
The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 35

A Prototype Curriculum For The Study

Of Software Management
Dan Shoemaker, (Email: shoemadp@udmercy.edu), University of Detroit Mercy

Gregory Ulferts, (Email: ulfertgw@udmercy.edu), University of Detroit Mercy

Antonio Drommi, (Email: drommi@udmercy.edu), University of Detroit Mercy

ABSTRACT

The discipline of Software Management, which is a new and potentially meaningful direction for

information technology (IT) education, is presented for the first time in this article. Software

Management is a curriculum model, which specifically addresses the productivity and quality

issues that have arisen in IT. It is distinguished from the traditional disciplines of Computer

Science, Software Engineering and Information Science by its body of knowledge, which focuses

explicitly on building strategic governance infrastructures rather than technical artifacts. This

article presents curricular recommendations for each traditional discipline and uses these to

illustrate Software Management’s unique role and value. It also presents a conceptual

framework and justification, which will assist educators in curriculum development and design

issues.

INTRODUCTION

nformation technology (IT) is a heterogeneous field, which comprises everything from hardware to

strategic management. As such it would probably be as correct to say that quantum physics, which

underwrites chip design, is as appropriate to the body of knowledge as macroeconomics. The point being

that, each subject is germane to a particular role and purpose. But because of differences in academic preparation and

practical issues of student interest and aptitude these topics don’t fit together in the same curriculum.

Accordingly, one goal of curriculum design is to distill content in such a way that it embodies a coherent set

of practical elements, which will suitably prepare a student to function effectively within some defined area of value.

In our case we are addressing the need for focused study of the emerging body of knowledge in the field of strategic

management for IT. The concepts that this subject encompasses are derived primarily from lessons learned in

advanced technology organizations over the past fifteen years. And they are specifically intended to make the

outcomes of IT processes repeatable, as well as eliminate managerial experience as the sole determinant of project

success. That is an important issue for business and society as a whole, because the evidence is clear that in the case of

new development (e.g., something outside of the experience of the manager) or inexperienced managers, IT’s

performance is consistently abysmal
1
. Given this, our article presents the justification, logic and structure of a

curricular model, which explicitly centers on providing students with the necessary knowledge in strategic IT

management.

This is essentially a new type of study, in that it is targeted on producing a student who specializes in creating

governance structures rather than technical products. Its aim is to provide the know-how necessary to allow a

practitioner to build a complete strategic management infrastructure for any IT work situation. As such, the

knowledge base embodies a different perspective than that of the traditional areas of IT education. Furthermore,

because that knowledge is rooted in behavior rather than science it is not derived from natural principles and theory.

Instead it is based on lessons learned from industry, which are generally conveyed by professional standards.

1 Readers interested in detailed proof should refer to Humphrey (1994), Jones (1997), Paulk (1999 and 2000) and Jones (2001) as well as the

KPMG and Construx studies cited in the references (among others).

I

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clute Institute: Journals

https://core.ac.uk/display/268105947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 36

Support for this point of view has evolved over the past fifteen years out of the work of various industry

bodies such as the International Standards Organization (ISO) and the Software Engineering Institute (SEI). Those

agencies have promulgated large comprehensive models of strategic “best practice”, which are intended to be used as

templates to define and build a complete and “ideal” IT organization. Generically, these are called “umbrella”

standards (or models) to differentiate them from conventional ones. Umbrella standards serve the same purpose within

the domain of best practice as theory does for science, in the sense that they comprehensively define and provide the

basis to explain the phenomena of a subject field. And since they contain the industry’s most expert advice they also

provide validated knowledge about a given topic. Therefore, they may be rightly employed as the reference for

defining substantive solutions to such hard to capture management concerns as infrastructure development (ISO/IEEE

12207), performance assessment (ISO 15504), or process improvement (ISO 9000, or CMM). Alternatively since

these frameworks are meant to be authoritative within the profession, their embedded concepts can provide both the

basis and the means of validation for an academic study. Essentially, the goal of such a discipline is to encapsulate

and convey the complete set of principles of professional best practice as understood and documented by various

legitimate standards bodies and generally embodied in a range of national and internationally recognized umbrella

standards.

