
The Journal of Applied Business Research – May/June 2013 Volume 29, Number 3 

2013 The Clute Institute  Copyright by author(s) Creative Commons License CC-BY 765 

Time-Scale Comovement Between  

The Indian And World Stock Markets 
Rahul Deora, Indian Institute of Technology Kharagpur, India 

Duc Khuong Nguyen, IPAG Lab, IPAG Business School, France 

 

 

ABSTRACT 

 

We propose a wavelet-based dynamic conditional correlation – GARCH approach to investigate 

the time-scale comovement between the Indian and world stock markets. Our empirical analysis 

reveals the existence of time-scale-dependent comovement between Indian and world stock 

markets. The results can thus be used by heterogeneous groups of foreign and Indian investors 

who trade in different time horizons to actively manage and hedge against the risk of their 

portfolios. 
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1.  INTRODUCTION 

 

nternational financial markets have become increasingly interdependent with the continued liberalization 

of cross-border capital flows. For global investors, there is a growing risk exposure relative to the asset 

price fluctuation over the world financial markets. In the context of modern portfolio theory, 

diversification benefits arise from negative and lower correlations between the assets included in the portfolio by an 

investor. Incentives for investing in international markets have been accentuated by lower return correlations 

between internationally-traded assets as compared with those between domestic assets (Grubel, 1968; Levy and 

Sarnat, 1970). As stock markets around the world have become more and more integrated, and especially within the 

developed market universe, global investors who seek international diversification benefit shifted, since the 

beginning of the 1980s, their attention to emerging markets. It is now well-known that these markets only have 

moderate correlations with their developed counterparts. However, efficient allocation strategies in emerging 

markets often require a careful analysis of their risk-return trade-off as well as their linkages with the world stock 

market. 

 

Past studies have shown that expected returns in emerging markets vary over time under the effects of 

economic and financial forces as well as the degree of their integration with the world market (e.g., Bekaert and 

Harvey, 1995; Carrieri et al., 2007; Guesmi and Nguyen, 2011). Some recent studies find that emerging market 

returns may have time-scale behavior (e.g., Masih et al., 2010; Rua and Nunes, 2012; Graham et al., 2012). That is, 

stock returns may be characterized by multiscale structures, each occurs on a different time horizon owing to the 

presence of many types of market operators with heterogeneous risk preferences, capital budgeting constraints, 

information access, expectations, and risk perceptions. This new evidence thus suggests that an accurate modelling 

of the comovement between stock markets must consider the time scale effects.  

 

The interest for wavelet method applications in economics and finance has increased in recent years (e.g., 

Ramsey and Lampart, 1998; Gencay et al., 2001, 2005; In and Kim, 2006; Sharkasi et al., 2006; Kim and In, 2007; 

Durai and Bhadurin, 2009). The majority of these studies show the usefulness of wavelet decomposition technique 

in modelling and apprehending the market risk and the relationships between stock returns and other economic 

variables. For example, Gençay et al. (2005) use wavelet analysis to investigate scaling properties of systematic risk 

as measured by the beta of an asset in a capital asset pricing model. The authors find that the relationship between 

the return of a portfolio and its beta becomes stronger as the scale increases. In other words, the predictive ability of 

the CAPM is more relevant at medium- to long-run horizons than at short-run horizons. Using a wavelet transform, 

Sharkasi et al. (2006) analyse the reaction of stock markets to crashes and events for a sample of both emerging and 
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mature markets, and conclude that these markets respond differently to crashes. Kim and In (2007) study the 

relationship between stock returns and bond yields for the G7 countries, and find that the correlation between 

changes in stock prices and bond yields can differ from country to country and can also depend on the time scale. 

 

While it is common that asset return correlations vary over time (e.g., De Santis and Gerard, 1997; Longin 

and Solnik, 2001), none of previous studies has looked at the possibility of changing cross-market correlations over 

different time horizons. In this article we fill in this gap by combining wavelet analysis with a bivariate DCC-

GARCH model of Engle (2002) to investigate the time-scale comovement between the Indian and world equity 

markets. Our empirical framework is motivated by the fact that international investors are heterogeneous in their 

trading strategies and each group of investors can operate on their own time horizon. As a result, stock market 

comovement in an international setting may differ across time scales. 

