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ABSTRACT 

 

This paper uses claims data from the most prominent lines of non-life insurance business in 

Nigeria to determine appropriate models for claim amounts by fitting theoretical distributions to 

the various data. The risk premiums for each class of business are also estimated. The result of the 

study demonstrates that some lines of business are indeed better modeled with different 

distributions than had earlier been conjectured. 

 

Keywords:  non-life insurance; claim size; exploratory data analysis; risk premium; estimation; inflation 

 

 

INTRODUCTION 

 

n overview of the distributional models and diagnostics that can be used to represent large claims in 

non-life insurance was given by Beirlant and Teugels (1992). Antonio and Beirlant (2006) 

discussed both a priori and a posteriori rating systems in non-life insurance with examples from 

likelihood based and Bayesian estimations. Their main approach was to distinguish between low profile and high 

profile risks by splitting an insurance portfolio into classes that consist of similar profile and then determining a fair 

tariff for each. Keiding et al (1998) modified Cox regression model commonly used in survival analysis to study the 

hazard of occurrence of claims in auto, property and household insurance in a Danish county. Yip and Kelvin (2005) 

considered the problem of zero-inflated claim frequency data in general insurance. The majority of the other earlier 

works made use of regression. We observe that these models could be allowed for developed economies where data 

collection poses little problems. 

 

In Nigeria, as well as other developing economies, there is paucity of data. Further, there is little analysis of 

the existing data beyond the simple descriptive statistics that organizations like the Nigerian Insurance Association 

annually conduct. This probably explains why insurance companies in such economies are not operating at their full 

potential. Claims, especially large ones, had been the Achilles‟ heels of the insurance industry as past incidents of 

repudiation of claims had created an image problem for the industry. An analysis of claim size is essential in 

determining actually fair premium. When this is not the case, an insurance company risks insolvency deriving 

mainly from adverse selection and moral hazard.  

 

Incidentally, claim occurrence is not all that predictable. For an insurance company, neither the time, the 

size, nor the frequency of the claim is known with certainty. The degree of risk brought into the pool varies in terms 

of possibility of losses or hazard and the extent of potential loss. The insurer, therefore, needs to ensure that the 

premium charged to individual members of the pool is equitable, compared with the contribution of others bearing 

in mind the likely frequency and severity of claims that may be made by that individual. In the absence of 

knowledge about the occurrence of claims, premiums are only determined by guesswork, such as when the rates for 

other developed economies are adopted for developing economies. Unfortunately in many cases, the adaptation is 

inappropriate as the micro and macro economic conditions of the developed and developing economies vary widely. 

To continue with the practice of inappropriate premium pricing would do little to mitigate the poor image problems 

from which the insurance industry had been struggling to extricate itself (Osoka, 1992).   

 

Although Hamadu (2010) rightly observed that each form of insurance has its background of occurrences, 

thereby creating contingencies that require specific protection, his investigation of the stochastic distribution of 
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claim sizes of armed robbery cases in Nigeria was limited to only one line of business. From our experience, 

improper premium determination is not limited to the peril of armed robbery. The problem permeates other classes 

of insurance which poor management had constituted an impediment to the growth of the industry. The main lines 

include fire, motor, property, theft and armed robbery insurance. In this study, we determine appropriate models for 

claim amounts for different classes of non-life insurance in Nigeria by fitting theoretical distributions to the loss data 

in these lines of insurance business. We also explore the advantage of Pearson Chi-square statistic over Andersen 

and BIC criteria, to serve as our measure of goodness of fit. To the best of our knowledge, such a study has not been 

carried out for the Nigerian insurance market.   

  

The study progresses as follows: Section 2 presents some theoretical distributions that can be fitted to the 

Nigerian claims data. Section 3 discusses the data. Section 4 analyzes the data and fits theoretical distributions to 

them. Section 5 estimates the risk premium for each line of business and examines the effect of inflation on the 

operation of the insurance company while Section 6 concludes. 

