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ABSTRACT 
 

This paper shows that systematic risk in the U.S. banking industry displayed historical 
responsiveness to variations in the AAA-Baa credit spread. Critically, through the development of 
a series of single hidden layer perceptron neural network models, the principal credit spreads in 
the fixed income market catalyzed a defined regime shift in systematic risk proximate the financial 
crisis, and was more influential to the quantification of realized systematic risk than the statistical 
specifications of beta. As an intriguing result of the learned model simulations, the beta slope 
coefficients for the largest banks in the study exhibited significant acceleration in the statistical 
dependence on credit spread variations.  
 

Keywords: Banking Industry; Risk; Credit Spreads; Neural Networks; Regime Shifting 
 
 

INTRODUCTION 
 

he recent Financial Crisis broke rules – many of the rules guiding the behavior of risky assets 
(Kotkatvuori-Örnberg et al., 2013). Systemic risk, contagion, and macro prudential joined the lexicon 
of popular macroeconomic buzz phrases (Klein & Bernanke, 2009). Within the context of market 

variation in risky asset prices, traditionally accepted return covariances between and across asset classes broke 
down. Interestingly, larger banks and in general firms with higher market capitalization levels and greater trading 
frequency, have traditionally experienced notably less variation on beta nonstationarity than banks with smaller 
market capitalization (Brenner & Smidt, 1977; Trecroci, 2013).  

 
The emphasis of this paper resides in the influences on and patterns of nonstationarity in systematic risk in 

the U.S. banking industry during the 2002 through 2011 period in aggregate. Of greater import, however, are the two 
critical dimensions – size and periodicity – that segment the analysis and establish pervasive evidence of a regime 
shift in risk drivers and dramatically elevated systematic risk levels in larger institutions vis-à-vis smaller banking 
companies. It is the comparison of variation between two mutually exclusive pre/proximate financial crisis sub-
periods (Allen & Faff, 2012) and two sets of banks subdivided by aggregate market capitalization that exposes shifts 
in systematic risk that appears to exert a bias in favor of smaller market capitalization banks at the time de-risking 
was the theme. 

 
Also, our study represents a notably novel incorporation of artificial neural networks (see e.g., De Veaux & 

Ungar, 1997; Jones, 2004) in combinations with traditional tools to isolate greater stability in market risk for smaller 
banks at a time when greater stability represents the paramount issue. The analysis extends into the identification of 
a decided shift in the variation of systematic risk and the entry of a new temporary paradigm in which credit spreads 
are more influential than the formulaic construct. 

 
The rest of this paper proceeds as follows. The neural network modeling framework is presented in Section 

2. Then, Section 3 discusses empirical results. Finally, Section 4 summarizes the main findings and concludes. 
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THE NEURAL NETWORK-MODELING FRAMEWORK 
 
Data and Sample 
 

Of the 348 banking companies listed and actively traded on the NYSE, AMEX, or NASDAQ at December 
31, 2011, the 100 banks that populate our study represent 94.6% of the aggregate market capitalization for the 
group. This initial sample is then segmented by market capitalization into two equal-sized sample subsets, namely 
the 50 largest and the remaining 50 banking companies. Interestingly, the 50 banks that comprise the subset of larger 
banks within the study constituted 97.9% of the trading volume inherent in the sample and 96.7% of the trading 
volume realized by the entire group of listed banks.  

 
The study covers the period commencing December 31, 2001 through December 31, 2011. The 

specification of the largest domestic U.S. banking companies is derived through access to market capitalization 
information and trading metrics from the NYSE, and NASDAQ® (2012). The price and return information resident 
in the analytical framework are extracted from the CRSP database. The prices and returns are stock split-adjusted 
and reflect the consideration of cash and/or stock dividends. Daily security returns are determined utilizing natural 
logarithms of daily prices to derive continuously compounded returns.  
 
