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ABSTRACT 
 

This paper examines the price volatility and hedging behavior of commodity futures indices and 
stock market indices. We investigate the weekly hedging strategies generated by return-based and 
range-based asymmetric dynamic conditional correlation (DCC) processes. The hedging 
performances of short and long hedgers are estimated with a semi-variance, low partial moment 
and conditional value-at-risk. The empirical results show that range-based DCC model 
outperforms return-based DCC model for most cases. 
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1. INTRODUCTION 
 

edging strategies are the cornerstone of portfolio theory and portfolio risk management. This requires 
minimizing the risk of the portfolio for a given return. This principle is called the minimum-variance 
criterion. It is now common to hedge a spot position with futures (Johnson, 1960; Stein, 1961) but 

also to hedge one asset with another (Bos & Gould, 2007). This requires a prior understanding of the dynamics of 
the considered assets, the link between them; i.e., correlation and cointegration. Some studies show that neglecting 
these features would lead to an inaccurate hedging strategy underperforming alternative strategies. 
 

The recent literature on hedging performance employs bivariate models and mainly the bivariate GARCH-
based models. Baillie and Myers (1991) used bivariate GARCH models to estimate the optimal hedge ratio to hedge 
spot prices of six commodity prices with futures contracts; they conclude that the dynamic hedge ratios outperform 
the static ones. Kroner and Sultan (1993) consider a model that accounts for both the long-run cointegration between 
assets and the heteroscedasticity in the error dynamics. Results show that their model outperforms the naïve and 
conventional hedging, that include time-invariant unconditional moments, both within-sample and out-of-sample. 
Lien (2004) assesses the effects of omitted cointegration relationship between spot and futures prices on optimal 
hedge ratio and hedging effectiveness and finds that omitting cointegration leads to a smaller hedge ratio but the loss 
of hedging effectiveness is minimal. More recently, in contrast to the previous findings, Lien and Tse (2002) fail to 
reject the null of constant-correlation based optimal hedging ratio computation. They further argue that the constant 
correlation optimal hedge ratio outperforms the time-varying optimal hedge ratio. 
 

Because of the mixed results found in the literature, the research question on the optimal hedge ratio is still 
of paramount importance. Numerous papers attempt to derive the optimal of hedging ratio by considering different 
extensions. Chen et al. (2014) compute the optimal hedge ratio by minimizing the riskiness of hedged portfolio 
returns.1 Results show that the riskiness-minimizing hedge ratio is effective in reducing the riskiness of the spot as 
compared to the variance-minimizing hedge ratio. Choudhry (2003) shows that the time-varying hedge ratio based 
on bivariate GARCH and bivariate GARCH-X models outperforms the constant minimum-variance hedge ratio.  
 

Chen et al. (2006) estimate a time-varying optimal hedge ratio by using a range-based multivariate 
volatility. Out-of-sample forecasting shows that there is a gain in hedging effectiveness in terms of percentage 

                                                
1 The riskiness measure is defined in Aumann and Serrano (2008) as the reciprocal of the absolute risk aversion of an individual with constant 
absolute risk aversion who is indifferent between taking and not taking that gamble. 
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variance reduction over when comparing its performance to that of static methods and alternative time-varying 
methods. 
 

The major contributions of this paper are twofold. First, we investigate the weekly hedging strategies 
relying on both return-based and range-based asymmetric dynamic conditional correlation dynamic conditional 
correlation processes. Over the existing papers our approach allows not only to account for the variability of both 
assets but also the co-movement between pairs of the considered assets. Second, the hedging performances of short 
and long hedgers are estimated with semi-variance, low partial moment and conditional value-at-risk. These 
measures are common in the finance literature as risk measurements. The semivariance produces better portfolios 
than those based on variance. The low partial moment has theoretically favorable features and is empirically 
preferred to the mean-variance optimization strategy. Value-at-Risk is a widely accepted measure of financial risk 
and is proved to outperform the mean-variance portfolio optimization strategy. 
 

