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ABSTRACT 

 

This paper examines exponential smoothing constants that minimize summary error measures 

associated with a large number of forecasts.  These forecasts were made on numerous time series 

generated through simulation on a spreadsheet.  The series varied in length and underlying nature 

– no trend, linear trend, and nonlinear trend.  Forecasts were made using simple exponential 

smoothing as well as exponential smoothing with trend correction and with different kinds of 

initial forecasts.  We found that when initial forecasts were good and the nature of the underlying 

data did not change, smoothing constants were typically very small.  Conversely, large smoothing 

constants indicated a change in the nature of the underlying data or the use of an inappropriate 

forecasting model.  These results reduce the confusion about the role and right size of these 

constants and offer clear recommendations on how they should be discussed in classroom settings. 
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INTRODUCTION 

 

xponential smoothing is a very popular forecasting method.  It is taught to graduate and undergraduate 

business students in introductory courses in operations, management science, marketing, and sometimes 

statistics.  It is easy to understand and use and most commercial forecasting software products include it 

in their offerings. 

 

Exponential smoothing forecasting methods use constants that assign weights to current demand and 

previous forecasts to arrive at new forecasts.  Their values influence the responsiveness of forecasts to actual 

demand and hence influence forecast error.  Considerable effort has focused on finding the appropriate values to use.  

One approach is to use smoothing constants that minimize some function of forecast error.  Thus, in order to select 

the right constants for forecasting, different values are tried out on past time series, and the ones that minimize an 

error function like Mean Absolute  Deviation (MAD) or Mean Squared Error (MSE) are the ones used for 

forecasting.  

 

The purpose of this paper is to examine the relationship between the magnitude of error-minimizing 

constants and the underlying nature of the past time series.  Specifically it looks at optimal values of the smoothing 

constants as a function of the underlying trends in the data (or their absence) as well the length of the time series.  

The role of initial forecasts is also examined.  The results should reduce the confusion on the right magnitude of 

these smoothing constants that is seen in introductory treatment of this issue. 

 

Exponential Smoothing 

 

Two exponential smoothing models are popular, especially in classroom settings – simple exponential 

smoothing, and exponential smoothing with trend correction (often referred to as double exponential smoothing).   

Gardner (1985, 2006) provides a detailed review of exponential smoothing. 

 

E 
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Simple Exponential Smoothing  
 

Here, demand is level with only random variations around some average.  The forecast Ft+1 for the 

upcoming period is the estimate of average level Lt at the end of period t. 
 

                                (1) 
 

where α, the smoothing constant, is between 0 and 1.  The new estimate of level may be seen as a weighted average 

of Dt, the most recent information of average level, and Ft the previous estimate of that level.  Small values of α 

imply that the revision of the old forecast, in light of the new demand, is small; the new forecast is not very different 

from the previous one.  The method requires an initial forecast F1 which has to be either assumed or estimated. 
 

Exponential Smoothing with Trend Adjustment (Double Exponential Smoothing) 
 

Here, the time series exhibits a trend; in addition to the level component, the trend (slope) has to be 

estimated.  The forecast, including trend for the upcoming period t+1, is given by 
 

           (2) 
 

Here,    is the estimate of level made at the end of period t and is given by 
 

               (3) 
 

   is the estimate of trend at the end of period t and is given by 
 

                        (4) 
 

β is also a smoothing constant between 0 and 1 and plays a role similar to that of α. 
 

Again, small values of α and β imply that consecutive estimates of level and trend components do not differ 

much from each other.  Any revision in the light of the new demand is small.  This method requires estimation of the 

initial level component L1 and the initial trend component T1 to start off the series of forecasts.   
 

In both cases, the choice of initial forecasts has significant impact on the performance of forecasts (Ledolter 

and Abraham, 1984). 
 

Smoothing Constants 
 

Smoothing constants are key to successful forecasting with exponential smoothing, but there are no 

consistent guidelines in the forecasting literature on how they should be selected.  Introductory treatments of 

forecasting will recommend that the smoothing constants be kept small, in the 0.1 to 0.3 range; see, for example, 

Schroeder, Rungtusanatham, & Goldstein (2013) and Jacobs & Chase (2013).  Others (e.g., Paul, 2011) recommend 

the use of smoothing constants that minimize some function of error over past data, the minimization being done 

conveniently with a nonlinear optimizer (Bermudez, Segura, & Welcher, 2006; Chopra & Meindl, 2013).  Often, 

this minimization will result in constants that are outside the range recommended. 
 