 

At the empirical stage, we employ the discrete wavelet transform to decompose the original data into four 

different time horizons (2, 4, 8 and trading 16 days) as they help explaining almost all the dynamics of original 

return series. A bivariate DCC-GARCH model is then used to model the cross-market comovement. Using daily 

closing prices from January 17, 2007 to January 17, 2012 for the MSCI India Index and the MSCI World Stock 

Market Index, we find from our wavelet-based DCC-GARCH model that the comovement between the Indian and 

world equity markets vary considerably across time scales. Conventional DCC-GARCH estimate is thus only an 

“average” of the multiscale DCC-GARCH estimates. For almost all horizons, the GARCH coefficients are 

significant at the conventional levels, indicating strong evidence of time-varying volatilities at the decomposed 

levels as well as the usefulness of wavelet analysis. Furthermore, a lower estimated correlation between indices in a 

particular time horizon gives an indication that international investors should diversify their portfolio to 

accommodate the assets from the Indian emerging stock market in order to improve their portfolio’s performance. 

 

The remainder of the article is structured as follows. Section 2 describes the wavelet analysis and multi-

resolution decomposition. Section 3 introduces the DCC-GARCH models and its statistical properties. Section 4 

describes the data used in the study and discusses the empirical findings. Finally, conclusions are given in Section 5. 

 

2.  WAVELET ANALYSIS 

 

Wavelet theory is a powerful mathematical tool for time series analysis. Although its theoretical base lies in 

Fourier analysis, there are important differences between the wavelet theory and the theory based on Fourier 

analysis. While frequency content of the function is assumed to be stationary along the time axis in Fourier analysis, 

wavelets are, on the other hand, defined over a finite domain. Unlike the Fourier transform, they are localized both 

in time and in frequency. This feature makes them ideal candidates for analysing non-stationary signals and those 

with transients or singularities. They also have an advantage over traditional Fourier methods in analysing physical 

situations where the signals contain discontinuities and sharp spikes. The scale of resolution with which we look at 

the data plays an important role in wavelet analysis and the wavelets analyse data according to this scale of 

resolution. Looking at a signal at low-resolution scale only gives us an idea about its gross features, whereas looking 

at a higher resolution scale gives information about small features and details of the same data. Chui (1992), 

Daubechies (1992), and Percival and Walden (2000) provide a thorough review of wavelet analysis. Technical and 

practical applications of wavelet analysis are given in, among others, Gençay et al. (2002), and Bruce and Gao 

(1996). 

 

2.1  Wavelet decomposition 

 

Wavelets provide an ideal way to describe a signal contained in the underlying data. There are two types of 

wavelets defined on different normalization rules: father wavelets φ and mother wavelets ψ. The father wavelet 

integrates to 1 and the mother wavelet integrates to 0. 

 

                                                                                                                              (1) 

 

                                                                                                                             (2) 
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The father wavelets are good at representing the smooth and low-frequency parts of a signal, and the 

mother wavelets are useful in describing the detail and high-frequency components. Any function y(t) in L
2
(ℝ) 

(space for square summable functions) to be represented by a wavelet analysis can be built up as a sequence of 

projections onto father and mother wavelets generated from φ and ψ through scaling and translation as follows 

 

         
                     

     

  
                                                                  (3) 

 

         
                     

     

  
                                                                  (4) 

 

They form a basis for functional analysis. The wavelet representation of the signal y(t) in L
2
(ℝ) can be 

written as: 

 

                                                                        (5) 

 

In the representation J is the number of multi-resolution components, and sJ,k are called the smooth 

coefficients, and dj,k are called the detailed coefficients. They are defined by: 

 

                                                                                                                           (6) 

 

                                                                                                                (7) 

 

The magnitude of these coefficients reflects a measure of the contribution of the corresponding wavelet 

function to the total signal. The scale factor 2
j
 is also called the dilation factor, and the translation parameter 2

j
k 

refers to the location. For the larger the index j, the larger the scale factor 2
j
, and hence the function gets wider and 

more spread out. The translation parameter 2
j
k is matched to the scale parameter 2

j
 in that as the functions φJ,k(t) and 

ψj,k(t) get wider, their translation steps are correspondingly larger.  