Systematic Risk Nonstationarity 
 

The initial stage of the study entails the selection of an approach to establish and quantify systematic risk 
nonstationarity. To reduce biases potentially introduced by the consideration of a singular systematic risk derivation 
approach, commonly typified by the ordinary least squares (OLS) methodology, the pattern of beta nonstationarity 
for the sample sets is evaluated within an expanded purview of systematic risk. This expansion encompasses OLS-
beta as well as Scholes-Williams (1977) beta, two specifications of Dimson’s (1979) beta, namely single-day and 
two-day return lags and leads, and the arithmetic mean of these four intertemporal formulaic variations. 

 
The artificial neural network dimension of the study critically entailed the incorporation of relative 

intertemporal systematic risk coefficients derived from daily and annual interval estimation catalyzed by return 
(individual security, the risk-free rate, and the market – hence, the individual and market risk premiums) intervals 
measured over rolling daily and annual temporal periodicity intervals. With temporal nonstationarity and the desire 
to synchronize the daily consideration of systematic risk and the derivation of the intertemporal time-varying 
(rolling) beta measured daily over one-year periods, two independent covariates have been included as possible 
relative systematic risk factors in the neural network models.  

 
The first, βi|D, represents the application of daily return intervals and daily measurement periods, where 

individual beta metrics premised on the application of the CAPM formulaic construct to align daily individual risk 
premiums with daily market risk premiums have been included as a covariate. The second, βi|A, represents the 
application to annual individual risk premiums and the corresponding annual market risk premiums (i.e., an 
intertemporal approach conditioned on annual versus daily holding period returns).  
 
The Lagged Credit Spread Factor 
 

Essential to the exercise was the investigation into incremental plausible correlation and potentially causal 
explanatory factors ascribed to the large expansion in the volatility of systematic risk in the larger bank subset. 
Given the visually arresting disposition of risk in the U.S. banking industry from 2002 through 2011 – and 
specifically from 2007 through 2011 – the relationship between interest rates on fixed income securities of varying 
credit quality levels (interest rate credit spreads) and systematic risk variation has been isolated.  

 
The selection of a specific credit spread and the alignment with a singular unique lag emanated from a 

variety of credit spread combinations and the analysis of approximately two hundred lag and lead days. The most 
promising credit relationship considered and observed was the aggregate credit spread between the U.S. Constant 
Maturity Treasury (CMT hereafter) with a 10-year maturity and the Baa Corporate Bond Index as published in the 
H.15 Selected Interest Rates (FRB H.15, 2013) release of the U.S. Federal Reserve Board of Governors (FRB). The 
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FRB Baa Corporate Bond Index represents Moody’s Seasoned Baa Corporate Bond Yield for bonds with remaining 
maturities as close as possible to 30 years.  

 
The consideration of a range of lag periods ultimately resulted in a specified lag period derived through the 

synchronization of the cyclical peak intertemporal mean beta slope coefficient (βOLS) and the peak CMT-Baa spread, 
denoted as CSL. The impact of the extension of the calibration to accommodate the 406-day lag in credit spreads to 
align with variations in the mean beta coefficients on the correlation coefficients is summarized in Table 1. This 
table reflects the variations and volatility in the correlation coefficients over ten annual observation periods ended 
December 31, 2011. 

 
Table 1. Temporal Correlation Coefficients – CSL and βOLS 

 ρ10 ρ9 ρ8 ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ1 
βF → CSL 0.116  0.195  0.430  0.658  0.669  0.635  0.565  0.740  0.695  (0.038) 
βL → CSL 0.333  0.416  0.567  0.738  0.756  0.725  0.645  0.760  0.752  0.254  
βS → CSL (0.092) (0.061) 0.125  0.307  0.301  0.372  0.440  0.695  0.611  (0.397) 

Note: CSL denotes the daily credit spread between the U.S. 10-year CMT and the Baa Corporate Bond Index with a lag of 406 calendar 
days. βOLS denotes the intertemporal mean beta slope coefficient derived through ordinary least square. βF, βL, and βS denote the beta 
slope coefficients estimated over (i) the full sample SF of 100 publicly traded banking companies, (ii) the first subsample SL of the 50 
largest banks ranked by market capitalization, and (iii) the second subsample SS with the remaining 50 banks, respectively. Figures 
displayed into brackets indicate negative correlations. The notation ρi, i = 10,..,1 reflects the number of years that end with the 2011 
observation included in the correlation. ρ10 is the correlation coefficient between the paired variables for the ten year period 2002 through 
2011; ρ9 is the correlation for the nine year period 2003 through 2011, etc. 
 