 

CLAIM SIZE DISTRIBUTION  

 

In the different classes of insurance business, it is not clear cut which distributions are suitable for 

modeling claim amounts as claims can take on large number of values (Promislow, 2006). In the following 

paragraphs, we examine some theoretical distributions. 

 

Exponential Distribution 

 

A natural place for starting the discourse on theoretical distributions should be the exponential distribution 

because it is one of the simplest and most basic distributions used in modeling. The exponential distributions are a 

class of continuous probability distributions that describe the times between events; that is, a process in which 

events occur continuously and independently at a constant average rate. Having observed a sample of n data points 

from an unknown exponential distribution, a frequent task is to use these samples to make predictions about future 

data from the same source. A common predictive distribution over future samples is formed by plugging a suitable 

estimate for the rate parameter λ into the exponential density function.  

 

A random variable X is said to be exponentially distributed if it has a density function: 

 

 for ,  where λ is the parameter. 

 

This distribution has a survival function given as: 

 

 

 

with mean given by  and variance .  

 

The moment generating function of X is given by: 

 

,   for any  

 

The exponential distribution has a memory-less property, a property that is shared by no other continuous 

distribution. This unique property characterizes the family of exponential random variables. Since much of the 

theory of the generalized linear models is derived from this distribution, it is a very important distribution in 

modeling insurance claim counts (Boucher et al, 2008; Boland, 2007) as follows: 

 

We define the sequence  as consecutive claim sizes. This sequence is assumed to be a 

renewal process generated by the claim size distribution defined as  where X is a generic claim 

size. The exponential distribution is then given by   (see Beilant and Teugels 
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1992). Generally, the exponential distribution belonging to the super-exponential class which is characterized by 

 where , . 

 

As noted in McLaughlin (2001), the skewness and kurtosis for any exponential distribution are, 

respectively, 2 and 6. Comparing these values with the summaries in Table 1, we can infer that the claims data for 

the other classes of personal line insurance, besides fire, are more positively skewed and have a fatter tail than one 

would expect from an exponential distribution. The column for the fire claims summary in Figure 1 suggests that the 

exponential distribution might be a good fit for its data. The other lines of the business have fatter tails and the 

exponential distribution would not be a good fit. 

 

Pareto Distribution 

 

Another class of distribution that is commonly used to model income distribution in economics or claim 

size distribution in insurance is the Pareto distribution (Boland, 2007). A random variable X is said to have a Pareto 

distribution with positive parameters  and  if it has density function given by   , or 

equivalently, if its survival function is given by  , for . Similar to the exponential family 

of random variables, the Pareto distribution has density and survival functions which are tractable. Pareto random 

variables have some preservative properties, for instance, if   and , then 

 since  

 

 . This property is useful in dealing with inflation in 

claims. 

 

When , one may readily determine the mean (when α > 1) and variance (when α > 2) 

by taking expectations. Thus; 

 

  

 

  

 

, and  

 

  

 

  and therefore 

 

  

Using the method of moments to estimate the parameters  and  of a Pareto distribution, we can solve the 

equations 

 

  and  
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to get 

 

  and  

 

 

Gamma Distribution 

 

For risk analysis modeling, particularly, for claims size modeling, the Gamma distribution has been found 

to be extremely useful (Hogg, McKean and Craig, 2005). The Gamma function is defined for any  > 0 by 

.  

 

It has the properties that 

 

  and . 

 

X has a gamma distribution with parameters  and  if X has a density function given by 

 with mean and variance given respectively as   and 

 

 

Solving the above equations, the moment estimators of α and λ are obtained as: 

 

  and   

where  and  are, respectively, the mean and variance of the claim sample. 

 

Weibull Distribution 

 

A random variable, X, has a Weibull distribution with parameters  if it has density function 

. The parameters  are often called the scale and shape parameters for 

the Weibull random variable, respectively. If the shape parameter , then the tail of X is fatter than that of any 

exponential distribution, but not as heavy as that of a Pareto. When , then X is exponential with parameter . 

