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ABSTRACT 

 

This study examines the ability of simple moving averages to forecast security returns. Five 

moving average variants are used to develop a forecasting model using OLS regression for the 

DJIA, NASDAQ, TSX and CAD-US exchange rate. The forecasting model is compared to the 

random-walk model without a drift and tested out-of-sample. The results suggest that the moving 

averages have no predictive ability on the four indices at a 1 day lag. However, the moving 

averages explain approximately 45% to 48% of the variation in the returns in the following 10 

days and clearly outperform the random-walk model. Most of the forecasting ability is derived 

from the MA (5, 150). Hurst Statistic estimation is used to confirm the long-term dependencies in 

the lag 10 data set. 
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1. INTRODUCTION 

 

echnical analysis is considered to be one of the earliest, if not first, forms of investment analysis with 

its origins dating back to the 1800s.  It was one of the first forms of investment analysis mainly 

because stock prices and volume levels have been publicly available prior to other types of financial 

information.  After a hundred years in practice, technical analysis has yet to lose its luster as a viable and efficient 

approach to forecasting security movements. 

 

Technical analysis uses past prices to predict future prices and has been popular among academics and 

financial analysts despite its many criticisms.  Many stock brokerages and major daily newspaper analyze and 

publish technical commentary on the stock market.  Various trading rules and indicators have been developed based 

on identifiable patterns. However, the belief that historical prices can be used to identify patterns that predict 

security movements violates the random-walk hypothesis and the weak form of market efficiency.  According to 

efficient market theorists, technical analysis should not be able to generate abnormal returns in an efficient market.  

Much past research has been conducted to determine whether the market is efficient or whether technical analysis 

can be used to predict security returns. 

 

The vast majority of the literature focuses on testing trading rule variants in different markets across the 

globe.  One question researchers must address is determining the data frequency to be used for the technical analysis 

(i.e. intraday, daily, weekly, etc data).  As such, there are many studies that test trading rules at different scales but 

no consensus on the optimal scale.    

 

Another question that is not sufficiently addressed in the literature is how many trading days should be 

utilized to evaluate a trading signal.  For example, if a moving average suggests a long position at t1, should the 

success of the trading rule be evaluated by the holding period return to t2, t3, or t10?  Therefore, this paper tests the 

moving averages ability to forecast security returns for the following trading day (lag 1) and the following 10 days 

(lag 10 or two trading weeks).  Therefore, this paper contributes to a more comprehensive understanding of the 

forecasting ability of technical analysis and the time period to be used to evaluate signals. 

 

T 
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OLS regression analysis was used to develop a forecasting model based on the signals from five moving 

averages. The model attempts to forecast movements in equity markets and the foreign exchange market, namely the 

Dow Jones Industrial Average, the NASDAQ, the Toronto Stock Exchange, and the Canada-U.S. spot exchange 

rate.  Justification for a linear model is discussed in the methodology section.  

 

Deriving a model that accurately forecasts security returns will deny the weak form of the Efficient Market 

Hypothesis (EMH).  Therefore, this research directly tests the EMH.  The first 80% of each data set was used for in-

sample model estimation, with the remaining 20% used for out-of-sample evaluation.  

 

The results suggest that the moving averages have no predictive ability on any of the four indices with a lag 

1.  However, the moving average model is able to explain approximately 45% to 48% of the variation in the market 

returns at a lag 10.  The moving average model results in a higher R
2
 and lower mean square error, absolute square 

error, and root mean square error than the random-walk model.  The Hurst exponent was estimated for the lag 1 and 

lag 10 data sets and confirms the long-term dependencies in the lag 10 data.  

 

The remainder of the paper is organized as follows.  Section 2 presents a review of the theory and the 

hypothesis development.  Section 3 describes the data.  Section 4 discusses the methodology employed.  The 

empirical results of the study are presented and discussed in section 5.  Finally the conclusions are presented in 

section 6. 

 

2.  THEORY AND HYPOTHESIS DEVELOPMENT 

 

2.1 Literature  

 

The results of past studies appear to be inconclusive in assessing whether technical analysis is a useful way 

of extracting information from historical market prices to forecast future returns.  Alexander (1961) and Fama and 

Blume (1966) were two of the first to test technical trading rules.  Both of these studies suggest the same result; 

excess returns could not be realized by making investment decisions based on movements of certain sizes (filter 

rules). 

