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ABSTRACT 
 

Our study extends previous research that uses financial distress factors in predicting auditor 

changes by evaluating the effectiveness of the traditional discriminant analysis model, not used in 

previous auditor change studies, and by highlighting the importance of evaluating the likelihood 

that data mining approach classification results occurred by chance.  Significance of individual 

predictor variables, as well as of the full set of 13 financial variables, can be tested using 

discriminant analysis.  Kwak et al. (2011) document overall classification accuracy rates ranging 

from 61 to 63.5 percent for the four data mining models they compared but did not address 

whether these rates occurred by chance.  Using Kwak et al.’s (2011) data set of firms changing 

auditors in 2007 or 2008 and matching non-auditor change firms, our discriminant analysis test 

results show overall accuracy rates of less than 56 percent and true positive rates over 85 percent, 

but these rates are influenced by a disproportionate number of non-auditor change firms being 

classified as auditor change firms.  Individual predictor variables that are important in the 

discriminant equation based on standardized canonical coefficients include losses (LOSS) and no 

payment of dividends (DIV) in the year prior to the auditor change, retained earnings as a percent 

of total assets (RE/TA), and earnings before interest and taxes as a percent of total assets 

(EBIT/TA).  The Kappa statistic and AUC metrics for all 13 data mining algorithms we used 

indicate that classifications using these algorithms are no better than random classifications. 
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1. INTRODUCTION 
 

uditor change prediction is an interesting issue because auditor changes may give warnings to 

investors, regulators, or other financial statement users about the audited firm’s financial condition.  

Several previous bankruptcy prediction studies document a positive association between bankruptcy 

and auditor changes, but most prior research studies on auditor change prediction fail to include a portfolio of 

financial distress variables (see discussion in Section 2).  Kwak et al. (2011) use multiple criteria linear 

programming (MCLP) and three other data mining approaches for predicting auditor changes with 13 financial 

distress variables and they document overall accuracy rates of around 60 percent.  Results from the application of 

these and other data mining approaches, however, provide limited information on the usefulness of specific predictor 

variables, and Peng et al. (2009) raise concerns about the lack of consistency in prediction results across various data 

mining algorithms and performance measures.  The objectives of our current study are to gain further insights into 

the usefulness of specific financial distress variables for predicting auditor changes by using discriminant analysis 

with Kwak et al.’s (2011) sample and to more carefully evaluate the effectiveness of various data mining algorithms 

based on other performance measures in addition to accuracy rates. 
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Auditor changes may be initiated by the audited firm or by the auditors.  The fact that this event must be 

reported to the Securities and Exchange Commission by public companies indicates the importance of this event to 

investors.  In light of the positive association documented in prior research between bankruptcy and auditor changes, 

investors and potential successor auditors could benefit from having a reliable mechanism and set of indicators for 

predicting or anticipating auditor changes decisions, particularly if those change decisions are motivated by financial 

distress of the audited firm.  We extend Kwak et al. (2011) by applying discriminant analysis with their 13 financial 

distress variables and their data set of firms that changed auditors during 2007 or 2008 and a matched set of non-

auditor change firms.  Although our discriminant analysis results identify a subset of these financial distress 

variables that are important in predicting auditor changes, the overall accuracy rates are lower than the accuracy 

rates for the data mining models used by Kwak et al. (2011).   

 

Based on comparing accuracy rates, one might conclude that the data mining approaches are more reliable 

than discriminant analysis in classifying or predicting auditor change firms.  However, based on the Kappa statistics 

and AUC metrics from our application of 13 data mining approaches with our 13 financial distress predictor 

variables, we determine that the classification of firms as auditor change or non-auditor change firms is no better 

than random classification.  Thus, our current study makes three important contributions to the auditor change 

prediction literature.  First, our results suggest that auditor change prediction studies should include financial distress 

variables because we document that some financial distress variables are important in distinguishing between 

auditor change and non-auditor change firms.  Second, our relatively low prediction accuracy rates using only 

financial distress variables as predictors indicate that a more robust set of predictor variables is needed to capture the 

various drivers of auditor change decisions.  Third, we highlight the importance of using additional metrics beyond 

accuracy rates to interpret the results of data mining approaches to classification and prediction. 

 

Our paper proceeds in the following order.  The next section discusses relevant prior research and presents 

the variables we use in our auditor change prediction models.  The third section describes discriminant analysis, data 

mining methods, and the performance metrics for evaluating the results of these methods.  Section four presents 

sample selection procedures, data, and empirical results.  The last section summarizes and discusses the conclusions 

of our study and identifies further research avenues. 

 

2. PRIOR RESEARCH AND VARIABLES USED FOR AUDITOR CHANGE PREDICTION 

 

Our current study focuses on predicting auditor changes using financial distress variables, so bankruptcy 

studies and auditor changes studies are both relevant.  Because our current study is an extension of Kwak et al. 

(2011), most of this section of our paper presents the same prior research and explanation of variables found in 

Kwak et al. (2011).  The primary purpose of Kwak et al. (2011) was to “analyze the predictive nature of financial 

distress variables for predicting auditor changes using multiple criteria linear programming (MCLP) and other data 

mining methods.”  Using 13 financial statement variables with a sample of firms that changed auditors in 2007 or 

2008 and a non-auditor change sample matched on size and industry, Kwak et al. (2011) document the following 

overall classification accuracy rates for their four models:  61.85 percent for MCLP, 60.64 percent for BayesNet, 

63.50 percent for classification and regression tree (CART), and 60.17 percent for logistic regression. 