 

For multi-resolution decomposition, the decomposed signals are defined as follows: 

 

                       (8) 

 

                                      (9) 

 

                    
 

 are called the smooth signal and the detail signals, respectively, which constitute a 

decomposition of a signal into orthogonal components at different scales. A signal y(t) can thus be expressed in 

terms of these signals as: 

 

                                . (10) 

 

We can represent the discrete wavelet transform in matrix form. Let be the observation of length T. The 

string of wavelet coefficients can be ordered from fine scales to coarse scales as: 

 

  

 

  
 

  
   
 
  
   

  
 

    (11) 

 

Where dj and sJ are column vectors of the detailed coefficients (dj,k) and (sJ,k) respectively. Taking the case that the 

sample size T is divisible by 2
J
 for example, we have T/2 coefficients at d1,k (i.e., the finest scale), T/4 at d2,k (the 

next finest scale), and so forth until we find T/2
J
 coefficients for dJ,k and sJ,k (the coarsest scale), for a total amount of 
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coefficients equal to T = T/2 + T/4 +··· + T/2
J
 + T/2

J
. The number of coefficients is approximate if T is not divisible 

by 2
J
. 

 

The discrete wavelet transform (DWT) can then be represented by a matrix from as follows: 

 

    ,  (12) 

 

Where   is a (T×T) real-valued orthonormal matrix defining the DWT which satisfies     = IT (T × T identity 

matrix). We refer the details of   on different wavelet bases and corresponding wavelet filter banks to Percival and 

Walden (2000). Using the DWT, we may formulate an additive decomposition of y by reconstructing the wavelet 

coefficients at each scale independently. Component Dj can be represented as Dj =   
 wj which define the j

th
 level 

wavelet detail associated with changes in y at the scale j. The wavelet coefficients wj =  jy represent the portion of 

the wavelet analysis (decomposition) attributable to scale j, while   
  wj is the portion of the wavelet synthesis 

(reconstruction) attributable to scale j. 

 

2.2  The choice of φ, ψ, and J 

 

For the choice of φ and ψ, a traditional and popular wavelet function (or the daublet with length 8, 

designated as “d8”) is used for the study. Alternative choices for the basic wavelet such as “haar”, “symmlet”, and 

“coiflet” are tried for comparison, but the results are globally not much affected. For the multi-resolution level J, this 

study sets J = 4 in the empirical analysis because decomposing raw data into four levels is matched with our 

convection in the investigation of spillover effects, namely, in daily, weekly, and monthly time horizons. Moreover, 

lower wavelet frequency components only account for very small variations in the original data. Hence, in our study, 

the highest frequency component D1 represents short-term variations due to shocks occurring at a time scale of 2
1
 or 

2 days (daily spillovers), and the next higher component D2 accounts for variations at a time scale of 2
2
 or 4 days, 

that is near the working days of a week (weekly spillovers). Similarly, D3 and D4 components represent the mid-

term variations at time scale of 2
3
 or 8 and 2

4
 or 16 days (from weekly to monthly spillovers), respectively. S4 is the 

smooth residual of the original signal after subtracting D1, D2, D3, and D4. 

 

3.  DCC-GARCH MODEL AND TIME-SCALE COMOVEMENT MODELING 

 

The time-varying market comovement involving the MSCI World and Indian stock markets can be 

straightforwardly investigated on the basis of wavelet decomposition results. Empirical findings from this analysis 

are important as they are indicative of potential diversification benefits for global investors across time scales. The 

particular framework of the Dynamic Conditional Correlation – Generalized Autoregressive Conditional 

Heteroscedasticity (DCC-GARCH) model suggested by Engle (2002) thus provides a convenient way to address this 

issue. We are able to model not only the dynamic processes of conditional volatilities, but also the conditional 

correlations. Note that modelling and forecasting correlations between financial assets become a crucial need and 

multivariate GARCH models attract a growing interest at least for two main reasons. First, the availability of more 

and more powerful computers that enables the estimation of complex models with a high number of parameters. 