The remainder of the paper is organized as follows. Section 2 introduces the econometric models used in 
the paper and discusses their advantages relative to alternative modeling techniques used in the related literature. 
Section 3 explains each of the above optimal hedging ratio measures. Section 4 presents the data used and discusses 
the main findings. Section 5 concludes. 

 
2. METHODOLOGY 
 
2.1 The GARCH Model 
 

Conditional volatility models of ARCH type are concerned with the modeling of the second moments of 
the shocks to returns. Although such shocks are typically assumed to be independent, they are likely to be dependent 
in practice. Indeed, the generalization of univariate GARCH model to a multivariate setting is written as follows: 

 
),0(/ 1 ttt HN→Ι −ε  

 
where the tε  is the vector of the error terms of the conditional mean. )( '
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variance-covariance matrix of assets returns with m is the number of assets. 
 

Unless tη  is a sequence of independently and identically distributed random vectors, or alternatively a 

martingale difference process, the assumption of constant conditional correlation - 
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valid, so that it would be more likely that the condition correlations { }ijtt ρ=Γ  are time-varying { }ijtt ρ=Γ  for 
i,j = 1,…,m and t = 1,…,T. Engle and Kroner (1995) developed the BEKK2 model to capture the time-varying 
behaviour of conditional covariances. The BEKK(1,1) model has the following representation: 
 

BQBAACCQ tttt 111 '''' −−− ++= εε  (1) 
 
where the second term in (1) is singular. In addition to including a large number of parameters, which leads to 
serious computational difficulties, BEKK models the dynamic conditional covariances rather than what is typically 
                                                
2 BEKK stands for Baba, Engle, Kraft, & Kroner. 
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of primary interest to practitioners in finance, namely the dynamic conditional correlations. In the specific model 
given in (1), BEKK can be interpreted as accommodating serial correlation of unknown form in the standardized 
residuals. Although it was not considered explicitly in Engle and Kroner (1995), the dynamic conditional 

correlations associated with BEKK can be derived from tttt DDQ Γ=  as 11 −−=Γ tttt DQD , where 
2/1)( tt diagQD = . The element of tD  are defined as univariate GARCH models as follows: 
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In order to capture the dynamics of time-varying conditional correlation, tΓ , Engle (2002) and Tse and 

Tsui (2002) proposed the closely related Dynamic Conditional Correlation (DCC) model and the Variable 
Conditional Correlation (VCC) model, respectively, as extensions of the CCC model. No explanation was given as 
to how the shocks to returns in either the VCC or DCC model would have to be modified to yield the dynamic 
structure of the conditional correlations. The DCC model is given by: 
 

12
'
11121 )1( −−− ++−−= tttt ZZZ θηηθθθ  (3) 

 
where the second term in (3) is singular, and 1θ  and 2θ  are scalar parameters. When ,021 ==θθ  Z  in (3) is 

equivalent to the CCC model. As tZ  in (3) is conditional on the vector of standardized residuals, (3) would be the 

conditional covariance matrix, and hence also the conditional correlation matrix, if tη  were a vector of 

independently and identically distributed random variables. However, there is no discussion of the properties of tη  
within the DCC model framework3 although Engle (2002, p. 342) does state that “the errors are a Martingale 
difference.” As (3) does not satisfy the definition of a conditional correlation matrix, Engle (2002) calculates the 
appropriate dynamic conditional correlation matrix as follows: 
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The VCC model uses a transformation of the standardized shocks to estimate the time-varying conditional 
correlations, written as follows: 
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3 Engle (2002) states that “the errors are a Martingale difference by construction” in suggesting how to estimate the model. 
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where the typical element in the non-singular second term, which is a lagged recursive conditional correlation matrix 
given by: 
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where M ≥  m. When ,021 ==θθ  Γ  in (5) is equivalent to the CCC model. No standardization of (5) is required 

because it satisfies the definition of a conditional correlation matrix, albeit of standardized shocks, ,itη  that are not 
independently distributed, although they are explicitly (and incorrectly) assumed to be serially independently 
distributed in Tse and Tsui (2002). 
 