The Weibull distribution is one of the extreme value distributions in the sense that it is one of the possible limiting 

distributions of the minimum of independent random variables (Barlow and Proschan, 1965). A particular property 

of the Weibull distribution is the functional form of its survival function, which has led to its widespread use in 

modeling lifetimes. Another attractive aspect is that the failure or hazard rate function of the Weibull distribution is 

of polynomial form since 

 

  

 

and the k
th

 moment of X is obtained, thus: 

 

  

 

Apart from its wide application in life insurance, the Weibull distribution had been found to be particularly 

useful in non-life insurance for modeling the size of reinsurance claims (Beirlant and Teugels, 1992; Boland 2007).  
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Lognormal Distribution 

 

A random variable, X, is said to have a lognormal distribution with parameters µ and  2
 if  

 

. 

 

Letting , the density function of X  may be determined from that of Y as follows; 

 

  

 

Using the expression for the moment, generating function of a normal random variable, the mean and 

variance of X are determined as follows: 

 

  and  

 

The lognormal distribution is skewed to the right and is often useful in modeling claim size (Boland, 2007, 

Hogg and Craig, 1978). In trying to fit a lognormal distribution to model a loss (or claim) distribution, one generally 

uses the method of moments to estimate the parameters µ and  2
. The Lognormal distribution like its Weibull and 

Pareto  counterparts have indeed been shown to belong to the class of sub-exponential distribution and satisfying the 

condition that 

 

. 

 

Further, for any non-negative integer n as ,     

 

where  

 

 is the n
th

 convolution of with itself (Beirlant and Teugels, 1992). 

 

DATA COLLECTION 

 

The Insurance Decree number 2 of 1997 (the Act by which the military regime conduct the affairs of state) 

sub-divided the insurance business into two main classes - life and non-life. Some companies operate composite 

lines, but the majority specializes in only one class. We collected data on the following insurance categories: Fire 

Motor, Property, Theft, and Armed Robbery, because these are the classes that fit more into the personal lines. 

Others, such as Workmen‟s Compensation and Employer‟s Liability insurance, Oil and Gas insurance, and 

Contractors all Risk insurance, fit more into the corporate class. We presume that most corporate organizations 

know and appreciate the need for insurance, but individuals really do not and they create the greater part of the bad 

image for the insurance industry. 

  

In addition to the five classes included in the study, we also have a sixth class which is composed of the 

five classes combined. This is to allow for the class commonly referred to in the industry as Commercial line. The 

major source of data is the Nigerian Insurer Association (NIA). The data contained a comparative report of 

premium, claim and management expenses of member companies under non-life business for a period of 20 years. 

The claims are those under policies relating to current years net of reinsurance recoveries and the data represent 

collated aggregate of claim size at regular intervals. 
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DATA ANALYSIS AND DISTRIBUTION FITTING 

 

We found the Exploratory Data Analysis (EDA) techniques very useful in investigating the suitability of 

certain families of distributions for particular data in attempting to fit the various claims data (see Table 1). 
 

 

Table 1:  Descriptive Statistics for the Claims Data 

 

Fire Motor Property Theft Armed Robbery Commercial 

Mean 382096.024 415006.2445 605388.8257 320829.6683 508215.2453 409105.3857 

Standard Error 131132.4101 105186.4152 240107.1034 107770.8091 139884.6119 56447.19793 

Median 185000 141400 135000 98152.5 223500 128812.5 

Standard Deviation 507873.6404 721121.731 1680749.724 580363.5684 541770.7723 913677.718 

Sample Variance 2.57936E+11 5.20017E+11 2.82492E+12 3.36822E+11 2.93516E+11 8.34807E+11 

Kurtosis 3.815963117 6.353829359 38.15293908 5.607076811 -1.264212655 83.39896508 

Coefficient of variation 132.9178 173.76166 274.6565 180.89461 106.60262 223.33554 