 

Three prior bankruptcy studies that are pertinent to our current research are Schwartz and Menon (1985), 

Chen et al. (2004), and Chen et al. (2009).  Schwartz and Menon (1985) document a significant association between 

bankruptcy and auditor changes using Chi-square tests for their sample of 132 bankruptcy firms (35 of which 

changed auditors prior to filing bankruptcy) and matched sample of 132 non-bankruptcy firms (13 of which changed 

auditors).  In addition to confirming this significant association between bankruptcy and auditor changes using Chi-

square tests for their sample of 472 bankruptcy firms and 424 matched non-bankruptcy firms, Chen et al. (2004) 

present logistic regression results that document statistical significance of auditor changes and five (of six) financial 

distress variables in predicting bankruptcy.  The six financial statement ratio variables used by Chen et al. (2004) are 

Cash-to-total assets, Current assets-to-current liabilities, Current assets-to-Sales (not significant in the regression 

results), Current assets-to-Total assets, Long-term debt-to-Total assets, and Net income-to-Total Assets.  In a similar 

study, Chen et al. (2009) use a logistic regression model for bankruptcy prediction with a small sample of 

bankruptcy and non-bankruptcy firms listed on the Taiwanese Stock Exchange, and the resulting coefficients on 

their auditor change variable and on their financial distress index variable are statistically significant. 
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Based on these prior studies, there is a positive association between bankruptcy and auditor changes.  

However, we are interested in predicting auditor changes, not bankruptcy.  Although firms experiencing financial 

distress may end up in bankruptcy, not all do.  According to Lau’s (1987) five-state financial condition 

classification, the severity of a firm’s financial distress increases as it moves from financial stability (state 0) to 

omitting dividend payments (state 1) to default on loan payments (state 2) to protection under Chapter X or XI of the 

Bankruptcy Act (state 3) and finally to bankruptcy and liquidation (state 4).  Hudaib and Cooke (2005) hypothesize 

that financial distress may influence a firm’s decision to change auditors either directly or indirectly (by influencing 

the auditor’s opinion).  Using a financial ratio-based index or Z-score variable to capture financial health (distress) 

in their multivariate logistic regression, Hudaib and Cooke (2005) find that the probability of switching auditors 

increases as financial health declines.  To avoid the potential loss of information from incorporating financial 

condition ratios into a single index or Z-score variable, we use 13 financial condition variables (identified later in 

this section) as predictor variables in our analyses. 

 

Extant literature includes a variety of papers that examine aspects of auditor changes, but many of these use 

samples that include only auditor changes and do not incorporate a portfolio of financial condition variables.  

Calderon and Ofobike (2008) use CART methodology to evaluate factors (none of which are financial statement 

ratios) that influence whether auditor changes are client-initiated or auditor-initiated.  Francis and Wilson (1988) test 

whether agency costs influence companies to change from a non-Big Eight to a Big Eight audit firm or vice versa, 

and debt-to-total assets is the only financial statement ratio they include in their explanatory variables.  Davidson et 

al. (2006) test for effects of earnings management on the direction of auditor changes (Big-to-Small, Big-to-Big, 

etc.) and control for financial distress using the Altman Z-score; the coefficients for the Altman Z-score in the full 

models are not statistically significant.  Landsman et al. (2009) focus on client risk (both financial and audit) and 

client misalignment characteristics of audit client portfolio management decisions by the top-tier (Big N) accounting 

firms in pre- and post-Enron periods.  They include five financial statement ratios (Return on assets (ROA), Loss 

(equals one if ROA is negative), Debt-to-Assets, Cash-to-Assets, and (Inventory plus Receivables)-to-Assets) in the 

set of client risk measures for their multinomial logistic regression model, and the coefficients on all of these 

variables except for Debt-to-Assets are statistically significant in at least one of the four scenarios (combinations of 

pre- and post-Enron and lateral/upward and downward switches). 

 

Our current study is an extension of Kwak et al. (2011), so we use the same variables as they did to capture 

financial distress.  Because bankruptcy is the extreme form of financial distress, most of our variables are those used 

by Altman (1968) and Ohlson (1980) in their classic bankruptcy prediction studies and by other studies mentioned 

above.  We also include a dummy variable (DIV) to capture Lau’s (1987) State 1 – Dividend Omission, an early 

state of financial distress.  Our 13 financial statement variables are as follows:  

 

 TL/TA = Total Liabilities ÷ Total Assets (Ohlson (1980), Francis and Wilson (1988), Chen et al. (2004), 

and Landsman et al. (2009)) 

 WCA/TA = Working Capital ÷ Total Assets (Altman (1968) and Ohlson (1980)) 

 CL/CA = Total Current Liabilities ÷ Total Current Assets (Ohlson (1980) and Chen et al. (2004)) 

 NI/TA = Net Income ÷ Total Assets (Ohlson (1980), Chen et al. (2004), and Landsman et al. (2009)) 

 FU/TL = Funds from Operations ÷ Total Liabilities (Ohlson (1980)) 

 LOSS = 1 if a firm has loss in previous years; else LOSS=0 (similar to Ohlson (1980) and Landsman et al. 

(2009)) 

 DIV = 1 if a firm did not pay dividend in a previous year; else DIV=0 (Lau (1987)) 

 CREIN/TA = Change in the ratio of receivables plus inventories to total assets (similar to Landsman et al. 