Because its aim is to produce graduates who will function upon matriculation at the management level this is

unavoidably a graduate program. We presume technical competence with little or no direct management experience.

However, given that the body of knowledge represents best practice, any manager at any level could theoretically

benefit from the thorough grounding that this program of study provides. Having said that, our intake target is a

technical worker, perhaps a programmer/analyst, who is ready to move up into the manager role for their team or

project. Because of corporate hiring practices these people are usually graduates of a computer science, or software

engineering undergraduate program. However, because the body of knowledge is essentially self-contained (within the

standards that capture it) we have also worked successfully with students from other backgrounds as long as they have

substantive practical experience doing IT work. The end result is a comprehensive mastery of professional best

practice in IT management. Graduates are expected to exhibit a long-term personal understanding centered on the

rational deployment of integrated technical processes to support all aspects of overall business functioning.

The rest of this article outlines an approach that meets the assumptions itemized above. The program is

called Software Management, which is the generally accepted term for this area of study. But, terminology

notwithstanding, the purpose and intent is to produce graduate students who have mastered all of the knowledge and

skills necessary to enable them to manage and IT organization based on expert principles.

DISCIPLINARY MODEL

Fundamental Concepts and their origin

Although several of these large standard frameworks have appeared over the past decade, they are very

similar in terms of their constituent elements
2
. It is that universal commonality, which supplies the basis for defining

the curricular elements of the Software Management program with some certainty. Four collective, highly correlated

concepts were derived from these models: abstract representation of process, process oversight, process control, and

optimization of IT processes. These are either employed (in the case of abstraction and optimization) or installed (in

the case of oversight and control) for the purpose of creating governance frameworks for individual IT operations. In

essence, all of the umbrella standard models (and our curriculum) are founded on the assumption that oversight and

control are the fundamental conditions of management best practice and that the process itself is developed and

tailored through abstraction and must be optimized.

Readers will probably note that these principles are also important elements in other IT related studies. The

distinction rests on the fact that we employ them strictly for the purpose of developing, or maintaining an explicit

governance framework tailored to fit the functional requirements of a particular IT organization. No other discipline

addresses rational, strategic organizational process development in this manner. In the case of the other studies these

principles are employed for other legitimate purposes, primarily to create computer, or system artifacts and to

2 ISO 9000-3 (1993), CMM v1.1 (1993), TickIT (1994), ISO 12207 (1995), ISO 15504 (aka SPICE, 1998)

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 37

harmonize computer systems with organizational systems for the purposes of decision support. The substantial

difference between these two aims (e.g., governance system versus computer system development) is an important

distinction to keep in mind when reading the rest of this.

Abstract Representation of Process

 Abstract representation of process serves the purposes of organizational process development by providing

the specific means for understanding and describing the problem space. It is also the foundation for tailoring an

umbrella standard into a particular representation within the specific context of a given organization, or in simple

terms for “drawing the blueprint”. Abstraction supports all aspects of tailoring as explicitly specified in models such

as IEEE 12207, CMM and 15504. In addition, it provides the basis for the management activities implicit under the

concepts of oversight and control. Since abstraction clearly drives the definition and design of computer systems and

artifacts (it underlies the first two stages in the waterfall) it is by far the best understood and recognized aspect of the

curriculum. Moreover the principles and techniques of this curricular element (including the use of UML) have been

borrowed directly from other studies.

Oversight and Control

 Oversight and control are well understood in the world of manufacturing and general business as the twin

elements of applied management. It is commonly recognized that the presence or absence of these two elements

determines project success. Practically speaking, in order to manage an operation, its activities have to be both visible

and controllable. Since most IT work is either too complex or too creative and abstract to be directly observable this

presents a problem. As a consequence, the technical staff in most cases usually knows more about the actual status of

a project than the manager, who is the one accountable for its success. The same is true of control. IT organizations

are exceedingly flat because, as it is currently conducted, IT work is creative and heuristic, not logical and linear.