Skewness 1.987542595 2.608202381 5.911331308 2.595037759 0.723757549 7.606463987 

Range 1776000 3033357 11461032.34 2181600.04 1419898.37 11473415.74 

Minimum 24000 1350 12967.8 5399.96 1200 584.4 

Maximum 1800000 3034707 11474000.14 2187000 1421098.37 11474000.14 

 

 

These fitted distributions include exponential, Lognormal, Weibull and Gamma distributions. The Q-Q 

(quantile-quantile) plots and the plot of the fitted distributions give some support to the use of distributions for the 

data. Since these techniques for analyzing fit are exploratory, we needed to use one or more of the traditional classic 

methods to test the goodness of our fit. In our study, we made use of the chi-square goodness-of-fit, which has been 

found to be suitable for both discrete and continuous distributions to assess the fit.  We chose the Chi-Squared 

goodness-of-fit test over the Kolmogorov-Smirnoff test because the latter is often not good at detecting tail 

discrepancies (Boland, 2007). Also we rejected the K-S test and its modification, the Anderson-Darling test, because 

they are non parametric. 

 

The null and the alternative hypotheses for a Chi-Squared test are:  

 

H0:   The data follow the specified distribution. 

 

HA:   The data do not follow the specified distribution.  

 

The hypothesis regarding the distributional form is rejected at the chosen significance level (α) if the test 

statistic is greater than the critical value.  
 

 

Table 2:  Observed and Expected Values for Fitting Classic Distribution to Property Data 

Group Claim Interval 
observes 

frequency 

Expected 

frequency 

(Exponential) 

Expected 

frequency 

(Gamma) 

Expected 

frequency 

(Weibull) 

Expected 

frequency 

(Lognormal) 

1 [0, 500000) 64 26.78 56.99 46.83 50.09 

2 [500000, 1000000) 6 29.67 8.48 22.46 17.33 

3 [1000000, 1500000) 2 13.13 3.92 6.53 5.16 

4 [15000000, 2000000) 3 5.81 2.44 2.39 2.41 

5 [20000000, 25000000) 1 2.57 1.69 0.98 1.37 

6 [25000000, 30000000) 1 1.14 1.25 0.43 0.86 

7 [30000000, ∞) 3 0.6 4.73 0.27 2.46 

8  Х2 – statistic 

 

91.96 6.62 50.43 13.59 

  p – value  

 

0.00 0.16 0.00 0.01 

 

 

Table 2 shows that the Gamma distribution provides the best fit for the property data since it has the least 

Chi-square value of 6.62 and correspondingly highest p-value of 0.16 to confirm its suitability. 
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Table 3:  Observed and Expected Values for Fitting Classic Distribution to Theft Data 

Group Claim Interval 
observed 

frequency 

Expected 

frequency 

(Exponential) 

Expected 

frequency 

(Gamma) 

Expected 

frequency 

(Weibull) 

Expected 

frequency 

(Lognormal) 

1 [0, 500000) 39 15.23 26.86 28.92 31.72 

2 [500000, 1000000) 2 18.98 11.59 13.23 11.32 

3 [1000000, 1500000) 2 9.92 5.65 5.28 3.93 

4 [15000000, 2000000) 3 5.19 3.40 2.74 2.05 

5 [20000000, 25000000) 3 2.71 2.21 1.60 1.27 

6 [25000000, 30000000) 1 1.42 1.50 0.99 0.86 

7 [30000000, 35000000) 1 0.74 1.04 0.65 0.62 

8 [35000000, ∞) 4 0.59 2.34 1.35 2.99 

  Х2 – statistic  79.61 17.45 21.69 13.71 

  p – value   0.0000 0.0037 0.0006 0.0176 

 

 

From Table 3, Lognormal model is the best fit for the theft data since it has the least Chi-square value of 

13.71 and correspondingly highest p-value of 0.0176 to confirm its suitability. 
 

