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Abstract 

 

This paper uses spectral and correlation techniques to analyze the relationship between several 

inflation indicators and nominal interest rates. Empirical definitions of real interest rates reduce 

to stating real rates are equal to nominal interest rates minus expected inflation. To represent a 

number for inflation, economy-wide measures such as the GDP deflator or the Consumer Price 

Index are employed. This uncritical usage results more often than not in implausible values for 

real interest rates. In particular, volatile negative real rates are encountered for prolonged 

periods ranging from six months to up to three years. Such long time intervals for negative real 

rates amounts to accepting the unrealistic proposition that profit maximizing lenders, such as 

commercial bank officers, pay hefty fees to borrowers to have them use their institution's loanable 

funds. This paper questions the effectiveness of GDP or CPI inflation measures in surrogating for 

expected inflation. We find instead that narrower sector (industry) inflation indices such as fuels 

or raw materials prices appear to be improved measures. The issue matters since accurate real 

interest rate estimates are necessary for policy (Taylor rules), financial model evaluation, and 
discounting. 

 

 

1.  Introduction 

 

his paper uses spectral and correlation techniques to analyze the relationship between several 

inflation indicators and nominal interest rates. Empirical definitions of real interest rates reduce to 

stating real rates are equal to nominal interest rates minus expected inflation. To represent a number 

for inflation, economy-wide measures such as the GDP deflator or the Consumer Price Index are employed. This 

uncritical usage results more often than not in implausible values for real interest rates. In particular, volatile 

negative real rates are encountered for prolonged periods ranging from six months to up to three years. Such long 

duration real rates amount to accepting the unrealistic proposition that profit maximizing lenders, such as 

commercial banks, pay hefty fees to borrowers to have them use their institution's loanable funds.  This paper 

questions the effectiveness of GDP or CPI inflation measures in surrogating for expected inflation. We find instead 

that narrower sector (industry) inflation indices such as fuels or raw materials prices appear to be improved 

measures. The issue matters since accurate real interest rate estimates are necessary for policy (Taylor rules), 

financial model evaluation, and discounting. 

 

 The real interest rate is a fundamental concept in finance and economics because it is the rate upon which 

agents supposedly base their saving, investment and portfolio decisions. The real interest rate, expected inflation, 

and the nominal rate are also a fundamental input to central bank monetary policy. However, both the real interest 

rate, as well as expected inflation, are unobservable quantities, though theoretically both make up the observable 

nominal interest rate. Put more formally, the ex-ante nominal interest rate is the sum of the unobservable ex-ante 

real interest rate and expected inflation. One way favored by empirical analysts around the difficulty posed in trying 

to quantify the unobservable real interest rate is to use the ex-post real interest rate instead. The ex-post real interest 

rate is calculated as the difference between the observed  nominal  interest  rate and  the observed inflation  rate. The  
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substitution of ex-post for ex-ante values is possible under the assumption that agents use available information 

efficiently. With the exception of independent forecast errors, this would be equivalent to analyzing the ex-ante real 

interest rate.  

 

 Nevertheless such methods of estimating ex ante real rates have produced results that seem implausible. 

Ex-ante real interest rates have been estimated as low as a negative 7 percent and as high as a positive 10 percent in 

the two decades since 1980. Fluctuations of this magnitude (as well as the existence of negative interest rates over 

sustained periods of time), have the appearance of being inconsistent with most theories of real interest rates 

(Emmons 2000). At the very least, both the size of the fluctuations and the existence of negative interest rates appear 

to indicate something amiss in either the concept or in the conversion process that goes from the observed nominal 

to the calculated real interest rate. One area where estimation may go awry is if the inflation index is inappropriate to 

the task of measuring inflationary expectations. Since only broad inflation indices (ie: the GDP deflator or the 

consumer price index (CPI)), are used to go from nominal to real rates, a simple test can be constructed to measure 

their adequacy. Because of the unobservable nature of the data, such a test will be completely dependent on the 

assumptions made regarding the behavior of real rates.  

