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ABSTRACT 
 

We present an integer programming formulation of the min-sum arborescence with node outage 

costs problem. The solution to the problem consists of selecting links to connect a set of terminal 

nodes to a root node with minimal expected annual cost, where the annual cost is the sum of 

annual links costs and annual outage costs. The links in the network are prone to failure and each 

terminal node has an associated outage cost, which is the economic cost incurred by the network 

user whenever that node is disabled from the central node due to failure of a link. We suggest a 

Lagrangian-based heuristic to get a good solution to this problem. This solution procedure also 

gives lower bounds to the optimal solution and is used to assess the quality of the heuristic 

solution. Numerical experiments taken from instances with up to 100 nodes are used to evaluate 

the performance of the proposed heuristic. 
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INTRODUCTION 

 

he min-sum arborescence problem consists of finding links to connect a set of geographically remote 

terminal nodes to a central node such that for each terminal node j a unique path exists from the 

central node to node j. An efficient method for finding an optimal solution to this problem has been 

presented by Fischetti and Toth (1993). This study assumes that all terminal nodes in the network are equally 

valuable to the organization; but in many organizations, terminal nodes are be used for supporting an assortment of 

tasks like sales order entry, production planning, employee expense report processing, updating inventory records, 

recording quality inspection results, running decision support systems to assist managers with decision making, 

manufacturing process control, etc.  Some of these tasks are more valuable to the organization than others. The links 

in a network can fail due to a variety of reasons and failure of a link can cause all the terminal nodes connected to 

the central node through that link to be disconnected from the network until the faulty link is repaired. The economic 

effect of a link failure on the organization depends upon the tasks performed on the disconnected terminal nodes. A 

link failure that temporarily disables a terminal node used for processing employees’ expense reimbursement report 

may have less economic effect than a link failure which disables a computer-controlled machine (CNC) used in 

manufacturing. Disabling of a CNC machine may idle the machine and its operator as well as idle other machines 

downstream because of job starvation, and it may also result in penalties and loss of customer goodwill due to delay 

in shipments to the customer, whereas delay in processing employees’ expense report may result in delaying 

payments to the employees only. 

 

Node outage cost is the economic loss to an organization due to a terminal node’s inability to communicate 

with the central node. It does not include the cost of repairing or replacing the link. The average yearly node outage 

cost is called the expected downtime cost.  Campbell and Pimentel (1986) reported that, in many organizations, the 

expected downtime costs for some nodes can be very significant and should be taken into account while designing 

the topology of the network. 

 

Example 

 

Consider a network with four terminal nodes - 2, 3, 4, and 5 - which must be connected to a central node - 

node 1. The annual cost of directly linking node i and node j, Cij, as well as the outage cost associated with each 

T 
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terminal node i is given. We assume Cij = Cji, j,i . We assume a link failure rate of 0.10 for each link. (The values 

of link costs and node outage costs are given in Table 1.)  

 

Table 1:  Link And Outage Costs For The 5-Node Problem 

i Ci1 Ci2 Ci3 Ci4 Ci5 Node Outage Cost 

2 25 --- 16 8 20 500 

3 36 16 --- 14 10 100 

4 27 8 14 --- 12 200 

5 35 20 10 12 --- 700 

 

Using only the link costs, this network would be optimally configured as shown in Figure 1a. The total 

annual link cost of this configuration is 57, but the total annual cost including the expected downtime costs is 437.  

Although the annual link cost for the configuration in Figure 1b is higher at 101, the total annual cost, including the 

expected downtime cost, is 261, which is 40% lower than the corresponding cost for the layout in Figure 1a. Thus, 

node outage costs can have a significant effect on the total annual cost of the network and should be considered 

during the topological design of the network. 
 

Figure 1:  A 5-node Problem 
 

 The network design problem is formulated as an integer program. We propose a Lagrangian relaxation 

based heuristic to find a good solution to this problem. The rest of the paper is organized as follows. In Section 2, we 

present an integer programming formulation of the min-sum arborescence with node outage costs problem. Section 

3 presents our Lagrangian relaxation heuristic for obtaining a lower bound of the optimal cost. In Section 4, we 

present a branch exchange heuristic, which is used after each iteration of the Lagrangian relaxation method to give 

good feasible solutions. In Section 5, we present the results reflecting the performance of our heuristic algorithm. 