 

Table 4:  Observed and Expected Values for Fitting Classic Distribution to Armed Robbery Data 

Group Claim Interval 
observes 

frequency 

Expected 

frequency 

(Exponential) 

Expected 

frequency 

(Gamma) 

Expected 

frequency 

(Weibull) 

Expected 

frequency 

(Lognormal) 

1 [0, 500000) 17 10.89 12.11 15.45 16.70 

2 [500000, 1000000) 4 11.05 9.84 6.28 5.58 

3 [1000000, 1500000) 5 4.31 3.97 2.61 2.01 

4 [15000000, 2000000) 1 1.68 1.71 1.43 1.09 

5 [20000000, 25000000) 1 0.65 0.76 0.89 0.69 

6 [25000000, ∞) 1 0.26 0.42 2.02 2.68 

  Х2 – statistic  9.96 7.40 5.62 7.81 

  p – value   0.04 0.06 0.013 0.05 

 

 

Table 4 shows that the Weibull distribution provides the best fit for the armed robbery data since it has the 

least Chi-square value of 6.62 and correspondingly highest p-value of 0.16 to confirm its suitability. 
 

 

Table 5:  Observed and Expected Values for Fitting Classic Distribution to Fire Data 

Group Claim Interval 
observes 

frequency 

Expected 

frequency 

(Exponential) 

Expected 

frequency 

(Gamma) 

Expected 

frequency 

(Weibull) 

Expected 

frequency 

(Lognormal) 

1 [0, 500000) 11 6.1856548 11.0679945 10.57667448 10.99001088 

2 [500000, 1000000) 4 7.6427229 4.498262188 6.148396083 5.685554801 

3 [1000000, 1500000) 2 3.9491641 2.177481407 2.446469863 1.969317696 

4 [15000000, 2000000) 1 2.0406205 1.311693119 1.200845138 0.992137388 

5 [20000000, 25000000) 1 1.0544338 0.855977409 0.648123694 0.588897047 

6 [25000000, 30000000) 1 0.5448493 0.582891265 0.370807624 0.384668266 

7 [30000000, 35000000) 1 0.2815357 0.407626972 0.220981404 0.267801089 

8 [35000000, ∞) 1 0.1555431 0.807767858 0.251895564 0.926425147 

  Х2 – statistic  14.15953 3.304043 6.134896 5.369405 

  p – value       

 

 

Table 5 shows that the Gamma distribution provides the best fit for the fire data since it has the least Chi-

square value of 3.30.  
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Table 6:  Observed and Expected Values for Fitting Distributions to Motor Insurance Claims 

Group Claim Interval 
Observed 

frequency 

Expected 

frequency 

(Exponential) 

Expected 

frequency 

(Gamma) 

Expected 

frequency 

(Weibull) 

Expected 

frequency 

(Lognormal) 

1 [0, 500000) 203 125.5260 168.2732 167.0382 174.8747 

2 

[500000, 

1000000) 18 90.5428 40.8684 57.6762 41.8910 

3 

[1000000, 

1500000) 6 21.3462 15.8405 13.0144 11.4898 

4 

[1500000, 

2000000) 6 5.0325 7.9679 3.9633 5.2185 

5 

[2000000, 

2500000) 3 1.1865 4.4043 1.3890 2.9037 

6 

[2500000, 

3000000) 3 0.2797 2.5593 0.5318 1.8119 

7 

[3000000, 

3500000) 4 0.0659 1.5343 0.2168 1.2183 

8 [3500000, ∞) 1 0.0048 1.6124 0.0777 3.7283 

       

 Χ2 value  587.5827 31.28094 130 30.01892 

 

 

Table 6 shows that the Log-normal distribution provides the best fit for the Motor Insurance data since it 

has the least Chi-square value of 30.01892 and suggests that the Log-normal distribution is the most suitable for 

Nigeria‟s motor accident claims (Table 6). 
 

