
International Business & Economics Research Journal – January 2007                   Volume 6, Number 1 

 63 

Monte Carlo Simulation 

Of The Portfolio-Balance Model 

Of Exchange Rates: Finite Sample Properties 

Of The GMM Estimator 
Hong-Ghi Min, (Email: hmin@icu.ac.kr), Information and Communications University, Republic of Korea 

 
 

ABSTRACT 
 

Using Monte Carlo simulation of the Portfolio-balance model of the exchange rates, we report finite 

sample properties of the GMM estimator for testing over-identifying restrictions in the simultaneous 

equations model. F-form of Sargan’s statistic performs better than its chi-squared form while 

Hansen’s GMM statistic has the smallest bias. 
 
 

INTRODUCTION 
 

onsistent estimation of linear simultaneous equations model requires minimal set of identifying restrictions 

in the system and validity of those restrictions can be tested if a model is over-identified.  While some 

statistics are developed and those statistics are widely applied to test the specification of the estimated 

equations, test the validity of the instrumental variables, and to test if the estimated equations encompass the reduced 

form little is known the small sample properties of those statistics. For this reason, We investigate the small sample 

properties of four different over-identifying test statistics for simultaneous equations model including 

Hausmann(1990)’s Likelihood-ratio test, Sargan(1958, 1960)’s minimum characteristic root statistic, Sargan(1980)’s 

corresponding F-statistic (Sargan, 1980), and Hansen(1982)’s GMM statistic. 
 
RESPONSE SURFACE METHODOLOGY, TEST STATISTICS, AND THE DGP 
 
Response Surface Methodology 
 

To overcome the specificity of Monte Carlo studies to the particular parameter and sample sizes employed, 

we utilize response surface methodology of Hendrey (1984).  Let T be the finite sample probability of the test 

statistic lying in the critical region. In an experiment the DGP generates N sets of replications and the statistics lie in 

the critical region S out of N times.  An explicit relationship can be defined as equation (7) in section 2.3. 
 

E(s) = πT = f (θ, T)                                                                             (1) 
 

Monte Carlo estimator s gives:  
 
E(s) = πT = f (θ, T) + ε, εi ~ D(0, πT [1- πT]/N)                                                       (2) 
 

Let 
a

  is the analytically calculable asymptotic power of the test and ( , )p T


is the discrepancy between 

the finite sample and asymptotic power, i.e., 
1 / 2 1 / 2 1 / 2

{ ( , ) ( , )}T p T q T 
  

 .   
 
Then,  
 

1/ 2 1/ 2
( , ) ( , )p T T p T 

  
                                                                       (3) 

 
holds.  
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1/ 2
( , )p T

 
is 

0
( )O T and is a polynomial in powers of 

1 / 2

T


 and the elements of  . 

Using (1)-(3), we can set up a stochastic relationship between a feasible and unbiased estimator of 
T

 and the 

unknown quantity 
a

 ,  , T  as equation (4). 

 
1/ 2 1/ 2

( , )
a

s T q T e 
 

                                                                         (4) 
 

where 
1/ 2

( , )q T


is an approximation to 
1/ 2

( , )p T


 and the error e is the combination of   and 
1/ 2 1/ 2 1/ 2

{ ( , ) ( , )}T p T q T 
  

 .  The choice of 
1/ 2

( , )q T


is arbitrary but a finite polynomial in   and 
1/ 2

T


is 

common and coefficients on the terms of 
1/ 2

( , )q T


may be estimated by least squares. 

 

The Test Statistics And Their Asymptotic Properties 

 

We consider four statistics whose statistical descriptions are given in Table 1. 
 
 

Table 1: Statistics Of Over-Identifying Restrictions 

 

Statistics Asymptotic Distributions 

(Degrees of freedom) Name Type Sources 

C0 IV Sargan (1958) Chi-squared (n) 

F0 IV Sargan (1980) Chi-squared with (m-k0) 

G0 GMM Hansen (1983) F(m- k0,T-m) 

L0 Likelihood- ratio test Harvey (1990) Chi-squared(n) 

(1). T is the econometric sample size, m is the number of instrumental variables, and ki is the number of coefficients estimated 

under Hi .  (2). The statistic F0 is [C0/ (m-k0)]*[(T-m)/(T- k0)]/[1- C0/(T- k0)] which is C0/ (m-k0 ) plus finite sample adjustment 

arising from the finite sample boundedness of C0.  (3). n is the number of over-identifying restrictions in the system. 