 

Lo and MacKinlay (1988) wrote a seminal paper on technical trading rules that provides evidence that the 

random-walk hypothesis is strongly rejected by using variance ratio statistics for the sample period 1962 – 1985 and 

for different sub-periods for a variety of aggregate U.S. indices and for size-sorted portfolio.  The major factor 

leading to the rejection of the random walk was the behaviour of the small stocks.  

 

Brock, Lakonishok, and LeBaron (1992) used bootstrapping techniques and simple, yet popular, trading 

rules to reveal strong evidence in support of technical analysis’s predictive nature.  Brock et. al. suggest that the 

patterns uncovered by technical rules cannot be explained by first order correlations or by the potential for changing 

expected returns caused by changes in volatility.  The profits generated from the technical trading rules are not 

consistent with a random-walk model. 

 

Further empirical insight and evidence for the profitability of filter rules and MAC-O rules is provided by 

Levich and Thomas (1993).  Consistent with the previous studies, moving average rules and filter rules produced 

profitable trading signals.  The profits from the moving average rules were higher than those of the filter rules.  

 

Gencay (1998) tested the daily Dow Jones Industrial Average Index from 1897 to 1988 for the linear (and 

nonlinear) predictability of stock market returns with simple technical trading rules.  The technical trading rules used 

in the study were very simple and popular.  The moving average rules studied provided at least a 10 percent forecast 

improvement in volatile years.  

 

The effectiveness of simple trading rules in relation to the size of firm was investigated by Bokhardi et. al. 

(2005).  Bokhardi et. at. segregated a number of companies based on their size and applied trading rules on their past 
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prices for a sample period of 1987 – 2002.  The results indicate that trading rules are more effective at predicting the 

future price movements of firms with smaller capitalization. 

 

A novel combined signal approach to individual technical trading rules was applied by Lento and 

Gradojevic (2007).  The combined signal approach improved the profitability of individual technical trading rules, 

thereby suggesting that the individual signals, when combined, result in a more effective trading signal.  

 

2.2 Moving Average Trading Rules 

 

Although there is a host of trading rules, this study focuses solely on moving averages.  A moving average 

cross-over (MAC-O) rule compares a short moving average to a long moving average.  The MAC-O rule tries to 

identify a change in a trend.  There are two categories of the MAC-O rule: variable length moving average (VMA) 

and fixed length moving average (FMA).  The FMA stresses that the returns for a few days following the crossing of 

the moving averages should be abnormal.  The VMA generates a buy (sell) signal whenever the short moving 

average is above (below) the long moving average.  Moving averages can provide useful trading information if the 

difference between a short and long moving averages can forecast the future security returns.  The following 

equation is used to calculate the difference the between short and long moving averages: 

 

Equation 1 – VMA Trading Signal 

 

S

R
S

s ti 1 ,
   –   

L
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=Buy,  (1) 

 

where Ri,t is the log return given the short period of S, and Ri,t-1 is the log return over the long period L   

 

2.3 Random-Walk Model 

 

The concept of an efficient market is associated with the idea of a random-walk.  A random-walk has 

traditionally been used in finance literature to characterize a price series where all subsequent price changes 

represent random departures from previous prices.  

 

 The logic of the random-walk idea is that if the flow of information is unimpeded and information is 

immediately reflected in stock prices, then tomorrow’s price change will reflect only tomorrow’s news and will be 

independent of the price changes today.  But news is by definition unpredictable, and, thus, resulting price changes 

must be unpredictable and random.  As a result, prices fully reflect all known information (Malkeil 2003). 

 

The following equation describes a time series of security returns where each current value (St) depends on 

an earlier value (St-1) plus a random error term (ut).  

 

Equation 2 – Random-Walk Model 

 

rt  =  Φrt-1   +   ut ,   (2) 

 

When the parameter Φ = 1, the security prices evolves as a random-walk without a drift.  Expressed differently, the 

change in security price is essentially the error term.  

