
Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

19 

Inexpensive Intelligence Using  

Procedural Propositional Logic 
Dr. Richard C. Hicks, Texas A&M International University, USA 

Dr. Keith Wright, University of Houston – Downtown, USA 

 

 

ABSTRACT 

 

Implementations of inference engine systems invoke many costs, including the cost of the inference 

engine itself, the cost of integrating the inference engine, and the cost of specialized personnel 

needed to create and maintain the system. These costs make a very high return on investment a 

criterion for incorporating these systems into the corporate portfolio of applications and 

technologies. Recently, the No Inference Engine Theory (NIET) [8] has been developed for 

creating procedural propositional logic rule-based systems. The NIET systems are implemented in 

traditional procedural languages such as C++ and do not need an inference engine or 

proprietary languages, thus eliminating the cost of the inference engine, the cost of integrating the 

system, and the cost for knowledge of a proprietary language. In addition, these procedural 

systems are an order of magnitude faster [8] than inference systems and maintain linear 

performance. For problems using propositional logic, the procedural systems described in this 

paper offer dramatically lower costs, higher performance, and ease of integration. Lowering the 

external costs and eliminating the need for specialized skills should make NIET systems more 

profitable and lead to the wider use of propositional logic systems in business. 

 

Keywords:  expert systems, propositional logic, verification, procedural inference 

 

 

INTRODUCTION 

 

he traditional implementation of a rule-based system uses an inference engine, a knowledge base, 

and a user interface to execute the application. The user interface communicates with the user. The 

knowledge base contains the rules necessary to solve a specific problem. The inference engine 

obtains facts from the user or the environment and compares them to the rules in the knowledge base, then uses 

inference to reach conclusions until the problem is solved [18]. 

 

One problem with inference engine implementations is the cost of the inference engine itself. While there 

are adequate freeware inference engines, many have significant limitations. For example, the freeware version of 

CLIPS has a limited capacity [8]. The two leading commercial inference engines, Blaze and GenSym, cost $35,000 

and one is needed for every computer that executes the application. 

 

A second problem with inference engine implementations is the need for specialized personnel to create 

and maintain the system [1,4]. The inference engines use proprietary languages that require a significant amount of 

training. Skill levels among “professional” specialists called Knowledge Engineers (who charge up to $3,000 a day) 

vary widely, making outsourcing problematic – and expensive. Blaze and Gensym offer development environments 

for $10,000 a seat. 

 

A third problem with inference engine implementations is integrating the inference engine into the rest of 

the application. Although inference engine companies continue to improve embedability, there is still much 

discussion about how to get product X to run in environment Y [4]. This also limits the agility of intelligent 

applications. 

 

T 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clute Institute: Journals

https://core.ac.uk/display/268105843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

20 

In addition, inference engine applications are computationally inefficient. On problems of a reasonable 

size, most inference engines struggle to test over 1,000 rules per second [13]. Inference engines also occupy a large 

amount of memory to store the inference engine itself, the fact set, and the other necessary computational structures 

[3]. 

For First Order Logic problems – those with a many pattern/many match requirement – there is currently 

no superior replacement for the inference engine. However, for Propositional Logic systems without a many 

pattern/many match requirement, NIET eliminates the inference engine and replace it with procedural code in the 

company’s normal coding environment and languages. Eliminating the inference engine also eliminates the costs 

associated with it, lowering the cost of implementing intelligence. 

 

In this paper, we will summarize the NIET approach that eliminates the inference engine, lowering costs 

and making wider usage of intelligent systems practical. For more details on NIET, see [8]. First, we will describe 

the traditional inference engine and it’s specialized functionality, conflict resolution. Next, we will describe how 

conflict resolution can be performed in the development stage instead of at run-time, transposing the declarative 

problem into a procedural one. Next, we will compare the performance of the inference engine and it’s procedural 

equivalent. We conclude with a summation of inference engine shortcomings and the NIET solutions to them. 

 

THE TRADITIONAL INFERENCE ENGINE 

 

The inference engine is a software application containing a methodology for solving problems usually 

stated in Propositional Logic or First Order Logic. It is responsible for determining the sequence of activities that 

must be performed during the consultation, such as which rule to test, and for reasoning over the rules [18].  