 

 One strong simplifying assumption that can be made is that real interest rates are constant over sustained 

periods of time. A less restrictive yet plausible assumption would be that changes in the nominal rate are due more 

to changes in inflationary expectations than to changes in real rates. That is, the primary cause of variability in 

nominal interest rates over time would be due to inflation, with changes in real rates playing a more attenuated role 

(Kennedy, 2000). That substantive changes in the nominal interest rate are usually due more to changes in expected 

inflation than to changes in interest rates is less polemical than assuming real rates are constant, since the consensus 

among economists is that they are not (Garcia and Perron, 1996). Nevertheless these two authors empirically support 

the constant real rate proposition by treating the constancy as a stationary process. Real rates therefore, are viewed 

not as a fixed numerical value (e.g.: 2 percent), but are instead defined as random processes around a constant mean 

and variance that has substantial, yet infrequent changes (e.g.: a 2 percent mean plus or minus random noise of fixed 

variance).   

 

 Under the strong assumption of fixed real rates (if for example, changes in the GDP deflator are the 

appropriate expected inflation factor), statistical analysis would find that changes in the nominal interest rate would 

differ from changes in the GDP deflator only by a constant term. Under the weaker second assumption, changes in 

the GDP deflator and changes in nominal interest rates would differ by more than a constant term, but would 

nevertheless be positively correlated. The degree of correlation would be a function of the degree to which changes 

in inflation overwhelm changes in real interest rates. Under either the strong or weak assumption, once again 

presuming the GDP deflator is indeed the appropriate inflation factor, using an inflation measure different from 

GDP, such as narrowly defined oil prices, should result primarily in lower, not higher correlations. In this paper we 

test these propositions with nine different price indices and report some counter-intuitive statistical results.  

 

 Our application of spectral techniques and traditional correlation appears to show that the major economy-

wide inflation measures do not have as strong a correlation to short and long term interest rates as sector price 

indices do. The statistical analysis seems to show different sector price indices are more strongly related to changes 

in the T-bill (sensitive and raw materials prices), and to changes in the T-bond (fuel prices and energy costs), than 

either the CPI or the GDP deflator. Both spectral and correlation results confirm each other and possibly shed some 

doubt on the appropriateness of using major inflation indices to act as surrogates for the expected inflation 

component of real short and long term interest rates. 

 

2.  Nominal and Real Interest Rates  

 

 Much as real interest rates are considered fundamental and are placed at the heart of decision making by 

economic agents, there are also empirically based counter arguments that downplay the importance of real rates in 

actual financial and economic choices. These arguments minimize the role of real rates in the cyclical behavior of 

the economy, and they additionally presume far less impact, if any, of real interest rates on individual and business 
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choices. On the one hand, Mishkin (1981) finds there is little evidence that real interest rates have a stable 

relationship to the business cycle. On the other, there is strong evidence that nominal rates rise in recoveries and fall 

in downturns. This stronger association between nominal interest rates and business cycle variables may in part be 

due to the practice of individuals and firms to typically base their financial planning in nominal rather than in real 

terms (Romer, (1996)). Last but not least, in addition to theoretical issues, there are also nontrivial data problems in 

the empirical calculation of real interest rates. Boskin (1996), found serious overestimation in CPI inflation data 

over the 1974 to 1994 period. The result of this overestimation has been to further distort calculations of historical 

real interest rates.  

 

 Notwithstanding these counter arguments downplaying the role of real interest rates, there are at least four 

broad areas involving practical applications in which miscalculations of expected inflation and real rates can have 

detrimental financial consequences. These are the fixed income market; monetary policy analysis; financial 

modeling, and the use of inverted real rates as a predictive tool of future output. Each of these areas needs to 

distinguish nominal from real rates, or as is the case for some financial models, additionally requires the constancy 

of real interest rates.  

 

 In the first area, the fixed income market, real ex-post capital losses to either borrowers or lenders will be 

dependent on whether ex-ante inflation expectations, which determine the inflation premium added to real rates, turn 

out to be different from actual ex-post inflation. The wider this divergence, the more fixed income instruments will 

fluctuate in value, leading to investment decision uncertainty. This may in part explain why statistical analysis 

shows inflation and investment to be negatively correlated (Fischer, 1993). The second area is monetary policy. A 

central bank needs to know the outlook for inflation, and needs to decide on the appropriate policy steps necessary 

to regulate the extremes of the business cycle. To do this efficiently and not grope in the dark, policy makers need to 

clearly distinguish real from nominal rates. The "Taylor rule", for example, introduces expectations of a central bank 

reaction function (Kennedy 2000), which is itself based on the real versus nominal interest rate distinction.  

