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ABSTRACT 

 

This study investigates the effectiveness of semivariance versus mean-variance optimisation on a 

risk-adjusted basis on the JSE. We compare semivariance and mean-variance optimisation prior 

to, during and after the recent financial crisis period. Additionally, we investigate the inclusion of 

a fixed-income asset in the optimal portfolio. The results suggest that semivariance optimisation 

on the JSE in a pure equity case produces lower absolute returns, yet superior risk-adjusted 

returns. Further investigation suggests that semivariance metrics are effective within a certain 

range of portfolio sizes and diminishes in benefit once portfolios become larger. A fixed income 

asset scenario tested under the hypothesis of semivariance optimisation favoured greater bond 

weightings in optimal portfolios.  
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1. INTRODUCTION 

 

Portfolio theory has been evolving ever since its inception by Harry Markowitz and his pioneering research 

shaped the portfolio risk-return model known as mean-variance optimisation. A newer concept of post-modern 

portfolio theory is that of downside risk metrics for risk measurement in the context of portfolio optimisation. 

Previously the convention was to use a mean-variance strategy to determine the efficient frontier for a portfolio. The 

foundations of this theory however, are based on a set of strict assumptions with the result that the majority of 

models fail to capture reality perfectly and exhibit significant model risk. Downside risk optimisation, which models 

the efficient frontier using semivariance, has exhibited potential for providing better risk metrics.  

 

This paper aims to test the use of semivariance as a more realistic method of portfolio optimisation in a 

South African context. While empirical testing has been investigated on foreign markets, studies relating to South 

Africa in particular are limited. Furthermore, the use of downside risk optimisation has implications for the 

management of pension funds, thus providing cause for research.  

 

In addition, portfolio size will be examined in relation to both optimisation models. Prior research in other 

financial markets suggests that larger-sized portfolios are indifferent to the method of optimisation used. The effects 

of including a fixed-income asset will also be tested against both models. 

 

The remainder of this paper is structured as follows. Section 2 reviews prior literature on the development 

of mean-variance and semivariance. Section 3 presents our data and discusses the methodology adopted in testing 

the hypotheses. The results are presented in Section 4 while Section 5 concludes. 
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2. LITERATURE REVIEW 

 

Harry Markowitz pioneered the research into determining optimal portfolios in 1952. Markowitz (1959) 

concluded that the optimal portfolio is one that provides the best combination of risk and return for a specific 

investor, depending on said investor’s degree of risk tolerance. As a result, Markowitz introduced the concepts of 

variance and standard deviation with regards to the calculation of portfolio risk. Markowitz (1959) also identified 

two objectives of the common investor; high returns are preferred to low returns and stability in returns is preferred 

to volatility. These conclusions lead to the formation of efficient portfolios (points representing risk versus return on 

a Cartesian plane) and introduced the efficient frontier (a curve that provides the optimal set of efficient portfolios). 

 

Subsequently, Tobin (1958formulated the liquidity preference theory. In addition to Markowitz’s efficient 

frontier, Tobin accounted for the risk preferences of investors via indifference curves. Tobin (1958) states that an 

investor is assumed to have preferences between expected return and risk that can be represented by a field of 

indifference curves. It is these theories that formed the core of mean-variance strategies for portfolio optimisation 

used today.    

 

These theories do, however, employ a number of assumptions that dissociate their results from real world 

outcomes. Markowitz (1952, 1959) assumes that asset returns are fully explained under a normal (symmetrical) 

distribution by the distribution’s first two moments i.e. mean and variance. Higher order moments (skewness and 

kurtosis) were thus not required. Leland (1999) states that the distribution of asset returns are generally not normal 

and investors have significantly different views pertaining to upside and downside risk. The degree to which asset 

returns are non-normal was investigated by Cont (2001), who suggests that asset returns display excess kurtosis; that 

is, they exhibit higher peaks and ‘fatter’ tails than a normal distribution. This has an effect on the risk metrics of 

variance and standard deviation. The steeper peaks suggest that asset returns are less deviant about their means, 