Accordingly, most of the Key Process Areas at Level Two CMM (e.g., the entry level) concentrate on establishing

oversight and control of the IT operation. This is also true with IEEE 12207 in that the main lifecycle supporting

processes are documentation, configuration management and SQA, which all directly serve these purposes.

Optimization

 Finally, definition and the organizational mechanisms to establish and enforce visibility and control are

insufficient if they do not correct defects and make the operation continuously improving. As such, every practical

organizational model has to be optimized. Any person with a passing acquaintance with the “quality” universe does

not have to have the importance of optimization explained to them. It is the only underlying purpose of CMM (the

end product of which is called the “optimized” level) as it is with ISO 15504 (which is the assessment standard for

IEEE12207).

THEMATIC AREAS

 These concepts are embodied in six thematic areas, which taken as an integrated set, also comprise the

attributes necessary to create rational processes. Three of these are plainly traceable to their functional origin

(Modeling, Control Systems, Monitoring Systems). Process Engineering is the generic title for process development

and optimization. Since Assessment with Measurement provides the basis for organizational monitoring and control,

as well as for optimization (at any level of capability), it could be considered a primitive rather than a theme. But

because it is a major component of three other concepts it was decided to treat it across the board in the curriculum at

the next level of definition (e.g., application). Logically, part of the program is built around the pragmatics of product

development, so the Construction and Reuse theme is a concession to reality. However, even in such classes, the

pedagogy approaches the traditional content from the direction of the models that dictate proper practice. This

includes a heavy emphasis on re-engineering and reuse.

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 38

Figure 1 - Thematic Areas

1. Applied Abstract Modeling

2. Process Engineering

3. Organizational Control Systems

4. Organizational Monitoring Systems

5. Assessment with Measurement

6. Construction and reuse

 The curricular strategy is hierarchical. The focus is top-down from models down to methods for developing

the specific implementation. The presentation centers on ways to apply professional standards and umbrella

frameworks. This is embodied in the five course subject areas of:

Figure 2 - Course Subject Areas

1. Project Management

2. Object Oriented Modeling

3. Specification and Design (principles and methods)

4. Software Quality Assurance and Metrics

5. Strategic Process Development and Configuration Management

 These subject areas plus germane simulated real-world experience introduce the relevant principles of the

discipline. It allows students to develop and internalize their own comprehensive understanding as well as formulate a

personal model of the body of knowledge. There are technical courses offered simply to satisfy a range of potential

interests. Students opt for these based on their aptitude and interest, varying from individual to individual. However,

the body of knowledge in Software Management is delivered in the core, which is required for all students.

 Table One lists the sixteen course elements, which comprise the current Software Management curriculum.

It is believed (and can be easily proven based on cross references to the various conceptual models) that this array

represents a correct set of integrated knowledge essentials, which will underwrite the creation of effective and

efficient, IT governance infrastructures. The number in parentheses roughly references the thematic area (see legend,

and content areas), which each course embodies.

As explained earlier, there is basic knowledge about program construction and technical work built into the

value added (e.g., elective) areas, specifically Databases (elective 7), Networking (elective 8), GUI Development

(elective 5), and Distributed System Development (elective 9). However, the apparent overlap between Object

Oriented Programming (core 2) and any course in Object Orientation contained in software engineering or computer

science curriculum is deceptive. The traditional version of this course is designed to teach object oriented

programming techniques. The Software Management course is designed to teach object modeling and UML

principles for the purpose of process understanding and architecture.

