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ABSTRACT 

 

This paper studies the market efficiency of modern Russian stock market. In particular, we look at 

the long memory in stock market volatility in the Russian financial market. To examine the 

temporal dependencies in depth we utilize major sectors of the Russian stock market. We take a 

GARCH modeling approach. Specifically, we estimate a FIGARCH model proposed by Baillie et 

al. (1996) using daily returns. We find evidence of long memory in all sectors of the Russian 

equity market, implying that, all the market sectors under investigation are weak form inefficient. 

Our results show that the volatility has a predictable structure in all the sectors of modern 

Russian stock market, signifying the need of regulatory and economic reforms within the Russian 

financial system. 
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1. INTRODUCTION 
 

he purpose of this study is to re-examine the market efficiency of the modern Russian stock market. 

Specifically, we look at the long memory in stock market volatility in the Russian financial market. 

To inspect the temporal dependencies in depth we utilize major sectors of the Russian stock market. 

Particularly, we investigate the oil and gas, manufacturing, consumer goods, metals & mining, telecom, power, and 

financial sectors of the Russian stock market. To study the stock market long memory we estimate FIGARCH model 

proposed by Baillie et al. (1996) using daily returns calculated by Moscow Interbank Currency Exchange (MICEX). 
 

On the subject of the presence of apparent temporal dependencies in financial market volatility there exist 

mixed results in the existing literature. For instance, Green and Fielitz (1977), Peters (1996), Barkoulas et al. (2000), 

Cajueiro and Tabak (2004), Panas (2001), Tolvi (2003), Nawrocki (1995), Nath (2001), and Huang and Yang (1999) 

are among those who came to the conclusion that capital markets are characterized by long memory processes. 

Whereas, a large number of papers do not find any significant and robust evidence of positive long-term persistence 

in the financial markets (see, e.g., Aydogan & Booth, 1988; Lobato & Savin, 1998; Hiemstra & Jones, 1997; Lux, 

1996; Chow et al., 1996; Grau-Carles, 2005). At the same time, some researchers found temporary or little evidence 

of long-term memory in different stock markets (see, e.g., Lo, 1991; Willinger et al., 1999; Barkoulas & Baum, 

1996; Cajueiro & Tabak, 2005; Sadique & Silvapulle, 2001; Henry, 2002; Mills, 1993; Cavalcante & Assaf, 2004; 

Zhuang et al., 2000). 
 

To study the temporal dependencies in financial market volatility, researchers have applied different 

methodologies such as, classical rescaled-range (R/S) analysis (see, e.g., Hurst, 1951; Mandelbrot, 1972), modified 

rescaled-range (R/S) analysis introduced by Lo (1991), the spectral regression method suggested by Geweke and 

Porter-Hudak (1983) and different GARCH specifications. However, a very careful literature review shows that 

FIGARCH models outperform many of the other conditional heteroscedastic models in predicting and modeling 

different classes of assets, such as stock returns (see, e.g., Bollerslev & Mikkelsen, 1996; Beine et al., 2002; 

Banerjee & Sarkar, 2006), exchange rate returns (see, e.g., Baillie et al., 1996; Antonakakis & Darby, 2013; 

Vilasuso, 2002), and futures returns (see, e.g., Baillie et al., 2007; Jin & Frechette, 2004 in different market settings. 
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Following the prior literature, we estimate a FIGARCH model to investigate the long-range dependence of 

different sectors of the Russian equity market. Most of the above mentioned studies focusing on the stock returns 

long-term memory belongs to the developed markets. There exist some papers who explore this phenomenon in 

emerging markets of different regions as well, though the work is still very scarce. Surprisingly, the Russian 

financial market could not attract the attention of financial researchers despite its diverse nature and potential for 

future investors as it should. Also, as per the author’s knowledge, the framework adopted in this study has rarely 

been utilized in the case of the Russian market and particularly in a sectoral setting, or at least as used in this study. 

 

We find evidence of long memory in the volatility of all the sectors of the Russian equity market, implying 

that, all the market sectors under investigation are weak form inefficient. Our results show that the volatility has a 

predictable structure in all the sectors of the modern Russian stock market, indicating the need of regulatory and 

economic reforms within the Russian financial system. It is our connotation that a better understanding of the nature 

of dependence (long memory processes), within the Russian market, is inevitable for international investors, 

multinational corporations, and portfolio managers, who all are involved in minimizing and managing their financial 

risk exposure and are in search of portfolio diversification opportunities. 