 

Table 7:  Observed and Expected Values for Fitting Classic Distribution to Commercial Line Data 

Group Claim Interval 
Observed 

frequency 

Expected 

frequency 

(Exponential) 

Expected 

frequency 

(Gamma) 

Expected 

frequency 

(Weibull) 

Expected 

frequency 

(Lognormal) 

1 [0, 500000) 463 244.10 392.59 361.92 389.80 

2 [500000, 1000000) 51 226.28 89.61 151.10 110.30 

3 [1000000, 1500000) 20 77.41 38.82 43.99 33.56 

4 [15000000, 2000000) 16 26.48 22.05 16.79 16.21 

5 [20000000, 25000000) 14 9.06 13.82 7.26 9.44 

6 [25000000, 30000000) 7 3.10 9.12 3.39 6.11 

7 [30000000, 35000000) 10 1.06 6.22 1.67 4.24 

8 [35000000, ∞) 7 0.32 13.40 1.40 16.67 

  Х2 – statistic  600.19 45.91 181.75 66.90 

  p – value   0.000 0.000 0.000 0.000 

 

 

Table 7 shows that the Gamma distribution provides the best fit for the commercial line data since it has the 

least Chi-square value of 45.91.  
 

 

Table 8:  Estimated Parameters for the Fitted Models 

 

Exponential Weibull Gamma Lognormal 

Parameter λ Α Β α β Σ µ 

Fire 1.32E-06 0.70895 4.54E+05 0.36483 2.08E+06 1.5673 12.431 

Motor 2.89E-06 0.71744 2.05E+05 0.25971 1.33E+06 1.7035 11.453 

Property 1.63E-06 0.75188 2.96E+05 0.1381 4.44E+06 1.6055 11.913 

Theft 1.30E-06 0.60708 4.05E+05 0.38516 2.00E+06 1.8707 12.067 

Armed Robbery 1.88E-06 0.54452 4.13E+05 0.8045 6.60E+06 2.029 12.041 

Portfolio 1.88E-06 0.54452 4.13E+05 0.8045 6.60E+05 2.029 12.041 
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Table 8 summarizes the fitted distributions for various lines of insurance business and also displays their 

estimated parameters. Finally, we present the Histograms, fitted distributions and the Q-Q plots for the various 

classes of insurance business in Figures 1-6. 
 

 

 
Figure 1a:  Histogram and the Fitted Distribution for Fire 

 

 

 
Figure 1b:  Q-Q Plot for the Fitted Distribution for Fire 
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Figure 2a:  Histogram and the Fitted Distribution for Motor 

 

 

 
Figure 2b:  Q-Q Plot for the Fitted Distribution for Motor 
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Figure 3a:  Histogram and the Fitted Distribution for Property 

 

 

 
Figure 3b:  Q-Q Plot for the Fitted Distribution for Property 
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Figure 4a:  Histogram and the Fitted Distribution for Theft 

 

 

 
Figure 4b:  Q-Q Plot for the Fitted Distribution for Theft 
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Figure 5a:  Histogram and the Fitted Distribution for Armed Robbery 

 

 

 
Figure 5b:  Q-Q Plot for the Fitted Distribution for Armed Robbery 
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Figure 6a:  Histogram and the Fitted Distribution for Overall claims 

 

 

 
 

Figure 6b:  Q-Q Plot for the Fitted Distribution for Overall Claims 
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Reinsurance 

 

Claim size often increases over time due to inflation, and it is worth investigating how this affects typical 

payments for the ceding insurer and reinsurer if the same reinsurance treaty holds. Suppose that claims increase by a 

factor of k next year, but that the same excess level M is used in an excess of loss treaty between the insurer and 

reinsurer. Future  cessions would be expected to increase as a result of inflation. Thus, the factor for the insurer 

would be greater than k since the total claim size, on the average, increases by k. Suppose that due to inflation next 

year, a typical claim X = Y+Z will have distribution = kX, where k > 1. If Y is that part of the claim X handled 

by the (ceding) insurer this year, then next year it will be  = g(X) defined by 

 