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 39

Table 1 - Body of Knowledge Software Management

Core

Project Management 2, 3, 4, 5 Software project management subject area

Object Oriented Programming 1, 2, 6 Modeling and methods subject area

Software Requirements Specification 1, 2, 6 Specification and design subject area

Software Quality Assurance and Testing 2, 3, 4, 5 SQA and metrics subject area

Strategic Software Process Management 2, 3, 4, 5 Quality and CM subject area

Electives (6 required)

Software System Documentation 2 Data Base Design 1, 6

Software Design and Construction 1, 6 Network and Network Management 6

Metrics and Models for Software Management 2, 3, 5, 5 Distributed System Development 1, 6

Software Lifecycle Documentation 1, 2, 3, 4, 5 Leadership in Assessment 3, 4, 5

Graphical User Interface Development 6 Internal Audit 3, 4, 5

Software Maintenance Using Cobol 6 Legend: 1. Modeling, 2. Process Engineering, 3. Control,

4. Monitoring, 5. Measurement, 6. Construction

APPLICATION OF BODY OF KNOWLEDGE TO INDUSTRY

From the standpoint of application to the real world, the conceptual origins of this entire group of courses

either lies within a CMM Key Process Area (KPA) or an IEEE 12207.0 process. For instance Software Requirements

Specification (core course 3) is employed both in the development primary process as the first stage in the waterfall

and in the acquisition-supply processes as the basis for the contract and subsequent monitoring and control activities.

It is also the fundamental building block of configuration management baselines, which makes it an essential element

of the maintenance process (IEEE 12207.0 process 5.5).

Strategic Software Management (core course 5) provides the framework for the definition and tailoring of the

infrastructure (IEEE 12207.0 process 7.2) as well as the employment of all of the processes in the lifecycle and the

conventional models for continuous improvement (IEEE 12207.0 process 7.3). The Metrics and Models course

(elective 4) establishes the CMM Organization Process Definition KPA as well as the Measurement and Analysis

Common Feature. Both of these are keys to achieving a managed organization. In conjunction with this, Lifecycle

Documentation (elective 6) creates a schema that allows for quantitative management of the IT organization (as

specified in the lifecycle data element definitions of IEEE 12207.1). The two Assessment courses (electives 10 and

11) reflect the emphasis on organizational assessment requisite for building an effective monitoring and feedback

system for process assurance. And finally, the Maintenance course (elective 6) details the activities of the

maintenance lifecycle process (IEEE 12207.0 process 5.5) as well as examines the reengineering of legacy software.

DEFINING SOFTWARE MANAGEMENT’S SPECIFIC ROLE

It seems useful to compare the Software Management curriculum with the curricula of the traditional

computer disciplines, both in order to explore how it might be incorporated into an existing program and for the

purpose of highlighting its unique (and we believe important) role. As we said earlier, the primary difference between

this study and the established disciplines lies in its focus, which is on the creation of rational governance

infrastructures rather than classic computer applications. This can be easily demonstrated by looking at the model

curricula of the three commonly accepted studies.

As a mechanism to aid this comparison, we would like to employ the standard model for computer

organization and architecture. As many readers may know, computers are understood on four hierarchical levels from

circuits (the lowest level) through logic (the second) and programming (the third) through systems (the highest).

Properly, Computer Science, which is by far the oldest of the computer disciplines, concentrates at levels one, two and

three. This study originated in the 1950s in departments of mathematics and philosophy and it has never strayed very

far from its roots. Thus it is oriented toward fostering the study of linear logic and the various implementations

derived from that. In that respect its goals are the least similar to software management and its body of knowledge is

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 40

the least aligned with it. The last model curriculum was defined in 1991 however it is currently under revision as

CC2001. Table Two lists the 14 topic areas currently being considered.

Table 2 - The Computer Science body of knowledge CC2001

1. Discrete Structures

2. Programming Fundamentals

3. Algorithms and Complexity

4. Programming Languages

5. Architecture and Organization

6. Operating Systems

7. Net-Centric Computing

8. Human Computing Interaction

9. Graphics and Visual Computing

10. Intelligent Systems

11. Information Management

12. Software Engineering

13. Social and Professional Issues

14. Computational Science

 As can be seen there are two topics that are not strictly scientific, “Social and Professional Issues” and

“Information Management”. These represent issues that have arisen since the inception of the discipline and which the

ACM considers to be germane. However, neither of these has a governance focus.