Second, this class of multivariate volatility models allows for both return and volatility interdependence, which is 

not possible with univariate models. The DCC-GARCH model of Engle (2002) is distinguished by its simplicity and 

flexibility when estimating a large variance-covariance matrix because the volatility of each return series composing 

the system can be modelled by a univariate GARCH specification. To date, several generalizations of the Engle 

(2002)’s model have been proposed (e.g., Cappiello and Engle, 2006; McAleer, 2005, Billio and Caporin, 2006). 

Prior research has adopted multivariate GARCH models to capture market information on the aggregate level 

(McAleer et al., 2009). In this article, we address the issue of time scale stock market comovement based on wavelet 

analysis. 

 

Formally, the conditional variance–covariance matrix of the DCC-GARCH model can be written as:  

 

                                                                         (13) 
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where                   is a (2 2) diagonal matrix of time-varying standard deviations estimated from univariate 

GARCH processes, and               for i,j = 1 and 2, which is a correlation matrix containing conditional 

correlation coefficients. The elements in Dt follow the univariate GARCH (p,q) processes in the following manner 

 

                
     

 
   

 
                                       (14) 

 

The second component of the framework consists of a specific DCC(m,n) structure, which can be expressed as 

 

     
       

       (15) 

 

with          
 
       

 
          

 
                 

 
        

 

where           is the conditional variance–covariance matrix of residuals with its time-invariant (unconditional) 

variance–covariance matrix    obtained from estimating Eq. (2), and   
             is a (2 2) diagonal matrix 

containing the square root of the diagonal elements of   .    and    are non-negative scalar parameter satisfying 

       . The key element of interest in Rt is                         which represents the conditional 

correlation between nifty and commodity indices. Essentially, Eq. (3) relies on an autoregressive moving average 

type process to capture short-term deviations in the correlation around its long-run (unconditional) level.  

 

4.  DATA AND EMPIRICAL RESULTS 

 

4.1  Data description 

 

The data used in the study are the daily closing prices of the MSCI World stock market index and the 

Indian stock market index. All the data are obtained from Datastream International and encompass the period from 

January 17, 2007 to January 17, 2012. We have a total of 1305 observations in the sampling period. The 

continuously compounded returns are then computed using the following formula:     1lnln100  ttt PPr . 

 
Table 1. Descriptive statistics of stock market returns 

 MSCI World India 

Mean  -0.016 -0.002 

Standard deviation 1.405 2.187 

Minimum -7.325 -12.040 

Maximum 9.096 19.490 

Skewness -0.361 0.200 

Kurtosis 8.684 6.933 

Q(5) 23.362(0.000) 6.454(0.265) 

JB 1783.5(< 2.2e-16) 2631.918(<2.2e-16) 

ARCH(5) 347.9147(< 2.2e-16) 46.390(7.566e-09) 

Notes: Q(5), JB and ARCH(5) are the empirical statistics of the Ljung-Box test for serial correlation, the Jarque-Bera test for 

normality, and the Lagrange Multiplier (LM) test for conditional heteroscedasticity. The p-values associated with test statistics 

are in parentheses. 

 

Selected descriptive statistics of daily returns are presented in Table 1. Over the study period, both the 

world and Indian stock markets realized negative average returns, -0.016 and -0.002 respectively. With reference to 

the standard deviation, we see that the Indian stock market is substantially more volatile than the world market. The 

Jarque–Bera tests reject the hypothesis of normality for both return series at the 1% level. The large values of the 

skewness and kurtosis coefficients further indicate that return distributions are typically asymmetric and leptokurtic. 

The Ljung-Box tests and the Lagrange Multiplier tests show strong evidence of return autocorrelation and ARCH 

effects for both return series. These stylized facts thus support our decision to combine the wavelet analysis with the 

DCC-GARCH model to apprehend the time scale comovement dynamics. The quasi-maximum likelihood 

estimation (QMLE) method is used to generate consistent estimates that are robust to non-normality. A comparison 

of the log-likelihood values among alternative lag-length specifications suggests that our data are best described by a 

DCC(1,1) with each of the conditional variances captured by a univariate GARCH(1,1) model, i.e., p, q, m, and n 
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are equal to 1. This specification has also been widely used in the existing literature and is found to be suitable for 

modelling volatility dynamics and conditional correlations of stock returns (e.g., Lahrech and Sylwester, 2011). 