In a previous paper, Ravinder (2013), we examined the error-minimization approach from a classroom 

teaching perspective.  For textbook-type problems, the approach works well, but often produces smoothing constants 

that are zero or, if non-zero, well distributed over the entire 0-1 range.  Researchers also recommend optimizing the 

starting forecast along with the smoothing constants (Bermudez, Segura, & Vercher, 2006).  When this is done, 

there are even more problems where the constants are zeroes.  The general conclusion of that paper was that when 

the data was well-behaved (i.e., there were no changes in trend), then a good initial estimate of level and/or slope 

would minimize the error function and the role of the smoothing constant would become inconsequential.   A 

limitation of the previous paper was that it dealt with textbook problems involving small time series.  It is difficult to 

find measurable departures from stability in small time series.  The findings were thus of limited generalizability. 
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This paper seeks to remedy this by systematically examining longer time series that incorporate linear and 

nonlinear trends.  It examines the optimal smoothing constants under various combinations of series duration and 

series behavior.  It examines both simple exponential smoothing and double exponential smoothing.  The results 

should provide guidance on the choice of the appropriate smoothing constants in a given forecasting situation.  

 

The next section describes the approach used in this paper to generate time series of various lengths and 

characteristics, to make forecasts, and to examine the resulting error-minimizing smoothing constants.  Next comes 

a discussion of the results and the conclusions that can be drawn from them. 

 

APPROACH 

 

For simple exponential smoothing, two types of demand series were generated using Excel’s random 

variable generation capabilities.  Details are shown in Appendix 1. 

 

In the first type, demand was stable and normally distributed around an arbitrarily chosen mean and 

standard deviation.  This situation represents the case for which simple exponential smoothing is traditionally 

recommended.  The length of the series (number of periods for which demand was generated) varied from 12 to 60 

in steps of 6.   

 

In the second type, too, demand was normally distributed, but this time with a mean that was a linear 

function of time.  The intercept and slope were arbitrarily picked.  The standard deviation of demand was also 

arbitrarily picked and invariant with respect to time.  It was also the same as in the first type of data set.  Again, 

series length varied from 12 to 60.  This situation is not considered ideal for simple exponential smoothing because 

of its slowness in responding to trend.  This set-up allows us to examine the magnitudes of α that are thrown up by 

the optimization process for both types of data and to compare them.  Examples of these two types of time series are 

shown in Appendix 2. 

 

For each type of data set and each value of sample size, 100 data sets were generated.  For each data set, 

simple exponential smoothing was used to generate forecasts for each time period.  Forecast error was measured 

through Mean Absolute Deviation (MAD) and Mean Squared Error (MSE).   Excel’s Data Table feature was used to 

calculate MAD and MSE associated with different values of α.  Thus, it was possible to identify optimal values of α 

- values that minimize MAD and MSE.  The starting forecast F1 has a significant impact on MAD and MSE and thus 

on optimal α.  To assess this impact, two cases of F1 were considered in each data set.  In the first, F1 was set equal 

to D1.  This is a fairly common assumption in textbooks.  In the second case, F1 was set equal to the average 

demand.   

 

A similar approach was used for double exponential smoothing.  Two types of data were generated.  The 

first one, Dt = a+bt, had a linear trend, along with random fluctuations about this trend.  The components a and b 

were arbitrarily selected.  The second data set had a nonlinear trend, specifically, demand Dt = a+b*lnt, where a and 

b were arbitrarily chosen.  Again, there were random fluctuations about this trend.  Examples of the types of series 

generated are shown in Appendix 2.   

 

The double exponential smoothing process requires initial values of level (L1) and trend (T1).  Two cases 

were explored.  In the first case, the estimate of L1 was the intercept of the least-squares line fitted to the data and 

the estimate T1 was the slope of that least-squares line.  In the other case, commonly seen in introductory textbooks, 

L1 was simply set to D1 and T1 assumed to be zero.  As in the case of simple exponential smoothing, series length 

varied from 12 periods to 60 periods.  Here, too, the experimental set-up allowed comparison of the smoothing 

constants – α and β - that were best in each of the two cases. 
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RESULTS – SIMPLE EXPONENTIAL SMOOTHING 

 

Figure 1 summarizes the results with the Mean Absolute Deviation criterion.  Figures 1 and 2 provide more 

detail for the four cases discussed in the table.  MSE results are similar and shown in Appendix 3, Exhibit 1. 