 

 In the third area, financial models such as the Black-Scholes option pricing formula as well as capital asset 

pricing models are dependent not only on the real versus nominal distinction, but they also have the additional 

requirement of a constant real interest rate. Rose (1988) shows that nonstationarity of real interest rates could lead to 

the rejection of some equilibrium asset models such as the consumption CAPM. Ahn and Thompson (1988) 

additionally find jump diffusion processes in underlying state variables tend to invalidate standard capital asset 

pricing models. The interpretation and the practical application of these financial models would of course benefit 

from empirical estimations that would more reliably distinguish between nominal, real and constant interest rates. 

Yet as Emmons (2000) argues, plausible estimates of real interest rates are not feasible with the current practice of 

using broad inflation indicators such as the CPI.  

 

 The fourth and last area is the use of interest rates in forecasting future economic growth. Business cycle 

analysts working on Leading Indicators have recognized since the 1970's that inverted interest rates are associated 

with future output (Zarnowitz, 1988). The supposition that real (and nominal) interest rates anticipate many real 

macroeconomic variables is also borne out by research done in the 1990's. Several recent studies concur in 

empirically supporting the proposition that inverted real rates are predictive of  future output. These include Fiorito 

and Kollintzas (1994), who find inverted real interest rates for the G7 countries lead real GDP by 4 quarters, by 

King and Watson (1996), who also find real rates are predictive of output, and by Boldrin, Christiano and Fisher 

(2001), who show similar results for the real Federal Funds rate. Finding predictive power for interest rates can be a 

powerful and useful tool in business and financial applications. However, this usefulness is possibly in doubt, if as 

previously mentioned, the methodology used to empirically calculate real interest rates produces implausible results. 

 

3.  Data and Sectors 

 

 We look at the one year Treasury bill, the ten year Treasury note, and their relationship to three major 

inflation indices (the CPI, and the PCE and GDP deflators), and six sector price measures (Raw Materials, Sensitive 

Materials, PPI Fuels and Related Products, the CPI Energy Component, and the Manufacturing and Trade Sales 
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deflator).  Changes in all the variables are month-to-month 12-month differences of logarithms. ie: June 1990 to 

June 1991; July 1990 to July 1991; and so forth. The data range from January 1966, to December 2000. 

4.  Spectral Analysis of Interest rates and Inflation 

 

 The term "spectral" leads to the following analogy.  Suppose you analyze an apparently uninteresting beam 

of white sunlight for the first time. If we then view the same beam of light through a prism, we would be surprised 

by the appearance of a wide array of colors, each with different wavelengths. In similar fashion spectral techniques 

are capable of finding underlying cycles that are either hidden in the data, or not readily apparent to visual 

inspection. In essence, performing spectral analysis on a time series is like putting the series through a prism in order 

to uncover cyclical patterns and identify component wavelengths and their relative importance.     

 

 Spectral analysis decomposes a variable into underlying sine and cosine functions of particular wavelengths 

or cycles. For example, our data sample has 420 monthly observations, and spectral analysis identifies a 7 frequency 

or recurring 60-month cycle as the most important wavelike pattern for most of our variables. It then gives this 60-

month "wave/frequency" an appropriate weight known statistically as a density measurement. The density values 

can be viewed as the percent contribution of each frequency in explaining a variable. Spectral analysis proceeds to 

identify other recurring cycles in the sales data as being of descending importance, assigning them densities of lower 

magnitude. This is shown in Table 1, which displays the densities of the first 15 frequencies for the 9 sector price 

indices as well as the T-bill and T-bond.  

