification will increase the valuation accuracy of multiples. The secondary aim is to determine the potential 

improvement in valuation accuracy that industry narrowing may offer vis-à-vis wider industry classifications. The 

third aim is to determine the most optimal industry definition for peer group selection purposes. To this end, 16 

multiples are constructed, covering four value driver categories; namely, earnings, book value, revenue and cash 

flow. 

T 
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 Section 2 presents the literature review, followed by the data selection in section 3 and a discussion of the 

research methodology, including the mathematical definition of the concept of valuation errors, in section 4, which 

serves as the premise for this research. The empirical results of the research are presented in section 5. Concluding 

remarks are offered in the final section. 

 

2. LITERATURE REVIEW 

 

 Peer group selection can be based on a set of comparable companies or comparable transactions (Stowell, 

2010). The method which relies on the selection of a set of comparable companies assumes that companies within 

the same industry are relatively homogeneous; i.e., they have similar financial and operational characteristics, which 

would imply that the companies have similar prospects for key value drivers such as profitability, growth and risk. 

The method which relies on the selection of comparable transactions, which is normally used for valuing merger and 

acquisition deals, selects historical corporate transactions in the same industry or country as comparables (Pratt, 

2005). However, as a result of data limitations, the comparable transactions method is less appropriate for statistical 

analysis. Consequently this paper will focus on the selection of comparable companies. 

 

 Statistical logic would suggest that not one, but several, comparable companies should be selected. The 

logic is that the standard deviation of the valuation errors, when selecting one company vis-à-vis the standard 

deviation when selecting several companies, will be higher (Alford, 1992). The importance of the selection of 

comparable companies is highlighted in various studies, which also indicate the different areas of application 

thereof. Despite its obvious application when employing multiples, the selection of comparable companies is also 

prominent in discounted cash flow analysis, for example, where it is used to estimate a company’s cost of capital 

(Fuller & Kerr, 1981). Various researchers also advocate the importance of comparable companies when 

investigating the contagion effect; i.e., where actions that affect the value of one company in a specific industry 

impact on the value of other companies in the same industry (Bhojraj & Lee, 2002; Eberhart, 2001; Fenn & Cole, 

1994; Lang & Stulz, 1992).  

 

 Despite the wide application thereof in practice, very little theory is available on how, and why, certain 

comparable companies should be selected in certain circumstances. There are two schools of thought in this regard 

(Bhojraj & Lee, 2002). The first school of thought defines comparable companies simply as companies in similar 

industries. Consequently, since companies in similar industries display similar risk and earnings growth 

characteristics, comparable companies are selected based on industry classification (Damodaran, 2006a; Alford, 

1992). The second school of thought argues that a comparable company set should be compiled based on valuation 

fundamentals (Dittmann & Weiner, 2005; Goedhart, Koller & Wessels, 2005). The valuation fundamentals school of 

thought favours the selection of comparable companies on the basis of similar economic variables such as 

profitability, growth and risk, instead of industry classification. The focus of this paper is on the selection of a set of 

comparable companies based on industry classification. 

 

 Since different industries display different operational and financial characteristics, industry classification 

is crucial in the identification of the peer group of companies. Empirical evidence should guide preferences in this 

regard and one would be inclined to argue that a narrower industry classification should more closely align 

companies with more similar operational and financial characteristics. The implicit assumption is therefore that a 

narrower industry classification should render more accurate valuations. However, a narrowly defined industry 

classification may create a situation where an insufficient number of companies is available within such a narrowly 

defined classification to accommodate empirical testing. Researchers in the USA, for example, often encounter this 

problem when they use 4-digit codes from the USA Compustat database. In order to overcome this problem, 

homogeneity is sacrificed to ensure a sufficiently large peer group by selecting comparables based on a broader 

industry definition, such as a 3-digit industry classification.
1
  

 

                                                 
1 The 4-digit code classification system, which is used internationally, assigns a 4-digit code to each company. The first digit 

specifies the industry (widest classification), the second digit specifies the supersector, the third digit specifies the sector and the 

fourth digit specifies the subsector (narrowest classification). The McGregor Bureau of Financial Analysis (BFA) classification 

system, which is used in this paper, is similar to international classification systems. 
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 Most existing studies build on the comparable company principle work of Alford (1992), who found that 

selecting comparable companies based on 3-digit Standard Industry Classification (SIC) codes is reasonably 

effective. According to Alford’s research results, a narrower industry classification improves the valuation accuracy 

of multiples, but with diminishing significance as the industry definition is refined further. Alford also concluded 

that controlling for risk (via company size) and earnings growth (via return on equity) has little effect on valuation 

accuracy. He further noted that, when selecting comparable companies based on industry classification, the 

valuation accuracy is greater for larger companies than for smaller companies. However, Alford’s research was 

limited to USA companies and covered only three years; namely, 1978, 1982 and 1986. 

 

 In a similar study on USA and European companies, Schreiner (2007) found that forming a smaller, but 

more homogenous peer group; i.e., by narrowing the industry classification from 1-digit to 2-digit to 3-digit industry 

codes, improved the valuation accuracy of multiples. This study included accrual-, book value- and cash flow-based 

multiples. When employing a median absolute valuation error and a 15% fraction error (FRE) range, the empirical 

results indicated that a narrower industry classification; i.e., narrowing the industry classification from 1-digit to 3-

digit industry codes, increased valuation accuracy, on average, by 8.60% and 17.17%, respectively (Schreiner, 

2007). 