 

2.4 Hypothesis Development  

 

The efficient market theory suggests that technical trading rules, and specifically the moving-average rules 

in this study, should not have the ability to forecast security prices.  However, past research on technical analysis is 

mixed at best.  Therefore, this study aims to provide further research in the area of technical analysis by testing the 

following hypothesis: 
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H1:  Moving averages can be used to develop a forecasting model that outperforms the random-walk model. 

 

Another question that is not sufficiently addressed in the literature is how many trading days should be 

utilized to evaluate a trading signal.  For example, if a moving average suggests a long position at t1, should the 

success of the trading rule be evaluated by the resulting results at t2, t3, or t10?  This research will provide insight into 

the optimal forecasting assessment period given that this paper tests the moving averages ability to forecast security 

returns for the following trading day (lag 1) and the following 10 days (lag 10). 

 

3. DATA 

 

The investigations are based on the daily closing prices of the Dow Jones Industrial Average, S&P 500, 

Toronto Stock Exchange, and Canada-U.S. spot exchange rate.  

 

Trading rules can be calculated at various data frequencies.  Investors can use high-frequency data (e.g. 

intra-day data) or longer horizons (e.g. weekly or yearly) as inputs for the trading rules.  The data frequency selected 

by a technical investor depends on many different factors and personal preferences.  Daily data will be used because 

a typical off floor trader will most likely use daily data (Kaastra and Boyd, 1996).  Furthermore, intraday time series 

can be extremely noisy. The number of daily observations in each data set provides a sufficient number of daily 

observations to allow for the formation, recurrence and investigation of the moving average signals.  

 

The use of daily data in the stock and foreign exchange market has many problems as movements are 

generally non-stationary and quite random in nature and therefore not suitable for forecasting purposes (Mehta, 

1995).  The market index series are transformed into rates of return to overcome these problems.  Given the price 

level P1, P2,  … Pt, the rate of return at time t is transformed by:  

 

Equation 3 – Daily Holding Period Return 

 

rt = log (pt) – log (pt -1)  (3) 

 

where pt denotes the market price.  Another advantages of using a return series is that it helps in making the time 

series stationary (Dunis and Williams, 2003).  Formal confirmation that the time series are stationary is confirmed at 

the 10% level of significance by the Augmented Dickey-Fuller (ADF) test statistic. 

 

All of the time series range from 1995 to 2008, approximately thirteen years.  The data is divided into two 

periods. The first period is used for model estimation and is classified as in-sample.  The second period is reserved 

for out-of-sample forecasting and model evaluation.  The exact dates and observations for both periods are presented 

in Table 1.  Table 1 also presents the descriptive statistics of the data sets, highlighting the skewness and kurtosis.   

 

The Jacque-Bera statistic confirms that the data sets are not normal at the 95% confidence interval.  Such 

features are common in high frequency financial time series data (Gencay, 1998). 
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Table 1 – Descriptive Statistics 

 

Data Set n Mean Std. Dev. Skew. Kurt. Period Tested In-sample 
Out-of-

sample 

Jacque-Bera stat 

p-value 

Augmented 

Dickey-

Fuller stat 

DJIA_lag 10 3,307 0.00264 0.03193 -0.5564 3.115 15/05/95 – 

02/03/08 

2,430 607 0.0000 -12.4933 

DJIA_lag 1 3,307 0.00027 0.01087 -0.2267 3.933 15/05/95 – 

02/03/08 

2,430 607 0.0000 -19.7495 

NAQ_lag 10 2,812 0.00264 0.05332 -0.5535 2.390 23/02/96 – 

02/04/08 

2,250 562 0.0000 -13.2139 

NAQ_lag 1 2,812 0.00027 0.01766 0.0354 4.065 23/02/96 – 

02/04/08 

2,250 562 0.0000 -39.1629 

TSX_lag 10 2,940 0.00340 0.03174 -0.6891 1.736 28/02/96 –

31/12/07 

2,352 588 0.0000 -13.1014 

TSX_lag 1 2,940 0.00035 0.0099 -0.6787 5.393 28/02/96 –

31/12/07 

2,352 588 0.0000 -37.9414 

CAD-US lag 10 2,220 -0.00054 0.0122 -0.0683 0.813 27/02/96 –

31/12/04 

1,776 444 0.0000 -10.7125 

CAD-US lag 1 2,220 -0.00006 0.0039 -0.0409 1.688 27/02/96 –

31/12/04 

1,776 444 0.0000 -33.1419 
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4.  RESEARCH DESIGN 