(2009)) 

 RE/TA = Retained Earnings ÷ Total Assets (Altman (1968)) 

 EBIT/TA = Earnings before Interest and Taxes ÷ Total Assets (Altman (1968)) 

 MKV/TD = Market Value of Equity ÷ Book Value of Total Debt (Altman (1968)) 

 SALE/TA = Sales ÷ Total Assets (Altman (1968)) 

 SIZE = Log of Total Assets (similar to Ohlson (1980)) 
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3. MODELS – DISCRIMINANT ANALYSIS VERSUS DATA MINING 

 

For four data mining methods, Kwak et al. (2011) document overall accuracy rates of around 60 percent in 

predicting auditor changes using a sample of 790 auditor-change firms and 1,126 matched non-auditor change firms 

during the sample period of 2007 and 2008.  Peng et al. (2009) evaluate 13 different data mining classifiers or 

algorithms using 11 different software defect datasets and conclude that, for a given dataset, the identification of the 

best predictive algorithm depends on the performance measure used and that no single algorithm appears to be the 

best across datasets.  Although data mining methods are much less restrictive than are parametric methods such as 

discriminant analysis, these methods focus on method performance metrics such as overall accuracy and do not 

provide much guidance on the usefulness of specific predictor variables in the classification or prediction of the 

characteristic or decision of interest.  Thus, the objectives of our current study are to gain further insights into the 

usefulness of specific financial distress variables for predicting auditor changes by applying discriminant analysis to 

Kwak et al.’s (2011) sample and to more carefully evaluate the effectiveness of various data mining algorithms 

based on other performance measures in addition to accuracy rates.  Our study is an extension of Kwak et al. (2011) 

and differs from that study in two key respects.  First, we are evaluating the effectiveness of discriminant analysis, a 

parametric method not applied in Kwak et al. (2011), in classifying firms as auditor-change or non-auditor change 

firms, and the discriminant analysis allows us to evaluate the relative usefulness of specific predictor variables in the 

set of 13 financial distress variables included in our models.  Second, we apply the same 13 data mining algorithms 

used by Peng et al. (2009) to our sample of auditor change and non-auditor change firms and evaluate two additional 

performance metrics (used in Peng et al. (2009)) that indicate the likelihood that the accuracy rates occurred by 

chance.  To link our paper to one of Kwak et al.’s (2011) and Peng et al.’s (2009) data mining methods, we also 

perform a separate logistic regression analysis.  In this section of our paper, we discuss the discriminant analysis 

model, Peng et al.’s (2009) classifiers, and performance metrics. 

 

Discriminant analysis (DA) has been widely used in bankruptcy classification and prediction studies (such 

as Altman (1968), Gepp et al. (2010), Muller et al. (2009), and Sung et al. (1999)), but our literature search did not 

identify auditor change studies that have used DA.  Fok et al. (1995) provide a useful description of the purpose, 

assumptions, application, and limitations of DA.  For a two-group DA (such as bankruptcy/non-bankruptcy or 

auditor change/no auditor change), sample data are used to identify the (usually linear) function that best 

discriminates between the two groups using multiple independent or predictor variables.  This multivariate statistical 

method requires two potentially limiting assumptions:  the independent variables are normal and independently 

distributed and the variance-covariance matrices are equal.  One can evaluate the classification accuracy by applying 

the estimated discriminant coefficients to the original sample, and one can evaluate the predictive accuracy by 

applying the estimated coefficients to a new or holdout sample.  Another prediction analysis alternative is cross-

validation in which each case is classified by the discriminant function derived from all cases other than that case. 

 

Discriminant analysis can be performed using several different statistical software packages, but we have 

used SAS to conduct the discriminant analysis in this study.  The primary performance measures used to evaluate 

the model’s effectiveness are overall accuracy and sensitivity (or true positive rate).  The overall accuracy rate is the 

percentage of the total sample that is correctly classified (in this study, actual auditor changes classified as auditor 

changes and actual non-auditor changes classified as non-auditor changes).  The sensitivity, or true positive rate, is 

the percentage of actual auditor change firms that are correctly classified.  The sensitivity measure may be more 

important than the overall accuracy rate if the costs of misclassification or prediction errors are higher for auditor 

changes than for non-auditor changes.  For evaluating the importance of individual predictor variables in the 

discriminant analysis, we focus on the standardized canonical coefficients.  The magnitude of these coefficients 

indicates the relative importance of the predictor variables in the discriminant function. 

 

As in Peng et al. (2009), we use WEKA (see Witten 2005) to implement 13 data mining algorithms.  Peng 

et al. (2009) group these algorithms into five categories as follows:  trees (classification and regression tree (CART), 

Naïve Bayes tree, and C4.5), functions (linear logistic regression, radial basis function (RBF) network, sequential 

minimal optimization (SMO), Support Vector Machine (SVM), and Neural Networks), Bayesian classifiers 

(Bayesian network and Naïve Bayes), lazy classifiers (K-nearest-neighbor), and rules (decision table and Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER) rule induction).  According to Sung et al. (1999), data 

mining classifiers such as Neural Networks are “black boxes” (p. 68) that do not provide interpretable rules while 
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others such as decision trees “generate understandable rules” but have “trouble with nonrectangular regions” (p. 69).  

Our primary interest in implementing these data mining algorithms is to more carefully analyze the performance 

results using metrics that incorporate the likelihood of random classification being reflected in the five prediction 

accuracy rates used in Kwak et al. (2011). 

 

The five prediction accuracy rates used in Kwak et al. (2011) are Overall Accuracy (which reflects the 

percentage of correctly classified companies), True and False Positive Rates, and True and False Negative Rates.  

The Kappa statistic and AUC (area under the receiver operating characteristic curve) are two additional performance 

metrics evaluated by Peng et al. (2009), and these two metrics indicate the likelihood of random classification.  A 

Kappa statistic of zero percent and an AUC of 50 percent indicate that the classification occurred by chance. 

 

As stated earlier in this section, our current study focuses on the occurrence of a change in a company’s 

auditor, and we have not been able to find previous research on auditor changes that either uses discriminant 

analysis or compares DA results with results using data mining techniques.  However, in their business failure 

prediction study, Gepp et al. (2010) conclude the predictive ability of decision trees (DTs) using See5 software is 

better than that of DA.  Sung et al. (1999) also document better overall prediction accuracy and bankruptcy 

prediction (sensitivity) rates using DTs versus DA.  The authors of both of these bankruptcy studies indicate that it is 

important to consider the prediction decision context when comparing prediction models.  Neither of these studies 

discuss the Kappa statistic or AUC metrics as part of their accuracy analyses.  Thus, because our study is in the 

context of an auditor change decision and incorporates additional metrics that evaluate the random nature of the 

classification results and accuracy rates, we are extending prior literature on comparative prediction models. 