 
 

The Data Generating Process: Portfolio-Balance Model Of Exchange Rates 

 

True reduced form [equations (7)-(8)] is derived from the true structural form [equation (5)-(6)]. For 

alternative structural form, 2, 1tx  and 7, 1tx  are falsely included into the system [equations (9)-(10)]. 

 

yt = α1Yt + β1 (y 2, t – x 7, t) + γ1Xt + ε 1, t, (ε 1, t:ε 2, t)’ ~ NID (O, Σ)          (5) 

 

Yt = α2 + δy 1, t + γ2 Xt + ε 2, t                                                           (6) 

 

where (
t

y , 
t

Y )’ and 
t

X  are 21 and 71 vectors of endogenous and exogenous variables at time t (t=1,….,T); 

1 2 3 4 5 6 7' ( , , , , , , )
t t t t t t t tX x x x x x x x ;   and  are simultaneity parameters. 

 

1

2
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4 4

(7)

(8)

, ( : ) '
t t

t t

t t t

t

y

Y

X

X

  

  

  

 

  


 

 
Alternative structural model is given as equations (9) and (10). 
 

yt = α5 + β1 (y 2, t – x 7, t-1) + β2 (x 2, t – x 2, t-1) + γ5 Xt + ε 1, t, (ε 1, t : ε 2, t)’ ~ NID (0, Σ)        (9) 

 

Yt = α6 + δy 1, t + γ6 Xt + ε 2, t                                                    (10) 
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Independent samples of endogenous variables are generated by the population defined in equation (5)-(10) 

a  la Basmann (1960). Error terms are generated from linear transformation of i -N(0,1) and coefficients of 

transformation are from the Choleski decomposition of the variance-covariance matrices.  The fraction of rejections s 

(=S/1,000) is an unbiased Monte Carlo estimator of the unknown finite sample rejection frequency
T

 . 
 
EXPERIMENTAL DESIGN AND COMPUTATIONAL ASPECTS 
 

The Monte Carlo design variables for the econometric model (7)-(9) are   and T , where, 
 

( , , , ) { 0; 0}W T                                                                  (11) 
 

and W =  /  ,   is the variance-covariance matrix of the reduced form equations and   is the variance-

covariance matrix of the structural form equations.  
 

[ , ]
a b

T T T                                                                                (12) 
 

where 
a

T and 
b

T are the smallest and largest econometric sample size considered. For a given statistic  (say) and 

critical value  , the objective of Monte Carlo study is to find statistics’ finite sample rejection frequency 

( )
T

prob     for the DGP and those relationships of interest over    . 
 

( , ) ( , )
T

prob T g T                                                                      (13) 
 

The value of key parameters 1, , ,W T   cover a range typical of econometric models estimated with actual 

data: 1 =(0.3,0.8), 2 =2.244,  =(0.4,0.7), T=(20,40,60,80), W =(0.4,0.6,0.8,0.9). All other parameters are from 

reported values of Branson et al (1979). The number of replications is 1,000. Given the choice of parameters, a full 

factorial design is adopted, resulting in 64 experiments in all. Structural model is estimated by two-stage least squares 

and Ordinary least squares are used for the reduced form. The asymptotic powers of four statistics were calculated 

with critical values corresponding to the 5 percent. 
 
POST-SIMULATION ANALYSIS 
 

This section approximates the finite sample properties of the test statistics by various analytical and 

numerical-analytical formulae, and examines how well these formulae perform. Response surface regressions are 

reported in Table 2. 
 
Nominal Size Of Four Statistics 
 

Response surface of nominal size is reported in the first panel of the Table 2. Most of the estimated 

coefficients are significant but that of S0.  Size is well approximated for G0 while S0 is poorly approximated by the 

sample size and the ratio of the determinants.   
 

Using a conservative estimate of 0.016 for the standard deviation of sample proportions, we find that most 

estimators are significantly larger than the nominal size of 0.05. Most strikingly, L0 mostly reject true null hypothesis 

implying that we need to a small sample adjustment for L0. Sargan (1980)’s Chi-squared test (S0) is biased and over-

reject in most of the cases in finite sample except for the case when simultaneity parameters are  =0.8,  =0.4, and 

T=80.  F-form of Sargan’s statistic (F0) is less biased than S0 but properties of F0 resemble those of S0 as sample size 

increases.  Hansen’s GMM statistic (G0) is also biased but nominal size of G0 approaches to the value of 0.05 while 

S0 departs significantly from 0.05.  G0 has the least bias for the nominal size.  
 