while the ‘fatter’ tails are indicative of the fact that the majority of returns lie further away from the mean. This 

implies higher occurrences of extreme positive and negative asset returns. Cont (2001) also observed that there is 

empirical evidence that asset returns have a tendency to return below-mean returns rather than above-mean returns, a 

statistical phenomenon referred to as skewness. Empirical testing has observed that asset returns tend to demonstrate 

negative skewness in general.  As a result, mean-variance optimisation, while theoretically sound, may not account 

fully for the empirically-observed behaviour of return distributions. A more accurate model would have to include 

higher order moments such as skewness and kurtosis to compensate for observed asset returns and investor 

preferences.  

 

A superior risk metric was proposed in the form of semivariance. The concept of semivariance optimisation 

can be quantified simply as the fact that investors are more concerned by the underperformance of a portfolio rather 

than over-performance. In other words investors do not treat risk symmetrically and are more vigilant against 

downside risk. Ferguson and Rom (1994) established that conventional portfolio theory is justifiably a unique case 

of post-modern theory under symmetric conditions. Further, and more importantly, they discuss the implication of a 

target level of return, stemming from the early works on semivariance by Markowitz (1959) and Hogan and Warren 

(1972). They stipulate that variances are indicative of the risk of achieving average returns, whereas a more modern 

approach tailors risk specifically to an investor’s target return level such that returns above this target return level do 

not constitute risk. These notions support the prior discussions on the asymmetry of asset return distributions. 

 

While the early work of Markowitz (1959) and Roy (1952) proposed methods for determining 

semivariance risk metrics, both these methods required time consuming iterative techniques to calculate co-

semivariance,  as suggested by Cumova and Nawrocki (2011).  

 

Markowitz (1959) proclaimed that analyses based on semivariance produced more accurate portfolios than 

those based on variance. According to Markowitz (1959) the reason for the popularity of mean-variance 

optimisation is a direct consequence of its cost effectiveness, computational simplicity and familiarity, whereas 

semivariance required complex computation algorithms, not feasible with the level of computing power at that time. 

However, with the drastic improvement of computing power today, efficient calculation of semivariance portfolios 

is certainly possible.  
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However, there is still an inherent complexity in calculating semivariance, which arises from the 

determination of the co-semivariance matrix. Cumova & Nawrocki (2011) suggest that the co-semivariance matrix 

is endogenous versus the exogenous matrix which is generated by normal mean-variance optimisation. Estrada 

(2008) suggested that the reason for this endogenous behaviour is due the fact that changing the portfolio weights 

changes the periods in which the portfolio underperforms the benchmark, which in turn will change the co-

semivariance matrix. To overcome this issue of an endogenous matrix problem, Cumova & Nawrocki (2011) 

suggested two approaches, the first being a heuristic approach where inter-correlations between securities were 

ignored. The second involves converting the asymmetric endogenous matrix to a symmetric positive semi-definite 

matrix.  

 

In essence Estrada (2007) presents a solution of co-semivariance based on determining for which periods 

assets jointly underperform a target return level. The main criticism stems from the fact that both assets need to 

underperform the target level of return in the same period for the co-semivariance to be valid. Cumova & Nawrocki 

(2011) further elaborate on the fact that due to the heuristic nature of the method proposed by Estrada (2007), the 

results of his method differ. They offer a possible explanation for this, suggesting that Estrada’s method employs a 

smaller number of below-target observations. 

 

The differences in methodologies regarding the co-semivariance matrix have become a prominent topic of 

debate. Despite differing opinions the general consensus is that not only do semivariance techniques portray a more 

realistic representation of investors preferences regarding stock returns, but also generate portfolios with superior 

risk-adjusted returns. However, it is worth noting that empirical testing from which these conclusions have been 

drawn still suffer from teething problems in circumventing the computational complexity surrounding semivariance. 

 

It is now prudent to investigate the assumption of normality of asset returns specific to the JSE. Mangani 

(2007) built on the previous work of Page (1993) who concluded that JSE returns are not normally distributed. 