 

 Henschke and Homburg (2009) obtained similar results when they tested the impact of a narrower industry 

classification on the valuation accuracy of USA-based companies over the period 1986 to 2004. They compared, 

among others, the valuation accuracy of four earnings-based multiples; namely, price-to-book value, price-to-

Compustat-earnings, price-to-forecasted-earnings and price-to-Institutional Brokers Estimation System (IBES)-

earnings. Their research results indicated that, for 75% of the observations, a narrower industry classification 

resulted in an increase in valuation accuracy.  

 

 Research conducted by Berkman, Bradhury and Ferguson (2000) in New Zealand presents evidence to the 

contrary. However, their evidence was based on a small sample of 45 newly listed companies on the New Zealand 

Stock Exchange. The authors also conceded that their findings were based on data that were difficult to obtain in a 

thinly traded capital market, which may have obscured the results. 

 

 Although the majority of evidence from these studies indicates that a narrower industry classification 

results in an increase in valuation accuracy, the international literature focuses on developed economies, while 

shedding little light on emerging markets. No such research has, for example, yet been conducted in South Africa. 

Consequently, this research paper aims to address the lack of empirical evidence in this regard and to add an 

emerging market perspective to the existing literature. 

 

3. DATA SELECTION  

 

 The following variables were extracted from the McGregor BFA database: Market capitalisation (MCap), 

Shares in issue, Gross profit (GP), Earnings before interest, tax, depreciation and amortisation (EBITDA), Earnings 

before interest and tax (EBIT), Profit after tax (PAT), Profit before tax (PBT), Headline earnings (HE), Total assets 

(TA), Invested capital (IC), Book value of equity (BVE), Revenue (R), Cash generated by Operations (CgbO), 

Increase/decrease in working capital, Net cash inflow from operating activities (NCIfOA)), Net cash inflow from 

investment activities (NCIfIA), Ordinary dividends (OD), Taxation paid, Fixed assets acquired, Net interest 

paid/received, Secondary tax on companies, Capital profits/losses on financial assets, Normal taxation included in 

extraordinary items, Total profit of an extraordinary nature, Industry (IND), Supersector (SUP), Sector (SEC) and 

Subsector (SUB).
2
  

 

 Company-year observations for these variables for the period 2001 to 2010 were extracted from the 

McGregor BFA database. The companies were selected based on three criteria: 1) All multiples are positive; i.e., 

multiples with negative values were discarded, 2) The companies have at least three years of positive company year 

multiples, and 3) Each industry classification category has at least four observations that meet criteria 1) and 2) 

                                                 
2 Annexure A contains a complete list of acronyms/abbreviations, while key variables are defined in Annexure B. 
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above.
3
  

 

 The first condition eliminates unrealistic multiples that cannot be used. The second condition ensures that 

selected companies have a reasonable history as a going concern and the third ensures that the number of companies 

within each industry classification is not prohibitively small, preventing the situation where there are too few 

observations to warrant a realistic mean calculation. The final population of observations represents approximately 

71% of the total number of listed companies on the Johannesburg Stock Exchange (JSE) as at 31 December 2010 

and approximately 91% of the market capitalisation of the companies listed on the JSE at the same date, which 

serves as a fair representation for the conclusions drawn. 

 

 The number of observations differed for each multiple and industry classification, depending on how well 

the multiples satisfied the criteria stipulated above. As a result, the multiples have different population sizes over 

different industry classifications, varying between 759 and 2 747 observations. The total population of multiples 

included 125,637 observations, which, depending on the specific combination of multiple and industry classification 

for the period 2001 to 2010, had varying sample sizes. These observations were used to calculate 16 multiples; i.e., 

multiples where market price (P) was used as the market price variable. Although various potential combinations of 

P and value drivers exist, the focus for the purpose of this paper, was on multiples within each of the four most 

popular value driver categories; namely, earnings, book value, revenue and cash flows (Nel, 2010; PwC, 2010; Nel, 

2009a; Liu, Nissim & Thomas, 2002b; Cheng & McNamara, 2000). The framework of multiples; i.e., the ratio of P 

to the respective value drivers, that was used in the analysis is summarised in Table 1. 

 
Table 1:  Framework of Multiples 

 Value Drivers 

Earnings Book Value Revenue Cash Flow 

P
 

GP TA R CgbO 

EBITDA IC  NCIfOA 

EBIT BVE  NCIfIA 

PAT   OD 

PBT   FCFE 

HE   FCFF 

P - Market price 

GP - Gross profit 

EBITDA - Earnings before interest, tax, depreciation and amortisation 

EBIT - Earnings before interest and tax 

PAT - Post-tax earnings 

PBT - Pre-tax earnings 

HE – Headline earnings 

TA - Total assets 

IC - Invested capital 

BVE - Book value of equity 

R - Revenue 

CgbO - Cash generated by operations 

NCIfOA - Net cash inflow from operating activities 

NCIfIA - Net cash inflow from investment activities 

OD - Ordinary dividends 

FCFE - Free cash flow to equity 

FCFF - Free cash flow to the firm 

  

                                                 
3 Although many companies’ industry classifications have changed over the past 10 years, for the purposes of this analysis, 

companies were allocated to the industries where they resided as at 31 December 2010. 
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4. RESEARCH METHODOLOGY 
 

 Valuations based on multiples assume that the actual equity value (
e

itV ) of a company (i) at a given point 

in time (t) is equal to the product of a multiple (
e

t ) and a specific value driver ( it ) at that specific point in time, 

so that 

 

it

e

t

e

itV    
(1) 

 

 The aim of this section of the research is to establish the ability of valuations based on equation (1) to 

approximate actual share values. Firstly, the data is extracted from the McGregor BFA database and screened 

according to the criteria stipulated in section 3.  