Multiple conclusions extend form Table 1, but importantly, correlations coefficients peak for both bank sets 
when observed for the 2009 through 2011 period, but exhibit elevation for SL for seven of the ten observation 
periods. While escalation in correlation coefficients for both bank sets and SF occur when observed for the 2009 
through 2001 calendar years, correlation coefficients for the two subsets are observably higher than for SF, indicative 
of differing relationships. Additionally, correlation coefficients reveal periods of negative correlation, particularly 
when observed for SS. Table 2 reveals the correlation coefficients specified over shorter intervals defined by the ten 
calendar-years observed in the analysis. This table isolates a generally wide variation in correlation between the two 
variables viewed by set (subset) or by observation period, with the coefficients specified for 2009, and to a modestly 
lesser extent 2010, revealing conspicuously strong correlation biases. 

 
Table 2. Annual Correlation Coefficients – CSL and βOLS 

 ρ2002 ρ2003 ρ2004 ρ2005 ρ2006 ρ2007 ρ2008 ρ2009 ρ2010 ρ2011 
βF → CSL 0.724  0.758  (0.924) (0.584) (0.394) 0.149  (0.378) 0.968  0.744  (0.038) 
βL → CSL 0.729  0.023  (0.950) (0.637) (0.233) (0.403) (0.069) 0.967  0.768  0.254  
βS → CSL 0.617  0.931  (0.910) (0.530) (0.514) 0.475  (0.614) 0.967  0.708  (0.397) 

 
Neural Network Model Calibration  
 

The observations and beta coefficients follow three temporal constructs: two five-year windows, denoted as 
|F5 and |S5, and referring to the pre-financial crisis period (2002-2006) and the proximate financial crisis period 
(2007-2011) respectively, and the aggregate ten-year period (2002-2011) denoted as |10. For the observations arising 
out of three time-periods for each of three sets or subsets of banks (SF, SL, and SS), nine scenarios frame for the 
neural network independent variable importance analysis in the pursuit of explanations to the large relative 
acceleration in variability of systematic risk in the large bank subset and the presumed regime shift in variable 
influence. 

 
Endemic to each of the nine permutations, CSL, βi|D and βi|A comprise the three unique covariates, and MDIR 

and VDIR reflect the independent directional factors. The isolation of the direction of volatility (variance relative to 
market variance) and the direction of market returns represent plausible factor contributors as MDIR and VDIR. With 
each set of five independent drivers regressed against the corresponding mean intertemporal βOLS, 50 neural network 
models simulated an aggregate of 450 learned models. The learning models were calibrated to draw from the 2,519 
observations premised on a 5% level of test significance and a targeted maximum statistical margin of error (MEt 
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hereafter) of 2.5% with the training sequence set to 70% of the observations and a test sequence applied to the 
remaining 30% of the observations1.  

 
To put it differently, each of 450 unique artificial neural network models extended from the creation of the 

best-fit nonlinear learned models derived via the analysis of approximately 1,763 of 2,519 (or 881 and 882 for |F5 
and |S5 respectively) combinations of the six variables. Of the 45 factors and covariates (independent drivers) that 
constituted the 450 neural network models, there were four instances in which the actual margin of error (meact,) 
exceeded the target MEt and none were in excess of 2.8%. To establish the number of iterations considered to 
establish the mean independent variable importance, as noted, an iterative process was developed for each of the 
nine combinations of set/subset composition and temporality that extended from the sample followed the guideline 
formula n = (zα2

*σvi
2)/MEt

2 (DeFusco et al., 2007).  
 