 

4.1 Methodology 

 

This research study utilizes a combination of technical trading rules and the daily closing prices of the 

DJIA, Nasdaq, TSX, and the Canada-U.S. spot exchange rate.  It is important to note that the purpose of this study is 

not to determine the profitability of technical trading rules, but rather to evaluate the forecasting effectiveness of 

trading rules.  There are significant differences in the methodology although the differences may appear to be subtle.  

Since we are evaluating the forecasting ability of trading rules, as opposed to determining their profitability, the 

methodology does not consider trading costs and the bid-ask spread.    

 

An Ordinary Least Squares (OLS) multiple regression will be used to test the forecasting ability of the 

technical trading rules.  Although many research studies have argued the benefits of using non-linear statistical 

techniques, a linear technique is tested for the following two reasons.  Firstly, the data inputs used in this study are 

by definition non-linear.  The data inputs include the daily closing prices, the log percentage return, and the 

technical trading rules.  The non-linear dynamics of the time series and the trading rules is accounted for within the 

data inputs as opposed to the statistical techniques utilized.  Therefore, the use of a non-linear model is justified.  

Secondly, there are a number of research studies that have utilized linear models to test the effectiveness of technical 

trading rules. The results of theses studies are mixed.  By utilizing a linear model, the results of this study can then 

be compared to past studies to provide further evidence on the effectiveness of linear models.  The study will serve 

to further corroborate the notion that non-linear techniques may be superior if this linear model is not effective.  

 

4.2 Forecasting Accuracy 

 

The moving average model will be compared to the random-walk model based on the resulting R
2
 and the 

out of sample forecasting error estimates.  The first 80% of each data set will be used for in-sample model 

estimation, while the remaining 20% of each data set will be used for out-of-sample forecasting accuracy estimation.  

Several measurements have been developed to make comparison between the forecasting ability of the benchmark 

and the trading rule model.  The forecasting performance will be determined by the Mean Squared Error, Root Mean 

Squared Error, and Mean Absolute Error statistic.  Refer to Hanke and Reitsch (1998) for a full discussion of these 

and other performance measures. 

 

4.3 Empirical Model 

 

The following specification is employed to examine the forecasting ability of the trading rules on the 

market indices: 

 

r’ = ά + β1MATR1 + β2MATR2 + … + βnXn 

 

Where: r’ is the forecasted security price, 

  ά  is the intercept term 

  β1 is the partial regression coefficient  

  MATR is the technical trading signal 

 

Five different moving average rules will be included in the empirical model.  Each moving average rule is 

defined by the short (S) and long (L) moving average as follow: MA (S, L).  The moving average rules are the (1, 

50), (1, 150), (5, 150), (1, 200), and (2, 200).  These moving averages (independent variables) are utilized in an 

attempt to generate a model that can forecast security returns (dependent variable) as measured by the combined R
2
.  

 

The theory would expect that the trading rules will be positively correlated to the log returns at the lag 1 

and lag 10.  For example, the difference will be positive if the short moving average is greater than the long moving 

average.  This will also suggests a long position whereby the log return should be positive.  Table 2 presents the 

Pearson correlation matrix for the time series returns and the moving-average rules.  
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Table 2 – Correlations Matrix 

 

DJIA - Pearson Correlation Matrix 

  Returns 

     

 

Lag 1 Lag 10 MA(1,50) MA(1,150) MA(5,150) MA(1,200) MA(2,200) 

Returns 1.0000 1.0000 

     MA (1,50) -0.0140 0.2571 1.0000 

    MA (1,150) -0.0169 0.2825 0.9952 1.0000 

   MA (5, 150) -0.0330 0.6567 0.4163 0.4363 1.0000 

  MA (1,200) -0.0181 0.2834 0.9949 0.9994 0.4349 1.0000 

 MA (2,200) -0.0315 0.3980 0.6879 0.6982 0.6140 0.6990 1.0000 

 

NASDAQ - Pearson Correlation Matrix 

  Returns 

     