 

 

Table 1 
 Densities   

Cycles Months  Tbsdef  Smp Rim Ppi Ppifrp Cpinrgy Pce D2 Gdp D2 Cpi D2 Bill1 Bnd10 

0 0 0.111 0.013 0.013 0.104 0.051 0.059 0.014 0.025 0.013 0.011 0.009 

1 420 0.147 0.027 0.027 0.143 0.075 0.085 0.023 0.029 0.018 0.018 0.017 

2 210 0.146 0.045 0.047 0.155 0.092 0.105 0.036 0.033 0.028 0.026 0.031 

3 140 0.077 0.041 0.044 0.105 0.077 0.083 0.043 0.044 0.043 0.030 0.036 

4 105 0.055 0.051 0.050 0.087 0.074 0.068 0.058 0.067 0.063 0.058 0.038 

5 84 0.066 0.070 0.064 0.077 0.057 0.055 0.067 0.106 0.110 0.093 0.045 

6 70 0.081 0.083 0.078 0.073 0.054 0.058 0.092 0.122 0.159 0.102 0.047 

7 60 0.097 0.099 0.098 0.083 0.076 0.080 0.120 0.102 0.150 0.108 0.057 

8 53 0.061 0.091 0.092 0.053 0.057 0.059 0.104 0.071 0.086 0.071 0.048 

9 47 0.022 0.099 0.089 0.021 0.032 0.031 0.072 0.071 0.050 0.049 0.051 

10 42 0.016 0.091 0.085 0.014 0.033 0.024 0.055 0.083 0.042 0.057 0.075 

11 38 0.022 0.044 0.043 0.016 0.050 0.037 0.062 0.071 0.034 0.055 0.093 

12 35 0.015 0.030 0.028 0.009 0.040 0.041 0.069 0.039 0.032 0.037 0.075 

13 36 0.008 0.047 0.045 0.004 0.029 0.032 0.048 0.017 0.029 0.029 0.057 

14 30 0.010 0.047 0.046 0.003 0.025 0.025 0.019 0.011 0.016 0.019 0.043 

15 28 0.009 0.035 0.037 0.002 0.014 0.015 0.006 0.013 0.007 0.009 0.026 

TOTAL  0.943 0.913 0.886 0.950 0.836 0.856 0.887 0.903 0.880 0.771 0.746 

 

 

 Technically, the number of frequencies in spectral analysis is half the total number of observations in the 

data set. Our data therefore has waves ranging from a low frequency of 1 cycle, to a maximum high frequency of 

210 cycles. The complete set of all 210 waves is known as a power spectrum. 

 

 It should be emphasized at this point, however, that spectral analysis is not deterministic, but is instead a 

statistical procedure. It is appropriate then that the density values we refer to above should be interpreted in terms of 

a probabilistic variance (sums of squares) of the data at the respective frequency. Furthermore, as with other 

statistical techniques, sampling errors can affect the parameters of the data spectrum, which are just estimates of true 

but unknown population data. What the statistical methods are doing is attaching weights to various frequencies 
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reflecting their relative strengths in fitting the data. These weights, however, are not precise values. The randomness 

in the data tends to lead to a smearing effect across frequencies in the spectrum that is analogous to wide confidence 

bands on the coefficients of the regression.  

 

 Figure 1 depicts the shape of 4 power spectra: the T-bill, the T-bond, Sensitive Materials, and Fuel price 

indices. The latter two are the price indices with the highest spectral association for the T-bill and T-bond, 

respectively. 

 

 
FIGURE 1                                                    Spectra of Sensitive Materials Prices, PPI-Fuel Related Products, T-Bill and T-Bond 
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 For graphical convenience, the chart shows the first 50 frequencies of each spectrum. The remaining 170 

frequencies, which are not shown, are characterized by a continuation of very low density values. A conventional 

frequency domain definition of the business cycle is that these are cycles between 24 and 128 months, roughly 

equivalent to the interval between the 3rd and the 15th frequencies of Figure 1. The range of this domain definition 

derives from the duration of business cycles isolated by NBER researchers using the methods of Burns and Mitchell 

(1946). We can note in Figure 1 that this business cycle interval contains: (a) the peak of our interest rate and 

inflation spectra. (b) the bulk of the variance of  the T-bill (77%), the T-bond (75%), Sensitive Materials (89%), and 
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Fuels (84%); and (c) substantial predictability of the cyclical component of these growth rates (which is not the 

same as predictability of the variables), indicated by the hump shape of the power spectrum.  
 