In this target sample size guideline, z denotes the critical test value at a level of test significance equal to α, 
σvi

2 reflects the variance of the respective independent variable importance measures (and σvi defies the standard 
deviation), and MEt

 specifies the target margin of error in the estimation process. Thus, n is a function of σvi, and σvi 
arises out of the variations realized in the independent variable importance statistics in n simulations of the model. 
Target and actual sample sizes utilized α = 5% and a 2.5% target margin of error. The actual margin of error, meact, 
extended from the target formulaic construct modified as meact = (zα*σvi)/√n. 
 
Relative Contribution of Predictor Factors and Covariates 
 

The inclusion of the neural network-modeling framework represents a dynamic supplement to alternative 
analytical techniques and offers the power to measure the relative contribution of the noted variables within the 
construct of independent variables and covariates regressed against a singular dependent variable, set as the most 
accurate realized intertemporal systematic risk metric, βOLS, in this analysis. Thus, as a source of learned dependent 
variable behavior, the measures of independent variable importance for each and all of the specified neural network 
models proffer a viable and valid comparative tool in the consideration of which, if any, of the cited independent 
variables (and/or covariates) contribute disproportionately meaningful explanatory influence in the learned dynamic 
model.  

 
For purposes of analytical evaluation, the study initially considered six unique and reflexive neural network 

models. The singular neural network model design predicated on a complement of five factors or covariates set 
within three temporal ranges and three constitutional sets coalesced into nine unique scenarios that catalyze 45 sets 
of independent variable importance statistics. This aggregation of 45 sets of independent variable importance 
statistics arise from the 50 neural network simulations processed for each of the nine set and periodicity 
combinations, reflective of individual variable importance statistics2. 

 
The investigation into factors correlated to the regime shift and the reversal in systematic risk variability 

between the two sets of banks incorporated Multilayer Perceptron neural network architecture with preference 
isolated to the single hidden layer activation variation. The optimization algorithm followed the scaled conjugate 
gradient technique. In this manner, the historical relationship between the factors and covariates and the dependent 
variable (the actual realized beta coefficient) engaged more complex nonlinear explanations of fit than feasible via 
traditional linear formulaic constructs and common nonlinear estimation approaches. Created in the training mode as 
a learned model and generated in the testing stage, the aggregation of 50 neural network simulations for each of the 
nine combinations of sample set/subset and temporal specification reflect statistical significance and offer 
explanations to the changed behavior patterns observed in systematic risk variation. 
 
  

                                                
1 In aggregate, the sample for the 2002 through 2011 period yielded 2,519 temporal observations The pre/proximate financial crisis two sub-
periods (2007-2011/2002-2006) include 1,259 and 1,260 observations, respectively. 
2 2,250 = 9 unique scenarios × 5 factors or covariates × 50 neural network simulations. 



The Journal of Applied Business Research – September/October 2015 Volume 31, Number 5 

Copyright by author(s); CC-BY 1803 The Clute Institute 

EMPIRICAL RESULTS AND DISCUSSION 
 
Absolute Deviation in Systematic Risk Estimates 
 

As noted, five systematic risk derivation approaches are used. They are reflective of risk estimates derived 
through ordinary least squares (βOLS), the Dimson (1979) technique with one and two-day lags (βD1 and βD2), the 
Scholes and Williams (1977) methodology (βSW), and the arithmetic mean of the four constructs (βµ). An analysis of 
realized beta slope coefficients within the context of (rolling) intertemporal daily return intervals applied to risk-
specify the respective daily market risk premiums as the independent variable regressed against the corresponding 
daily individual risk premiums reveals a state of general superiority in the accuracy of βOLS versus βD1, βD2, βSW, and 
the mean of the four variations, βµ.  

 
The results of the analysis of the absolute deviation in beta slope coefficients across the five varied 

approaches to the measurement of systematic risk affirms the isolation of βOLS as the most accurate of the techniques 
considered within the study decision criteria. Analytical results also endorse the selection of the OLS-beta as the 
systematic risk factor variables included in the analysis of variable importance within the set of summary results 
generated by the neural network model simulations. In each of the three observation intervals – the first five years, 
the second five years, and the full ten-year period – the specification of risk via βOLS resulted in the most accurate 
realized beta slope coefficients. Results are presented in Table 3. 
 