 

4.2  Empirical results 

 

We first apply a DCC(1,1)-GARCH(1,1) model to the raw return data. The estimated coefficients are 

reported in Table 2. They are highly significant at the 1% and 5% levels. The large values of the GARCH 

coefficients for the two corresponding univariate volatility processes (   and   ) indicate that the conditional 

volatility of the world and Indian stock market returns depend much more on their past volatility than on past shocks 

to returns. The sum of a1 and b1 is lower than 1, thus respecting the stability condition. The average correlation 

between world and Indian stock markets is not high (0.45). Fig. 3(a) shows the evolution of comovement between 

world and Indian stock markets the indices,    , when the data are unfiltered. It can be seen that the comovement 

index fluctuates significantly through time, reaches its highest level (0.70) on June 2010. Although the results 

suggest substantial diversification benefits from investing in India, they are still not of helps for heterogeneous 

groups of investors on different trading horizons. This naturally motivates the investigation of short-, medium- and 

long-term periodic comovements.  

 

As stated earlier, the major innovation of this paper lies in applying wavelet analysis to examine the 

complex multi-scale interactions between the world and Indian stock markets. The Daubechies least asymmetric 

filters with length 8 are applied to generate the multi-resolution decomposition of original return data. Stock market 

returns are thus decomposed into a trend series and four mutually orthogonal different periodicity (frequency) 

components, ranging from the shortest periodicity series to the longest-periodicity series or equivalently from the 

high frequency components (2 business days) to low frequency ones (16 business days). Our LM test reveals that the 

decomposed series is still exposed to conditional heteroscedasticity. The time-variations of the return series after 

decomposition are shown in Fig. 1 and Fig. 2 for world and Indian markets, respectively. We see that variations in 

stock returns are mainly caused by short-term fluctuations as most signal power concentrates on D1 and D2. In 

particular, the D1 periodicity replicates almost all fluctuations in the original series. Such observed phenomenon 

seems to be consistent with the typical expectations that stock returns cannot be predicted in advance with ease, 

owing to their frequent and uncertain movements. It may thus be very complicated to implement an index 

investment strategy replicating the performance of the world and Indian stock market indices at the shortest horizon 

(2 business days). 

 
Table 2. DCC–GARCH model estimation results on original series 

Parameters Estimates 

   0.021* (0.008) 

   0.063** (0.021) 

   0.096** (0.020) 

   0.105** (0.032) 

   0.893** (0.024) 

   0.888** (0.022) 

   0.059** (0.011) 

   0.560* (0.214) 

Log-likelihood -5600.127 

     0.451643 

Notes:   ,   , and    are the estimates of the constant, ARCH and GARCH coefficients in the variance equation for the MSCI 

world market returns, respectively.   ,   , and    are the estimates of the constant, ARCH and GARCH coefficients in the 

variance equation for the Indian market returns. Standard errors are indicated in parentheses. * and ** denote statistical 

significance at the 5% and 1% levels respectively.  
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Figure 1. Daubechies-5 four-level wavelet decomposition of MSCI World market returns 

The finest scale component D1 represents short-term (or high frequency) variations due to shocks occurring at a time scale of 21 

= 2 days, and the next finest component D2 accounts for variations at a time scale of 22= 4 days, near the working days of a 

week. Similarly, D3 and D4 components represent the mid-term (weekly to monthly) variations at time scale of 23 = 8 and 24 = 

16 days, respectively. S4 is the residual of original signal after subtracting D1, D2, D3, and D4. The y-axis indicates the scale 

return in percentage. 

