
The Review of Business Information Systems Volume 6, Number 2

 43

Converting Paradox’s QBE Set Queries
Into Access 2000 SQL

Mohammad Dadashzadeh, (Email: mdz123@yahoo.com), Wichita State University

Abstract

One of the most important promises of the move to an SQL-based accounting software package has

been that it frees the accountant from the necessity of resorting to a programmer when retrieving

information from the organization's database in response to unanticipated managerial needs. That

promise is founded, in part, on the availability of a very high-level, visual relational query language

interface known as Query By Example (QBE). Unfortunately, the implementation of QBE in

Microsoft Access 2000 fails to support users in formulating complex queries involving set

comparison that tend to arise in on-line analytical processing (OLAP) situations. And, while

Paradox’s implementation of QBE makes the formulation of such queries quite intuitive, its built-in

SQL translation feature fails to provide a clue on how to convert such queries into SQL. This paper

presents a systematic approach based on formulating complex set queries in Paradox’s richer QBE

notation and translating them into SQL queries that can be handled by Access 2000.

Introduction

onsider the following relational database about suppliers, parts, and jobs. (The primary key of each relation

is underlined.)

SUPPLIER(S#, SName, Status, City)

PART(P#, PName, Color, City)

JOB(J#, JName, City)

SHIPMENT(S#, P#, J#, QTY)

The relation SHIPMENT records the quantity of each part being shipped by each supplier to various jobs. An instance

of this database is depicted below.

Readers with comments or questions are encouraged to contact the authors via email.

C

The Review of Business Information Systems Volume 6, Number 2

 44

The Review of Business Information Systems Volume 6, Number 2

 45

Now, consider the following queries:

Q1: List the suppliers who ship every red part. (Answer: S5)

Q2: List the suppliers who do not ship to any job located in London. (Answer: S1 and S3)

Q3: List the jobs that are only receiving parts warehoused in London. (Answer: None)

Q4: List the suppliers who are shipping to exactly the same jobs as supplier S1. (Answer: None)

Each of the above queries involves comparison of sets of values in two tables. For example, in Q1, the set of parts

(P# values) associated with each supplier (distinct S# value) in the SHIPMENT table must be examined to determine

if it contains the set of parts (P# values) in the PART table sharing the value of "Red" for the COLOR attribute.

 Despite their innocuous appearances, queries involving set comparison are especially difficult to formulate in

relational query languages (Blanning, 1993; Celko, 1997; Dadashzadeh, 2001). Specifically, in SQL such queries must

be specified using the complex and error-prone NOT EXISTS function that, for most users, is difficult to comprehend

The Review of Business Information Systems Volume 6, Number 2

 46

and work with.

 In contrast, Paradox's QBE provides special set operators (SET, EVERY, NO, ONLY, and EXACTLY) that

directly support the formulation of such queries as illustrated below:

Q1 in Paradox’s QBE: List the suppliers who ship every red part.

In this QBE formulation, Paradox’s SET operator is used to define a set named XYZ as consisting of the P# of all red

parts in the PART table. Then, Paradox’s set comparison operator EVERY is used to indicate that from the SHIPMENT

table only those S# values should be printed out that appear with EVERY value in the set XYZ.

Q2 in Paradox’s QBE: List the suppliers who do not ship to any job located in London.

Q3 in Paradox’s QBE: List the jobs that are only receiving parts warehoused in London.

The Review of Business Information Systems Volume 6, Number 2

 47

Q4 in Paradox’s QBE: List the suppliers who are shipping to exactly the same jobs as supplier S1.

Here, Paradox’s SET operator is used to define a set named XYZ as consisting of the J# of all jobs receiving a

shipment from supplier S1. Then, Paradox’s set comparison operator EXACTLY is used to indicate that from the

SHIPMENT table only those S# values (different than S1) should be printed out that appear with EXACTLY the

values found in the set XYZ.