Asymptotic Power Of Four Statistics 
 

Figure 1 shows that, for most of the cases, estimated nominal power decreases as the econometric sample 

size increases and it increases with the increase of w.  Asymptotic power is best approximated for G0 and then F0 

while S0 is poorly approximated.   
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Table 2: Response Surface Regressions 

 

PANEL A 

 Nominal Size of 

G0 S0 F0 

Constant 2.5151(0.2439)** 1.9174(0.3184)** 1.7900(0.3278)** 

T -0.0324(0.0032)** -0.0203(0.0043)** -0.0186(0.0044)** 

W 0.9434(0.1802)** 0.6384(0.2444)** 0.8187(0.2516)** 

  -57.991(6.085)** -36.458(7.942)** -46.874(8.177)** 

Adj R2 0.607 0.261 0.405 

PANEL B 

 Asymptotic Power of 

G0 S0 F0 

Constant 2.1533(0.2025)** 1.5877(0.3051)** 1.8591(0.3032)** 

T -0.0270(0.0027)** -0.1363(0.0041)** -0.0173(0.0041)** 

W 0.7237(0.1496)** 0.4901(0.2341)* 0.8497(0.2327)** 

  -45.537(5.052)** -28.064(7.61)** -48.597(7.563)** 

Adj R2 0.6082 0.1627 0.5082 

PANEL C 

 Finite Sample Power of 

L0 G0 S0 F0 

Constant 0.0603(0.3088) -0.4286(0.1573)* -0.1383(0.207) 0.1934(0.1711) 

T 0.0040(0.0100) 0.0085(0.0021)** 0.0027(0.0029) 0.0193(0.0023)** 

W 0.0100(0.2281) -0.1859(0.1162) 0.0663(0.1596) -0.0444(0.1330) 

  -1.5383(7.704) 12.401(3.924)** 1.6375(5.2384) 1.9975(4.1438) 

Adj R2 0.0856 0.2041 0.0101 -0.0623 

Note: Double asterisks denote significance at 1 % critical level and single asterisk for 5%. 

 
 

L0 has rejection probability of one in most of the cases and S0 appears to be more powerful than F0 and G0 

unless simultaneity parameter is large.  Another interesting feature is that S0 outperform F0 even in small samples but 

G0 has the smallest rejection probability.  
 
Finite Sample Power Of Four Statistics 
 

In order to compare tests in terms of their power of a given size, the critical value for each test is set with 

reference to the empirical distribution of the statistic corresponding to the empirical size of 0.05.  In each replication, 

the false null is rejected if the test statistic exceeded the empirical critical value.  Most of the estimates for the 

response surface regressions reported in Table 2 are insignificant and they poorly approximate the finite sample power 

of these statistics.  However, for G0, the estimated coefficient of T is significant and finite sample power of G0 

increases with the increase of T.  For all statistics, empirical power increase with the increase of sample size and 

empirical power decrease with the increase of w for most of the cases. 
 

Out of four statistics, L0 is the most powerful test statistic in most of the cases and its finite sample power 

increase with the increase of the econometric sample size.  G0 comes next and then F0 and S0. However, performance 

of F0 and S0 are quite similar.  Estimated finite sample power is much smaller than its asymptotic power substantially.  

Most significant departure between asymptotic power and finite sample power comes for S0 while G0 approximates its 

asymptotic power well.  Finite sample power of L0 is larger than other statistics and this increases with the increase 

of econometric sample size. 
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Figure 1:  Finite Sample Properties Of L0, G0, S0, and F0 
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CONCLUSIONS 
 

We conducted a Monte Carlo experiment to investigate the small sample properties of the four statistics 

which test the over-identifying restrictions in the simultaneous equations model. The likelihood-ratio test tends to 

reject the null hypothesis even when the errors in the model are consistent with the statistic’s embodied hypothesis in 

the two equations model in finite sample.  Small sample adjustment of Godfrey and Pesaran (1983) can be a solution 

for this bias.  The problem seems less severe with test statistics of S0, F0, and G0. The use of G0 helps a little but it is 

also biased in finite sample.  F-form of Sargan’s statistic (F0 ) performs better than its Chi-squared form ( S0 ).  

Hansen’s GMM statistic (G0) has the smallest bias. Different methodology and software may allow more extensive 

design and more efficient simulation and control variate might help estimate 
T

  more efficiently. 
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