 

The plan of the paper is as follows. The next section describes the FIGARCH model used to study long-

range dependence in stock market returns. Section 3 presents the data in this study. Section 4 shows the empirical 

results. Section 5 concludes. 

 

2. MODEL SPECIFICATIONS 

 

The Autogressive Conditional Heteroscedasticity (ARCH) process proposed by Engle (1982) and 

generalized ARCH (GARCH) by Bollerslev (1986) are well known for volatility modeling and forecasting of stock 

returns. More precisely, ARCH family models capture the most prominent features of the time series data (also 

called stylized facts), such as volatility clustering, excess kurtosis, and fat-tailedness. However, to explain how 

persistent volatility is, the GARCH process can easily be extended to identify the long memory process, a common 

observation in actual data, through a fractionally integrated procedure proposed by Baillie et al. (1996), specifically, 

the Fractionally Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) process. 

 

We start our empirical specification with the GARCH (p, q) process introduced by Bollerslev (1986), we 

can write the conditional variance as: 
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The primary constraint of this model is that all the expounding variables must be positive i.e.,
0,, w

, 

this is known as the non-negativity restriction. Further, for stationarity we require that 
 

 is less than unity. 

However, if this restriction violates, i.e., 
1 

 we conclude that the shocks are persistent. Hence, to account 

for the persistency of shocks an IGARCH (1, 1) model proposed by Engle and Bollerslev (1986) can be written as: 
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where 10  i  

 

The IGARCH model implies infinite persistence of the conditional variance to a shock in squared returns. 

The IGARCH process can also be illustrated as an ARMA (m, p) process: 
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The fractionally integrated GARCH or FIGARCH class of models is obtained by replacing the first 

difference operator (1 − L) in the above model with the fractional differencing operator (1 − L)
 d

 where d is a 

fraction 0 < d < 1. Thus, the FIGARCH class of models can be obtained by considering: 

 

  tt

d LwLL  )(1)1)(( 2   

 

The FIGARCH process identifies potential presence of long memory or the subsistence of dependencies in 

financial time series mainly due to the hyperbolically decaying autocorrelation function, or in other words, long 

memory process can be illustrated through a fractionally integrated procedure. This means, the level of integration is 

less than one, however superior to zero, implying that the impacts of a shock continue over an extensive period of 

time. The main advantage of the FIGARCH process is that it allows for long memory in the conditional variance 

which is characterized by the fractional integration parameter d and the short-term dynamics can be modeled 

through the traditional GARCH parameters. Following Baillie et al. (1996) we adopt the Quasi maximum likelihood 

estimation (QMLE) technique. 

 

DATA AND DESCRIPTIVE STATISTICS 

 

The data comprise daily price indices calculated by Moscow Interbank Currency Exchange (MICEX) for 

the Russian equity market: oil and gas, manufacturing, consumer goods, metals & mining, telecom, power, and 

financial sectors. The dataset starts from December 2004 and ends at September 2013, yielding 2164 daily 

observations in total for each series. The beginning of our data set is due to the availability of MICEX sectoral 

indices. Figure 1 shows the development of different sectors of the Russian stock market. All the data are retrieved 

from the official website of MICEX and daily returns are constructed as the first difference of logarithmic prices 

multiplied by 100. 

 

Figure 1: Development of Different Sectors of the Russian Equity Market from Dec. 2004 - Sep. 2013 

 

Before formal investigation of long memory in the Russian equity market, we inspect the time-series 

properties of our data set using primary techniques, for instance, stationarity in the time series is checked by 

applying the Augmented Dickey Fuller (ADF) test. To check the null hypothesis of normal distribution, we calculate 

the Jarque-Bera test statistic. Finally, to investigate the null that autocorrelation coefficients up to 20 lags are zero, 

we compute Ljung and Box (1978) test statistic, together with the ARCH LM-statistic (five lags) on each return 

series. The results shown in Table 1, in general, support the findings of prior studies and allow us to reject the null 

hypothesis that returns have unit root in favor of alternate hypothesis of stationarity; P-values are reported in the 

table (even at 1% MacKinnon critical value). The Jarque-Bera normality and Engle's Lagrange Multiplier ARCH 

tests both reveal that equity return data of all the sectors of MICEX exhibit non-normality and ARCH effects; P-

values are reported in the table. These primary findings grant confirmation against the market efficiency hypothesis 

and allow us to use GARCH specification through LB statistics and ARCH LM-statistic. 
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Table 1: Descriptive Statistics of the Russian Stock Market for the Daily Return Indices: Dec. 2004 - Sep. 2013 