 The clarity afforded by the use of set operators in Paradox’s QBE is unfortunately absent in Microsoft

Access’ implementation of QBE. Therefore, such set comparison queries must necessarily be formulated in Access

using SQL. And, even though, Paradox normally does offer to translate the QBE query into SQL, this feature is not

available for set comparison queries resulting in the disappointing message shown below:

 In this paper, we provide the foundation for a solution to this shortcoming in the form of an algorithm for

converting Paradox’s QBE set queries into standard SQL, thus paving the way for much easier formulation of set

comparison queries in Microsoft Access.

A Guided Tour of the Conversion Algorithm

We illustrate the algorithm by converting the Q1 query reproduced below.

Q1 in Paradox’s QBE: List the suppliers who ship every red part.

The Review of Business Information Systems Volume 6, Number 2

 48

 The algorithm consists of two steps. In the first step, the QBE set query is translated to an intermediate SQL-

like representation. In the second step, the intermediate SQL-like representation is transformed to the final equivalent

standard SQL representation.

The template for the intermediate SQL-like representation of Paradox’s QBE set queries is:

SELECT source-table-checked-columns

FROM source-table

WHERE source-table-selection-condition

GROUP BY source-table-checked-columns

HAVING SET(source-table-example-element-column)

 set-comparison-operator

 (SELECT set-table-example-element-column

 FROM set-table

 WHERE set-table-selection-condition);

where source-table refers to the database table with the QBE set operator (i.e., EVERY, NO, ONLY, or EXACTLY),

set-table denotes the database table with the QBE SET operator applied to it, and set-comparison-operator is either

CONTAINS (for EVERY), DISJOINT FROM (for NO), CONTAINED IN (for ONLY), or EQUALS (for EXACTLY).

Applying this template to our example query Q1 we arrive at the following intermediate representation:

SELECT S#

FROM SHIPMENT

GROUP BY S#

HAVING SET(P#)

 CONTAINS

 (SELECT P#

 FROM PART

 WHERE COLOR = "Red");

Note that since the rows of the SHIPMENT table are not subject to any selection condition in the QBE query, there is no

WHERE clause associated with the outer SELECT statement.

Figures 1-3 depict, respectively, the intermediate representation of queries Q2, Q3, and Q4.

Figure 1.

Intermediate Representation of Q2 (suppliers who do not ship to any job located in London).

 SELECT S#

 FROM SHIPMENT

 GROUP BY S#

 HAVING SET(J#)

 DISJOINT FROM

 (SELECT J#

 FROM JOB

 WHERE CITY = "London");

The Review of Business Information Systems Volume 6, Number 2

 49

Figure 2.

Intermediate Representation of Q3 (jobs that are only receiving parts warehoused in London)

.

 SELECT J#

 FROM SHIPMENT

 GROUP BY J#

 HAVING SET(P#)

 CONTAINED IN

 (SELECT P#

 FROM PART

 WHERE CITY = "London");

Figure 3.

Intermediate Representation of Q4 (suppliers who are shipping to exactly the same jobs as supplier S1).

 SELECT S#

 FROM SHIPMENT

 WHERE S# <> "S1"

 GROUP BY S#

 HAVING SET(J#)

 EQUALS

 (SELECT J#

 FROM SHIPMENT

 WHERE S# = "S1");

 The second step in the algorithm is based on a series of transformation rules depicted in Figures 4-8.

Specifically, given an SQL-like query in the format shown in Figure 4, Figures 5-8 give the equivalent standard SQL

representations when the set-comparison-operator is, respectively, CONTAINS, DISJOINT FROM, CONTAINED IN,

and EQUALS.

 Applying the transformation rule from Figure 5 to the intermediate representation of our example query Q1 we

get the final equivalent SQL representation:

SELECT DISTINCT X.S#

FROM SHIPMENT X

WHERE NOT EXISTS

 (SELECT *

 FROM PART

 WHERE (COLOR = "Red")

 AND P# NOT IN

 (SELECT P#

 FROM SHIPMENT

 WHERE S# = X.S#));

 where X is the chosen alias for the outer SHIPMENT table.