 

PROBLEM FORMULATION 

 

We formulate the min-sum arborescence problem with node outage cost as an integer-programming 

problem. The objective is to find a solution that has minimum total annual cost consisting of links costs and the node 

outage costs. In the problem, the links are directed away from the central node toward the terminal nodes. 

 

We use the following notations in the paper: 

 

 S: the set of terminal nodes 2,3...N 

 Node 1: central node 

 link(i,j): a directed link from node i to node j 

 Cij: annual cost of installing a link(i, j) 

1 

5 

(a) Optimal link layout using  
link costs only 

(b) Optimal link layout using link 

      and outage costs  

 

 

1 

  

 5 
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 Ok: node outage cost associated with terminal node k 

 f: link failure rate 

 Decision Variables 
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 The min-sum arborescence problem with node outage costs can be represented mathematically as the 

following integer programming problem: 
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 The two terms in the objective function represent the total annual cost of the links and the total expected 

downtime costs, respectively. The expected downtime cost for a node is given by the product of its outage cost and 

the failure rate of the path from the central node, which is given by the sum of individual failure rates of the links 

that make up the path. Constraints (3) are flow conservation constraints. Constraints (3), (4) and (5) ensure that the 

solution does not contain circuits. 

 

 We propose a Lagrangian relaxation-based heuristic method to solve this problem. This method also gives 

a lower bound that can be used to obtain a quantitative estimate of the quality of the heuristic solution. An 

application-oriented survey of Lagrangian relaxation may be found in Fisher (1981). Lagrangian relaxation-based 

heuristics have been used very successfully by Gavish (1982), Gavish (1985), Pirkul et al. (1988), Kawatra (2002), 

and Volgenant (1989) for finding good solutions to difficult network design problems.  

 

LAGRANGIAN RELAXATION 

 

 For our heuristic, we first form a Lagrangian relaxation of the min-sum arborescence problem with node 

outage costs by multiplying each constraint (4) by a non-negative Lagrange multiplier ijt and adding the products to 
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the objective function. By relaxing these constraints, the problem decomposes into two sets of sub-problems: 1) a 

link selection sub-problem denoted as LS(μ), and 2) (N-1) routing sub-problems denoted as Rk(μ) - for k=2,3,….N. 

These sub-problems can be individually solved for optimal solutions. For a given set of Lagrange multipliers, the 

cost given by the Lagrange solution is used as a lower bound on the optimal cost of the original problem Z. Usually, 

the topological solution given by LS(μ) would have high total expected downtime costs resulting in high total annual 

cost. We use a branch exchange heuristic to iteratively reduce the total annual cost of the network.  For non-negative 

multipliers  the Lagrangian relaxation of the problem Z is: 
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Link Selection Sub-problem LS() 

 

For any given set of Lagrange multipliers , we define modified cost )(
N

2t
ijkijij CC
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. The link selection 

sub-problem LS() can now be expressed as: 
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Minimize  subject to (2), (5) and (6). 

 

LS() can be solved by finding the min-sum arborescence )(X
^

  rooted at node 1, using the algorithm 

proposed by Fischetti and Toth (1993). 

 

Routing Sub-problem )(Rk   

 

 )(Rk  is a single-commodity flow problem. In this problem, one unit of a commodity k is to be shipped 

from the central node to node k. Since the links are uncapacitated, in the optimal solution the flow )(Ŷk   will be 

along the shortest path from the central node to node k, which can be found using the Dijkstra’s algorithm given in 

Larson and Odoni (1981) with (ijk+f*Ok)  as the length of the arc (i,j). While solving )(Rk  , we stop the Dijkstra’s 

algorithm as soon as a shortest path to node k is found. 
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 The optimal value L() of the complete Lagrangian sub-problem is the sum of (a) the link selection sub-

problem optimal value and (b) the optimal values )(Rk   of the routing sub-problems for all k  S. We use 

subgradient optimization method suggested by Held et al. (1974) to find the highest possible L() which represents 

lower bound to the optimal value of the original problem Z.  

 

A BRANCH EXCHANGE HEURISTIC 
 

 We apply a branch exchange heuristic to the solution given by LS(μ) after each iteration. Although the 

solution given by LS(μ) is feasible, it is likely to have very high total annual cost due to high expected downtime 

costs. This branch exchange heuristic attempts to reduce the annual cost of the network while maintaining 

feasibility.  