 

 Next, an out-of-sample peer group multiple (
e
t̂ ) is estimated for each company by calculating the 

harmonic mean of all the other remaining companies in the industry classification category concerned for that 

specific multiple. The estimated subsector P/GP multiple for company A, for example, in a subsector that contains 

companies A to E, will be equal to the harmonic mean of the P/GP multiples of companies B to E. The harmonic 

mean is used in this study to estimate peer group multiples since it avoids the upward bias of the arithmetic mean, 

which, as emerged in this study, can be significant.
 4
 

 

 The application of an industry-specific approach to multiples is well established by research (Nel, 2009a; 

Nel, 2009b; Goedhart, Koller and Wessels, 2005; Liu, Nissim & Thomas, 2002a; Fernández, 2001; Barker, 1999). 

Although it may seem necessary to pursue a more diligent peer group selection process by also considering factors 

such as company size and expected growth rates, the primary focus of this paper is to establish the impact of a 

narrower industry classification on the valuation accuracy of multiples. Peer group selection will be refined through 

the four McGregor BFA industry classification categories; namely, IND, SUP, SEC and SUB. The estimated peer 

group multiple of each company (
e
t̂ ), is then multiplied by the company’s actual value driver ( it ) to calculate an  

equity value prediction (
e

itV̂ ): 

it

e

t

e

itV   ˆˆ
 

(2) 

  

 Subtracting equation (2) from equation (1) produces (3) for the calculation of the error margin (valuation 

error): 

 

e

it

e

it VV ˆ
 

 

(3) 

 Since companies with higher values will tend to have higher valuation errors, (3) will not be independent of 

value. It is anticipated that expressing (3) proportionally to 
e

itV will improve the efficacy of the peer group multiple 

estimate (Beatty, et al. 1999). The standardised form of (3), it , is therefore expressed proportionally to 
e

itV , where  

 

                                                 
4 Although there is a lack of academic consensus regarding which averaging procedure constitutes best practice (Dittman & 

Maug, 2008), most researchers regard the harmonic mean as a viable and unbiased estimator (Bhojraj & Lee, 2002; Liu, et al. 

2002b; Beatty, Riffe & Thompson, 1999). 
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it e

it

e

it

e

it

V

VV ˆ

 

(4) 

 

 The valuation errors are calculated for each company year and subsequently aggregated.
5
 Absolute 

valuation errors are used since the results of central tendency measures such as the mean will be obscured if positive 

and negative valuation errors are netted, which may result in artificially low valuation errors. The superior industry 

classification; i.e., the industry classification that produces the most accurate equity valuation, will normally be the 

one with the lowest summarised valuation error. To this end, four measures of location were used to analyse the 

pooled observations; namely, the mean, the 25% percentile, the median and the 75% percentile. An additional two 

measures; namely, the 15% and 25% fractional error (FRE) ranges, were employed to gauge the impact of a 

narrower industry classification on the valuation accuracy of multiples. However, these two FRE ranges measure the 

percentage of valuation errors below 15% and 25%, respectively. Therefore, a higher summarised score (percentage) 

would indicate an increase in valuation accuracy, as opposed to the first four summarised measures, where a lower 

score indicates an increase in valuation accuracy. This allows comparison with various international studies 

(Herrmann & Richter, 2003; Lie & Lie, 2002; Liu, et al. 2002a; Kim & Ritter, 1999; Kaplan & Ruback, 1995). 

 

 The performance of the multiples over the four industry classifications was evaluated by comparing the 

locality and dispersion of their respective valuation errors. An industry value chain was subsequently created, which 

indicates the extent to which the valuation accuracy of multiples improved as the industry classification was 

narrowed. The industry value chain indicates the potential percentage improvement (IMP) in valuation accuracy that 

may be secured by employing a more narrowly classified peer group multiple, i.e., by substituting the widest 

industry classification with the narrowest one. 

 

5. EMPIRICAL RESULTS 

 

 This section deals with the locality and dispersion of valuation errors of the selected 16 multiples. The key 

measures used to calculate the locality and the dispersion of valuation errors were the mean (central tendency), the 

25% percentile, the median (central tendency), the 75% percentile and the 0.15 and 0.25 FREs.
6
 These measures are 

contained in Table 2. 