 The following figures present the above query in Paradox’s SQL Editor and Access 2000 SQL View where

column names utilizing special characters such as # symbol must be enclosed, respectively, in quotation marks and

square brackets.

The Review of Business Information Systems Volume 6, Number 2

 50

 Figures 9-11 depict, respectively, the final SQL representation of queries Q2, Q3, and Q4, derived by applying

the appropriate transformation rules to the intermediate representation of these queries given in Figures 1-3.

The Review of Business Information Systems Volume 6, Number 2

 51

Figure 4.

The General Form of the Intermediate SQL-Like Representation.

 SELECT grouping-columns

 FROM source-table

 WHERE source-table-selection-condition

 GROUP BY grouping-columns

 HAVING SET(set-column)

 set-comparison-operator

 (SELECT set-column

 FROM set-table

 WHERE set-table-selection-condition);

Figure 5.

The Equivalent Standard SQL Representation of Figure 4 when set-comparison-operator is CONTAINS.

 SELECT DISTINCT grouping-columns

 FROM source-table ALIAS

 WHERE (source-table-selection-condition)

 AND NOT EXISTS

 (SELECT *

 FROM set-table

 WHERE (set-table-selection-condition)

 AND set-column NOT IN

 (SELECT set-column

 FROM source-table

 WHERE (source-table-selection-condition)

 AND

 grouping-columns

 = ALIAS.grouping-columns));

Figure 6.

The Equivalent Standard SQL Representation of Figure 4 when set-comparison-operator is DISJOINT FROM.

 SELECT DISTINCT grouping-columns

 FROM source-table ALIAS

 WHERE (source-table-selection-condition)

 AND NOT EXISTS

 (SELECT *

 FROM set-table

 WHERE (set-table-selection-condition)

 AND set-column IN

 (SELECT set-column

 FROM source-table

 WHERE (source-table-selection-condition)

 AND

 grouping-columns

 = ALIAS.grouping-columns));

The Review of Business Information Systems Volume 6, Number 2

 52

Figure 7.

 The Equivalent Standard SQL Representation of Figure 4 when set-comparison-operator is CONTAINED IN.

 SELECT DISTINCT grouping-columns

 FROM source-table ALIAS

 WHERE (source-table-selection-condition)

 AND NOT EXISTS

 (SELECT *

 FROM source-table

 WHERE (source-table-selection-condition)

 AND (grouping-columns = ALIAS.grouping-columns)

 AND set-column NOT IN

 (SELECT set-column

 FROM set-table

 WHERE set-table-selection-condition));

Figure 8.

The Equivalent Standard SQL Representation of Figure 4 when set-comparison-operator is EQUALS.

SELECT DISTINCT grouping-columns

FROM source-table ALIAS

WHERE (source-table-selection-condition)

 AND NOT EXISTS

 (SELECT *

 FROM set-table

 WHERE (set-table-selection-condition)

 AND set-column NOT IN

 (SELECT set-column

 FROM source-table

 WHERE (source-table-selection-condition)

 AND

 grouping-columns

 = ALIAS.grouping-columns))

 AND NOT EXISTS

 (SELECT *

 FROM source-table

 WHERE (source-table-selection-condition)

 AND grouping-columns = ALIAS.grouping-columns

 AND set-column NOT IN

 (SELECT set-column

 FROM set-table

 WHERE set-table-selection-condition));

The Review of Business Information Systems Volume 6, Number 2

 55

Figure 9.

The Equivalent Standard SQL Representation of Figure 1 (Q2: suppliers who do not ship to any job located in London).