The primary structural difference between DCC and VCC is that (5) standardizes tZ  to obtain the dynamic 
conditional correlation matrix, whereas VCC assumes that the time-varying conditional correlation matrix can be 
calculated recursively using (5). 
 

Chan et al. (2003) proposed the Generalized Autoregressive Conditional Correlation (GARCC) model 
which, unlike the DCC and VCC models, motivates the dynamic structure of the conditional correlations explicitly 
through serial correlation in the vector of standardized shocks. They showed that, if itη  follows an autoregressive 
process rather than being a sequence of independently and identically distributed random vectors, that is: 
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Amore general dynamic model than DCC and VCC can be obtained when ∞→L , as follows: 

 

12
'
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where 1Φ  and 2Φ  are ( mm × ) matrices and ⊗  is the Hadamard (or element by element) product. The first 
equation in (8) was introduced in the univariate ARCH literature (that is, for m = 1) by Tsay (1987) as a random 
coefficient autoregressive approach to deriving ARCH models, with a straightforward extension to univariate 
GARCH models. Chan et al. (2003) showed that, when iliil δφφ 1=  and ),0(~ 1

2
−l
iil iid φδ , (8) is the dynamic 

conditional correlation matrix of the standardized residuals, ,itη  which are not independently distributed because of 
the presence of serial correlation in (7). The GARCC conditional correlation matrix can be obtained formally as: 
 

Γt = diagWt( )−1/2{ }Wt diagWt( )−1/2{ }  (9) 

 
which makes clear the importance of recognizing the serial correlation in the vector of standardized residuals. Chan 
et al. (2003) show that the standardization in (8) is not required, in practice, so that (8) is effectively the conditional 
correlation matrix. However, the standardization in (4) for the DCC model is required as (3) does not satisfy the 
definition of a conditional correlation matrix of the standardized shocks. 
 

As an extension of the above model, asymmetric effects can be accommodated in GARCC by modifying 
the conditional covariance matrix in (8) with the indicator function in (5) to produce the asymmetric GARCC 
(AGARCC) model. 
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2.2 The Measure of Hedging Performance 
 

The out-of-sample hedging performances of return-based and range-based DCC-GARCH models for both 
short and long hedgers are evaluated not only with traditional variance-based and utility-based measurements but 
also with approaches based on downside risk, such as semi-variance, low partial moment and conditional value-at-
risk. These evaluation measures are briefly described as follows: 
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where h ,tr  define as the return of hedged portfolio and calculated as: 
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γ  is the degree of risk aversion and τ  is the target return and 0,  n=1τ = . 
 
3. EMPIRICAL RESULTS 
 

The weekly data used for our empirical study is composed of futures prices of three major stock indices 
(S&P 500, DAX, and Nikkei 225), two precious metal commodities prices (gold and silver), and one crude oil price 
(WTI) spanning the period from January 1, 1993 to December 25, 2009. These data (including high, low, and close 
prices) for the entire period are collected from DataStream. 
 

The out-of-sample hedging performances of return-based (DCC-GARCH) and range-based (DCC-CARR) 
models are reported in Tables 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Journal of Applied Business Research – July/August 2014 Volume 30, Number 4 

Copyright by author(s); CC-BY 1058 The Clute Institute 

Table 1: Out-of-Sample Evaluation of Hedging Performance 
 Variance Utility Semi-Variance LPM CVaR 