 

The non-trivial component of the sequencing of activities is conflict resolution, which determines the 

sequence of activities. The sequencing of rules is very important because it affects both accuracy and efficiency. At 

any time, a large number of rules may potentially fire. Conflict resolution determines the “best” rule to test based on 

one of many criteria. Conflict resolution may take up to 95% of the time necessary to perform a consultation [3].  

 

As extensive documentation is available, and this conflict resolution strategy is implemented in the 

majority of inference engines, consider the public domain implementation of CLIPS. The main factor in rule 

selection is salience, which is a priority value assigned by the developer to each rule. For rules of equal salience, 

CLIPS provides seven conflict resolution strategies.  

 

In the depth strategy, newly activated rules are placed above all rules of the same salience. In breadth, 

newly activated rules are placed below all rules of the same salience. Among rules of the same salience, newly 

activated rules are placed above all activations of rules with equal or higher specificity in the simplicity strategy. 

The complexity strategy places newly activated rules above all activations of rules with equal or lower specificity 

among rules of the same salience. The LEX and MEA strategies orders rules of the same salience by the recency of 

the pattern activations in the rules. The random strategy uses a random number to determine the order among rules 

with the same salience [5]. The CLIPS manual recommends specificity, which tests the most specific rules first. 

 

If a different salience is assigned to each rule, the conflict resolution strategy is disregarded. If the same 

salience, or no salience, is assigned to one or more rules, the conflict resolution strategy will determine the rule 

orderings [5].  

 

Consider the granularity of these conflict resolution strategies. For example, specificity and generality are 

determined by counting the number of conditions in a rule. In all but the smallest of rule sets, there will be many 

rules with the same number of conditions. When the conflict resolution strategy cannot order rules, the physical 

ordering in the rule base is used. This conflict resolution strategy implies that the developer will manually order 

every rule by encoding a salience, or will manually order the rules in each cluster while considering the run-time 

conflict resolution strategy. Any errors in the rule orderings coded by the developer may cause inaccuracies or poor 

performance. 

 



Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

21 

Conflict resolution determines the sequence in which rules fire, and is a major determinant in the speed and 

accuracy of an expert system [3]. However, the strategies described above, excepting salience, are heuristic in 

nature. In addition, there is little guidance about the relationships between rule ordering, rule types, and conflict 

resolution strategies; the three volume CLIPS manual does not address this topic [5]. 

 

We feel that this approach to conflict resolution is theoretically weak and incomplete. Later, we will return 

to this topic, but one significant omission in these conflict resolution strategies is the belief in the accuracy of the 

rule, often expressed in confidence factors (CNF). In many domains, the most desirable answer is the one in which 

the developer has the highest confidence.  

 

In order to make the conflict resolution process more theoretically sound, we use verification to classify 

rules and determine appropriate solution strategies. Toward this goal, we will next determine the appropriate conflict 

resolution strategy for different classes of rules using verification criteria.  

 

VERIFICATION, CONFLICT RESOLUTION, AND SOLUTION STRATEGIES 

 

Verification answers the question “Did we build the system Right?” – in other words, did we engineer the 

system correctly. Early work in the field by TEIRESIAS on the MYCIN project [2,15] included a rule proposer. 

ONCOCIN detected conflict, redundancy, subsumption, and missing rules [17]. Later extensions to verification 

came feom Nyugen with the CHECK project [10] and Stachowitz with the EVA project [16]. This line of research 

was followed by the Two-Tier Verification approach that is used in the EZ-Xpert application [6].  

 

Two Tier Verification partitions both the rule base and the known verification criteria to make verification 

computationally tractable and flexible.  

 

The rule base is partitioned with each partition containing all of the rules that reach a common conclusion. 

We will refer to these partitions as “rule clusters”. Each rule cluster may have it’s own solution strategy and 

verification requirements. The rule base is the summation of the rule clusters. 

 

Verification criteria are partitioned into Local Verification Criteria and Global Verification Criteria. These 

criteria are shown in Table 1. 
 