 

Lag 1 Lag 10 MA(1,50) MA(1,150) MA(5,150) MA(1,200) MA(2,200) 

Returns 1.0000 1.0000 

     MA (1,50) 0.0046 0.2527 1.0000 

    MA (1,150) 0.0036 0.2847 0.9936 1.0000 

   MA (5, 150) -0.0274 0.6506 0.4105 0.4344 1.0000 

  MA (1,200) 0.0032 0.2886 0.9931 0.9992 0.4343 1.0000 

 MA (2,200) -0.0321 0.4042 0.6926 0.7049 0.6136 0.7067 1.0000 

 

TSX - Pearson Correlation Matrix 

  Returns 

     

 

Lag 1 Lag 10 MA(1,50) MA(1,150) MA(5,150) MA(1,200) MA(2,200) 

Returns 1.0000 1.0000 

     MA (1,50) 0.06558 0.2621 1.0000 

    MA (1,150) 0.06612 0.3033 0.9918 1.0000 

   MA (5, 150) 0.00083 0.6628 0.4019 0.4323 1.0000 

  MA (1,200) 0.06599 0.3072 0.9912 0.9990 0.4316 1.0000 

 MA (2,200) 0.03046 0.4171 0.7111 0.7266 0.6247 0.7284 1.0000 

 

CAD-US XRat - Pearson Correlation Matrix 

 
Returns 

     

 

Lag 1 Lag 10 MA(1,50) MA(1,150) MA(5,150) MA(1,200) MA(2,200) 

Returns 1.0000 1.0000 

     MA (1,50) -0.0437 0.2464 1.0000 

    MA (1,150) -0.0435 0.2818 0.9941 1.0000 

   MA (5, 150) -0.0109 0.6676 0.4234 0.4478 1.0000 

  MA (1,200) -0.0433 0.2853 0.9932 0.9993 0.4470 1.0000 

 MA (2,200) -0.0102 0.4171 0.6746 0.6878 0.6397 0.6894 1.0000 

 

 

The Pearson correlation matrix reveals that all five moving average variants are positive and significant 

across all four data sets at the 5 percent level of significance for the lag of 10.  This implies that the larger the 

moving average difference as calculated in Equation (1), the larger the log holding period return in the following ten 

days.  

 

The correlation analysis results for the lag 1 are not consistent with the theory and vary significantly across 

the data set.  All of the moving averages are negatively correlated with the log return on the Dow Jones Industrial 

Average and Canada-U.S. spot exchange rate.  However, all of the moving averages are positively correlated to the 

log return on the Toronto Stock Exchange while three of the five moving averages are positive and significant on the 

NASDAQ. 
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Table 3 – In-sample Forecasting Model Estimation: All MA Variables 

 

 
DJIA NASDAQ TSX CAD/US 

 
(lag 1) (lag 10) (lag 1) (lag 10) (lag 1) (lag 10) (lag 1) (lag 10) 

Coefficient 

(p-value) 
    

  
  

MA (1,50) 
0.2792 

(0.181) 
-3.8200* 

(0.0000) 

0.0531 

(0.781) 
-4.0958* 

(0.000) 

-0.1196 

(0.459) 
-4.6233* 

(0.000) 

0.0207 

(0.930) 
-5.4022* 

(0.000) 

MA (1,150) 
0.8966 

(0.146) 

-1.4361 

(0.2904) 

0.1639 

(0.770) 
-4.8515* 

( 0.000) 

0.3119 

(0.506) 

-2.7821 

(0.010) 

0.4720 

(0.512) 

-1.4149 

(0.372) 

MA (5, 150) 
-0.0368 

(0.428) 
4.4350* 

(0.0000) 

-0.0235 

(0.710) 
4.3834* 

(0.000) 

-0.0760 

(0.196) 
4.2992* 

(0.000) 

-0.0882 

(0.216) 
4.3381* 

(0.000) 

MA (1,200) 
-0.0426 

(0.484) 
5.2801* 

(0.0000) 

-0.1606 

(0.767) 
8.9620* 

(0.000) 

-0.0816 

(0.857) 
7.5512* 

(0.000) 

-0.5205 

(0.451) 
6.8021* 

(0.000) 