Original series 

 

Smooth level-4 

 

Detail level-1 

 
Detail level-2 

 

Detail level-3 

 

Detail level-4 

 
 

Figure 2. Daubechies-5 four-level wavelet decomposition of Indian stock market returns 

The finest scale component D1 represents short-term (or high frequency) variations due to shocks occurring at a time scale of 21 

= 2 days, and the next finest component D2 accounts for variations at a time scale of 22= 4 days, near the working days of a 

week. Similarly, D3 and D4 components represent the mid-term (weekly to monthly) variations at time scale of 23 = 8 and 24 = 

16 days, respectively. S4 is the residual of original signal after subtracting D1, D2, D3, and D4. The y-axis indicates the scale 

return in percentage. 

Original series 

 

Smooth level-4 

 

Detail level-1 

 
Detail level-2 

 

Detail level-3 

 

Detail level-4 

 
 

We report, in Table 3, summary statistics of decomposed returns together with time-scale risk-adjusted 

returns (Sharpe ratios). The estimated wavelet variance for both markets tends to increase when the scale increases. 

Stock returns in India also experience higher volatility than those on the world market index over the study period, 

whatever the scale considered. The Sharpe ratios reveal that the higher time-scale volatility in India is not always 

compensated with higher returns.   
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Table 3. Summary statistics of decomposed returns 

 Indian stock market World stock market 

 D1 D2 D3 D4 S4 D1 D2 D3 D4 S4 

Mean 0.028 -0.011 0.136 0.148 -0.007 -0.018 0.102 0.193 0.064 -0.069 

Standard deviation 2.067 2.268 2.267 2.503 2.352 1.290 1.539 1.518 1.535 1.359 

Maximum 14.320 8.060 10.300 11.480 6.702 6.422 11.320 5.617 4.723 2.778 

Minimum -9.847 -11.600 -7.060 -6.689 -7.613 -6.956 -5.567 -5.676 -3.003 -6.246 

Sharpe ratio 0.014 -0.005 0.060 0.059 -0.003 -0.014 0.066 0.127 0.042 -0.051 

 

While Table 2 reports the conventional DCC-GARCH estimates for the raw return data, Table 4 show the 

wavelet-based DCC-GARCH estimates for the two markets we consider over the different time scales. In view of 

the variance equation estimates, the DCC-GARCH model is still flexible enough to capture volatility and correlation 

dynamics of decomposed stock returns. Compared with the results for the raw returns, the unexpected parts of 

decomposed returns (   and   ) no longer have significant effects on the current time-scale volatility, while the 

impacts from past time-scale volatility (  , and   ) are always large and highly significant. Taken together, we see 

that the degree of volatility persistence is lower than that of the raw data, but only past volatility matters for time-

scale volatility forecasting. More importantly, the average correlations between the world and Indian markets are 

found to be unevenly spread from the shortest-periodicity component to the longest-periodicity component, 

suggesting higher potential diversification gains for foreign investors in India at short-term investment horizons.  

 
Table 4. Estimation results of DCC-GARCH model at different levels of decomposition 

Parameter D1 D2 D3 D4 S4 

   0.045* 

(0.018) 

0.088 

(0.046) 

0.298 

(0.204) 

0.598 

(0.608) 

0.352 

(1.027) 

   0.188** 

(0.035) 

0.233* 

(0.089) 

0.138 

(0.105) 

0.413** 

(0.130) 

0.382** 

(0.055) 

   0.168 

(0.358) 

0.236** 

(0.070) 

0.285* 

(0.135) 

0.289 

(0.308) 

0.037 

(0.535) 

   0.135 

(0.090) 

0.155 

(0.132) 

0.084 

(0.266) 

0.054 

(0.713) 

0.137 

(0.437) 

   0.810** 

(0.047) 

0.735** 

(0.056) 

0.595** 

(0.047) 

0.447** 

(0.036) 

0.776** 

(0.094) 

   0.826** 

(0.053) 

0.804** 

(0.060) 

0.894** 

(0.094) 

0.878** 

(0.143) 

0.795** 

(0.124) 

   0.026 

(0.016) 

1.89e-08 

(3.27e-02) 

0.047 

(0.047) 

0.072 

(0.048) 

0.157** 

(0.011) 

   0.927** 

(0.055) 