 

Table 1: Two Tier Verification Criteria 

   Global:  Reachability 

     Global domain constraint consistency 

   Local:  Completeness 

     Consistency 

     Conciseness 

     Domain constraints 

 

 

The Global Verification Criteria apply to the rule base as a whole and are always enforced.  Reachability 

holds if every condition can obtain a value in some manner, such as from rules or user input. Global domain 

constraint consistency holds if the data type and legal values for a given variable are consistent between rule 

clusters, such as that the text values or numerical ranges are consistent. 

 

Local Verification is more complex because not all criteria are applicable to all rules. Domain constraints 

must be applied to all conditions and actions. Conciseness positively effects performance and maintenance but not 

accuracy, so it is recommended for all rule clusters. 

  

Completeness and Consistency, however, are mandatory for some rule clusters and not expected to hold for 

others. This is because there are different types of rules, and they are verified and solved in different manners.  

 



Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

22 

Consistency holds when any combination of condition values reaches the same conclusion for any rules 

fired by these values [7]. Completeness holds when any combination of condition values will fire at least one rule 

[12]. 

 

In NIET, the four types of rules are classified by their verification criteria; Deterministic, Incomplete, 

Exception, and Belief-Oriented. Deterministic rules are Complete and Consistent – they always return an 

unambiguous solution. Incomplete rules are Consistent, but the entire search space is not covered by rules, and some 

combinations of values will not return any solution. Exception rules, such as those about Penguins and bird flight, 

are expected to be Incomplete and Inconsistent, and may not return values. Belief-orient rules, where the belief in 

the rules is less than total, are also expected to be Incomplete and Inconsistent, and may also fail to return a solution 

[8]. 

 

Multi-valued rule clusters return all of the rules in the rule cluster that can be fired, so any solution strategy 

eventually boils down to an exhaustive approach, meaning that multi-valued clusters do not require conflict 

resolution. To solve them, first obtain all of the values used in any rule, including subgoals, and then test all the 

rules. 

 

Single-valued rule clusters, on the other hand, test rules until a single rule fires and then returns, leaving 

any untested rules without ever testing them, potentially returning a sub-optimal [11] or inaccurate solution. For this 

reason, conflict resolution and rule ordering are significant for single-valued rule clusters. 

 

The solution strategy for each rule cluster is determined by the rule type assigned to the rule cluster. In each 

case, the rules are ordered by the appropriate criteria and solved procedurally from top to bottom. This replaces the 

conflict resolution performed by the inference engine, effectively moving conflict resolution from the run-time 

environment to the development environment and transposing the problem from a declarative one to a procedural 

one [8]. 

 

NIET uses three criteria to order the rules; cost, complexity, and CNF. For each rule type, we will use the 

first criteria to order the rules, breaking ties with the second or third criteria if necessary. Cost is the cumulative cost 

(such as counting the number of necessary conditions or calculating individual conditions computational cost) of 

getting a value for all of the conditions in the rule. Complexity / Simplicity is, as in CLIPS, simply a count of the 

number of conditions used in each rule. CNF is the confidence factor assigned by the rule developer in the 

conclusion of each rule. It should be noted that using three criteria offers a much higher granularity than the one or 

two criteria used by CLIPS. Cost and CNF are also not considered by CLIPS. 

 

Deterministic rules are Consistent, so ordering does not affect accuracy. Therefore, the goal is efficiency, 

meaning that ordering is first sequenced by lowest cost, then by rule simplicity, then by highest CNF. These rules 

are complete, so a conclusion will always be reached. 

 

Incomplete rules are also Consistent, but are not complete. Again, ordering does not affect accuracy, so the 

first criteria is lowest cost, then rule simplicity, then highest CNF. These rules are incomplete, so either Defaults on 

Unknowns must be accommodated. 

 

Exception rules by definition are expected to be inconsistent and incomplete. In this case, accuracy is 

affected by ordering. Accordingly, the first ordering is by rule complexity to pick up the exceptions before the 

general rule, then by higher CNF, and finally by lowest cost. These rules are incomplete, so either Defaults on 

Unknowns must be accommodated. 

 

Belief-oriented rules seek to find the rules with highest CNF that fit the current facts, and are expected to 

be incomplete and inconsistent. As the most desirable rule is the most accurate one by rule developer CNF, order the 

rules first by highest CNF, then by complexity, then by lowest cost. Again, consider Defaults or Unknowns. 