 

4. SAMPLE AND EMPIRICAL RESULTS 

 

Our initial sample is the same used by Kwak et al. (2011) and includes a sample of companies that changed 

auditors in 2007 and 2008 and a sample of companies that did not change auditors, matched with auditor-change 

companies based on size (using total assets) and industry (using two-digit SIC codes).  Over 790 firms were 

identified as auditor change firms in 2007 and 2008 using CompuStat’s “Auditor” (AU) variable.  As stated in Kwak 

et al. (2011), the “study period of 2007 and 2008 is based on the following discussion of Sarbanes-Oxley Act of 

2002 (SOX) implementation.  As a result of SOX, the SEC (2003) amended Rule 2-02 of Regulation S-X to require 

the accountants auditing the annual financial statements to also attest to and report on management’s assessment of 

its internal control effectiveness.  The SEC (2004) required this initial attestation report be included with audited 

financial statements for fiscal years ending on or after November 15, 2004 for accelerated filers and for fiscal years 

ending on or after July 15, 2005 for non-accelerated filers.  In 2005, the SEC (2005) extended the initial compliance 

date for non-accelerated filers to fiscal years ending on or after July 15, 2006.  Fusco (2006) discusses the impact of 

SOX on trends in auditor changes and reports the following numbers of auditor changes each year during the period 

from 2002 through 2005:  1,224 in 2002, 1,467 in 2003, 1,736 in 2004, and 1,673 in 2005.  To exclude the potential 

effects of the initial implementation of the SOX attestation requirement on auditor change decisions, our study 

period includes the post-SOX implementation years of 2007 and 2008.”  After eliminating auditor-change firms that 

had multiple auditor changes within the test period, Kwak et al.’s (2011) sample included 790 auditor-change 

(experimental) and 1,132 non-auditor change (matching control) firm-year observations. 

 

 For our current study, we have chosen to exclude all firm observations with missing values for the 

independent variables in the four years prior to the auditor change year and with illogical (such as divided by zero) 

or zero calculated ratios.  This exclusion results in a total sample size of 513 firms for the years 2007 and 2008, 

which include 169 firms that changed auditors in the two-year time frame, and 344 matching non-auditor change 

firms.  We matched the control firms with the auditor change firms using size and industry.  Therefore, there is no 

statistically significant difference in size, as expected (see Table 1).  For sensitivity analysis, we split the data 

between 2007 and 2008.  In 2007, there are 117 auditor change firms, which are more than double the number of 

auditor change firms in 2008 (52 auditor change firms).  This disproportionate number of auditor change firms in 

2007 compared to 2008 could be because 2007 is the year before the financial crash in the U.S.  However, the 2008 

t-test results are similar to the t-test results for 2007 and for both years combined. 
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Table 1 shows the descriptive statistics for the 169 auditor change firms and the 344 matching control firms 

for the financial statement variables in the year prior to the year of auditor change, i.e., 2006 for 2007 changes and 

2007 for 2008 changes.  The table presents descriptive statistics for both years combined (2007 and 2008) in Panels 

A1 and A2, for the year 2007 in Panels B1 and B2, and for the year 2008 in Panels C1 and C2.  The t-test statistics 

for tests of differences between means for the two groups are included in Panels A2, B2 and C2 of Table 1.  Based 

on these t-test results, LOSS, DIV, and EBIT/TA are the only three (of the 13) variables that differ between auditor 

change and non-auditor change firms.  More auditor change firms reported losses in the year prior to the change than 

did non-auditor change firms as indicated by the mean LOSS variable being significantly greater for auditor change 

firms than for non-auditor change firms (0.47 vs. 0.31 for 2007 and 2008 combined; 0.48 vs. 0.35 for 2007; and 0.44 

vs. 0.25 for 2008).  More auditor change firms paid no dividends than did non-auditor change firms based on the 

mean DIV variable being significantly greater for both years combined (0.78 vs. 0.69) and for 2007 alone (0.81 vs. 

0.68).  All three panels show negative mean EBIT/TA for auditor change firms and positive mean EBIT/TA for non-

auditor change firms with statistically different means for both years combined and for 2008 alone. 

 
Table 1:  Descriptive Statistics of Predictor Variables for Auditor Change (Panels A1, B1, and C1) and Non-auditor 

Change (Panels A2, B2, and C2) Sample Firms for 2007, 2008, and Both Years Combined 

Panel A1:  Auditor Change Firms - Years 2007 and 2008 Combined 

Variable N Mean Std Dev Minimum Maximum 

TL/TA 169 0.280 0.266 0.001 2.596 

WCA/TA 169 0.212 0.276 -1.834 0.756 

CL/CA 169 0.770 1.520 0.096 19.389 

NI/TA 169 -0.079 0.366 -2.796 0.451 

FU/TL 169 14.272 77.991 -2.750 645.608 

LOSS 169 0.467 0.500 0.000 1.000 

DIV 169 0.775 0.419 0.000 1.000 

CREIN/TA 169 0.000 0.077 -0.248 0.490 

RE/TA 169 -0.804 2.755 -22.847 0.709 

EBIT/TA 169 -0.016 0.212 -1.157 0.290 

MKV/TD 169 10755.570 45255.010 0.039 436723.140 

SALE/TA 169 1.038 0.634 0.020 3.185 

SIZE 169 2.366 0.934 0.385 5.208 

 Panel A2:  Non-Auditor Change Firms - Years 2007 and 2008 Combined and t-values for Testing the Differences of 