 

 
Figure 1: Optimal α And The Impact Of Series Length – No Trend, With Trend 

 

Stable Series – No Trend 

 

When the series is stable with no trend – the situation for which exponential smoothing has been 

traditionally prescribed – α values tend to be low, in the 0 – 0.30 range.  For longer series, n ≥ 36, the range is even 

narrower, 0 – 0.15. 

 

 The initial forecast F1 makes a difference.  If the initial forecast is just one value from the series, as when F1 

= D1, the value of optimal α depends on how representative D1 is of the entire series.  With series of only a few 

periods, D1 is likely to be unrepresentative.  An unrepresentative D1 means that forecasts need more revision as new 

demands become available; correspondingly, α has to be high.  However, when F1 is more representative of the 

series, as when F1=  , little adjustment is needed to each forecast as the series unfolds; α values tend to be very low 

or even zero.   

 

Stable Series – Linear Trend 

 

When there is a trend in the time series, α is high (> 0.75), regardless of the length of the series or the kind 

of initial forecast used.  With trend present, more weight is given to the actual demand than to the previous forecast; 

every forecast needs revision.  With shorter series, n ≤ 24, forecasts with F1=  , tend to have smaller optimal α 

values; but as the series gets longer, the average across the entire series becomes more unrepresentative of the series.  

Subsequent forecasts need more revision and optimal α tends to be high.  
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RESULTS – DOUBLE EXPONENTIAL SMOOTHING 

 

Series With Linear Trend 

 

For the times series with a linear trend, Figure 2 shows values of α and β that minimize MAD.  Data sets 

vary in size from n=12 to n=60.   

 

 
Figure 2: Optimal (α, β) And The Impact Of Series Length – Series With Linear Trend 

 

The behavior of α and β are shown in the graphs above.  The difference between the two graphs is in the 

initial estimates of L1 and T1.  In the first graph, L1 is estimated as the intercept of the least-squares line fitted to the 

data and T1 as its slope.  Both α and β are very small - less than 0.05 over the entire range of series lengths - 12 to 

60.  This makes sense.  When the initial estimates of level and trend are good, as they would be if they were the least 

squares estimates of intercept and slope, then subsequent estimates of level and trend need little adjustment; so α and 

β tend to be small.   

 

In the second graph, L1 and T1 are arbitrarily picked as L1=D1 and T1=0.  Both α and β are much bigger, in 

the 0.30 to 0.60 range, because of the greater need for revision as each new demand is received.  The interesting 

result here is that both α and β decrease as the series length increases.  The explanation is that the impact of arbitrary 

L1 and D1 is diluted as the series gets longer; each new forecast needs less adjustment.  Results for MSE are very 

similar and are presented in Appendix 1. 

 

Series With Nonlinear Trend 

 

Figure 3 shows the results for the case where the series has an underlying nonlinear trend.  Again, the two 

graphs relate to two different assumptions about the initial forecasts.  In the first graph, L1 is estimated as the 

intercept of the least-squares line fitted to the data and T1 as its slope.  In the second graph, L1 and T1 are arbitrarily 

picked to be D1 and 0.   

 

 
Figure 3: Optimal (α, β) And The Impact Of Series Length – Series With Nonlinear Trend 
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In the first graph, β is almost zero for all series lengths.  Little adjustment is made to the trend component 

as each new forecast is calculated.  The least-squares slope provides a good estimate of the average trend in the data, 

even though the series is not linear.  Of course, the extent of departure from linearity matters and, in this case, it is 

not severe enough to disqualify the least-squares slope as a good approximation of trend.  However, α increases as 

the series length increases.  This means that the intercept becomes less representative as the series gets longer and 

the level estimate needs more adjustment in the form of a larger α. 

 

In the second graph, L1 and T1 are arbitrarily picked to be D1 and 0, respectively.  Both α and β decrease 

slowly as the length of the series increases.  One explanation for this has to do with the particular form of the 

nonlinearity underlying these series.  Much of the nonlinearity is present in the earlier part of the series.  For larger 

values of t, the function increases at a decreasing rate.  For t larger than 12, the function is practically linear.  One 

can imagine larger values of α and β being needed for the initial part of the series, but as the series straightens out 

and becomes more predictable, the values of α and β get smaller.  If we can think of the optimization process as 

producing values of α and β that work well, on average, across the length of the series, these values will get smaller 

as the length of the series increases.  Results for MSE are very similar and presented in Appendix 3, Exhibit 3. 