 
Table 2:  Absolute Valuation Errors When The Industry Classification Is Narrowed: Descriptive Statistics 

 N Mean P25% Median P75% FRE0.15 FRE0.25 

P/GP 

IND 2261 1.2086 0.3229 0.5801 0.8271 0.1176 0.1955 

SUP 2228 1.2809 0.2875 0.5589 0.8449 0.1355 0.2127 

SEC 2097 1.5850 0.2754 0.5277 0.8372 0.1388 0.2265 

SUB 1683 1.6072 0.2684 0.5201 0.8834 0.1450 0.2365 

P/EBITDA 

IND 2393 1.6314 0.3357 0.5971 0.8284 0.1045 0.1776 

SUP 2376 1.7388 0.2764 0.5527 0.8338 0.1317 0.2252 

SEC 2277 2.2797 0.2673 0.5317 0.8344 0.1401 0.2328 

SUB 1831 1.7757 0.2418 0.5116 0.8672 0.1524 0.2561 

P/EBIT 

IND 2330 2.4075 0.3097 0.5578 0.8330 0.1180 0.1983 

SUP 2313 2.7723 0.2445 0.5180 0.8351 0.1587 0.2559 

SEC 2215 2.7891 0.2312 0.4885 0.8210 0.1648 0.2655 

SUB 1789 1.9320 0.2195 0.4880 0.8464 0.1738 0.2778 

                                                 
5 Functions for the calculation of it and the statistical analysis thereof were developed in the R-package (R Development Core 

Team, 2012), an open source programming language that lends itself to statistical analysis and graphics. 
6 The 5%, 10%, 90% and 95% percentiles, although not shown here, rendered similar results to that of the 25% and 75% 

percentiles. 

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Statistical_computing
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Table 2 - continued 

 N Mean P25% Median P75% FRE0.15 FRE0.25 

P/PAT 

IND 2173 2.6109 0.2682 0.5498 0.8556 0.1275 0.2287 

SUP 2157 2.9193 0.2291 0.5127 0.8487 0.1572 0.2703 

SEC 2059 2.7160 0.2220 0.4890 0.8393 0.1622 0.2749 

SUB 1649 1.7783 0.2273 0.4853 0.8642 0.1656 0.2741 

P/PBT 

IND 2215 2.8513 0.2548 0.5410 0.8572 0.1418 0.2470 

SUP 2198 3.3114 0.2211 0.5194 0.8424 0.1724 0.2784 

SEC 2099 3.0565 0.2228 0.4844 0.8360 0.1701 0.2758 

SUB 1677 1.8166 0.2204 0.4705 0.8566 0.1777 0.2755 

P/HE 

IND 2225 1.7350 0.1839 0.3853 0.7263 0.2090 0.3384 

SUP 2209 1.6420 0.1704 0.3668 0.7329 0.2205 0.3603 

SEC 2110 1.3976 0.1666 0.3676 0.7068 0.2242 0.3630 

SUB 1704 1.7731 0.1686 0.3770 0.7356 0.2224 0.3568 

P/TA 

IND 2747 1.2581 0.4070 0.6938 0.8932 0.0764 0.1405 

SUP 2727 1.7611 0.3710 0.6662 0.8938 0.0895 0.1624 

SEC 2650 2.1060 0.3358 0.6365 0.9036 0.1140 0.1864 

SUB 2224 1.8895 0.3376 0.6242 0.9001 0.1097 0.1808 

P/IC 

IND 2745 1.2480 0.4386 0.6997 0.8967 0.0769 0.1308 

SUP 2725 1.5371 0.3859 0.6871 0.9055 0.0855 0.1483 

SEC 2649 1.8597 0.3575 0.6597 0.9164 0.1023 0.1725 

SUB 2223 2.0784 0.3652 0.6441 0.9129 0.0994 0.1615 

P/BVE 

IND 2467 1.4504 0.3793 0.6833 0.9163 0.0965 0.1585 

SUP 2447 2.1727 0.3526 0.6756 0.9197 0.1005 0.1737 

SEC 2356 2.8868 0.3558 0.6836 0.9224 0.1091 0.1744 

SUB 1938 1.8129 0.3391 0.6556 0.9371 0.1151 0.1873 

P/R 

IND 2441 1.3523 0.4331 0.7420 0.9255 0.0709 0.1241 

SUP 2421 1.7681 0.4039 0.6978 0.9203 0.0838 0.1417 

SEC 2318 2.2917 0.3876 0.6924 0.9206 0.0902 0.1544 

SUB 1884 2.8187 0.3905 0.7071 0.9395 0.0860 0.1423 

P/CgbO 

IND 2217 1.0575 0.3051 0.5639 0.8429 0.1141 0.2025 

SUP 2201 1.3282 0.3010 0.5557 0.8597 0.1172 0.2099 

SEC 2060 1.5485 0.2907 0.5419 0.8395 0.1136 0.2117 

SUB 1685 1.2046 0.2903 0.5556 0.8811 0.1282 0.2178 

P/NCIfOA 

IND 2002 1.4313 0.3695 0.6904 0.9227 0.0904 0.1523 

SUP 1987 2.0590 0.3628 0.6659 0.9228 0.1007 0.1676 

SEC 1888 2.0587 0.3458 0.6599 0.9251 0.1065 0.1748 

SUB 1459 2.1974 0.2922 0.6607 0.9440 0.1076 0.1864 

P/ NCIfIA 

IND 1144 2.4148 0.5210 0.8216 0.9595 0.0629 0.1119 

SUP 1129 2.6679 0.4976 0.8100 0.9737 0.0735 0.1275 

SEC 1042 14.8500 0.4772 0.8016 0.9787 0.0729 0.1238 

SUB 759 4.4714 0.4774 0.8520 0.9985 0.0856 0.1331 

P/OD 

IND 1721 19.3454 0.3359 0.6466 0.9415 0.1023 0.1732 

SUP 1700 46.5190 0.3286 0.6457 0.9307 0.1106 0.1859 

SEC 1539 51.2018 0.2944 0.6290 0.9361 0.1209 0.2086 

SUB 1202 1.2065 0.2922 0.6004 0.9698 0.1348 0.2171 
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Table 2 - continued 