 The power spectrum of interest rates, and sector price indices shown in Figure 1, is similar to the growth 

rate spectrum of a wide range of macroeconomic variables.  In particular our growth rate spectrum shares the 

following broad features with the growth rate spectrum of other macroeconomic variables: the power spectrum is 

relatively low at low frequencies (a small number of cycles per period), rises to a peak , then rapidly declines at 

higher frequencies. The height of the spectrum in Figure 1 indicates the extent of that frequency's contribution to the 

variance of the growth rate. 

 

5.  Cross-Spectral Analysis  

 

 Cross-spectral analysis is the bivariate extension of spectral analysis and relates to pairs of equal 

frequencies. It measures the strength of the statistical association of waves of equal cycles corresponding to any two 

economic variables, and also measures their respective leads or lags. This is possible because the spectral density 

matrix has real and imaginary mathematical components, which can be transformed into two cross-spectral statistics 

of direct relevance to cycle analysis. The first is coherence, which defines the association between variables. The 

coherence statistic (which applies to any two waves of equal cycles) can take a value between 0 and 1 and is 

analogous to the R-squared of regression.  Coherence measures the proportion of variance in one frequency as 

explained by the other. The second statistic is the phase value. Phase estimates lead/lag relationships by wavelength 

pairs, and measures the time difference for comparable frequencies.  

 

 It is important though, to note a distinct feature of the phase statistic. The interpretation of the phase 

spectrum is highly dependant on the values of the coherence spectrum (Warner, 1998). The phase statistic can only 

be estimated reliably if the coherence is reasonably high. This is because the statistical sampling error of the phase is 

inversely related to the squared coherence. As coherence falls, the error in estimating the phase gets larger. This 

implies we need relatively high coherence values between pairs of frequencies in order to obtain reliable estimates 

of lead/lag relationships. 

 

 There is, however, no uniform approach to identifying lead-lag relationships in economic data with spectral 

methods, and some researchers do not think this is feasible at all. With these caveats in mind, our approach to lag 

estimation follows.   Our choice as to the criteria used in selecting cut-off points is to ascertain confidence bands 

around coherence values. This can be combined with a selection process that relies on selecting frequencies that 

have relatively high densities. This will help rule out some of the phase estimates on statistical grounds, and the 

most likely phase leads will then be those with highest coherence. The charts for the T-Bill and Sensitive Materials 

prices, and for the T-bond and Fuel prices (Figures 2 and 3) give a visual flavor of this selection process.  
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Figure 2 T-Bill And Sensitive Materials Prices 

Cycles

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 

   
  

COHERENCE OF .80 OR HIGHER 

BANDS ARE 90%  CONFIDENCE LEVELS 

C
o

h
e
r
e
n

c
e

 

 

 

 They first report waves with coherence above .70, and individual frequency densities for each variable 

higher than 2 percent. More stringent criteria are then used to narrow down this first set. Using the confidence bands 

around the coherence to help rule out some of these frequencies, we end up with coherence values above .80 and 

individual density requirements of 5% and higher.  This narrower selection in turn leaves us with the most likely 

phase leads as determined by the highest coherence values. All coherence values show 90% confidence bands 

derived from tables developed by Amos and Koopmans (1963). We now detail below this selection process for the 

two price indices of highest coherence with the T-bill and T-bond. 

 

6.  Cross Spectral Analysis: The T-bill  and Sensitive Materials  

 

 The cross spectral relationship of the T-bill and Sensitive Materials prices has the highest coherence. The 

statistics for the T-bill and Materials are shown in Table 2 and Figure 2.  
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Figure 3 T-Bond And CPI-Energy 
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Table 2 

T-Bill and Sensitive Materials Prices 

      

    Length  Phase  Confidence Bands (90%) 

Cycles (Months) (Months) Coherence Lower Upper 

      

4 105 -5.4 0.69 0.46 0.82 

5 84 -3.8 0.92 0.85 0.94 

6 70 -3 0.92 0.85 0.94 

7 60 -2.7 0.83 0.72 0.91 

8 53 -2.2 0.64 0.37 0.78 

9 47 -3.4 0.67 0.44 0.81 

 

 

