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ABSTRACT 

 

This paper investigates the determination of the optimum time to begin shut down procedures for 

fast food establishments. The model developed in the paper provides conditions for the number of 

minutes prior to closing time to begin shut down procedures and the optimal number of items to 

have prepared together with a comparative static analysis. Illustrative results are presented based 

on empirical data obtained from a pretzel establishment study. 

  

 

INTRODUCTION AND LITERATURE REVIEW 

 

uch work has been devoted to the application of quantitative methods to the fast food industry (Ball, 

1992). Topics discussed include inventory methods, process analysis, productivity evaluations, 

employment trends, and marketing research, with much of this research focused on competitive 

advantage in an open market. In response to current changes in these markets, many industries, including the fast food 

industry, have witnessed a significant trend towards the substitution of technology for labor. This substitution is 

expected to result in significant economies of scale through which additional competitive advantage may be obtained. 

Other service industries have also been faced with the problem of understanding how technology can be applied to 

increase efficiency and lower production costs, such as the Postal Service (Crew and Kleindorfer, 1992). 

 

 This paper examines an interesting problem related to the use of technology, and faced by many fast food 

providers: the determination of the appropriate time to begin shut down procedures. Shutting down the grill/oven is 

ordinarily the catalyst that initiates the entire shut down procedure. If the process can be conducted in a more efficient 

manner, it is anticipated that the establishment will realize some level of cost savings, as shown in a subsequent 

section. Dialog with personnel from fast food franchises suggests that the problem of shut down time is ordinarily not 

considered by fast food operators, whose management contends that grills usually remain open until the establishment 

closes. Therefore, the determination of optimal shut down policies may be of interest to the management of these 

operations. This paper focuses on one such operation: a particular pretzel fast food establishment located in a 

shopping mall.    

 

 As mentioned above, much of the current fast food establishment’s literature focuses on competitive 

advantage. For example, Yasin and Yavas (1992) develop a specific inventory sampling and control system for a fast 

food operation in Atlanta. Donthu and Yoo (1998) use Data Envelopment Analysis (DEA) to track the relative 

productivity of twenty-four fast food restaurants. Farsad and LeBruto (1993) apply optimal reorder strategies subject 

to varying average daily demand. Gavish and Graves (1980) consider the problem of evaluating when a production 

facility should be active or idle, and develop an algorithm to minimize the expected cost of one product production 

process. Their research is based on preliminary results established by Sobel (1968), who investigates the general 

problem of start up and shut down policies for production processes. Despite the wealth of literature noted above, shut 

down procedures, per se, have not been specifically addressed in the fast food literature. The model developed in this 

paper bears the familiar earmarks of some standard optimization problems’ characteristics, such as those obtained 

from the classical newsboy inventory problem. These somewhat familiar characteristics are embodied within the 
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particular solutions derived for the grill-closing model developed here, which addresses both an optimal stocking 

policy (modeled with a single perishable item) in addition to an optimal timing policy. 

 

 Concerning the newsboy problem, a vast literature exists.  For example, an excellent summary of many of the 

significant contributions made in this area can be found in Khouja, Mehrez, and Rabinowitz (1996). Some of the more 

recent applications of the newsboy problem and its extensions include Khouja (1996), who investigates an emergency 

supply option for out of stock books, Lau and Lau (1997), who consider midseason replenishment policies in the 

garment industry, and Lippman and McCardle (1994), who evaluate demand split among several competitive firms. 

Nahmais (1993) considers the expected costs for a typical newsboy model with stochastic demand. His results are 

similar to those indicated in Freis (1975) as well as older studies such as the seminal studies conducted by Arrow 

(1958).  Lau and Lau (1997) consider an extension to the Nahmias study: their work is applicable to retailers of a 

variety of seasonal items. 

 

 The model developed in this paper is based on conversations with managers and employees of small fast food 

establishments. The model highlights the joint utilization of current desktop technology with quantitative modeling for 

small establishments in the fast food industry. Desktop technology can often be used as a viable substitute when 

analytical solutions are intractable; however, management is often unaware that this technology can improve the 

resulting recommendations of their decision-making. The integrated approach of using technology and quantitative 

modeling has become increasingly popular with larger fast food establishments such as Burger King (Swart and 

Donno 1981). Unfortunately, smaller establishments sometimes lack either the resources or the expertise to initiate an 

integrated approach; hence, the model presented in this paper provides particular implications for these smaller 

establishments.  

 

The remainder of the paper is organized as follows. The theoretical model is developed in section two, where 

optimal solutions are characterized. These solutions are then applied to a pretzel establishment study in section three. 

Comparative statics and sensitivity analysis are pursued in section four, conclusions in section five and implications 

for future research in section six. 