Table 3. Absolute Beta Coefficient Relevance – Viewed Temporally 

 βOLS βD1 βD2 βSW βµ 
|βF|10 - βm| 0.046 0.084 0.094 0.085 0.077 
|βF|F5 - βm| 0.074 0.184 0.185 0.183 0.156 
|βF|S5 - βm| 0.042 0.073 0.113 0.074 0.076 
|βF|F5→10 - βm| 0.054 0.114 0.131 0.114 0.103 

Note: |βF|TEMPORALITY - βm| denotes the absolute deviation in the intertemporal beta slope coefficients across the five varied approaches 
used to measure the systematic risk (columns βOLS to βµ), where F corresponds to the full sample of 100 banks, and |10, |F5, and |S5 represent 
(i) the aggregate 10-year time period (2002-2011), (ii) the 5-year pre-financial crisis first sub-period (2002-2006), and (iii) the 5-year 
proximate-financial crisis second sub-period (2007-2011), respectively. The deviation is derived from the mean of the data set (βm). 
|βF|F5→10 - βm| is the average of the three absolute deviations calculated for each measure of beta (columns βOLS to βµ). 
 

With the evaluation context of systematic risk specification extended from the temporal dimension to the 
comparison at the sample subset level, the assessment of relative and absolute beta slope formulaic relevance again 
established the desirability of beta via ordinary least squares in each of the two subsets and in the full sample set of 
banks. Results are displayed in Table 4. 

 
Table 4: Absolute Beta Coefficient Relevance – Viewed By Bank Size 

 βOLS βD1 βD2 βSW βµ 
|βF|10 - βm| 0.054 0.111 0.124 0.111 0.100 
|βL|10 - βm| 0.052 0.168 0.196 0.167 0.146 
|βS|10 - βm| 0.055 0.062 0.072 0.064 0.063 
Note: |βCOMPOSITION|10 - βm| denotes the absolute deviation in the intertemporal beta slope coefficients across the five varied approaches 
used to measure the systematic risk (columns βOLS to βµ). The deviation is derived from the mean of the data set (βm). F, L, and S 
correspond to (i) the full sample of 100 banks, (ii) the subsample of the 50 largest banks, and (iii) the subsample with the remaining 50 
banks, respectively. |10 indicates the aggregate 10-year time period (2002-2011). 
 
Credit Spreads and Systematic Risk – A Neural Network Explanation 
 

As previously mentioned, the most promising results emanate from the daily credit spread between the U.S. 
10-year CMT and the Baa Corporate Bond Index with a lag of 406 calendar days (58 weeks or 279 trading days) – 
denoted as CSL. This relationship appears indicative of the variation in hypothetical longer-term (credit) risk-free 
interest rates and the corresponding low investment grade interest rate and a possibly more plausible specification of 
actual credit risk in an economic context.  
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The development and application of a multifactor neural network model to the perplexing behavior of 
systematic risk during the study period reveal instructive results. The lagged credit spread (CMT-Baa or CSL) was 
more influential in the explanation of the realized levels of systematic risk and on the time-variations in systematic 
risk over the study period than a combination of variables that extend from the CAPM formulaic representation of 
the beta slope coefficient. 

 
The derivation of the nine sets of neural network models extended from the consideration of three 

covariates and two integral factors. The factors were isolated to assess the relative contribution to the variation in the 
realized beta coefficients attributed to directionality. The isolation of the direction of volatility (variance relative to 
market variance, denoted as VDIR) and the direction of market returns (denoted as MDIR) represented plausible factor 
contributors. In addition to the lagged credit spread (CSL), βλ|D and βλ|A were incorporated into the learning models to 
consider the potential impact of a direct CAPM formulaic influence specified on both daily and annual return 
intervals to mitigate potential beta instability due to interval selection. In the notation of βλ|D and βλ|A, βλ denotes the 
specific realized beta for the unique combination of temporality (|F5, |S5, and |10) and composition (SL, SS, and SF). 
The results are presented in Table 5. 
 