 

This explanation brings up a larger point in the form of a caveat.  The behavior of α and β, when the 

underlying series is nonlinear, depends on the particular form of the nonlinearity and no easy generalizations are 

possible.  For illustration, this paper discussed one functional form that resulted in a concave non-decreasing 

demand series.  It would be hazardous to generalize from the results with this function to situations where other 

forms of nonlinearity are present. 

 

CONCLUSIONS 

 

The results of this simulation-based study of optimal smoothing constants allow us to offer the following 

suggestions to teachers of forecasting, as well as to writers of introductory textbooks that discuss forecasting: 

 

1. When there is no trend in the data, simple exponential smoothing will yield minimum error when α values 

are small, in the range 0.0 – 0.3.  This is true of small series (n=12) as well as large (n=60).  This confirms 

the recommendation of many textbooks.  Up to this point, these kinds of recommendations have had an ad 

hoc flavor to them because there hasn’t been published evidence.  We believe our results provide this 

evidence. 

2. When the initial forecast is good, α values will very often be zero.  In fact, small non-zero values of α are 

indicative of local trends.  Larger non-zero values of α are indicative of sustained trends which might be 

better accounted for with a technique, like double exponential smoothing. 

3. Large values of the smoothing constants are certainly possible and should not be rejected without detailed 

examination of the underlying series or of the quality of the initial forecasts used. 

4. When there is a linear trend in the data, the performance of double exponential smoothing depends on the 

initial estimates of the level and trend components.  Where these are good, α and β will be very small.  This 

is true of small as well as large series.  Larger values might be indicative of poor initial estimates of level 

and trend.  The impact of poor initial forecasts is felt less on longer series than on smaller ones.  The values 

of α and β decrease with series length. 

5. When there is a nonlinear trend in the data, the results are mixed and not easily generalizable.  The best 

values of α and β depend on the particular kind of nonlinearity involved.  The best approach is to graph the 

time series and pick appropriate starting values before finding the optimal values of α and β. 

 

In summary, then, when exponential smoothing methods are used in the situations for which they are 

appropriate (simple exponential smoothing where there is no underlying trend and double exponential smoothing 

where there is an underlying linear trend), along with good starting forecasts, the best smoothing constants tend to 

be very small, if not zero.  Significantly large smoothing constants signal the presence of either trend (simple 

exponential smoothing) or changes in trend (double exponential smoothing).  This is a strong argument for the use 

of adaptive smoothing methods – methods that monitor forecast errors continuously and change the smoothing 

constants to keep them within predetermined limits – and more coverage of them in forecasting classes. 
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A limitation of the approach used is that it is based on simulated data.  A disadvantage of simulation-based 

studies is that their results cannot be extrapolated easily to situations that are not explored in the simulation.  

Another drawback is that it gets cumbersome to add more variables to the model.  For example, it is reasonable to 

think that the variability of the data around a trend would impact forecast errors and thus the optimal values of the 

smoothing constants.  This could not be explored in this paper. 

 

Despite these limitations, the results of this paper clarify the role of smoothing constants in exponential 

smoothing and offer useful guidelines to their selection. 
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APPENDIX 1 

 

Simulation Details 

 

Simple Exponential Smoothing 

 

No Trend 

 

Demand is assumed to be normally distributed with a mean of 100 and standard deviation of 15. 

 

EXCEL: =NORMINV(rand(),100,15) 

 

With Linear Trend 

 

Demand is normally distributed with a mean of 100+10t and a standard deviation of 15. 

 

EXCEL: =NORMINV(rand(),100+10*<t>,15), where <t> refers to the cell reference of the time period. 

 

Double Exponential Smoothing 

 

With Linear Trend 

 

Demand is normally distributed with a mean of 100+10t and a standard deviation of 15. 

 

EXCEL: =NORMINV(rand(),100+10*<t>,15), where <t> refers to the cell reference of the time period. 

 

With Nonlinear Trend 

 

Demand is normally distributed with a mean of 100+40Ln(t) and a standard deviation of 15. 

 

EXCEL: =NORMINV(rand(),100+40*Ln(<t>),15) 
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APPENDIX 2 

 

Examples Of Simulated Time Series 
 

No Trend 

 

Linear Trend 

a+bt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Nonlinear Trend 

a+bLn(t) 
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APPENDIX 3 

 

 
Exhibit 1 

 

 

 
Exhibit 2 

 

 
Exhibit 3 

 