 N Mean P25% Median P75% FRE0.15 FRE0.25 

P/FCFE 

IND 1413 1.8147 0.4390 0.7638 0.9438 0.0807 0.1309 

SUP 1401 1.9634 0.4178 0.7346 0.9563 0.0878 0.1363 

SEC 1277 3.0326 0.3934 0.7213 0.9654 0.0838 0.1464 

SUB 941 2.3423 0.3376 0.7432 0.9833 0.0786 0.1456 

P/FCFF 

IND 1586 1.3765 0.3587 0.6796 0.9071 0.0939 0.1658 

SUP 1574 1.4325 0.3640 0.6860 0.9219 0.1061 0.1798 

SEC 1427 1.5482 0.3485 0.6632 0.9237 0.1044 0.1843 

SUB 1053 1.7767 0.3333 0.6980 0.9556 0.1083 0.1909 

IND – Industry; SUP – Supersector; SEC – Sector; SUB – Subsector; N – Number of observations; 

P25% – 25% percentile; P75% – 75% percentile; FRE 0.15 – 15% FRE range; FRE 0.25 – 25% FRE range; 

P – Market price; GP – Gross profit; EBITDA – Earnings before interest, tax, depreciation and amortisation; 

EBIT – Earnings before interest and tax; PAT – Profit after tax; PBT – Profit before tax; HE – Headline earnings; 

TA – Total assets; IC – Invested capital; BVE – Book value of equity; R – Revenue; 

CgbO – Cash generated by operations; NCIfOA – Net cash inflow from operating activities; 

NCIfIA – Net cash inflow from investment activities; OD – Ordinary dividends; FCFE – Free cash flow to equity; 

FCFF – Free cash flow to the firm; Highlighted figures – Most optimal industry classification 

 

5.1  Descriptive Statistics 

 

 The valuation performance of the 16 multiples was compared over various industry classifications in order 

to ascertain whether a narrower industry classification results in more accurate valuations. Four pools of valuation 

errors were estimated based on four industry classifications; namely, IND, SUP, SEC and SUB. As is evident from 

Table 2 and the boxplots in Figure 1, the number of company year observations (N) declined as the industry 

classification was narrowed from IND through to SUB, which had a bearing on the mean (depicted by asterisks in 

Figure 1) and the measures of dispersion. The boxplots in Figure 1 and Figure 2 appear in order of performance, 

based on the median absolute valuation error; i.e., the multiples are ranked from those with the highest increase in 

valuation accuracy, to those with the lowest increase in valuation accuracy. Note, the notches in the boxplots in 

Figure 1 and Figure 2 indicate approximate 95% confidence intervals for the respective medians, which allow 

statistical inference. 

 

 The measures of locality are sensitive to outliers (depicted as bubbles above the top whiskers in Figure 1), 

of which there were quite a few. Apart from the effect that the outliers had on the measures of locality and 

dispersion per se, the impact was magnified within the smaller samples; i.e., within the more narrowly defined 

industry classifications, which may partly explain why the mean offered inconsistent results. The boxplots in  Figure 

1 illustrate that the data are not normally distributed, but positively skewed; i.e., all 16 boxes are located 

significantly closer to the bottom whiskers. This is the primary reason why researchers generally attach less value to 

the mean (Bhojraj & Lee, 2002; Liu, et al. 2002b; Beatty, et al. 1999). Therefore, although the mean is shown in the 

analysis, its inconsistent results over industry narrowing can be traced to its sensitivity to outliers and a declining 

sample size, as opposed to a measure of central tendency, such as the median, for example. 

 

 An interesting phenomenon depicted by the boxplots is that the lower boundary of the box (25
th 

percentile) 

and the upper boundary of the box (75
th 

percentile) generally divert, which suggests that the more accurate 

valuations prior to industry narrowing became even more accurate with industry narrowing, and, vice versa; i.e., the 

less accurate valuations prior to industry narrowing became even less accurate with industry narrowing. On average, 

81% of the variables tested demonstrated this tendency over the four industry classifications. This is evident from 

the widening interquartile ranges in the boxplots in Figure 2. The median of the upper 50% of observations 

increased, therefore, as the industry classification was narrowed, while the median of the bottom 50% of 

observations, decreased. The latter is in line with the median of all the observations, which also decreased as the 

industry classification was narrowed. 
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Figure 1:  Valuation Accuracy Of Multiples: Descriptive Statistics 
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Figure 1 - continued 
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Figure 1 - continued 
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Figure 1 - continued 
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Figure 2:  Valuation Accuracy Of Multiples - Absolute Median Valuation Errors And FREs 
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Figure 2 - continued 
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Figure 2 - continued 
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Figure 2 - continued 
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5.2  The impact of industry classification on valuation accuracy 

 

 The medians and FREs of the four pools of valuation errors all rendered similar results. As is evident from 

Table 2 and the 16 boxplots in Figure 2, industry narrowing does increase valuation accuracy, since the median 

decreases and the FREs increase as the industry classification is narrowed. However, the boxplot notches in Figure 2 

indicate that not all the multiples offered statistically significant improvements of the median at the 5% confidence 

level, over all the industry classifications. When narrowing the industry classification from IND to SUP, only three 

multiples offer improvements of statistical significance; namely, EBITDA, EBIT and R. The number of multiples 

that offer statistically significant improvements at the 5% confidence level increased to eight when narrowing the 

industry classification from IND to SEC. They were EBITDA, PBT, EBIT, PAT, GP, TA, IC and R. However, when 

the industry classification was narrowed further from IND to SUB, the number declined to seven, discarding R in 

the process. In order to quantify the potential increase in valuation accuracy that industry narrowing could offer, an 

industry value chain was created in Table 3.  