Panel 1: Stock Markets 
S&P 500-short      
DCC-GARCH 98.362* 98.348* 98.657* 99.896* 87.209* 
DCC-CARR 98.511* 98.515* 98.839* 99.918* 88.343* 
S&P 500-long      
DCC-GARCH 98.362* 98.375* 97.928* 99.655* 86.415* 
DCC-CARR 98.511* 98.507* 98.030* 99.685* 86.912* 
DAX-short      
DCC-GARCH 95.897* 95.820* 93.718* 97.864* 79.436* 
DCC-CARR 96.092* 96.020* 93.983* 97.948* 79.998* 
DAX-long      
DCC-GARCH 95.897* 95.970* 97.638* 99.460* 87.234* 
DCC-CARR 96.092* 96.161* 97.773* 99.496* 87.586* 
Nikkei225-short      
DCC-GARCH 97.915* 98.028* 98.295* 99.821* 84.702* 
DCC-CARR 98.360* 98.364* 98.556* 99.874 85.340 
Nikkei225-long      
DCC-GARCH 97.915* 97.803* 97.516* 99.626* 84.676* 
DCC-CARR 98.360* 98.356* 98.178* 99.745* 87.719* 
Panel 2: Commodities 
Gold-short      
DCC-GARCH 97.125* 97.214* 97.614* 99.567* 84.989* 
DCC-CARR 98.198* 98.220* 97.922* 99.626* 85.940* 
Gold-long      
DCC-GARCH 97.125* 97.037* 96.728* 99.228* 85.405* 
DCC-CARR 98.198* 98.176* 98.472* 99.813* 88.335* 
Silver-short      
DCC-GARCH 97.677* 97.690* 98.254* 99.699* 86.919* 
DCC-CARR 97.738* 97.708* 98.010* 99.668* 85.062* 
Silver-long      
DCC-GARCH 97.677* 97.664* 96.865* 98.584* 87.188* 
DCC-CARR 97.738* 97.767* 97.352* 99.063* 87.823* 
WTI-short      
DCC-GARCH 92.290* 92.282* 93.002* 95.510* 85.586* 
DCC-CARR 91.985* 91.952* 93.441* 96.309* 83.095* 
WTI-long      
DCC-GARCH 92.290* 92.298* 91.445* 93.599* 86.615* 
DCC-CARR 91.985* 92.017* 90.233* 91.658* 86.349* 

Note: The numbers in the table indicate hedging performance as described in Section 2.2. Variance is for E1, Utility is for E2, Semi-variance is 
for E3, LPM is for E4, and CVaR is for E5. * indicates that the coefficients are significant at the 1% level. 
 

To investigate the possible influence on hedging performance while considering transaction cost, following 
the procedure given in Kroner and Sultan (1993), we assume that the hedging positions are rebalanced if and only if 
there is benefit to do so, that is, a mean-variance expected utility-maximizing investor will rebalance at time t if and 
only if increased utility from rebalancing is great enough to offset transaction costs. Accounting for these transaction 
costs, a hedger’s expected daily utility is calculated as 

h hE(R ) var(R ) TC− γ − , where TC is transaction costs. 
The results are presented in Table 2. 
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Table 2: Out-of-Sample Evaluation of Hedging Performance with Utility Metric under Transaction Cost 
 DCC-GARCH DCC-CARR 

Panel 1: Stock Markets 
S&P 500-short   
TC = 0.01% 98.387 (94) 98.498 (79) 
TC = 0.02% 98.387 (94) 98.498 (77) 
TC = 0.03% 98.387 (94) 98.494 (74) 
S&P 500-long   
TC = 0.01% 98.418 (94) 98.492 (79) 
TC = 0.02% 98.418 (94) 98.491 (79) 
TC = 0.03% 98.418 (94) 98.488 (74) 
DAX-short   
TC = 0.01% 95.812 (110) 95.978 (83) 
TC = 0.02% 95.812 (110) 95.978 (83) 
TC = 0.03% 95.812 (110) 95.978 (81) 
DAX-long   
TC = 0.01% 95.937 (110) 96.133 (83) 
TC = 0.02% 95.937 (110) 96.133 (83) 
TC = 0.03% 95.937 (110) 96.132 (81) 
Nikkei225-short   
TC = 0.01% 97.998 (98) 98.392 (50) 
TC = 0.02% 97.998 (97) 98.390 (45) 
TC = 0.03% 97.998 (97) 98.391 (42) 
Nikkei225-long   
TC = 0.01% 97.745 (98) 98.368 (50) 
TC = 0.02% 97.744 (97) 98.367 (45) 
TC = 0.03% 97.744 (97) 98.366 (42) 
Panel 2: Commodities 