Panel A: Summary Statistics 

Index Mean Std. dev. Skewness Kurtosis J-B test ADF Q-Stat ARCH-LM 

Consumer Goods 0.080 1.403 -0.320 13.293 9588.841 <0.001 <0.001 <0.001 

Oil & Gas    0.057 2.372 0.394 24.416 41409.700 <0.000 <0.000 <0.000 

Financials 0.070 2.324 -0.089 19.858 25627.110 <0.000 <0.000 <0.000 

Metals & Mining 0.036 2.377 -0.571 13.127 9364.327 <0.000 <0.000 <0.000 

Manufacturing 0.028 2.216 -0.237 13.322 9626.668 <0.000 <0.000 <0.000 

Power 0.006 2.146 -0.927 22.068 33092.070 <0.000 <0.000 <0.000 

Telecom 0.037 1.885 -1.186 20.836 29190.340 <0.000 <0.000 <0.000 

Panel B: Pair Wise Sector Correlations 

Index Consumer Goods Oil & Gas Financials Metals & Mining Manufacturing Power Telecom 

Consumer Goods 1.000       

Oil & Gas 0.288 1.000      

Financials 0.306 0.814 1.000     

Metals & Mining 0.317 0.667 0.584 1.000    

Manufacturing 0.308 0.467 0.454 0.579 1.000   

Power 0.362 0.703 0.671 0.570 0.462 1.000  

Telecom 0.328 0.777 0.729 0.635 0.486 0.718 1.000 

 

EMPIRICAL RESULTS 

 

Using the MICEX calculated daily stock return data, we re-examine the subject of whether or not actual 

stock market prices reveal temporal dependence. We utilize major sectors of the Russian stock market. Mainly, we 

investigate the oil and gas, manufacturing, consumer goods, metals & mining, telecom, power and financial sectors 

of the Russian stock market. Our empirical investigation is based on the GARCH family models. First, to model the 

volatility dynamics of different sectors of the modern Russian equity market, we utilize the traditional GARCH (1, 

1) model. Second, to check the volatility persistence, we adopt IGARCH (1, 1) technique. Finally, to investigate the 

long run dependence in stock returns of different sectors of MICEX, we employ FIGARCH (1, 1) framework. The 

results of estimated GARCH, IGARCH and FIGARCH models are reported in Table 2. 

 

Panel A of Table 2 presents GARCH (1, 1) estimations of all the sectors under investigation. The results 

show that both the ARCH and GARCH parameters (α and β) are statistically significant for all the indices under 

investigation, which confirm the existence of the time-varying conditional variance. It is also evident from Panel A 

of Table 2 that the parameters of the conditional variance equations are all positive and meet the positivity constraint 

for the GARCH (1, 1) specification. However, the sum of α and β parameters is very close to the unity, indicating 

the persistence of the volatility in all the indices. One shortcoming of the traditional GARCH model is its failure to 

capture long-range dependence or to account for persistence of volatility in the data. Hence, we utilize the IGARCH 

process proposed by Engle and Bollerslev (1986). The IGARCH model implies infinite persistence of the 

conditional variance to a shock in squared returns. Panel B of Table 2 presents IGARCH (1, 1) estimations of all the 

sectors under investigation. The results are very similar to the standard GARCH (1, 1) estimations presented in 

Panel A, confirming the temporal dependencies in all the sectors of Russian equity market. 

 

Finally, FIGARCH (1, 1) model is employed in order to investigate the existence of possible temporal 

dependencies in the volatility of all the sectors of the Russian equity market under investigation. The FIGARCH 

process identifies potential presence of long memory or the subsistence of dependencies in financial time series 

mainly due to the hyperbolically decaying autocorrelation function. Results from this model are shown in Panel C of 

Table 2. As per our results, the fractional differencing parameter, d, is found to be significantly different from zero 

and is within the theoretical value (i.e., 0 < d < 1). This indicates that the volatility of all the sectors of the Russian 

equity market under investigation clearly exhibits a long memory process. It is our connotation that our findings 

show the importance of modeling long memory in volatility and suggests that future volatility depends on its past 

realizations and, as a result, is predictable. Our findings also support the findings of prior studies on both emerging 

and developed markets. 

 

To conclude, we report the sample skewness and kurtosis for the standardized residuals, (denoted by b3 and 

b4 in Table 2), also Ljung-Box portmanteau tests for up to 20th-order serial correlation in the standardized and the 
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squared standardized residuals (denoted by Q20 and Q
2
20 in table 2) as diagnostic tests for all three models. While 

comparing different GARCH family models based on diagnostic tests, we found FIGARCH model performs better 

than the other two models, which is again consistence with the most recent prior research on the topic. 