 
Table 3:  Industry Value Chain - Absolute Median Valuation Error And 25% FRE Range 

Median Value 

drivers 

FRE 0.25 

SUP SEC SUB IMP SUP SEC SUB IMP 

3.65% 5.58% 1.44% 10.68% GP 8.80% 6.49% 4.42% 19.70% 

7.44% 3.80% 3.78% 15.02% EBITDA 26.80% 3.37% 10.01% 40.19% 

7.14% 5.69% 0.10% 12.93% EBIT 29.05% 3.75% 4.63% 37.43% 

6.75% 4.62% 0.76% 12.13% PAT 18.19% 1.70% -0.29% 19.60% 

3.99% 6.74% 2.87% 13.60% PBT 12.71% -0.93% -0.11% 11.67% 

4.80% -0.22% -2.56% 2.03% HE 6.47% 0.75% -1.71% 5.51% 

3.98% 4.46% 1.93% 10.37% TA 15.59% 14.78% -3.00% 27.36% 

1.80% 3.99% 2.36% 8.15% IC 13.38% 16.32% -6.38% 23.32% 

1.13% -1.18% 4.10% 4.04% BVE 9.59% 0.40% 7.40% 17.39% 

5.96% 0.77% -2.12% 4.61% R 14.18% 8.96% -7.84% 15.31% 

1.45% 2.48% -2.53% 1.41% CgbO 3.65% 0.86% 2.88% 7.39% 

3.55% 0.90% -0.12% 4.33% NCIfOA 10.05% 4.30% 6.64% 20.98% 

1.41% 1.04% -6.29% -3.84% NCIfIA 13.94% -2.90% 7.51% 18.55% 

0.14% 2.59% 4.55% 7.27% OD 7.33% 12.21% 4.07% 23.62% 

3.82% 1.81% -3.04% 2.60% FCFE 4.13% 7.41% -0.55% 10.99% 

-0.94% 3.32% -5.25% -2.87% FCFF 8.44% 2.50% 3.58% 14.53% 

         

3.50% 2.90% 0.00% 6.40% Average 12.64% 5.00% 1.95% 19.60% 

         

3.50% 6.40% 6.40%  Cumulative 12.64% 17.64% 19.60%  
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 Positive percentages indicate, for each of the 16 multiples, to what extent the valuation accuracy of specific 

multiples increased when the industry classification was narrowed from one level to the next; i.e., from IND to SUP, 

from SUP to SEC and from SEC to SUB. Negative percentages indicate the opposite; i.e., to what extent the 

valuation accuracy of specific multiples decreased when the industry classification was narrowed. The highlighted 
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percentages indicate the most optimal industry classifications for each multiple. The percentage improvement (IMP) 

between the widest (IND) and narrowest (SUB) industry classification is indicated in the last column. The 

histograms below the various industry classification columns indicate the percentage of multiples that experienced 

an increase in valuation accuracy when the industry classification was narrowed. 
 

The average percentage increases in the median absolute valuation errors; i.e., the increase in valuation 

accuracy over all 16 multiples, when narrowing the industry classification from IND to SUP, SUP to SEC and SEC 

to SUB, were 3.50%, 2.90% and -0.001%, respectively. As is evident from these percentages, the magnitude of the 

increase in valuation accuracy declined as the industry classification was narrowed. The average increase in 

valuation accuracy over all 16 multiples when narrowing the industry classification from IND to SUP to SEC was 

6.40%. However, when narrowing the industry classification further from SEC to SUB the average change in 

valuation accuracy over all 16 value driver categories was negligible (-0.001%). Therefore, the overall results 

suggest that the SEC classification is the most optimal industry classification. However, this may not be the case 

when each individual multiple is considered in isolation. The valuation accuracy of EBITDA, for example, increased 

with 3.78% when the industry classification was narrowed further from SEC to SUB. 
 

 An overall increase in valuation accuracy when the industry classification was narrowed from IND to SUB 

was observed in 88% of the multiples. The exceptions were NCIfIA (3.84% decrease) and FCFF (2.87% decrease). 

An increase in valuation accuracy was observed for 94% of the multiples when the industry classification was 

narrowed from IND to SUP. The only exception was FCFF, which indicated a 0.94% decrease in valuation 

accuracy. The percentage of multiples that reflected an increase in valuation accuracy when the industry 

classification was narrowed from SUP to SEC was 88%. The two multiples that did not reflect an increase in 

valuation accuracy were HE (0.22% decrease) and BVE (1.18% decrease). 
 

 However, when narrowing the industry classification from SEC to SUB, the percentage of multiples that 

reflected an increase in valuation accuracy dropped significantly to 56%. The seven multiples that failed to reflect an 

increase in valuation accuracy were HE (2.56% decrease), R (2.12% decrease), CgbO (2.53% decrease), NCIfOA 

(0.12% decrease), NCIfIA (6.29% decrease), FCFE (3.04% decrease) and FCFF (5.25% decrease).  
 