 Once again, for graphical convenience we only show a few data points, in this case it is the first 20 of 210 

frequencies. There are two sets of data shown in this chart. One set has coherence values above .60 but below .80, 

and density values higher than 2% (dotted lines). This set ranges from frequency 4 to frequency 9, and its phase 

values range from 2 to 5 months. The second set has more rigorous requirements, with coherence values of .80 and 

higher, and frequencies for the T-bill and Materials prices with density values explaining 5% or more of their 

respective variation. These correspond to frequencies 5 through 7 (thick lines). The lead of Sensitive Materials on 
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the corresponding T-bill frequencies is now narrower, and ranges from 3 to 4 months, with the highest coherence 

value indicating a 4-month lead.  

 We have applied this last cross-spectral result to the actual time domain data on the T- bill and prices which 

is shown in Figure 4.  This chart plots the 12 month change in the logarithm of the T-bill against the 12 month 

change in the logarithm of Sensitive Materials prices, with the T-bill "shifted back" in time by 3 months to reflect its 

stronger correlation as well as its lead by Materials. Figure 5 is similarly structured, with the T-bill "shifted forward" 

in time by 7 months to reflect its lower correlation and its lead on the GDP deflator.  

 

 Table 4 shows an additional seven price indices and their spectral statistics. Columns 1 and 2 display the 

cycles with the highest coherence and their phase values, for the bill and bond and the nine inflation indices.  

 

 

 

HIGHEST SQ. *LEAD(-) SQ.CHRN LD-/LG+

COHERENCE LAG(+) RANGE RANGE

     (0-1.0)     MONTHS      (0-1.O)     MONTHS

BILL AND:

SN-MTRL SENSITIVE MATERIALS** 0.92 -3 (.64/.92) (-2/-5)

RW-MTRL RAW INDUSTRIAL MATERIALS*** 0.91 -2 (.63/.91) (-1/-5)

P-FUELS PPI FUELS & RELATED PROD. 0.83 11 (.69/.83) (10/11)

PPI PPI 0.8 9 (.61/.80) (8/10)

C-ENRGY CPI ENERGY 0.79 9 (.68/.79) (9/10)

PCEDEF PCE DEFLATOR 0.75 5 (.69/.75) (3/5)

GDPDEF GDP DEFLATOR 0.74 7 (.67/.70) (0/8)

CPI CONSUMER PRICE INDEX 0.71 4 (.61/.70) (3/4)

SALES TOTAL BUSINESS SALES 0.69 8 (.68/.69) (7/8)

BOND AND:

P-FUELS PPI FUELS & RELATED PROD. 0.94 6 (.63/.94) (2/6)

C-ENRGY CPI ENERGY 0.91 5 (.61/.91) (2/5)

SALES TOTAL BUSINESS SALES 0.87 2 (.61/.86) (0/-2)

PPI PPI 0.86 4 (.67/.86) (2/4)

SN-MTRL SENSITIVE MATERIALS 0.85 -4 (.73/.84) (-2/-10)

GDPDEF GDP DEFLATOR 0.85 -11 (.70/.85) (0/-20)

RW-MTRL RAW INDUSTRIAL MATERIALS 0.81 -4 (.73/.81) (-3/-9)

PCEDEF PCE DEFLATOR 0.79 -2 (.64/.75) (0/-2)

CPI CONSUMER PRICE INDEX 0.77 -2 (.61/.72) (0/-2)

*LEAD (-) MONTHS BY WHICH THE PRICE INDEX LEADS THE BILL OR BOND

LAG (+)    MONTHS BY WHICH THE PRICE INDEX LAGS THE BILL OR BOND

**SENSITIVE MATERIALS ***RAW INDUSTRIAL MATERIALS

CATTLE HIDES LEAD SCRAP

LUMBER & WOOD PRODUCTS TIN

IRON AND STEEL SCRAP ZINC

COPPER BASE SCRAP BURLAP

ALUMINUM BASE SCRAP PRINT CLOTH

NONFERROUS SCRAP WOOL TOPS

RAW COTTON ROSIN

DOMESTIC APPAREL WOOL RUBBER

TALLOW

INFLATION

BY SECTOR

TABLE 4   SQUARED COHERENCE AND LEADS/LAGS
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 The two figures allow for a visual time series comparison of T-bill relationships with these two indices. 
 