 DCC-GARCH DCC-CARR 
Gold-short   
TC = 0.01% 97.329 (64) 98.237 (56) 
TC = 0.02% 97.329 (64) 98.237 (54) 
TC = 0.03% 97.328 (64) 98.238 (53) 
Gold-long   
TC = 0.01% 97.171 (64) 98.216 (56) 
TC = 0.02% 97.171 (64) 98.216 (54) 
TC = 0.03% 97.171 (64) 98.217 (53) 
Silver-short   
TC = 0.01% 97.728 (61) 97.668 (106) 
TC = 0.02% 97.728 (61) 97.668 (105) 
TC = 0.03% 97.728 (60) 97.668 (105) 
Silver-long   
TC = 0.01% 97.699 (61) 97.726 (106) 
TC = 0.02% 97.699 (61) 97.725 (105) 
TC = 0.03% 97.699 (60) 97.726 (105) 
WTI-short   
TC = 0.01% 92.284 (119) 91.883 (106) 
TC = 0.02% 92.284 (119) 91.883 (104) 
TC = 0.03% 92.284 (119) 91.883 (103) 
WTI-long   
TC = 0.01% 92.300 (119) 91.948 (106) 
TC = 0.02% 92.300 (119) 91.948 (104) 
TC = 0.03% 92.284 (119) 91.948 (103) 

Note: The numbers in the table indicate hedging performance as described in Section 2.2. Variance is for E1, Utility is for E2, Semi-variance is 
for E3, LPM is for E4, and CVaR is for E5. The number of portfolio rebalancings is given in parentheses. * indicates that the coefficients are 
significant at the 1% level. 
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4. CONCLUSION 
 

This article reinvestigates the weekly hedging strategies generated by return-based and ranged-based 
dynamic conditional correlation (DCC) models for three stock indices, two metal commodities, and one crude oil. 
Following the work of Cotter and Hanly (2006), the hedging performances of short and long hedgers are evaluated 
not only with traditional variance-based and utility-based measurements but also with approaches based on 
downside risk, such as semi-variance, low partial moment, and conditional value-at-risk. The empirical results 
indicate that range-based DCC model outperforms return-based DCC model for most cases, which is also supported 
by Chou et al. (2009). The DCC-CARR Process incorporates both the superiority of range in forecasting volatility 
and the elasticity of the GARCH model. The estimation results may provide an alternative to risk management and 
asset allocation. At last, a range-based dynamic hedging strategy sustains its predominance even if the transaction 
cost is considered. 
 
AUTHOR INFORMATION 
 
A. Lahiani is an Associate Professor of Economics at Université d’Orléans and ESC Rennes Business School in 
France. He earned his Ph.D. in Economics from the University Paris X Nanterre in France and the University of 
Geneva in Switzerland. His research interests include the study of long memory models and threshold models. 
Professor Lahiani’s research papers are published in the International Journal of Forecasting, Economic Modelling, 
Quarterly Review of Economics and Finance, Research in International Business and Finance, Energy Economics 
and Energy Policy among others. E-mail: amine.lahiani@univ-orleans.fr 
 
Dr. Khaled Guesmi is a Professor of Finance in IPAG Business School. He holds an MSc and a PhD in Economic 
from the University of Paris Ouest Nanterre la Défense (France). He is also an Associate Researcher at EconomiX, 
University of Paris Ouest Nanterre la Défense. His principal research areas concern emerging markets finance, 
international cost of capital, energy finance, and stock market integration. His most recent articles are forthcoming 
and published in refereed journals such as Economic Modelling, Journal of Banking and Finance, Energy 
Economics, Economics Bulletin, Macroeconomic Dynamics, and Journal of Applied Business and Research. E-mail: 
khaled.guesmi@ipag.fr (Corresponding author) 
 