 =  

 

The amount paid by the insurer next year on a typical claim  is given as 

 
 

 

   
 

where Y is the amount paid by the baseline insurance company and Z is the amount paid by the reinsurer. But, it can 

be shown that  

 

 
 

In the case where X is exponentially distributed with parameter λ,  

 

 
 

which yields 

 

 
 

However, if X has a Pareto distribution with parameters  and , the  can be shown to be 

 

 
 

For a Gamma distribution with parameters  and , the  is  
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Similarly, if X has a Weibull distribution with parameters  and , the  can be expressed as 

 

 
 

Substituting the values of the estimated parameters of the various distributions, as obtained in Table 8, we 

obtain the expected cost per claim for the insurer and the corresponding expected payment per claim next year for 

the insurer given an interest rate of 11 percent (Business day, 2010), as forecasted by the apex bank.   

 

ASSUMPTIONS 

 

The discussions that follow require that we make some assumptions about the non-life insurance market in 

Nigeria. We base our assumption of the average cost of the purchase of a car on the cost of a fairly used car. The 

reason for this is that since the 1980s when the economic recession set in, the average Nigerian had resorted to the 

option of fairly used cars as the prices of new vehicles seem to have gone beyond his reach. From market survey, the 

average price of a fairly used car in Nigeria is about two million Naira (N2,000,000). Also, the typical rate charged 

by member companies of the Nigeria Insurers Association is about 10%. Therefore, we have assumed that the 

average premium charged per vehicle is N200,000 (denoted M). We also conjecture that a realistic estimation would 

only be possible if allowance is made for inflation. The current rate of inflation, from published figures, is 11% 

(BusinessDay, 2010). On the foregoing basis, Table 9 is derived.  
 

 

Table 9:  Expected Loss at 11% Rate of Inflation 

 

k=11 M= 200000 

 Exponential Gamma Weibull Lognormal 

197619.1 6.27E+07 1.44E+07 32130766 

194836.3 5.63E+07 5.37E+07 18864785 

197065.4 3.54E+08 6.91E+07 21606949 

197654.9 5.71E+07 9.45E+09 63364464 

196620.4 9.02E+07 9.24E+10 1.14E+08 

196620.4 9.02E+06 9.24E+10 1.14E+08 

 

 

Risk Premium Estimation 

 

With the result obtained in the previous sections, we are now able to estimate the risk premium in each 

class of insurance business by taking the product of expected claim frequency and severity (Brockman & Wright 

1992; Renshaw 1995; Haberman & Renshaw 1996). For motor insurance claims, for instance, the total loss, R, based 

on the fitted lognormal distribution is estimated as: 

 

))2/ˆˆexp(ˆ(ˆ 2  NR  = 31 ×619319.8 = 18889254 

 

Similar results hold for the calculated risk premium in the other classes of insurance business. The results 

are presented in Table  10. 

 

 
Table 10:  Estimates of Risk Premium 

Class of Insurance Estimated Risk Premium 

Fire 12829591 

Motor 18889254 

Property 26525986 

Theft 29036235 

Armed Robbery 19924700 

Commercial 357316278 
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CONCLUSION 

 

This study has examined the main lines of non-life insurance business in Nigeria and has fitted appropriate 

theoretical distribution to each line. The study has established that a Gamma distribution would be best for the 

Property, Fire and the Commercial insurance products, lognormal for the Theft and Motor lines, while Weibull 

would best fit the Armed Robbery plan. With knowledge of these distributions and assuming the present rate of 

inflation is sustained, we were able to estimate the expected loss to an insurance company, as well as determine 

estimates of the premium. With these key figures, it becomes easier for an insurance company to allocate reserves or 

determine the level of cession to a reinsurance company or know when it is taking more than expected risk. To 

continue the previous approach where the uncertain business of insurance is run on the basis of guesses could hurt 

the industry in the long run.   
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