Means between Auditor Change and Non-auditor Change Firms 

Variable N Mean Std Dev Minimum Maximum t-value 

TL/TA 344 0.270 0.266 0.000 1.895 0.390 

WCA/TA 344 0.218 0.271 -1.489 0.942 -0.260 

CL/CA 344 0.647 0.558 0.041 6.216 1.020 

NI/TA 344 -0.028 0.281 -2.781 0.397 -1.600 

FU/TL 344 41.397 289.104 -11.308 4090.390 -1.620 

LOSS 344 0.314 0.465 0.000 1.000 3.43* 

DIV 344 0.686 0.465 0.000 1.000 2.11* 

CREIN/TA 344 0.004 0.080 -0.338 0.538 -0.570 

RE/TA 344 -0.833 3.750 -39.049 0.976 0.100 

EBIT/TA 344 0.026 0.233 -2.349 0.609 -1.97* 

MKV/TD 344 68750.000 655363.040 0.011 10698874.720 -1.630 

SALE/TA 344 1.098 0.774 0.093 6.223 -0.344 

SIZE 344 2.435 0.849 -0.275 4.570 -0.850 

*Significant at the .05 level 
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Panel B1:  Auditor Change Firms - Year 2007 

Variable N Mean Std Dev Minimum Maximum 

TL/TA 117 0.266 0.190 0.001 0.875 

WCA/TA 117 0.203 0.292 -1.834 0.667 

CL/CA 117 0.809 1.781 0.138 19.389 

NI/TA 117 -0.059 0.277 -2.116 0.421 

FU/TL 117 13.201 72.755 -2.750 623.966 

LOSS 117 0.479 0.502 0.000 1.000 

DIV 117 0.812 0.392 0.000 1.000 

CREIN/TA 117 -0.002 0.083 -0.248 0.490 

RE/TA 117 -0.574 1.559 -7.716 0.675 

EBIT/TA 117 -0.006 0.177 -0.821 0.290 

MKV/TD 117 15508.320 53777.460 1.582 436723.140 

SALE/TA 117 1.100 0.654 0.094 3.185 

SIZE 117 2.317 0.940 0.385 5.208 

  Panel B2:  Non-Auditor Change Firms - Year 2007 and t-values for Testing the Differences of Means between Auditor 

Change and Non-auditor Change 

Variable N Mean Std Dev Minimum Maximum t-value 

TL/TA 234 0.258 0.274 0.000 1.895 0.350 

WCA/TA 234 0.239 0.292 -1.489 0.942 -1.080 

CL/CA 234 0.623 0.595 0.041 6.216 1.100 

NI/TA 234 -0.029 0.272 -2.179 0.397 -0.960 

FU/TL 234 48.073 310.469 -11.308 4090.390 -1.630 

LOSS 234 0.346 0.477 0.000 1.000 2.41* 

DIV 234 0.679 0.468 0.000 1.000 2.79* 

CREIN/TA 234 0.005 0.092 -0.338 0.538 -0.750 

RE/TA 234 -1.035 4.032 -39.049 0.976 -1.540 

EBIT/TA 234 0.017 0.264 -2.349 0.609 -0.970 

MKV/TD 234 100976.470 793099.160 0.737 10698874.720 -1.640 

SALE/TA 234 1.138 0.818 0.093 6.223 -0.480 

SIZE 234 2.346 0.838 -0.275 4.459 -0.290 

*Significant at the .05 level 
 

Panel C1:  Auditor Change Firms - Year 2008 

Variable N Mean Std Dev Minimum Maximum 

TL/TA 52 0.311 0.386 0.001 2.596 

WCA/TA 52 0.231 0.240 -0.276 0.756 

CL/CA 52 0.683 0.619 0.096 4.038 

NI/TA 52 -0.123 0.514 -2.796 0.451 

FU/TL 52 16.681 89.380 -0.442 645.608 

LOSS 52 0.442 0.502 0.000 1.000 

DIV 52 0.692 0.466 0.000 1.000 

CREIN/TA 52 0.004 0.061 -0.204 0.182 

RE/TA 52 -1.322 4.367 -22.847 0.709 

EBIT/TA 52 -0.038 0.276 -1.157 0.168 

MKV/TD 52 61.869 264.115 0.039 1885.610 

SALE/TA 52 0.898 0.565 0.020 2.500 

SIZE 52 2.474 0.920 0.807 4.580 
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Panel C2:  Non-Auditor Change Firms - Year 2008 and t-values for Testing the Differences of Means between Auditor 

Change and Non-auditor Change Firms 

Variable N Mean Std Dev Minimum Maximum t-value 

TL/TA 110 0.297 0.248 0.000 1.546 0.230 

WCA/TA 110 0.175 0.212 -0.708 0.739 1.520 

CL/CA 110 0.700 0.467 0.115 2.615 -0.180 

NI/TA 110 -0.023 0.299 -2.781 0.211 -1.290 

FU/TL 110 27.196 238.047 -0.796 2496.330 -0.410 

LOSS 110 0.245 0.432 0.000 1.000 2.57* 

DIV 110 0.700 0.460 0.000 1.000 -0.100 

CREIN/TA 110 0.001 0.048 -0.147 0.243 0.330 

RE/TA 110 -0.401 3.040 -29.981 0.773 -1.370 

EBIT/TA 110 0.045 0.145 -0.634 0.304 -2.04* 

MKV/TD 110 195.517 1641.180 0.011 17146.890 -0.830 

SALE/TA 110 1.013 0.667 0.103 4.036 -1.080 

SIZE 110 2.625 0.843 0.811 4.570 -1.030 

*Significant at the .05 level 

Variable Descriptions: 