REFERENCES 
 
1. Aumann, R. J., & Serrano, R. (2008). An economic index of riskiness. Journal of Political Economy, 116, 

810-836. 
2. Baillie, R. T., & Myers, R. J. (1991). Bivariate GARCH estimation of the optimal commodity futures 

hedge. Journal of Applied Econometrics, 6, 109-124. 
3. Billio, M., & Caporin, M. (2004). A generalized dynamic conditional correlation model for portfolio risk 

evaluation. (Unpublished paper). Department of Economics, University of Venice Ca’ Foscari. 
4. Billio, M., Caporin, M., & Gobbo, M. (2004). Flexible dynamic conditional correlation multivariate 

GARCH for asset allocation. (Unpublished paper). Departement of Economics, Univariaty of Venice Ca’ 
Foscari. 

5. Bos, C. S., & Gould, P. (2007). Dynamic correlations and optima hedge ratios. (Tinbergen Institute 
Discussion Paper 07-025/4). 

6. Capiello, L., Engle, R. F., & Sheppard, K. (2003). Asymmetric dynamics in the correlations of global equity 
and bond returns. (ECB Working paper No. 204). 

7. Chan, F., Hoti, S., & McAleer, M. (2003). Generalized autoregressive conditional correlation. 
(Unpublished paper). School of Economics and Commerce, University of Western Australia. 

8. Chen, Y. T., Ho, K. Y., & Tzeng, L. Y. (2014). Riskiness-minimizing spot-futures hedge ratio. Journal of 
Banking & Finance, 40, 154-174. 

9. Chen, Y. T., Chou, R. Y., Liu, N., & Shyy, G. (2006). Estimating time-varying hedge ratios with a range 
based multivariate volatility model. 2007 AEA Conference Papers. 

10. Chou, R. Y., Wu, C. C., & Liu, N. (2009). Forecasting time-varying covariance with a range-based 
dynamic conditional correlation model. Review of Quantitative Finance and Accounting, 33, 327-345. 

 



The Journal of Applied Business Research – July/August 2014 Volume 30, Number 4 

Copyright by author(s); CC-BY 1061 The Clute Institute 

11. Choudhry, T. (2003). Short-run deviations and optimal hedge ratio: Evidence from stock futures. Journal of 
Multinational Financial Management, 13, 171-192. 

12. Cotter, J., & Hanly, J. (2006). Reevaluate hedging performance. Journal of Futures Markets, 26(7), 677-
702. 

13. Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized 
autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20, 
339-350. 

14. Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 
20, 339-350. 

15. Hafner, C., & Franses, P. H. (2003). A generalized dynamic conditional correlation model for many asset 
returns. Econometric Institute Report EI 2003-18, Erasmus University Rotterdam.  

16. Johnson, L. L. (1960). The theory of hedging and speculation in commodity futures. Review of Economic 
Studies, 27(3), 139-151. 

17. Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency 
futures. Journal of Financial and Quantitative Analysis, 4, 535-551. 

18. Lien, D. (2004). Cointegration and the optimal hedge ratio: the general case. The Quarterly Review of 
Economics and Finance, 44, 654-658. 

19. Lien, D., & Tse, Y. (2002). Some recent development in futures hedging. Journal of Economic Surveys, 16, 
357-396. 

20. Stein, J. L. (1961). The simultaneous determination of spot and futures prices. The American Economic 
Review, 51, 1012-1025. 

21. Tsay, R. Conditional heteroskedastic time series models. Journal of the American Statistical Association, 
82, 590-604. 

22. Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate GARCH model with time-varying correlations. Journal 
of Business and Economic Statistics, 20, 351-362. 



The Journal of Applied Business Research – July/August 2014 Volume 30, Number 4 

Copyright by author(s); CC-BY 1062 The Clute Institute 

NOTES 