Mangani (2007) stated that “… there was unequivocal evidence of leptokurtosis on the JSE, a feature that is 

documented for most markets, and renders no support for the assumption of normality in the distribution of security 

returns.” Furthermore Mangani (2007 concluded that not only did the JSE exhibit leptokurtosis but returns were also 

negatively skewed.  

 

Since the JSE seems to display the characteristics synonymous with most other markets, empirical testing 

of semivariance should yield similar results compared to empirical studies on other markets. While semivariance 

seems to offer superior risk-adjusted returns in all types of portfolios, portfolios that are specifically mandated to 

behave in a risk-averse manner are of particular importance. One such of these portfolios is pension funds. The 

implied benefit of semivariance relates to applications in pension funds and could thus improve the performance of 

these funds. Pension funds are governed by a set of strict regulations, limiting the amount of risk the fund may 

assume.  

 

Pension funds serve as way employees and individuals can save for their retirement. Large amounts of 

pooled capital are invested in a number of financial instruments to yield a safe return on the invested funds. Such 

funds have a great amount of responsibility and hence the Pension Fund Act of 1956 was established to regulate 

pension fund investments.  The Pension Fund Act has since been amended, by Regulation 28, thus allowing more 

pension fund capital to be invested in alternative investments and yield greater returns. Thus with pension funds 

being able to assume greater risk, a more vigilant watch over downside risk seems necessary.   

 

3. DATA AND METHODOLOGY 
 

3.1 Data  

 

Both monthly and daily data was obtained from Thompson Reuters Datastream for a ten-year period 

spanning 2003 to 2013. Due to the deviations from average historical stock returns caused by the 2008 financial 

crisis, a control time period was selected which focused on returns from 1996 to 2006.  
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Companies constituting the JSE’s Top 40 index were considered for the primary model tests since the top 

40 shares constitute a large majority of the JSE’s capitalization and are highly liquid. For secondary hypotheses 

testing, a wider array of 140 stocks, which were listed over the full period, was used as a database.  

 

A secondary model made use of the daily returns of the GOVI bond index (an index that tracks the returns 

on government bonds). The daily returns retrieved spanned from 1998 to 2006 and the daily stock returns were 

therefore adjusted to match the time period for this particular model.   

 

3.2 Methodology 

 

The methodology employed relies heavily on the experiments previously conducted by Estrada (2007, 

2008) and Cumova and Nawrocki (2011). Cumova and Nawrocki (2011) hypothesised that the effects of portfolio 

size on differences between mean-variance and semivariance techniques were significant. Efficient frontiers for both 

measures were created for portfolios ranging in size from 25 to 150 stocks. The findings suggested that at portfolio 

sizes greater than 50 stocks, the efficacy of semivariance metrics diminished, in terms of producing superior risk 

adjusted returns. However, for portfolios below 50 stocks, semivariance metrics tended to outperform. This result is 

certainly specific to the financial market used in their study. A possible reason for this could be the effects of 

concentration and diversification, which are inherent in all financial markets. Therefore since the JSE displays 

characteristics of high concentration, testing the effect of portfolio size on optimisation method was deemed 

relevant.  

 

The benchmark return value, used to define negative and positive returns in terms of semivariance, was 

selected as zero. This suggests that any negative return will be viewed as unfavourable and included in the 

calculation of the semivariance risk metric. The use of a zero return benchmark provides easier and more accurate 

comparability. A more realistic scenario would employ the average rate of inflation over the time period as the 

return benchmark; however this would complicate comparisons of different time periods.  