0.832 

(4.80e-05) 

0.850** 

(0.190) 

0.885** 

(0.115) 

0.517* 

(0.246) 

Log-likelihood -2744.084 -1481.25 -778.0882 -391.3542 -374.6745 

     0.308162 0.452844 0.569995 0.802477 0.740812 

Notes:   ,   , and    are the estimates of the constant, ARCH and GARCH coefficients in the variance equation for the MSCI 

world market returns, respectively.   ,   , and    are the estimates of the constant, ARCH and GARCH coefficients in the 

variance equation for the Indian market returns. Standard errors are indicated in parentheses. * and ** denote statistical 

significance at the 5% and 1% levels respectively. 

 

Time-varying World-India market correlations (comovement) are displayed in Fig. 3. We see that 

correlation coefficient averages at around 0.3 for level-1, while it is as high as 0.8 for the highest decomposition 

level. This phenomenon may be explained by the trading patterns of heterogeneous groups of investors. In the finest 

time scale, main traders are hedging strategists, speculators, and market makers. They trade in the international 

markets, accommodate the assets from the Indian market to diversify their portfolios, and thereby hedge against 

their risk. Using wavelet analysis for stock returns, In and Kim (2006) also observe that speculators and market 

makers intensively trade to realize a quick profit (or minimize a loss) over short time scales ranging from 1 to 2 

trading days.  

 

In the intermediate time scales (D2 and D3), the main traders are international portfolio managers who 

mainly follow index tracking trading strategies (In and Kim, 2006). Accordingly, the stock trades typically occur on 

a weekly to monthly basis, with little attention paid to daily prices. Therefore, the variations in D2 and D3 
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components (i.e., variations ranging from 2
2
 = 4 days to 2

3
 = 8 days) are no longer mean-reverting, but become 

persistent and tend to be more closely linked from one market to another. By this mechanism, the cross-market 

correlations increase when we move to the higher levels of decomposition. In the long-term trend components D4 

(time scale of 2
4
 = 16 days) and S4, the main traders are central banks and buy-and-hold investors which operate on 

longer time horizons and often consider long-term economic fundamentals for their investment strategy. 

Consequently, D4 and S4 are more persistent than D2 and D3, and as a result the markets tend to comove much 

more together. 

 
Figure 3. Conditional correlations between MSCI World and Indian stock markets at different time scales 
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5.  CONCLUSION 

 

In this article, we combine the wavelet analysis and the DCC-GARCH model to analyse how much the 

Indian stock market moves together with the world market over the different time-scales. As far as stock markets are 

generally made of different groups of investors with different risk preferences and investment horizons, the results 

of our study can be used to implement good hedging strategies for simultaneous trading in the international markets. 

Unlike traditional multivariate GARCH models, the wavelet-based DCC-GARCH approach allows us to firstly 

decompose the raw returns into various sublevels according to various investment horizons practised by 

heterogeneous traders, and secondly study the detailed comovement dynamics at different frequencies.  

 

Overall, our results indicate that stock returns in Indian and world stock markets have a time-varying scale 

behaviour and that the shortest periodicity components (2 business days) appears to reflect an important part of 

fluctuations in the original returns. More interestingly, both the direction and magnitude of comovement between the 

world and Indian markets vary greatly across the time scales used. As the level of the decomposition increases, the 

average correlation also increases between the two markets, thus suggesting a reduction of potential diversification 

benefits. For a daily international trader, accommodation of assets from Indian stock market would be beneficial in 

hedging the risk of their diversified portfolio. Daily traders and speculators in India can also be less worried about 

the spillovers from the developed international markets. The unique concern is the relatively higher risk of the 

shortest investment periodicity. As to international portfolio management institutions that trade in longer time 

horizons, they would be sceptical of investing in Indian markets due to higher correlations which exists at higher 

levels of decomposition, especially during periods of economic turbulences or crises. Our findings should also be of 

interest to speculators, hedge managers, international investors, as well as monetary and regulatory authorities, all of 

whom operate on very different time scales. Against this background, pinpointing the factors that contributed to the 

observed changes in the correlation of the indices would be an interesting subject for future research. 
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