TL/TA = Total Liabilities ÷ Total Assets 

WCA/TA = Working Capital ÷ Total Assets 

CL/CA= Total Current Liabilities ÷ Total Current Assets 

NI/TA = Net Income ÷ Total Assets 

FU/TL = Funds from Operations ÷ Total Liabilities 

LOSS = 1 if a firm has loss in previous years; else LOSS=0 

DIV = 1 if a firm did not pay dividend in a previous year; else DIV=0 

CREIN/TA = Change in the ratio of receivables plus inventories to total assets 

RE/TA = Retained Earnings ÷ Total Assets 

EBIT/TA = Earnings before Interest and Taxes ÷ Total Assets 

MKV/TD = Market Value of Equity ÷ Book Value of Total Debt 

SALE/TA = Sales ÷ Total Assets 

SIZE = Log of Total Assets 

 

Discriminant Analysis 

 

 We conducted a discriminant analysis to evaluate the effectiveness of the 13 financial statement variables 

discussed in section 2 in predicting auditor change.  We used SAS in order to conduct a direct discriminant analysis 

using data for one year prior to the year of auditor change for each of the 13 financial statement variables as 

predictors of membership in two groups, auditor change and non-auditor change.  Of the original 513 firms, 78 firms 

were identified as multivariate outliers and were deleted.  For the remaining 435 firms (122 auditor change and 313 

non-auditor change), evaluation of assumptions of linearity, normality, multicollinearity or singularity were 

satisfactory.  We did find a statistically significant heterogeneity of variance-covariance matrix, and therefore, a 

quadratic procedure was used by SAS PROC DISCRIM for the analysis (Tabachnick and Fidell 2007).  The 

elimination of outliers and the use of a quadratic instead of a linear procedure clearly show the impact of the 

restrictive assumptions that must be applied for discriminant analysis. 

 

Table 2 presents the results of the discriminant analysis for both years (2007 and 2008) combined (Panel A), 

for the year 2007 (Panel B) and for the year 2008 (Panel C).  We verified the stability of the classification procedure 

and our model with a cross-validation run.  The standard jackknifed classification or Leave-One-Out validation 

process was applied to discriminant analysis.  This classification procedure eliminates bias in the classification 

procedure.  

 

As presented in Table 2 (Panel A for both 2007 and 2008 combined), the overall accuracy rate of 

discriminant analysis is 41.38 percent for correct classification of the original observations and 38.85 percent when 

applying cross-validation procedures.  The true positive or sensitivity rate, which indicates the percentage of auditor 

change firms correctly classified, is 89.34 percent in the cross-validation summary.  The overall accuracy and true 

positive rates are influenced by the classification of a disproportionate number of cases as auditor change firms.  
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Although 28 percent of the firms in the sample actually changed auditors, the classification scheme using sample 

proportions as prior probabilities, classified 83.22 percent of the firms as auditor change firms [(362/435) from 

cross-validation summary, Table 2, Panel A].  This means that for the years 2007 and 2008, auditor change firms are 

more likely to be correctly classified, but non-auditor change firms are likely to be mis-classified as auditor change 

firms.  

 
Table 2:  Auditor Change Prediction Results using Discriminant Analysis 

 
 

Panel B of Table 2 presents the classification results for the year 2007, which are similar to the overall 

results, where the overall accuracy rates are 49.65 percent and 46.50 percent for the original and the cross-validation 

classifications, respectively.  Also in this 2007 sub-sample, a disproportionate number of cases are classified as 

auditor change firms.  Twenty-six percent of the firms (74 of 286 firms) actually changed auditors in 2007, but the 

classification scheme using sample proportions as prior probabilities, classified 71.68 percent of the firms as auditor 

change firms [(205/286) from cross-validation summary, Table 2, Panel B].  The resulting true positive rate for 2007 

is 85.14 percent in the cross-validation results.  Consistent with the results for the combined years, the 2007 overall 

accuracy and true positive rates suggest that auditor change firms are more likely to be correctly classified when the 

13 predictors are used in the model.  

From ExpGroup Non-auditor Change Auditor Change Total

Non-auditor change 67 246 313

Percentage 21.41% 78.59% 100%

Auditor Change 9 113 122

Percentage 7.38% 92.62% 100%

Total 76 359 435

Percentage 17.47% 82.53% 100%

41.38% of the original grouped cases correctly classified

58.62% of the original grouped cases incorrectly classified (error rate)

From ExpGroup Non-auditor Change Auditor Change Total

Non-auditor Change 60 253 313

Percentage 19.17% 80.83% 100%

Auditor Change 13 109 122

Percentage 10.66% 89.34% 100%

Total 73 362 435

Percentage 16.78% 83.22% 100%

Cross-validation is done only for 

those cases in the analysis. In cross-

validation, each case is classified by 

the functions derived from all cases 

other than that case

38.85% of the cross-validated cases correctly classifed.

61.15% of the cross-validated cases incorrectly classified (Error rate)

Predicted Group Membership

Predicted Group Membership

Cross-Validation Summary for the years 2007 and 2008 Combined 

Panel A: Number of Original Observations Classified into ExpGroup along with percentages                                  

for the years 2007 and 2008 Combined
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The classification results for the year 2008 presented in Panel C, Table 2, show overall accuracy rates of 

73.68 percent and 55.64 percent for the original and cross-validation procedures, respectively.  Even in 2008, a 

disproportionate number of firms are classified as auditor change firms (38.35 percent (51/133) compared to the 

actual 25.56 percent of firms in the sample (34/133)).  However, the true positive rate of 38.24 percent in the cross-

validation results is much lower than that for both years combined and for 2007 alone.  Overall, the cross-validated 

prediction rates of the discriminant analysis are not strong.  