7.  Cross Spectral Analysis: The T-bond and Fuel Prices  
 

 We now turn our attention to the price index with the highest coherence for the T-bond. This is the bond's 

cross spectral relationship with Fuel prices. The statistics for the T-bond and Fuel prices are shown in Table 3 and 

Figure 3.  
 

 Once again, for graphical convenience we only show the first 20 of 210 data points. There are two sets of 

data shown in this chart. One set has coherence values above .60 and density values higher than 2% (dotted lines). 

This set ranges from frequency 5 to frequency 8, and its phase values range from 3 to 6 months. The second set has 

CROSS-

CORRELATIONS

HIGHEST POINT POINT RANGE RANGE

SQUARED LEAD(-) LEAD(-)

COHERENCY LAG(+) %S.E.*   r  LAG(+) ONE S.E. LD-/LG+

SENSITIVE MATERIALS 0.92 -3 0.80 0.61 -1 .61/.57 (-1/-3)

RAW INDUSTRIAL MATERIALS 0.91 -2 0.37 0.60 -1 .60/.55 (-1/-3)

PPI FUELS & RELATED PROD. 0.83 11 0.60 0.37 14 .37/.32 (14/2)

PPI 0.8 9 0.54 0.41 14 .41/.36 (14/3)

CPI ENERGY 0.79 9 0.52 0.36 14 .36/.31 (14/0)

PCE DEFLATOR 0.75 5 0.42 0.39 2 .39/.34 (2/7)

GDP DEFLATOR 0.74 7 0.88 0.46 3 .46/.41 (3/8)

CONSUMER PRICE INDEX 0.71 4 0.68 0.55 2 .55/.50 (2/5)

TOTAL BUSINESS SALES 0.69 8 0.08 0.39 5 .39/.34 (5/15)

PPI FUELS & RELATED PROD. 0.94 6 1.74 0.49 1 .49/.44 (1/5)

CPI ENERGY 0.91 5 0.92 0.50 1 .50/.45 (1/6)

TOTAL BUSINESS SALES 0.87 2 0.00 0.46 0 .46/.41 (1/6)

PPI 0.86 4 0.39 0.46 1 .46/.41 (1/6)

SENSITIVE MATERIALS 0.85 -4 0.74 0.44 -1 .44/.39 (-1/-5)

GDP DEFLATOR 0.85 -11 2.70 0.40 0 .40/.35 (0/-8)

RAW INDUSTRIAL MATERIALS 0.81 -4 0.90 0.44 -1 .44/.39 (-1/-5)

PCE DEFLATOR 0.79 -2 0.28 0.30 0 .30/.24 (0/-7)

CONSUMER PRICE INDEX 0.77 -2 0.72 0.45 0 .45/.40 (0/-3)

ITALICS: SPECTRAL STATISTICS

BOLD   : CORRELATION STATISTICS

S.E.  STANDARD ERROR OF CORRELATION POINT ESTIMATE

*% S.E. : Spectral lead/lag as proportion of correlation standard error (s.e.)  ie Sensitive materials proportion of the correlation standard error,                                    

ie: Sensitive Materials 3 month lead is within .80 S.E. of the 1 month correlation lead.

INFLATION

BY SECTOR

CORRELATION STATISTICS

TABLE 5   COMPARISON OF SPECTRAL AND CORRELATION STATISTICS

SPECTRAL STATISTICS
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more rigorous requirements, with coherence values above .80, and frequencies for the T-bond and Fuel prices with 

density values explaining 5% or more of their respective variation. These are frequencies 7 and 8 (thick lines). The 

lead of the Bond on the corresponding Fuel prices frequencies is narrower, with the highest coherence value 

indicating a 6-month lead.  

 

 
Table 3 

T-Bond and CPI-Energy 

      

 Length  Phase  

Confidence Bands 

(90%) 

Cycles (Months) (Months) Coherence Lower Upper 

      

4 84 2.1 0.61 0.34 0.76 

5 70 0.4 0.65 0.38 0.79 

6 60 3.4 0.73 0.53 0.84 

7 53 5.2 0.91 0.84 0.93 

8 47 4.5 0.84 0.72 0.91 

 

 

Ranges for both statistics are also shown. Table 4 compares the results of correlation and spectral analysis.  