 

For this heuristic, we define the following additional notations: 

 

                                                       for all i,k  S 

 

Levelj: number of links between the central node and node j 

 

 Skallfor2LevelkB k
2  ; i.e., the set of nodes that are at least two links from the central node 

 

             for all j  S; i.e., pj is the node where the link ending at node j 

 

    ikkki k,O p ; i.e., the sum of outage costs of the terminal nodes on the subtree rooted at node i 

 

 Initially,      μ .  Note that since all of the values above are dependent upon the value of X, they must be 

recomputed each time X is modified by replacement of a link. 

 

Step 1:  For each j    and iS [1] compute 

 

 .*f*)1LevelLevel(CC jijjjfijij   

 

Step 2:  Compute    
i,j

*, * Argmin  iji j    

Step 3:  If 
*, * 0i j  , replace link  *, *jf j  with link  *, *i j  and return to Step 1; else STOP. 

 

NUMERICAL RESULTS 

 

We investigated the effectiveness of the Lagrangian-based heuristic by solving a set of test problems with 

the number of nodes varying from 20 to 100. The coordinates of the terminal nodes and the central node were 

obtained from the CRD data sets provided by Craig et al. (1996).  For the annualized cost of installation of link(i,j), 

we used the Euclidean distance between points i and j, while the outage costs associated with the terminal nodes of 

each of the CRD problems were drawn from a uniform distribution U[1,1000]. For each test problem, the failure rate 

f was uniform over the links and was varied from 0.02 to 0.10. The branch exchange heuristic method and the 

subgradient optimization method were coded in FORTRAN and run on Intel Xeon cluster with 2,394 MHz 

processing speed. 

 

The initial values of the Lagrangian multipliers were set at zero and modified using subgradient 

optimization method. After each iteration, an upper bound Z  and a lower bound Z  (the best-known heuristic 

solution and the best-known Lagrangian relaxation, respectively) are maintained. The upper bound Z  is used in 

computing the subgradient stepsize. The value of the stepsize parameter λ was initially set to 2 and halved if in 30 
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successive iterations there was no improvement in the lower bound Z . The search for the optimal Lagrangian 

multipliers was terminated if the total number of iterations exceeded 800 or if the Z  improved by less than 0.1 in 30 

successive iterations.   

 

The computational results indicate that the Lagrangian-based heuristic consistently gives good solutions. 

The gaps between the best feasible solution value and the lower bound given by the Lagrangian heuristic are 

reported in Table 2 and are used to judge the quality of the heuristic solutions. Since the gap between the optimal 

solution and the heuristic solution can be no greater than this gap and is likely to be smaller, the results indicate that 

the heuristic solutions are within 20 percent of the optimal solution. The quantity I is the ratio of the total annual 

costs (including expected outage costs) of the two solutions, best network layout found using just the link costs and 

the best network layout found using both the link costs and node outage costs using suggested heuristic. A value of 

I=2, for example, would indicate that ignoring the outage costs in the process of designing the communication 

network would result in a doubling of the total annual costs. 

 
Table 2:  Computational Results 

No. Of Nodes Link Failure Rate Gap I 

 Central Node In The Corner  

20 0.02 0.2% 1.03 

20 0.06 1.0% 1.11 

20 0.10 2.3% 1.18 

60 0.02 7.3% 1.09 

60 0.06 12.5% 1.37 

60 0.10 13.9% 1.63 

100 0.02 15.0% 1.32 

100 0.06 18.8% 1.95 

100 0.10 19.3% 2.45 

 Central Node In The Center  

20 0.02 0.1% 1.01 

20 0.06 0.4% 1.05 

20 0.10 0.6% 1.10 

60 0.02 4.7% 1.12 

60 0.06 8.2% 1.42 

60 0.10 9.4% 1.68 

100 0.02 11.9% 1.34 

100 0.06 14.1% 1.97 

100 0.10 13.9% 2.47 

Gap = (heuristic solution value – lower bound)/(heuristic solution value) 

 

CONCLUSIONS 

  

In this paper, we presented an integer programming model of a min-sum arborescence problem with node 

outage costs. A Lagrangian relaxation method to find a lower bound of the optimal solution is given. The 

subgradient optimization method is used to find Lagrangian multipliers providing the best lower bound. A branch 

exchange heuristic embedded in the Lagrangian relaxation method is used to find a good feasible solution to the 

original problem. The best feasible solution is retained when the Lagrangian relaxation method stops. The best lower 

bound given by the Lagrangian relaxation method is used to estimate the quality of the branch exchange heuristic 

solution. Computational results show that the gap between the lower bound and the heuristic solution is within 20 

percent. 
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