 
Table 2: Long Memory in the Russian Stock Market Volatility, Estimated From A Uni-Variate GARCH (1, 1),  

IGARCH (1, 1) and FIGARCH (1, 1) Model of Daily Return Indices from Dec. 2004 - Sep. 2013. 

Panel A: GARCH(1. 1) Estimations  

Parameters Consumer Goods Oil & Gas Financials Metals & Mining Power Telecom Manufacturing 

µ 0.0337 0.077* 0.070* 0.303 -0.006 0.044* 0.027 

ω 0.052* 0.049* 0.042* 0.055* 0.023 0.056* 0.062* 

α 0.212* 0.091* 0.091* 0.080* 0.141* 0.138* 0.166* 

β 0.799* 0.892* 0.899* 0.904* 0.870* 0.838* 0.833* 

b3 1.647* -0.311* 0.087* -0.439* -0.241* -0.273* -0.087* 

b4 28.732* 6.849* 5.466* 5.414* 4.644* 5.037* 7.578* 

Q(20) 69.53* 9.610 26.391 25.920 78.474* 39.007* 56.996* 

Q2
(20) 3.859 8.454 21.938 8.415 14.393 11.155 17.144 

Panel B: IGARCH(1. 1) Estimations 

Parameters Consumer Goods Oil & Gas Financials Metals & Mining Power Telecom Manufacturing 

µ 0.035 0.079* 0.071* 0.027 -0.006 0.042* 0.027 

ω 0.055* 0.034* 0.035* 0.042* 0.028* 0.051* 0.062* 

β 0.799* 0.903* 0.901* 0.905* 0.869* 0.833* 0.834* 

d 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

b3 1.616* -0.298* 0.113* -0.457* -0.252* -0.234* -0.088* 

b4 28.585* 7.917* 5.602* 5.834* 4.656* 5.315* 7.578* 

Q(20) 70.712* 10.198 27.575 25.597 78.758* 37.404* 56.993* 

Q2
(20) 3.765 6.601 19.087 9.093 12.991 12.797 17.144 

Panel C: FIGARCH(1. 1) Estimations 

Parameters Consumer Goods Oil & Gas Financials Metals & Mining Power Telecom Manufacturing 

µ 0.048* 0.079* 0.066* 0.029 -0.006 0.041* 0.025 

ω 0.095* 0.056 -0.036 0.074* 0.022 0.085* 0.109* 

β 0.099 0.515* 0.363* 0.829* 0.409* 0.370* 0.372* 

d 0.391* 0.558* 0.450* 0.884* 0.560* 0.534* 0.579* 

b3 1.693* -0.223* 0.085* -0.448* -0.237* -0.289* -0.151* 

b4 32.647* 6.951* 5.149* 5.741* 4.789* 4.925* 7.485* 

Q(20) 82.106* 10.436 28.594* 28.671* 79.900* 38.693* 59.855* 

Q2
(20) 1.927 6.644 31.254* 8.097 9.824 14.401 17.820 

 

In summary, we provide evidence of long memory in the volatility of all the sectors of the Russian equity 

market, which suggest that, all the market sectors under examination are weak form inefficient. This is an evidence 

of violation of efficient market hypothesis, which can lead to the arbitrage opportunities for international investors 

who are interested to invest in one of the fastest growing financial markets – the Russian equity market. 

Furthermore, our results confirm that the volatility has a predictable structure in all the sectors of the modern 

Russian stock market, indicating the need of regulatory and economic reforms within the Russian financial system. 
 

CONCLUSIONS 
 

In this study we attempt to re-examine the market efficiency of the modern Russian stock market. 

Specifically, we look at the long memory in stock market volatility in the Russian financial market. To inspect the 

temporal dependencies in depth we utilize major sectors of the Russian stock market. To study the stock market long 

memory we estimate FIGARCH model proposed by Baillie et al. (1996) using daily returns calculated by Moscow 

Interbank Currency Exchange (MICEX). We find evidence of long memory in the volatility in all the sectors of the 

Russian equity market. This implies that all the market sectors under investigation are weak form inefficient. Our 

results show that the volatility in different sectors of modern Russian stock market has a predictable structure. Our 

results indicate the need of regulatory and economic reforms within the Russian financial system. As per our 

empirical investigation, FIGARCH model performs better than the tradition GARCH models. 
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