 

The semivariance equation employed also influences the validity of the results. To understand the method 

of calculating semivariance, it is important to state two equations developed by Markowitz (1952, 1959) under 

mean-variance optimisation: 

 

             
 
    (1) 

 

  
              

 
   

 
    (2) 

 

Equation (1) relates equity member returns to expected portfolio returns (E(Rp)), where    is the individual 

asset returns i and    the weighting of asset i in the portfolio. Equation (2) is the variance of the portfolio with 

  and    reflecting the respective weightings of assets i and j, and     represents the covariances between the two 

assets i and j. The above two equations model the conclusions reached by Markowitz and may be used to calculate 

efficient portfolios that plot the efficient portfolio space. However, Markowitz (1959:196) also suggested the 

following equations for calculating semivariance: 

 

  
              

 
   

 
    (3) 

 

     
 

 
                   

    (4) 

 

Equation (3) is defined as the portfolio’s semivariance. Equation (4) calculates the co-semivariance.   

represents a target return while     and     represent the returns of assets   &   respectively in period k, when these 

returns are less than the benchmark  . Finally   represents the number of periods for which the portfolio 

underperforms the benchmark.  
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In an earlier paper, Nawrocki (1991) suggested calculating a symmetric co-semivariance matrix as follows: 

 

             (5) 

 

Equation (5) represents the symmetric co-semivariance matrix. 
 
 and  

 
 represent the respective 

semideviations (square root of semivariances) and  
  
 the correlation between assets. Alternative research conducted 

by Javier Estrada (2007) yielded a different method for calculating a symmetric co-semivariance matrix. Estrada 

(2007) suggested the following formula: 

 

 
  

  
 

 
                                 

    (6) 

 

For computational ease, equations (3) and (6), outlined by Estrada (2008), was used to calculate the 

semivariance and co-semivariance matrix of returns respectively. It must be noted that while equation (6) does 

provide computational ease, it sacrifices validity insofar as that only assets that share negative returns in the same 

period are included by the equation thus the equation does not capture the complete degree to which stocks vary 

together when only negative returns are considered. 

 

Portfolio returns, standard deviations and semi deviations were calculated through normal optimisation 

techniques. The vector µ represents average returns of assets in the portfolio,   the variance-covariance matrix of 

returns and the vector ω the weight of each asset in the portfolio. Therefore: 

 

Portfolio return = ωT × µ (7) 

 

Portfolio variance = ωT ×   × ω (8) 

 

20 000 random portfolio weights were generated allowing for 20 000 associated portfolio returns, standard 

deviations and semi deviations to be calculated as per equations (7) and (8). Furthermore two risk-adjusted return 

(RAR) metrics were calculated for each of the 20 000 weightings by dividing the portfolio return by either portfolio 

standard deviation or portfolio semi deviation.  

 

The following models were constructed to test various hypotheses: 

 

1. A 5 stock and 15 stock portfolio based on daily JSE top 40 data from 1996 to 2006 

2. A 5 stock and 15 stock portfolio based on daily JSE top 40 data from 1998 to 2006 with the inclusion of a 

fixed income asset in each portfolio based on the GOVI index data from 1998 to 2006 

3. A 5 stock and 15 stock portfolio based on monthly JSE data from June 1996 to July 2006 (pre-crisis 

portfolio) and from June 2003 to July 2013 (constituting the financial crisis period and after) 

 

Model one represents the primary test, an impartial comparison of the optimisation method. Model two 

investigates the addition of a fixed-income asset. Model three compares optimisation methods with respect to post-

crisis and financial crisis periods.  

 

The first issue dealt with in terms of portfolio construction in each of the models was the random sampling 

of stocks upon which portfolios would be generated. This process involved randomly selecting a specific number of 

stocks from a larger database to create a portfolio, with each portfolio selection being independent from the previous 

one. Random sampling of stocks versus actively selecting a specific portfolio of stocks serves to reduce any 

observational bias as well as negate the ability that some stocks may potentially distort results. 

 

Each model and associated hypothesis was tested by creating a loop function. The minimum deviation and 

semi deviation portfolio (out of the 20 000 generated portfolios) as well as corresponding portfolio return was found. 

Next the risk-adjusted metrics were calculated. This process was repeated five times for five independent random 

portfolios. The average risk-adjusted metrics were calculated by averaging the aggregated metrics i.e. each average 

risk-adjusted metric represented the average of five independent random portfolios. This process was then repeated 
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fifty times rendering two sets of fifty 5-portfolio average risk-adjusted metrics, one for standard deviation and one 

for semi deviation.   