 SELECT DISTINCT S#

 FROM SHIPMENT X

 WHERE NOT EXISTS

 (SELECT *

 FROM JOB

 WHERE (CITY = "London")

 AND J# IN

 (SELECT J#

 FROM SHIPMENT

 WHERE S# = X.S#));

Figure 10.

The Equivalent Standard SQL Representation of Figure 2 (Q3: jobs that are only receiving parts warehoused in London).

 SELECT DISTINCT J#

 FROM SHIPMENT X

 WHERE NOT EXISTS

 (SELECT *

 FROM SHIPMENT

 WHERE (J# = X.J#)

 AND P# NOT IN

 (SELECT P#

 FROM PART

 WHERE CITY = "London"));

Figure 11.

The Equivalent Standard SQL Representation of Figure 3 (Q4: suppliers who are shipping to exactly the same jobs as supplier S1).

 SELECT DISTINCT S#

 FROM SHIPMENT X

 WHERE (S# <> "S1")

 AND NOT EXISTS

 (SELECT *

 FROM SHIPMENT

 WHERE (S# = "S1")

 AND J# NOT IN

 (SELECT J#

 FROM SHIPMENT

 WHERE (S# <> "S1")

 AND

 S# = X.S#))

 AND NOT EXISTS

 (SELECT *

 FROM SHIPMENT

 WHERE (S# <> "S1")

 AND S# = X.S#

 AND J# NOT IN

 (SELECT J#

 FROM SHIPMENT

 WHERE S# = "S1"));

The Review of Business Information Systems Volume 6, Number 2

 56

Summary

 The evolutionary shift from stand-alone accounting software to collaborative, enterprise-wide business

applications has irrevocably impacted the accounting profession. One facet that has become important as the value of

integrated, DBMS-based applications has risen in modern organizations is the requisite skills of accounting

professionals. Along with traditional business skills to interpret data and to know what information is critical in a

decision-making scenario, as pointed out by Olsen (2000), “accountants should have considerable database

knowledge as well as specific knowledge of the structured query language (SQL).”

 Unfortunately, the current specification of the SQL standard fails to support users adequately in formulating

complex queries involving set comparison that tend to arise in on-line analytical processing (OLAP) situations. As

pointed out by Rao et al. (1996) “SQL’s syntax is too restricted to express quantified queries. While SQL allows

subqueries to form sets, the relationships that can be expressed over sets are limited, and must be written in awkward and

complicated ways.” On the other hand, Paradox’s implementation of QBE directly supports set operations making the

formulation of set comparison queries quite intuitive. But, although Access 2000-the dominant end-user query/reporting

tool-does support QBE, its implementation lacks the set operations of Paradox.

 To overcome this shortcoming, this paper has presented an algorithm for converting Paradox’s QBE set queries

into standard SQL. The principal contribution to the practicing accountant is learning a simple technique to write

complex set comparison queries in any SQL-based system, including Access 2000, by starting with the intuitive Paradox

QBE formulation. 

References

1. Blanning, R.W. “Relational Division in Information Management,” Decision Support Systems, 9(4), pp. 313-

324, 1993.

2. Celko, J. Joe Celko's SQL Puzzles & Answers. Morgan Kaufmann Publishers, San Francisco, CA, 1997.

3. Dadashzadeh, M. "Set Comparison Queries in SQL." In Developing Quality Complex Database Systems:

Practices, Techniques, and Technologies, Edited by Shirley Becker, pp. 303-316. Idea Group Publishing,

Harrisburg, PA, 2001.

4. Olsen, D.H. “Accounting Database Design and SQL Implementation Revisited,” The Review of Accounting

Information systems, 4(2), pp. 53-68, 2000.

5. Rao, S.G., Badia, A., and Van Gucht, D. “Providing Better Support for a Class of Decision Support Queries.”

In Proceedings of the 1996 SIGMOD International Conference on Management of Data, pp. 217-227.

Association for Computing Machinery, New York, NY, 1996.