 

From ExpGroup Non-auditor Change Auditor Change Total

Non-auditor change 72 140 212

Percentage 33.96% 66.04% 100%

Auditor Change 4 70 74

Percentage 5.41% 94.59% 100%

Total 76 210 286

Percentage 26.57% 73.43% 100%

49.65% of the original grouped cases correctly classified

50.34% of the original grouped cases incorrectly classified (error rate)

From ExpGroup Non-auditor Change Auditor Change Total

Non-auditor Change 70 142 212

Percentage 33.02% 66.98% 100%

Auditor Change 11 63 74

Percentage 14.86% 85.14% 100%

Total 81 205 286

Percentage 28.32% 71.68% 100%

Cross-validation is done only for 

those cases in the analysis. In cross-

validation, each case is classified by 

the functions derived from all cases 

other than that case

46.50% of the cross-validated cases correctly classifed.

53.50% of the cross-validated cases incorrectly classified (Error rate)

Cross-Validation Summary for the year 2007 

 Panel B: Number of Original Observations Classified into ExpGroup along with percentages                                

for the year 2007 

Predicted Group Membership
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In addition to classification accuracy rates, we want to evaluate the contribution of specific variables as 

predictors in the discriminant functions.  The untabulated univariate test statistics for testing equality of class means 

for each predictor variable from our discriminant analyses show differences for LOSS and DIV, and this is 

consistent with the tests of differences presented in Table 1.  However, the standardized canonical coefficients from 

our discriminant analyses, as presented in Table 3, provide inconsistent results when comparing both years 

combined (2007 and 2008).  The standardized coefficients indicate the relative importance of the 13 financial 

statement variables in the discriminant functions, and we use 0.30 as the generally accepted cut-off between 

important and less important variables.  DIV is the only variable that is an important predictor in all three groups 

(2007, 2008, and both years combined).  Three other variables - LOSS, RE/TA, and EBIT/TA - are important for 

both years combined and for either 2007 or 2008, but not for both years separately.   

 

 

 

 

 

 

From ExpGroup Non-auditor Change Auditor Change Total

Non-auditor Change 68 31 99

Percentage 68.69% 31.31% 100%

Auditor Change 4 30 34

Percentage 11.76% 88.24% 100%

Total 72 61 133

Percentage 54.14% 45.86% 100%

73.68% of the original grouped cases correctly classified

26.32% of the original grouped cases incorrectly classified (error rate)

From ExpGroup Non-auditor Change Auditor Change Total

Non-auditor Change 61 38 99

Percentage 61.62% 38.38% 100%

Auditor Change 21 13 34

Percentage 61.76% 38.24% 100%

Total 82 51 133

Percentage 61.65% 38.35% 100%

Cross-validation is done only for 

those cases in the analysis. In cross-

validation, each case is classified by 

the functions derived from all cases 

other than that case

55.64% of the cross-validated cases correctly classifed.

44.36% of the cross-validated cases incorrectly classified (Error rate)

Predicted Group Membership

Cross-Validation Summary for the year 2008 

Panel C: Number of Original Observations Classified into ExpGroup along with percentages                                                                                                                                                                  

for the year 2008

Predicted Group Membership
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Table 3:  Standardized Canonical Coefficients from the Discriminant Analysis for Auditor Change  

and Non-auditor Change Firms using the 13 Financial Statement Variables 

Variable Both Years Combined 2007 2008 

DIV 0.403 0.801 0.567 

RE/TA 0.754 0.808 0.115 

EBIT/TA -0.420 -0.684 0.086 

LOSS 0.594 0.238 -0.753 

FU/TL -0.405 -0.161 0.086 

WCA/TA -0.091 -0.510 -0.628 

NI/TA 0.018 0.307 0.085 

SALE/TA -0.102 0.041 0.373 

MKV/TD 0.128 -0.060 0.329 

TL/TA 0.198 0.191 0.111 

CL/CA -0.073 -0.281 -0.236 

CREIN/TA -0.217 -0.193 0.250 

SIZE -0.083 0.217 -0.062 

    

Coefficients exceeding 0.30 are presented in bold type for emphasis. 

Variable Descriptions: 

TL/TA = Total Liabilities ÷ Total Assets 

WCA/TA = Working Capital ÷ Total Assets 

CL/CA = Total Current Liabilities ÷ Total Current Assets 

NI/TA = Net Income ÷ Total Assets 

FU/TL = Funds from Operations ÷ Total Liabilities 

LOSS = 1 if a firm has loss in previous years; else LOSS=0 

DIV = 1 if a firm did not pay dividend in a previous year; else DIV=0 

CREIN/TA = Change in the ratio of receivables plus inventories to total assets 

RE/TA = Retained Earnings ÷ Total Assets 

EBIT/TA = Earnings before Interest and Taxes ÷ Total Assets 

MKV/TD = Market Value of Equity ÷ Book Value of Total Debt 

SALE/TA = Sales ÷ Total Assets 

SIZE = Log of Total Assets 

 

Data Mining Approaches 

 

The WEKA software we used to implement 13 data mining algorithms includes logistic regression as a data 

mining approach even though logistic regression includes parametric assumptions.  Because logistic regression 

assumptions are less restrictive than those of discriminant analysis and because logistic regression has been used in 

many prior bankruptcy studies and allows us to evaluate the significance of individual predictor variables in addition 

to the set of variables as a whole, we applied this approach using SAS software to our current auditor change 

prediction study before completing our analysis of data mining results.  The less restrictive assumptions of logistic 

regression resulted in the removal of only two outliers from our initial sample so that our data set included 511 

observations (168 auditor change and 343 non-auditor change firms).  Summary results for the logistic regression 

analysis are presented in Table 4.  Overall accuracy rates were 67.3 percent, 66.4 percent, and 65.0 percent for both 

years combined (2007 and 2008), respectively.  The likelihood ratio statistics exceed 24.5 for both years combined 