 

After running the loop function for each model, the resultant data allows for statistical testing. The general 

concept is to first determine if there is a difference in the risk-adjusted return metrics produced by both optimisation 

methods and secondly to statistically test the differences. Two tests were used to analyse the output data, an F-test, 

to test whether the output had equal variances or not. Second, a t-test was used to decide if at a specific significance 

level, the average of the output data differed or not. 

 

The biggest constraining element to the analysis was availability of computing power. Ideally 1000 

iterations of the loop function would provide more statistically smooth output; however, limitations with computer 

processing capabilities subvert this. Portfolio sizes are also constrained by computing ability. Larger portfolio sizes 

would provide more information on the behaviour of semivariance techniques but require more processing power. 

Lastly, the scope of this analysis is restricted to stocks and a single bond asset, where in reality portfolios comprise 

several classes of assets. 

 

4. RESULTS 

 

The findings of the analysis support the hypothesis that semivariance optimisation provides a better risk-

adjusted return over traditional mean-variance optimisation for stocks on the JSE.  

 

 
 

t-Test: Paired Two Sample for Means

RAR_std RAR_semi

Mean 0.057565 0.072327

Variance 1.73E-05 3.97E-05

Observations 50 50

Pearson Correlation 0.912594

Hypothesized Mean Difference 0

df 49

t Stat -34.5359

P(T<=t) one-tail 2.33E-36

t Critical one-tail 1.676551

P(T<=t) two-tail 4.67E-36

t Critical two-tail 2.009575

Table 1: 5 Stock Scenario 
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As expected, the average risk-adjusted return (RAR) is significantly greater under semivariance 

optimisation verses mean-variance (see Table 1 and 2 respectively). However, the average returns associated with 

these risk-adjusted returns remain higher for both scenarios under mean-variance optimisation. This outcome 

suggests that while mean-variance techniques generate higher returns, semivariance techniques generate 

significantly better risk-adjusted returns.  

 

 
 

Another question to deliberate is the efficacy of semivariance as portfolio size increases. Prior research 

would suggest that semivariance efficacy depreciates as portfolio size increases. The accompanying results in Table 

3, testing the difference in average risk-adjusted return attributable to mean-variance and semivariance optimisation 

for the 5 and 15 stock scenarios, confirms this hypothesis.   The resultant t-test confirms that the efficacy of the 

semivariance optimisation to return superior risk-adjusted returns has decreased from the 5 stock portfolios (mean 

difference of 0.014762) to the 15 stock portfolios (mean difference of 0.010324). In other words the benefit or ‘gap 

between methods’ achieved by semivariance optimisation has diminished. 

 

t-Test: Two-Sample Assuming Unequal Variances

diff_5 diff_15

Mean 0.014762 0.010324

Variance 9.14E-06 1.31E-05

Observations 50 50

Hypothesized Mean Difference 0

df 95

t Stat 6.658715

P(T<=t) one-tail 8.89E-10

t Critical one-tail 1.661052

P(T<=t) two-tail 1.78E-09

t Critical two-tail 1.985251

Table 3: Difference In Portfolio Sizes 

t-Test: Paired Two Sample for Means

RAR_std RAR_semi

Mean 0.071152 0.081476

Variance 1.39E-05 2.47E-05

Observations 50 50

Pearson Correlation 0.689169

Hypothesized Mean Difference 0

df 49

t Stat -20.1885

P(T<=t) one-tail 1.07E-25

t Critical one-tail 1.676551

P(T<=t) two-tail 2.14E-25

t Critical two-tail 2.009575

Table 2: 15 Stock Scenario 
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The next scenario dealt with the inclusion of a bond asset to both the 5 and 15 stock portfolios (see results 

in Table 4 and 5). It was hypothesised that while minimising deviation as an optimisation technique, bonds would be 