The second discipline is Information Systems (sometimes known as MIS). Using our common classification

structure, that study focuses primarily in the top two layers (e.g., programming and systems). It overlaps with

Computer Science in its concentration at the third level (programming), but unlike Computer Science there is no

specific mandate to present content at either the circuit or logic level in any depth (however an overview of these

might legitimately appear in the introductory course) and it is not founded on mathematics (as a central discipline). In

effect (as the name implies) it centers on external business applications for the computer, rather than the science of it.

The general focus of this discipline is on the methods and models for supporting management decision making

through the provision of information (the analysis of which might be a highly mathematical process). The most recent

version of this curriculum (Table Three) was promulgated in 1997 (IS97) however the sponsors (ACM, AIS, AITP)

are working on a revision entitled IS2002, which will incorporate additional perspectives.

Table 3 - IS97 Curriculum Areas and Component Courses

Information System Fundamentals

 IS’97.1 Fundamentals of Information Systems

 IS’97.2 Personal Productivity with IS Technology

Information Systems Theory and Practice

 IS’97.3 Information Systems Theory and Practice

Information Technology

 IS’97.4 Information Technology Hardware and Software

 IS’97.5 Programming, Data, File and Object Structures

 IS’97.6 Networks and Telecommunication

Information Systems Development

 IS’97.7 Analysis and Logical Design

 IS’97.8 Physical Design and Implementation with DBMS

 IS’97.9 Physical Design and Implementation with a Programming Environment

Information Systems Deployment and Management Processes

 IS’9710 Project Management and Practice

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 41

As can be seen, since they share a mutual focus at the programming level there are a number of topics which

might appropriately fit in either a Computer science, or an IS curriculum including IS97.3, IS97.4, IS97.5, IS97.6,

IS97.8 and IS97.9. There are also two courses that are appropriate to the system/decision support level (IS97.3 and

IS97.7) which are essentially unique to MIS. Finally there is a Project Management course, which would fit in either

an MIS, or a Software Management curriculum (IS97.10). Given that the latter topic lies under a general category

heading of “Information Systems Deployment and Management Processes” (which characterizes a focus of the

software management curriculum) it is possible that other governance-oriented content might be added to later

versions of this curriculum. This would cause MIS to overlap more with the focus and intent of Software

Management.

 Finally, there is Software Engineering, which currently does not have a defined body of knowledge. A joint

working group formulated by IEEE and the ACM is involved in a multi-year project (called the SWEBOK) to

formulate such a body of knowledge. These are the ten knowledge areas that have been identified in the Stoneman

version (v.07).

Table 4 - The SWEBOK Knowledge Areas (KA)

KA 1: Software Requirements KA 6: Software Management

 Requirements Engineering Measurement

 Requirements Elicitation Coordination and Management

 Requirement Analysis Initiation and Scope Definition

 Requirements Specification Planning

 Requirements Validation Enactment

 Requirement Management Review and Evaluation

KA 2: Software Design Project Close-out

 Software Design Concepts Post Closure Activities

 Software Architecture KA 7: Configuration Management

 Software Design Quality Evaluation Management of SCM

 Software Design Notation SCM Identification

 Software Design Strategies/ Methods SCM Control

KA 3: Software Construction SCM Status Accounting

 Linguistic Construction Methods SCM Auditing

 Formal Construction Methods Release Management and Delivery

 Visual Construction Methods KA 8: Software Processes

KA 4: Software Testing Basic Concepts and Definition

 Basic Concepts Process Infrastructure

 Test Levels Process Measurement

 Test Techniques Process Definition

 Test Related Measures Qualitative Process Analysis

 Management of the Test Process Process Implementation and

Change

KA 5: Software Maintenance KA 9: Tests & Methods

 Introduction to Maintenance Software Tools

 Maintenance Activities Software Methods

 Maintenance Process KA: 10: Software Quality

 Organizational Aspects Quality Concepts

 Problems of Maintenance Defining SQA and V&V

 Maintenance Cost Estimation Planning for SQA and V&V

 Maintenance Measurement Techniques for SQA and V&V

 Maintenance Techniques Measurement for SQA and V&V

Since software engineering (SWE) is explicitly oriented toward best practice program construction principles

and techniques it overlaps with them at the programming level. Thus it embodies a lot of the focus of both MIS and