 



Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

23 

NIET supports two types of solutions for single-valued Belief-oriented rules. It supports the traditional 

approach of gathering all inputs and testing all of the rules, ordering the results by a CNF calculated from both the 

user’s and rule builders CNFs.  

 

In many domains, the CNFs are all 100, making the user’s CNF to be irrelevant. For these rule clusters, 

NIET supports testing by using only the rule builders CNFs assigned to the rules. This eliminates the need to get all 

inputs (so the user’s CNF is known) and solving all rules so that the calculations are complete, making the solution a 

true First Rule Satisfied one [8]. 
 

 

Table 2: Ordering by Rule Type 

Deterministic  Cost/Simplicity/CNF 

Incomplete  Cost/Simplicity/CNF  

Exception  Complexity/CNF/Cost 

Belief-Oriented  CNF/Complexity/Cost 

 

 

After the rules themselves have been created and ordered, all that is needed is the appropriate inputs and 

outputs and the solver.  

 

For multi-valued rule clusters, the solver obtains all the facts, creating subgoals as necessary, and then test 

all of the rules, and returns all solutions. For single-valued rule clusters, the solver component starts with the first 

rule in the goal rule cluster. It determines if the facts necessary to test the rule are available. If so, it tests the rule. If 

facts are unavailable, they are obtained from their source. The sequence of needed conditions drives the sequence of 

events within the consultation; if the source is another rule cluster, then execution flows to the new rule cluster until 

it is solved. Inference is top down. 

 

A system created in this manner is functionally and logically equivalent to an inference engine system, but 

eliminates the cost associated with inference engines and dramatically increases performance. 

 

NIET PERFORMANCE 

 

To test the speed of the research prototype EZ-Xpert, several rule bases were constructed using variations 

of the Chess End Game Test Set [13]. This test set consists of 648 rules with seven conditions in each rule. Larger 

rule sets are created by duplicating the original rules and modifying the 648th rule so that it occurs only at the end of 

the rule base or by adding a eighth condition to be used as a multiplier. Each rule base was tested by supplying the 

facts necessary to fire the last rule in the rule base on a 2.4 mhz PC [8].  
 

 

Table 3: Procedural Rule Testing Speed 

Size Speed Rule per Second 

648 .031 20,913 

12,960 .515 25,165 

19,440 .812 23,940 

 

 

All of these tests show that over 20,000 rules containing seven conditions each can be tested in one second. 

It should also be noted that the number of rules tested per second is linear and does not increase when rule base size 

increases, in contrast to other approaches. In contrast, a shortened version of the same rule base containing 90 rules 

took .046 seconds, or less than 2,000 rules per second, when tested in CLIPS 6.21 [8]. Larger rule bases could not be 

loaded into this version of CLIPS, and size has a dramatic impact on the performance of inference engines. This test 

gives us a preliminary indication that the procedural application will perform 10 times faster than the inference 

engine application [8]. 

 



Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

24 

It should be noted that this is one test of many that should be performed, as it measures only raw search 

speed, but it is also obvious that the procedural application performs in a linear manner, where this is not true of the 

inference engines. Consider the performance change in CLIPS using the Manners Test Set. When problem size is 

tripled, speed drops from 22 rules fired per second to 0.6 rules fired per second. 
 

 

Table 4: Performance on Large Rule Sets 

 

Guests Rules Fired Time Rules Fired / Second 

32 624 28 22 

96 4994 7,828 0.63 

 

 

The procedural approach has far less to do at run-time because conflict resolution has already been 

performed during development and implemented by rule ordering. As Forgy observed, up to 95% of the time in a 

consultation is spent performing conflict resolution [3]. For this reason, NIET is faster, requires less memory, and 

gives linear response regardless of problem size. 

 

SUMMARY 

 

We feel that there are many problems associated with inference engine technology that negatively impact 

on the wide usage of rule-based systems [4]. Inference engine cost and support are high dollar items. Proprietary 

languages are used. Skilled specialized knowledge is not widely available. Performance and integration are 

problematic. Available tools have limited value for creating and maintaining these systems [9]. All of these 

problems are directly associated with the use of an inference engine. 

 

For systems using only Propositional Logic, the inference engine can be replaced with logically equivalent 

reasoning and higher performance in procedural languages [8]. Elimination of the inference engine also eliminates 

its cost and support, proprietary languages, and performance problems. This is accomplished by performing conflict 

resolution during development instead of at run-time.  