(2007 and 2008) indicating that the 13 financial variables, as a set, reliably distinguish between auditor change and 

non-auditor change firms.  However, true positive rates (the percentage of auditor change firms correctly classified) 

were very low, ranging from 4.8 percent for both years combined to 15.7 percent for 2008.  The only variables with 

significant coefficients based on the Wald statistics (results not tabulated) are LOSS (both years combined and 

2008), DIV (2007), RE/TA (2007), and WCA/TA (2008). 
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Table 4:  Results of Logistic Regressions for Classifying Auditor Change and Non-auditor Change Firms 

 

Sample or 

Sub-sample 

 

 

Overall Accuracy 

 

True Positive 

Rate 

Likelihood Ratio 

Chi-Square 

Statistic 

 

 

Pr>ChiSq 

Variables with 

Coefficients Significant at 

0.05 or Less 

2007& 2008 

combined 

67.3% (344/511) 4.8% (8/168) 25.2302 0.022 LOSS 

2007 66.4% (233/351) 13.7% (16/117) 26.3237 0.015 DIV, RE/TA 

2008 65.0% (104/160) 15.7% (8/51) 24.5182 0.027 LOSS, WCA/TA 

 

The results of our discriminant and logistic regression analyses indicate that LOSS, DIV, and RE/TA are 

significant predictors in distinguishing between auditor change and non-auditor change firms.  However, in the 

cross-validation discriminant analyses, the overall accuracy rates ranged from 38.85 percent (both years combined) 

to 55.64 percent (2008), and the true positive rates were driven by disproportionate numbers of non-auditor change 

firms being classified as auditor change firms.  In the logistic regression analyses, overall accuracy rates were 

around 66 percent, but true positive rates were below 16 percent. 

 

The second objective of our study involves using the Kappa statistic and AUC metrics to more carefully 

evaluate the results of applying 13 data mining algorithms, including logistic regression, to our sample data.  

Although the overall accuracy rates for 11 of the 13 algorithms are between 64 percent and 67 percent (with lower 

rates for the other two algorithms), Kappa statistics for all 13 algorithms range from -0.04 to 0.07, and AUC 

measures range from 0.48 to 0.56.  These Kappa statistics and AUC measures indicate that the classifications of 

auditor change and non-auditor change firms using the 13 data mining algorithms are no better than random 

classifications.  Even when we include values for our 13 financial distress variables from all three years prior to the 

change year and from the change year, the Kappa statistics and AUC measures indicate random classifications.  

Because these results are consistent across algorithms, we have not tabulated these results. 

 

5. SUMMARY AND CONCLUSIONS 

 

In this study, we have applied discriminant analysis to evaluate the effectiveness of 13 financial distress 

variables in predicting auditor changes, and we have examined the results of applying 13 data mining algorithms in 

predicting auditor changes and whether these results occurred by chance.  Our study extends previous research by 

using the traditional discriminant analysis model because this model has not been used in previous auditor change 

studies.  Discriminant analysis also allows us to evaluate the significance of individual predictor variables in 

addition to the set of financial distress variable used for classification.  Our study also extends prior research by 

highlighting the importance of evaluating the likelihood that data mining approach classification results occurred by 

chance. 

 

Using Kwak et al.’s (2011) data set of firms changing auditors in 2007 or 2008 and matching non-auditor 

change firms, our discriminant analysis test results show overall accuracy rates ranging from 38.85 percent (for both 

years combined) to 55.64 percent (2008 only) and true positive rates over 85 percent, but these rates are influenced 

by a disproportionate number of non-auditor change firms being classified as auditor change firms.  Individual 

predictor variables that are important in the discriminant equation based on standardized canonical coefficients 

include losses (LOSS) and no payment of dividends (DIV) in the year prior to the auditor change, retained earnings 

as a percent of total assets (RE/TA), and earnings before interest and taxes as a percent of total assets (EBIT/TA).  

We applied logistic regression, a parametric data mining method, for comparison with discriminant analysis, and our 

results show overall accuracy rates of around 66 percent, true positive rates less than 16 percent, and LOSS, DIV, 

RE/TA, and WCA/TA as significant individual predictors.  However, the Kappa statistic and AUC metrics for 

logistic regression and the other 12 data mining algorithms we used indicate that classifications using these 

algorithms are no better than random classifications. 

 

Investors are interested in reasons for auditor change decisions because these may negatively impact stock 

prices.  Audit firms would benefit from a reliable auditor change prediction model because they stand to lose future 

revenues and some of their start-up and negotiation costs if they incorrectly price audit services for new clients or 

accept clients that fail or that change auditors again in the near future.  Thus, current and future research to improve 

auditor change prediction is valuable.  Our current study makes three important contributions to the auditor change 
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prediction literature.  First, our results suggest that auditor change prediction studies should include financial distress 

variables because we document that some financial distress variables are important in distinguishing between 

auditor change and non-auditor change firms.  Second, our relatively low prediction accuracy rates using only 

financial distress variables as predictors indicate that a more robust set of predictor variables is needed to capture the 

various drivers of auditor change decisions.  Third, we highlight the importance of using additional metrics beyond 

accuracy rates to interpret the results of data mining approaches to classification and prediction. 

 

One limitation of our current study is the time period used in our sample.  Years of 2007 and 2008 are at 

the beginning of the economic recession in the United States, so our results may not be generalizable to periods with 

different economic conditions.  A potential extension of our study could be to expand the period used in our sample 

and control for general economic conditions.  Future research could also incorporate additional firm characteristic 

variables and specific event indicators in order to better understand auditor change motivations and improve 

prediction accuracy. 
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