Computer Science in KA1, KA2, and KA3. However, because it considers itself to be an engineering discipline (and it

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 42

tends to be located in engineering schools), SWE is very scientific in the body of knowledge that it emphasizes for

these three KAs (e.g., the techniques it emphasizes are math based). It is also highly mathematical both in its general

conceptual orientation and in the expectations that it has for its entering students. As such, it appears closer in its

purposes to Computer Science than MIS. In fact, particularly in the design and programming courses software

engineering instruction would be indistinguishable from Computer Science.

Software engineering was created as a discipline from industry concepts designed to support “programming

in the large” (an original description of the intent of SWE fostered by SEI). As such, it focuses at the top two layers of

computer architecture (programming and systems), which means it shares a similar interest in program design and

construction with MIS. Within that domain, the knowledge areas of SWE are arrayed more in the fashion of the

Waterfall model of software development. But it is obvious that the purpose and intent of IS97.7 is also served by

KA1 and KA2. Where it diverges from the body of knowledge of both Computer Science and MIS on the program

construction side (on the surface at least, since much of this content could be embodied in programming courses at the

sub-topic level) is in KA4 and KA9. These two KAs represent best practice in the assurance elements of program

construction without regard to technique.

In general there is almost no documented overlap between the best practice management content captured by

KA6, KA7, KA8 and KA10 and the bodies of knowledge of either Computer Science or MIS. However since it is

governance focused, these four areas DO strongly overlap with the body of knowledge of software management. In

fact, given the fact that four of ten of SWE’s KAs lie expressly within the domain of governance and many typical

management functions are interspersed throughout that body of knowledge there is good reason to presume that

software management might simply be a subset of software engineering.

In particular, the emphasis on process infrastructure and software management concepts such as

configuration management and SQA underwrites the view that good engineering and good processes go hand in hand.

Nevertheless, the fact remains that the SWEBOK is dedicated to enhancing software development capability, not

advancing the overall competence of the IT organization. Moreover, although software development and deployment

is the pivotal element for the overall IT function, it does not specifically require or imply the governance motivated,

strategic infrastructure development purpose, which is the sole aim of the discipline of Software Management. Or, in

simple terms, the program construction process can be conducted (and frequently is) independent from and without

practices that manage it better. Consequently, there is justification for treating Software Management as a discipline

separate from Software Engineering.

CONCLUSIONS

Notwithstanding the question of whether Software Management is a separate discipline, the point of this

discussion is that there is a clear need for intensively focused education in IT management, wherever it might be

located on campus. That is because the concepts associated with IT governance are not the same as those that pertain

to the technical aspects of the profession. This is not currently addressed specifically in Computer Science, MIS or

Software Engineering. Nor does general business education (as represented by the MBA) offer any of the

management principles and perspectives needed to address the unique management concerns of a technical

organization.

That would not be important issue if it were not for the fact that although IT has a forty-year history of

leadership and innovation in the production of technical goods and services, the evidence is clear that it has to be

better managed. For instance, a Standish Group survey of 8,000 projects found that fewer than half of them finish

within their allotted schedules and budgets (Construx, 1998). A nationwide survey conducted by KPMG found that

the average project was 120% past its schedule and 90% over budget (KPMG, 2001). The outcome of this poor

performance is that Strassman (2001) found based on an examination of 1,585 US companies that there was no

correlation whatsoever between investment in information technology and profitability. Which leads him to conclude

that "Corporations are finally fed up with IT and they cannot afford escalating costs any more. They always

compensated for incompetence by spending more money, but we are out of money now."