Table 5. Neural Network Model Results and Regime Switching 

 VDIR MDIR CSL βλ|D βλ|A Σβλ|A+D 
SET|F|F5 0.017 0.049 0.480 0.217 0.237 0.454 
SET|L|F5 0.015 0.042 0.465 0.181 0.297 0.478 
SET|S|F5 0.016 0.054 0.454 0.261 0.215 0.475 
SET|F|S5 0.033 0.038 0.521 0.201 0.207 0.408 
SET|L|S5 0.034 0.050 0.518 0.161 0.237 0.398 
SET|S|S5 0.040 0.044 0.436 0.199 0.281 0.480 
SET|F|10 0.019 0.049 0.416 0.270 0.246 0.517 
SET|L|10 0.024 0.049 0.422 0.242 0.263 0.505 
SET|S|10 0.019 0.072 0.352 0.278 0.279 0.557 

Note: SET|COMPOSITION|TEMPORALITY denotes the nine combinations derived from composition and temporality. The subscripts F, L, and S 
associated with |COMPOSITION define (i) the full sample of 100 banks, (ii) the first subsample SL of the 50 largest banks ranked by market 
capitalization, and (iii) the second subsample SS with the remaining 50 banks, respectively. The subscripts F5, S5, and 10 associated with 
|TEMPORALITY define (i) the aggregate time period (2002-2011), (ii) the pre-financial crisis first sub-period (2002-2006), and (iii) the 
proximate-financial crisis second sub-period (2007-2011), respectively. Σβλ|A+D defines the combination of an intertemporal annual and 
daily beta slope formulas (|A+D), with βλ denoting the specific realized beta for the unique combination of |COMPOSITION and |TEMPORALITY, 
where the nominal coefficient values βλ|A + βλ|A = Σβλ|A+B. 
 

Four main observations and conclusions directly extend from the summarized results of 2,250 independent 
variable importance statistics generated through 450 learned neural network simulations for nine unique 
combinations of time and composition. First, the importance of the lagged (406 days) CMT-Baa credit spread (CSL 
in Table 5) is evident across all combinations of temporality and set composition. Second, the lagged credit spread 
represented a more important independent variable than the variables that underlie the dependent variable in three of 
nine sets of simulation results (CSL > Σβλ|A+D in Table 5). Third, the two sets of simulations that yielded the largest 
nominal indication of lagged credit spread importance were in the five-year period proximate the Financial Crisis – 
for the large bank subset and the aggregate set of 100 banks. Last, as highlighted in Table 6, the importance of the 
lagged credit spread for the 50 large bank subset increased notably from the initial five-year period to the period 
proximate the Financial Crisis. 

 
Table 6. Independent Variable Importance – Temporal Shifts 

 VDIR MDIR CSL βλ|D βλ|A Σβλ|A+D 
SF|F5→S5 0.017 (0.011) 0.041 (0.016) (0.031) (0.047) 
SL|F5→S5 0.019 0.008 0.053 (0.020) (0.060) (0.080) 
SS|F5→S5 0.024 (0.010) (0.018) (0.061) 0.066 0.005 

Note: SF, SL, and SS denote (i) the full sample of 100 banks, (ii) the first subsample of the 50 largest banks ranked by market 
capitalization, and (iii) the second subsample with the remaining 50 banks, respectively. |F5→S5 indicates the shift from the initial pre-
crisis 5-year sub-period (2002-2006) to the proximate-financial crisis 5-year sub-period (2007-2011). Σβλ|A+D defines a combination of 
the intertemporal daily and annual beta slope formulas (|A+D), with βλ denoting the specific realized beta for the unique combination of 
|COMPOSITION and |TEMPORALITY, where the nominal coefficient values βλ|A + βλ|A = Σβλ|A+B. 
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An apparent regime shift is evident with a principal impact on large banks (S|L) incident with the Financial 
Crisis where the variation in the influence of the conditioning state variable defined by the lagged CMT-Baa credit 
spread realized a significant expansion in independent variable importance. The acceleration in the importance of 
the independent variables reflected in Figure 1, taken in conjunction with Table 6 and the distinct variance in beta 
coefficients, frames a compelling case for a decided migratory pattern in systematic risk away from a more 
traditional and unconditional linear explanation and toward the isolation of a paradigm shift dependent on a credit 
spread state variable in a new risk regime. 