 

 Both spectral and correlation statistics show Sensitive Materials and Raw Materials as the top two 

associations of the T-bill. As to the major inflation indices, the results are straightforward. Spectral and correlation 

rank the GDP and PCE deflator associations with both interest rates as lowest. The CPI comes out relatively better 

in the correlation statistics, and ranks third. This compares with the CPI's very low overall spectral ranking for both 

interest rates. The T-bond shows similar results, with Fuels and Energy sector prices ranked as first in both spectral 

and correlation statistics, while the GDP and PCE deflators rank low. 

 

 Some of our results have some indirect support. Among other topics Christiano (1996), studies the effects 

of monetary shocks on two price indices. These are commodity prices and the GDP deflator. After a monetary 

change the results show a sharp immediate decline in commodity prices, and a delayed response in the GDP 

deflator, which remains flat for 12 months before falling. Though we did not study monetary shocks, our Raw 

Materials price data shows an immediate, if not anticipatory response to T-bill changes, while the GDP deflator 

behaved sluggishly, adjusting after a 7-month delay.  Cecchetti (2000) states analysts seeking evidence of rising 

inflation often focus on the movements of a single indicator such as the price of oil or gold.  In discussing the 

poverty of the predictive power of such indicators when used in isolation, Cecchetti nevertheless highlights two 

empirical results of interest to us. This is that out of nineteen indicators of future inflation the price of oil 

outperformed CPI autoregressions 9 out of 13 times, while Industrial Materials prices had the single highest score, 

outperforming CPI autoregressions 10 out of 13 times.  

 

 We do not pretend that Sensitive Materials prices or the PPI of Fuels and Related Products are a "better" 

source of inflationary expectations formation, or that they should replace broader inflation measures in calculating 

real interest rates. Yet our results appear to be counter-intuitive. They show the puzzling fact that these sector price 

indices have a far better statistical fit and a more realistic lag structure than the GDP deflator or CPI. This in turn 

raises some uncertainty regarding the current practice of real interest rate calculations. We do not offer a suggestion 

regarding an appropriate deflator for interest rates. Our paper only points out a further empirical inconsistency to 

add to Emmons' (2000) criticisms. Together they appear to show a need to improve current practices of estimating 

ex ante real interest rates.  

 

 Caution, however, has to be exercised in the interpretation of these results for two reasons. One reason is 

that spectral analysis selects, ranks and associates important component cycles, while correlation and regression 
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analysis covers the total (instead of selective), association of two variables. In selecting cycles with highest 

coherence the strongest relationships will stand out. This spectral parsimony can be viewed as showing both a 

positive and a negative side. On the positive side it can be said that spectral analysis filters out the noise in the data 

and concentrates on the remaining significant cycles. On the negative side this statistical fact can be turned around to 

say that spectral analysis does not explain the total variation while correlation certainly does, and is therefore more 

complete. A second reason to be cautious regarding our statistical analysis is that this paper shows our first set of 

spectral and correlation results in studying interest rates and sector inflation. Accordingly, the nature of the 

empiricism is exploratory, and is therefore statistically simple. We hope nevertheless that our preliminary results 

will achieve their purpose. This is to raise questions among applied finance and economics practitioners regarding 

the empirical definitions and calculations pertaining to the use of real interest rates. 

 

8.  Suggestions for Future Research 

 

 Three possible avenues lend themselves to further investigation. One is to do a comparative study between 

major economies such as the U.S., Germany, the U.K., France and Italy, though standardizing the data will present 

some difficulties. Another is to analyze a different time period for the U.S. and compare the results with those 

obtained here. The third avenue is an indirect route. Tests of the Monetary Model (Purchasing-Power) of exchange 

rates have been notoriously unsuccessful. The reason could well be that the nominal exchange rate is defined as the 

real exchange rate plus relative inflation expectations; the latter being measured by either relative CPI or GDP 

deflators. This may present problems similar to those we encountered in this paper for nominal interest rates. 
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