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 43

A recent study by PA Consulting (2001) also found that businesses were disillusioned over the return on their

IT spending. Which led Tom Jones, a partner with that firm, to conclude that, “Many companies are frustrated by the

practicalities and pressures on their IT resources and find that the impetus for delivering business benefits is

frequently lost after the financial investment and immediate project deadlines are met, If IT is to be firmly embedded

in companies' strategic thinking, CEOs must take a prominent role (Fisher, 2001).” It is the emerging recognition that

IT work is not a technical operation alone, rather it is a strategic function in which business goals are realized by IT

processes, that provides the primary justification for the focused presentation of the body of knowledge in how to do

that best. Brent Habig, the head of US-based Tigris Consulting, summarizes this “It is vital that IT is aligned much

more closely to real business goals than in the past. IT is challenged to have a greater understanding of the business

to succeed in the new environment. Fundamentally, it is a rewriting of the relationship between IT and business

(Fisher, 2001)."

Given all of this, we believe that a study aimed solely at presenting the current best practice know-how for

integrating IT processes into business organizations is a profitable new direction for higher education. Furthermore

because of the complexity and the importance of the problem a distinct curriculum deliberately centered on that

particular mission is necessary. Moreover, we believe that this body of knowledge is a potentially important and

meaningful new direction for any university, particularly in business schools. Nevertheless, the curriculum presented

here is distilled from common elements found in the profession as well as all of the other three disciplines. We offer

our model as a potential guide that will help educators judge what to include in such a study, or where it fits in their

current curricula.

REFERENCES

1. Abran, A., et al. (2000), Guide to the Software Engineering Body of Knowledge, Stone Man version 0.7,

IEEE – ACM.

2. Association for Computing Machinery (December 15, 2001), Computing Curricula 2001, ACM-IEEE-CS.

3. Construx Software Builders, website @ www.construx.com, current (9/2001).

4. Davis, G., et al. (1997), Model Curriculum and Guidelines for Undergraduate Degree Programs in

Information Systems, Association for Computing Machinery (ACM), Association for Information Systems

(AIS), Association of Information Technology Professionals (AITP).

5. Fisher, Andrew, System Suppliers Face up to New Mood of Realism, FTIT, December 3, 2001

6. Humphrey, W. (January 2001), “The Changing World of Technology”, Crosstalk, Volume 14, #1.

7. IEEE (March 1998), IEEE/IEA 12207.0, IEEE.

8. IEEE (March 1998), IEEE/IEA 12207.1, IEEE.

9. IEEE (March 1998), IEEE/IEA 12207.2, IEEE.

10. Increasing business value with Information Technology, PA Consulting, 2001.

11. Jones Capers, Software Project Management in 2001, “A Survey of the State of the Art”, Software

Productivity Research, Artemis, Burlington, Mass., 2001.

12. Jones, Capers, Assessment and Control of Software Risks, Prentice-Hall: Englewood Cliffs, 1997, NJ.

13. KPMG Technology and Services Group, web site at www.kpmg.ca, current (11/ 2001).

14. McGibbon, T. (1999), A Business Case for Software Process Improvement Revised, DoD Data Analysis

Center for Software (DACS).

15. Paulk, Mark C, Toward Quantitative Process Management With Exploratory Data Analysis, International

Conference on Software Quality, Cambridge, MA, 1999.

16. Paulk, Mark C., Dennis Goldenson, David M. White, Survey of High Maturity Organizations, SPECIAL

REPORT CMU/SEI-2000-SR-002, 2000.

17. Paulk, M., et al. (1993) Capability Maturity Model, Version 1.1, Technical Report, Software Engineering

Institute, Carnegie-Mellon University.

18. Software Engineering Institute, www.sei.cmu.edu. (current 11/2001).

The Review Of Business Information Systems – Spring 2005 Volume 9, Number 2

 44

NOTES