 The top five individual multiples, that experienced the most significant increase in valuation accuracy when 

the industry classification was narrowed from IND through to SUB, were EBITDA (15.02%), PBT (13.60%), EBIT 

(12.93%), PAT (12.13%) and GP (10.68%). 
 

 The analysis of the 0.15 and 0.25 FREs rendered similar results. The proportion of valuation errors in the 

25% error range increased, on average, over all 16 multiples, when the industry classification was narrowed from 

IND to SUP, SUP to SEC and SEC to SUB. The percentage increases offered within the 25% FRE range were 

12.64%, 5.00% and 1.95%, respectively. As with the median analysis, the magnitude of the increase in valuation 

accuracy declined as the industry classification was narrowed. The average increase in valuation accuracy over all 

16 multiples, when narrowing the industry classification from IND to SUP to SEC to SUB, was 19.60%. Although 

not elaborated on in this paper, the 15% FRE range offered, on average, an even higher increase in valuation 

accuracy of 23.82%. The overall results suggest that the SUB classification is the most optimal industry 

classification. However, as with the median, this will not be the case when each individual multiple is considered in 

isolation. The valuation accuracy of R, for example, decreased with 7.84% when the industry classification was 

narrowed further from SEC to SUB. 
 

 The fractional error analysis indicated an overall increase in valuation accuracy in 100% of the multiples 

when the industry classification was narrowed from IND to SUB. A step-wise industry refining approach revealed 

that 100% of the multiples indicated an increase in valuation accuracy when the industry classification was 

narrowed from IND to SUP. The percentage of multiples that reflected an increase in valuation accuracy when the 

industry classification was narrowed from SUP to SEC was 88%. The two multiples that failed to reflect an increase 

in valuation accuracy were PBT (0.93% decrease) and NCIfIA (2.90% decrease). However, as was the case with the 

median, when the industry classification was narrowed from SEC to SUB, the percentage of multiples that reflected 

an increase in valuation accuracy dropped significantly to 56%. The seven multiples that did not reflect an increase 

in valuation accuracy were PAT (0.29% decrease), PBT (0.11% decrease), HE (1.71% decrease), TA (3.00% 

decrease), IC (6.38% decrease), R (7.84% decrease) and FCFE (0.55% decrease).  
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 The top five individual multiples, that experienced the most significant increase in valuation accuracy when 

the industry classification was narrowed from IND through to SUB, were EBITDA (40.19%), EBIT (37.43%), TA 

(27.36%), OD (23.62%) and IC (23.32%).  
 

6. CONCLUSION 
 

 The primary aim of this paper was to establish whether narrower industry classifications increase the 

valuation accuracy of multiples. The secondary aim was to determine the potential improvement in valuation 

accuracy that industry narrowing may offer vis-à-vis wider industry classifications. The third aim was to determine 

the most optimal industry classification for peer group selection purposes. To this end, 16 multiples were 

constructed, covering four value driver categories; namely, earnings, book value, revenue and cash flow. 
 

 Data were extracted and screened from the McGregor BFA database and subsequently used to calculate a 

pool of valuation errors. Various measures of locality and dispersion were used to analyse the pooled valuation 

errors; i.e., the mean, the 25% percentile, the median, the 75% percentile and the 0.15 and 0.25 - FREs. The various 

industry classifications for each of the 16 multiples were compared in an attempt to establish which industry 

classifications produced the most accurate equity valuations. 
 

 The research results presented strong evidence in support of the use of narrower industry classifications 

when employing multiples to perform equity valuations. The absolute median valuation error and 25% FRE 

indicated an overall increase in valuation accuracy when the industry classification was narrowed from IND to SUB 

over 88% and 100% of the multiples, respectively. The corresponding percentages when the industry classification 

was narrowed from IND to SUP, were 96% and 100% of the multiples, respectively. These improvements in 

valuation accuracy declined to 88% of the multiples when the industry classification was narrowed from SUP to 

SEC and to 56% of the multiples when the industry classification was narrowed from SEC to SUB. Therefore, the 

research results support the notion that narrower industry classifications explain market values better than wider 

industry classifications, which is in line with empirical evidence from developed markets. 
 

 The secondary aim was to determine the IMP in valuation accuracy that narrower industry classifications 

may offer vis-à-vis wider classifications. Based on the absolute median valuation errors and 25% FREs, the overall 

average IMP in valuation accuracy by employing narrower industry classifications lies between 6.40 and 19.60%. 

Individual multiples demonstrated even more significant results. The P/EBITDA multiple, for example, indicated an 

improvement of 15.02% in the absolute median valuation error and 40.19% in the 25% FRE range. It is therefore 

evident that narrower industry classifications do improve valuation accuracy, but at varying degrees.  
 

 The third aim was to establish the most optimal industry classification for the selection of a peer group. The 

research results indicated that, on average, narrowing the industry classification beyond that of SEC added little, if 

any, value. This is in line with evidence from developed capital markets, which indicates that narrowing industry 

classifications beyond 3-digit codes, adds little value. However, the evidence does suggest that multiples have 

different optimal industry classifications and that, when individual multiples are considered in isolation, there may 

be value in narrowing the industry classification further to SUB, as was the case with the P/EBITDA multiple, for 

example.  
 