 
Figure 1. Variations in Lagged Credit Spread Importance via Neural Network 

 
Note. |F5, |S5, and |10 define (i) the 5-year pre-financial crisis first sub-period (2002-2006), (ii) the 5-year proximate-financial crisis sub-
period (2007-2011), and (iii) the 10-year aggregate time period (2002-2011), respectively. CS|L and CS|S denote the lagged (CMT-Baa) 
credit spread for the 50 largest banks subsample (|L) and the subsample with the remaining 50 banks (|S). Σβλ|A+D|L denotes a combination 
of an intertemporal annual and daily beta slope formula (|A+D) applied to the 50 largest banks subsample (|L), with βλ denoting the specific 
realized beta for the unique combination of |COMPOSITION and |TEMPORALITY. 

 
The lagged (CMT-Baa) credit spread independent variable, in fact, was more relevant as an explanatory 

factor in the neural network simulations than the combination of an intertemporal (daily) slope formula and the 
intertemporal (annual) slope formula – both dependent on individual equity security risk premiums and market risk 
premiums. This anomaly surfaced a total three times in nine sets of simulations, and appears quite significant. The 
inference from the simulations arising from neural network analysis is that the lagged credit spread was a decidedly 
more influential factor in the determination of the realized levels of systematic risk than the aggregation of the 
formula for the slope coefficient computed for daily intervals and annual intervals. 

 
To the extent that a journey of systematic risk refinement in the banking and other industries travels through 

the introduction of an exogenous state variable, such as the lagged credit spread introduced in this investigation or 
any other credit spread, the prospect of a paradigmatic regime shift is similarly mandated. Overall, these results 
catalyze the development of an artificial neural network to diagnose variations in the explanatory predictors to 
systematic risk nonstationarity. 
 
Potential Application in the Banking Industry 
 

Organizations exist to optimize long-term shareholder value – no different for publicly traded banks – and 
accordingly, value realization is a very direct function of real risk-adjusted or risk-specified returns. Variability of 
systematic risk and absolute escalation in systematic risk contribute to elevated costs of capital (Guidolin et al., 
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2012). Higher beta coefficients correspond with higher costs of capital and higher required rates of return, which in 
turn, catalyze downward pressure on stock price appreciation or reductions in value and potentially adverse 
incremental earnings impacts. Our study identifies a number of critical findings that may serve to guide the approach 
to market risk taken by publicly traded banks and other firms to the extent the findings extend across industries. 
Executive teams possess the power to engage the content of the investigation to take the analysis an additional step 
forward to identify the characteristics of the bank set that realized less volatility in systematic risk. Further analyses 
of the balance sheet characteristics of large banks versus small banks and variations in asset and liability 
composition and relative capital levels may further contribute to the practical implementation of the findings. 
 

CONCLUSION 
 

This article highlights two key findings arising from artificial neural network simulations: (1) the 406-day 
lagged CMT-Baa credit spreads represented more important factors to intertemporal beta variation proximate the 
Financial Crisis for large banks (and for the full sample set of banks) than for smaller banks, and evident prior to the 
Financial Crisis, and (2) the critical importance exerted by lagged credit spreads on smaller banks diminished during 
the period proximate the Financial Crisis. Our study also supports the contention that unconditional models may be 
inferior to conditional models, and conditional asset-pricing models that lack a regime switching isolation and 
incorporation mechanism may similarly yield inferior estimates. 
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