MA (2,200) 
-1.1551 

(0.053) 

-0.0603 

(0.5559) 

-0.0880 

(0.068) 

-0.0247 

(0.819) 

-0.0323 

(0.498) 

-0.1391 

(0.211) 

0.0677 

(0.219) 

-0.0069 

(0.954) 

Intercept 0.0002 0.0029 0.0003 0.0032 0.0003 0.0029 0.0000 0.0006 

         

Adj. R2 0.00134 0.452 0.0026 0.456 0.0059 0.478 0.0015 0.477 

N 2,430 2,430 2,250 2,250 2,352 2,352 1,776 1,776 

F-stat 1.655 402.8* 1.189 378.9* 3.8 432.2* 0.5 325.8* 

        

Random Walk Model        

Adj. R2 0.0003 0.0003 -0.0003 0.0001 0.0041 -0.0003 0.0013 -0.0004 

N 3,306 3,306 2,811 2,811 2,939 2,939 2,219 2,219 

         

Hurst Statistic 0.527 0.673 0.599 0.729 0.584 0.746 0.584 0.714 

* Significant at the 1 percent level.  
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5.  RESULTS 

 

Table 3 reports the results of the least squares estimation of the moving average model specifications.  The 

dependent variable is the log return of each index at a lag of one and ten days and the explanatory variables are the 

five moving average variants.  

 

The regression results that accounts for all the considered explanatory variables indicates that the MA 

(1,50), MA (5,150), and MA (1,200) are the only estimates statistically different from zero across all four data sets 

at a lag of 10.   However, the sign of the MA (1,50) estimate is negative and therefore contradicts the theory and 

previous evidence on the explanatory power of the moving average.  The R
2
 for the trading models are in excess of 

45 percent for all four data sets, far exceeding the random-walk model.  Given this explanatory power, it is very 

likely that the MA (1,50) coefficient is negative due to multicollinearity (i.e. the coefficient may not be precise but 

the model as a whole is accurate).  In addition, the p-value supports the notion that the MA (1,50) variable is 

informative for forecasting security returns. 

 

The regression results at the lag of one day do not support to the notion that moving averages are effective 

at forecasting security returns.  The R
2
 for the model that considered all explanatory variables indicates that the 

model has little explanatory power.  Furthermore, none of individual moving average estimates are statistically 

different from zero across all four data sets.  

 

The Hurst statistic (H) was estimated for the four data sets at both the lag 1 and lag 10.  The Hurst statistic 

is a measure of a time series’ long run dependencies.   A H of 0.50 indicates a series is random.  A 0 < H < 0.5 

indicates an anti-persistent series suggesting the data set exhibits mean reverting tendencies (a positive return is 

followed by a negative return).  A 0.5 < H < 1 indicates a persistent series whereby the data is trend reinforcing (a 

positive return is followed by a positive return).  The strength of the trend increases as H approaches 1.  Therefore, 

technical analysis should be more successful on data sets that exhibit trend reinforcing characteristics or 0.5 < H < 1.  

 

Table 3 presents the H for all eight data sets and reveals that the lag 10 data sets have a H in the range of 

0.67 to 0.72, whereas the lag 1 data sets have a H in the range of 0.52 to 0.59.  The Hurst statistic estimation 

corroborates the regression results that suggest the forecasting ability of the trading rules is much better on the lag 

10 data than the lag 1 data.  

 

Based on the results of the regression for a lag of ten days, a new model was developed by utilizing only 

the MA (1,50), MA (5,150), and MA (1,200), which were the estimates statistically different from zero in the five 

variable model.  The purpose of this refined model is to reduce the potential impacts of multicollinearity.  Although 

the regression suggests that the MA (2, 200) should also be included in the model, the correlation matrix reveals that 

it is highly correlated with the MA (5, 150) which is the most influential variable; therefore, it can be dropped as it 

does not provide much further explanatory power in a multiple regression model that includes the MA (5, 150). 

Table 4 presents the results of the three variable model.  