 The evidence therefore suggests that analysts in the South African market should consider employing the 

narrowest industry classification possible when constructing a peer group multiple. A narrower industry 

classification could provide an increase in valuation accuracy of up to 19.60%, on average, which offers a 

significant improvement over wider industry classifications. The potential increase in valuation accuracy when 

consideration is given to individual multiples is even greater. The P/EBITDA multiple, for example, offers a 

potential increase in valuation accuracy of between 15.02% and 40.19% as the industry classification is narrowed 

from IND to SUB. Analysts who prefer specific multiples could perhaps even employ a SUB industry classification.  

 

 Although one may be inclined to pursue other, more diligent approaches to peer group selection, which 

may enhance the valuation accuracy of these multiples further, the focus of this paper was on the specific 

contribution that a narrower industry classification may offer in this regard. The investigation of further enhancing 

strategies is a topic for future research. 
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APPENDIX A:  ACRONYMS 

 

Acronym/Abbreviation  Description 

 

BFA     Bureau of Financial Analysis 

BVE    Book value of equity 

CgbO    Cash generated by operations 

ε    Error term 

EBIT     Earnings before interest and tax 

EBITDA   Earnings before interest, tax, depreciation and amortisation 

FCFE   Free cash flow to equity 

FCFF    Free cash flow to the firm 

FRE    Fractional error 

GP    Gross profit 

HE    Headline earnings 

i    Company i 

IBES    Institutional Brokers Estimation System 

IC    Invested capital 

IMP    Potential percentage improvement 

IND    Industry 

JSE    Johannesburg Stock Exchange 

MCap    Market capitalisation 

N    Number of observations 

NCIfIA    Net cash inflow from investing activities 

NCIfOA    Net cash inflow from operating activities 

OD    Ordinary dividends 

P    Market price 

PAT    Profit after tax 

PBT    Profit before tax 

PwC    PricewaterhouseCoopers 

R    Revenue 

SEC    Sector 

SIC    Standard Industry Classification 

SUB    Subsector 

SUP    Supersector 

t    Time period t 

TA    Total assets 

USA    United States of America 

e

t     Actual multiple 

e

t̂  Estimated peer group multiple at time period t 

it     Actual value driver 

e

itV     Actual value of equity of company i at time period t 

e

itV̂     Estimated value of equity of company i at time period t 
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APPENDIX B:  CLASSIFICATION OF VARIABLES 

 

The classification of the variables was mostly derived from the descriptions as presented in the McGregor BFA user 

manuals. 

 

Market Price Variable 

 

1. MCap represents the market value of a company’s issued ordinary share capital. MCap is calculated by 

multiplying the market price per share as at the company’s financial year end with the issued volume of 

shares at the same date. 

 

Earnings-based Multiples 

 

2. GP represents and is calculated as the difference between sales or revenue and the cost of sales. 

3. EBITDA represents a company’s earnings before interest paid, taxation, depreciation and amortisation. It is 

calculated by taking GP, adding other income (excluding income from associates) and deducting all 

expenses, but adding back interest paid, taxation, depreciation and amortisation. 

4. EBIT represents a company’s earnings before interest paid and taxation. It is calculated by taking EBITDA 

and deducting depreciation and amortisation. 

5. PBT represents a company’s net profit, including realised profits and all losses of an extraordinary nature, 

after interest paid but before taxation. It is calculated by taking EBIT and deducting interest paid. 

6. PAT represents a company’s net profit, including realised profits and all losses of an extraordinary nature, 

after interest paid and taxation. It is calculated by taking PBT and deducting taxation. 

7. HE represents a company’s earnings generated by normal operational activities. It is calculated by taking 

PAT and adding back profits/losses associated with non-core operational activities, such as the sale of fixed 

assets or the termination of discontinued operations. 

 

Book Value-based Multiples 

 

8. TA represents the total of all the assets employed by the company. It is calculated by adding total fixed 

assets, total long-term investments and total current assets. 

9. IC represents the total cash investment by fund providers. It is calculated by deducting cash and cash 

equivalents from TA. 

10. BVE represents the equity of the ordinary shareholders. It is calculated by adding ordinary share capital and 

reserves; and deducting the cost of control of subsidiaries and intangible assets. 

 

Revenue-based Multiple 

 

11. Revenue represents the gross sales of the company. 

 

Cash Flow-based Multiples 

 

12. CgbO represents pre-tax cash flows net of working capital expenditure as per the cash flow statement. 

13. NCIfOA represents post-tax operational cash flows. It is calculated by taking CgbO and deducting net 

interest, net dividends and income taxation. 

14. NCIfIA represents post-tax operational cash flows net of fixed capital expenditure. It is calculated by 

taking NCIfOA and deducting acquisitions of fixed capital items net of capital gains tax. 

15. OD represents the amount of dividends paid to ordinary shareholders as per the cash flow statement. 

16. FCFF represents post-tax cash flows that are available to be distributed to all the fund providers of a 

company, net of capital expenditure to grow or maintain the business. It is calculated by taking NCIfIA and 

adding back non-operational items, such as net interest and net dividends. 

17. FCFE represents post-tax cash flows that are available to be distributed to all the equity fund providers of a 

company, net of capital expenditure to grow or maintain the business. It is calculated by taking FCFF and 

adding/deducting debt capital movements and interest paid. 
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NOTES 