heavily weighted in the portfolio and furthermore that semivariance techniques would tend to place higher 

weightings on the bond asset over mean-variance techniques. In Table 4 and 5, std and semi refer to the weighting of 

the bond asset under each optimisation technique respectively. While the results do not suggest much support for the 

hypothesis, particularly in the 15 stock cases (average bond weighting of 15.8% under mean-variance and 15.9% 

under semivariance), they do show on average that bonds are weighted higher under semivariance though this is not 

statistically significant in the 15 stock scenarios. However, with a p-value of approximately 0.053, the 5 stock 

scenarios offer encouraging results as the statistical significance is marginal (average bond weighting of 67.3% 

under mean-variance and 68.1% under semivariance). The difference in results may be attributable to the effects of 

diversification. However, other extraneous variables may be distorting the results like the bond asset chosen or the 

limited iterations of data recorded.  

t-Test: Paired Two Sample for Means

std semi

Mean 0.158125 0.159159

Variance 0.000515 0.000688

Observations 50 50

Pearson Correlation 0.233305

Hypothesized Mean Difference 0

df 49

t Stat -0.24035

P(T<=t) one-tail 0.405531

t Critical one-tail 1.676551

P(T<=t) two-tail 0.811063

t Critical two-tail 2.009575

Table 5: 15 Stock And Bond Portfolio 

t-Test: Paired Two Sample for Means

std semi

Mean 0.673482 0.681648

Variance 0.003684 0.003956

Observations 50 50

Pearson Correlation 0.840402

Hypothesized Mean Difference 0

df 49

t Stat -1.65078

P(T<=t) one-tail 0.052589

t Critical one-tail 1.676551

P(T<=t) two-tail 0.105179

t Critical two-tail 2.009575

Table 4: 5 Stock And Bond Portfolio 
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The last scenario tested both methods under pre-crisis and crisis periods. This analysis is of particular 

interest as since the financial crisis, emphasis on downside risk has been greatly increased. The hypothesis suggests 

that semivariance methods served to outperform mean-variance methods during the crisis.  The results in Table 6 

summarises the difference in optimisation techniques, where Pre diff relates to the difference in risk adjusted returns 

pre-crisis (semideviation RAR – standard deviation RAR) and Post diff the difference during and post-crisis. Even 

though the output is inconclusive as we fail to reject the null hypothesis that the differences between the periods are 

not statistically significant, the mean difference is still bigger post crisis. A reason as to why this test does not 

support our hypothesis could be due to the fact that South African stocks on the JSE were well shielded against the 

more devastating effects of the financial crisis.  

 

5. CONCLUSION 

 

The resultant output from conducting the above testing suggests that semivariance optimisation does offer a 

significant benefit in terms of risk adjusted returns. While traditional methods may still offer higher absolute returns, 

there is a greater amount of relative risk attached to generating these returns. This supports the hypothesis that risk-

averse investors should consider a semivariance approach when constructing portfolios. The efficient space created 

further supports an investors risk preference in tailoring portfolios based on a downside risk framework. This 

analysis tested on an empirical level, the feasibility of semivariance on the JSE stock database, with particular 

emphasis on the top 40. The results show a noticeable improvement in risk adjusted returns for pure stock portfolios 

in this regard. Adding to the core thesis statement, both fixed income assets and pre-crisis and crisis analysis, 

showed encouraging results that risk averse investors should weight portfolios more heavily with regard to fixed 

income assets, and that during periods of recession, semivariance optimisation minimised negative portfolio returns. 

However, further testing need be employed, to determine the significant result of these two secondary hypotheses.  

 

The scope of this analysis was specific to the JSE top 40.  There is opportunity to be expanded into 

additional equity markets. Firstly, there is an opportunity to expand the portfolio sizes analysed with greater 

processing power. An important avenue for future research is to test and compare other downside risk metrics to 

semivariance. Semivariance is a special case of a general measure called the lower partial moment. Other lower 

partial moments quantify risk differently, thus may prove more applicable. 
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