 

The result of the model suggest that the MA (2, 200) and MA (1, 150) do not provide any additional 

explanatory powers as the R
2
 in the three variable model is virtually unchanged from the model that takes into 

consideration all five moving averages.  The three variable model also far exceeds the forecasting ability of the 

random-walk model.  All three estimates are significant at the 1 percent level of significance; however, the 

coefficient for the MA (1, 50) remains negative.  
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Table 4 – In-sample Forecasting Model Estimation: Effective MA Variables 

 

Coefficient 

(p-value) 
 

DJIA 

(lag 10) 
 

NASDAQ 

(lag 10)  

TSX 

(lag 10) 
 

CAD-US 

(lag 10) 

MA (1,50)  
-3.944* 

(0.0000) 
 

-4.528* 

(0.000)  
-4.872* 

(0.000) 
 

-5.536* 

(0.000) 

MA (5, 150)  
4.383* 

(0.0000) 
 

4.337* 

(0.000)  
4.183* 

(0.000) 
 

4.322* 

(0.000) 

MA (1,200)  
3.947* 

(0.0000) 
 

4.543* 

(0.000) 
 

4.965* 

(0.000) 
 

5.521* 

(0.000) 

Intercept  0.0029  0.0032  0.0030  0.0006 

Adj. R2  0.452  0.453  0.447  0.4781 

n  2,430  2,250  2,325  1,776 

Durbin-Watson  0.72  0.70  0.66  0.75 

F-stat  671.02*  622.91*  716.18*  543.19* 

       

Random Walk Model       

Adj. R2  0.0003  0.0001  -0.0003  -0.0004 

n  3,306  2,811  2,939  2,219 

* Significant at the 1 percent level.  

 

 

Table 5 – Out-of-sample Forecasting Results 

 

 

 DJIA 

(lag 10) 

 NASDAQ 

(lag 10) 

 TSX 

(lag 10) 

 CAD-US 

(lag 10) 

 

 RW MA  RW MA  RW MA  RW MA 

Mean Squared Error (MSE)  0.00048 0.00031  0.00083 0.00047  0.00064 0.00036  0.00029 0.00016 

Root Mean Squared Error (RMSE)  0.02212 0.01762  0.02893 0.02184  0.02536 0.01906  0.01717 0.01277 

Mean Absolute Error (MAE)  0.01680 0.01350  0.02136 0.01661  0.01966 0.01504  0.01396 0.01013 
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Table 5 presents the results of the out-of-sample forecasting assessment.  The Mean Squared Error, Root 

Mean Squared Error, and Mean Absolute Error are calculated for the three moving average model and for the 

random-walk model.  All three out-of-sample forecasting error statistics suggest that the moving average model is a 

more accurate forecasting model than the random-walk model. 

 

6.  DISCUSSION AND CONCLUSION 

 

The results of this study are somewhat mixed, suggesting that moving averages are clearly able to 

outperform the random-walk model at a lag 10 but not at the lag 1.  The resulting R
2
 of the moving average model at 

the lag 10 ranges from 44.7 percent to 47.8 percent on the four data sets, whereas the random-walk model’s resulting 

R
2
 is negligible.  However, there is no evidence that moving averages can outperform the random-walk model at the 

lag 1. 

 

The results at a lag of one day may be limited by the fact a linear model was utilized.  Gencay (1999) cites 

many previous studies to support his conclusion that high-order movements of a foreign exchange rate series 

demonstrate the existent of non-linearities. 

 

The MA (1,50), MA (5,150), and MA (1,200) were individually significant across all four data sets and 

therefore the study suggests that these trading rules can be used in future research to develop a more robust and 

comprehensive model that may also incorporate trading rules other than moving averages.  

 

The results also suggest that determining the optimal time period to evaluate technical trading rules is key, 

yet complex.  For example, the trading rules were not successful at a lag of one day but provided useful information 

for forecasting the holding period returns resulting in the ten days following a signal.  These results are consistent 

with Brock, Lakonishok, and LeBaron (1992) who also suggest that moving averages provide useful trading 

information at a lag of 10 days.  Future research should continue to explore the optimal evaluation period. 

 

Overall, the results of this study contribute to our understanding of the forecasting ability of simple moving 

averages as the MA (1,50), MA (5,150), and MA (1,200) model was able to explain a significant portion of the 

variation in the DJIA, NASDAQ, TSX, and Canada-U.S. spot exchange rate returns.  
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