 

Conflict resolution is performed by ordering the rules by their solution strategy, enabling them to be tested 

sequentially from top to bottom. Ordering differs between different types of rules; Deterministic rules, for example, 

are ordered differently than Belief-oriented rules because they are solved for different criteria.  Use of three criteria 

to order rules also achieves a more accurate ordering than the one or two criteria used by the traditional approach. 

 

Agility is also enhanced. The overall cost of an intelligent component using this approach is far lower than 

that of an equivalent project using an inference engine. Existing personnel can create and maintain the systems 

without new software skills or software because they select the implementation language. 

 

We feel that usage of the NIET approach will lead to much wider use and acceptance of intelligent 

applications by lowering the cost and commitment necessary to create accurate, high performance intelligent 

applications. 

 

REFERENCES 

 

1. Bachant, Judith, and Solloway, Elliot. The Engineering of XCON, Communications of the ACM, 32 (3) 

(1989). 

2. Davis, R. “Applications of Meta-Level Knowledge to the Construction, Maintenance, and Use of Large 

Knowledge Bases, Ph.D. Dissertation, Stanford Univ. 1976. 

3. Forgy, Charles L., “RETE: A fast algorithm for the many pattern / many object pattern match problem”, 

Artificial Intelligence, Vol. 19, No. 1, September 1982. 

4. Gill, T. Grandon. “Early Expert Systems: Where are They Now?,” Management Information Systems 

Quarterly, Volume19, Number 1, 1995. 



Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

25 

5. Giarratano, Joseph C. CLIPS 6.21 User’s Guide, International Thompson Publishing, Florence KS, , 2003 

pp. 43. 

6. Hicks, Richard C. “Two-Tier Verification of Rule-Based Expert Systems,” Journal of Computer 

Information Systems, Vol. 37, No. 1, Fall, 1996, pp. 1-4. 

7. Hicks, R. C. “Knowledge Base Management Systems -Tools For Creating Verified Intelligent Systems” 

Knowledge-Based Systems, April 2003. 

8. Hicks, Richard C. “The No Inference Engine Theory”, Decision Support Systems, Vol. 43, Issue 2, pp. 435-

444, March 2007. 

9. Murrell, Steven, and Plant, Robert T. “A survey of tools for the validation and verification of knowledge-

based systems: 1985-1995” Decision Support Systems, Vol. 21, 1997, pp. 307-323. 

10. Nyugen, T.A., Perkins, W.A., Laffey, T.J. and Pedora, D., “Knowledge Base Verification”, Artificial 

Intelligence, Vol. 8, No. 2, 1987, pp. 69-75. 

11. O’Leary, Daniel E., “Inference engine greediness: subsumption and suboptimality,” Decision Support 

Systems, Vol. 21, 1997, pp. 263-269. 

12. Preece, A. D. “A new approach to detecting missing knowledge in expert system rule bases”, International 

Journal of Man-Machine Studies, Vol. 38, 1993, pp. 661-688. 

13. “Benchmarking CLIPS/R2”, <http://pst.com/benchcr2.htm>, Production Systems Technology Inc, June 

2008. 

14. Quinlan, J. R. “Simplifying Decision Trees”, Knowledge Acquisition for Knowledge-Based Systems, 

Gaines, B., and Boose, J., editors, Academic Press, 1988. 

15. Shortliffe, E. H. Computer-Based Medical Consultations: MYCIN, Elsivier Publishing, New York, NY, 

1976. 

16. Stachowitz, Rolf. “Validation of Knowledge-Based Systems”, Tutorial at the Hawaii International 

Conference on System Sciences, Kona, Hawaii, Jan. 1990. 

17. Suwa, M., Scott, A. C., and Shortliffe, E. H., “An Approach to Verifying Completeness and Consistency in 

a Rule-Based Expert System,” A I Magazine, Vol. 3, No. 4, 1982, pp. 16-21. 

18. Winston, P. Artificial Intelligence, Addison-Wesley, Reading, MA 1993. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://pst.com/benchcr2.htm


Review of Business Information Systems – Second Quarter 2009 Volume 13, Number 2 

26 

NOTES 