 

THE MODEL 

 

 A problem that all fast food managers contend with involves the timing of shut down procedures as closing 

time approaches: this involves determining the number of minutes prior to closing time to begin these procedures (t) 

and the number of items (x) to have prepared at time t. Let n represent the number of arrivals to the fast food 

establishment stand over t and designate Pn(t) the probability of n arrivals over time t. We assume that arrivals follow 

a Poisson Process. That is, 
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Let  denote the average arrival rate: we assume that  is constant. Further, c represents the hourly wage for an 

employee, g is the time required to close/shut down the grill, b represents the wholesale cost for an item, s denotes the 

selling price for an item, and l is the lost sales cost per item (which may also be written as s – b).   

 

 Given parameters , c, b, and s, the objective is to determine the value of the (x, t) pair that minimizes the 

following cost function: 
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tnPxnl  represents the lost sales cost, i.e., the under preparing cost, and  tnP  is the 

Poisson probability function given above.  Utilizing substitution and algebraic manipulation, it is possible to rewrite 

the objective (2) as follows: 
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We now consider the determination of the optimal vector  **, tx .  To begin, for any feasible value of ),0[ t  the 

optimal solution for x adheres to the following prescription: 

 

Decision Rule: If the cost of preparing one more item is less than the average cost of preparing one item, then prepare 

one more item. 

 

In mathematical terms: If ),(),1( txCtxC   then prepare one more item.                       (4) 

 

More specifically: 

 

Theorem 1:  (a) Prepare one more item as long as: 
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(b) For any time t, the minimum cost occurs at that positive integer x for which 
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Proof: See Appendix. 

 

 The model's solution (5)-(7) has similarities to both the newsboy problem and the lost sales EOQ model. In 

general, the number of items to prepare is a function of the demand probabilities )(tnP and the over (b) and under-

preparing (l) costs. Regarding the time to close the grill, numerical results suggest that the optimal shut down time is 

either ),0( gt  , that is, it appears that either the grill does not get shut down until closing time, or else gets shut 

down so that the grill cleaning is completed at shut down time. The former corresponds to the lost sales case where no 

sales should be last, whereas the latter corresponds to the case where if any sales are lost (i.e., by closing the grill 

early), then the grill should be closed as early as possible with all potential sales lost.  Note that it is intuitive to 

recognize that t is bound over the interval ],0[ g . 

 

 We do not propose a mathematical closed form nature of the solution vector, but utilize an iterative approach 

as demonstrated in the following section.   
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EMPIRICAL RESULTS 

 

 To test the model, data were collected from Penn Pretzel, a fast food establishment in a local shopping mall. 

Penn Pretzel sells pretzels with a variety of toppings, such as salt or cinnamon sugar. The establishment also sells a 

wide variety of beverages. The store manager usually puts the last batch of pretzels into the oven approximately 45 

minutes before closing. The pretzels take 6-8 minutes to bake. Once the last batch of pretzels goes into the oven, the 

employees begin the shut down procedures. The owner of the establishment was interested in minimizing the 

employee costs as well as decreasing the number of pretzels that would have to be thrown away at the end of the 

evening. The arrivals to the establishment were monitored from the time the shut down process was begun until the 

establishment was closed for the evening.  Data were collected for a weekend and a weekday day.  

 

For one particular weekend day, the following data was compiled:  c = $19.50, s = $1.60, b = $.10, l = s – b = 

$1.50,  = 0.49, and g = 52 minutes to clean the grill. Table 1 illustrates the determination of the optimum t and the 

corresponding costs (in dollars) for x = 0, 1, 2, . . . , 60.  Note that for each t, Theorem 1 was utilized in obtaining the 

optimum value of x. 

 

 
Table 1: Empirical Results - Weekend 

t x Total Cost  t x Total Cost 

0 0 16.900  31 21 7.640 

1 2 16.750  32 22 7.320 

2 3 16.490  33 23 7.020 

3 3 16.210  34 23 6.700 

4 4 15.920  35 24 6.390 

5 5 15.620  36 24 6.070 

6 6 15.330  37 25 5.760 

7 6 15.040  38 25 5.450 

8 7 14.730  39 26 5.130 

9 8 14.430  40 27 4.820 

10 8 14.130  41 27 4.500 

11 9 13.820  42 28 4.190 

12 10 13.520  43 28 3.880 

13 10 13.220  44 29 3.560 

14 11 12.910  45 29 3.250 

15 12 12.600  46 30 2.930 

16 12 12.300  47 31 2.620 

17 13 11.990  48 31 2.300 

18 14 11.680  49 32 1.990 

19 14 11.370  50 32 1.670 

20 15 11.060  51 33 1.350 

21 15 10.750  52 33 1.040 

22 16 10.440  53 34 1.050 

23 17 10.130  54 35 1.060 

24 17 9.820  55 35 1.070 

25 18 9.510  56 36 1.080 

26 18 9.200  57 36 1.090 

27 19 8.880  58 37 1.100 

28 20 8.580  59 37 1.110 

29 20 8.260  60 38 1.120 

30 21 7.950     
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From Table 1 we can see that the cost is minimized when the grill is turned off 52 minutes before closing time (which 

is also the time required to clean the grill, g) with 33* x  pretzels prepared when the grill is shut off at this time. As 

an aside, note that   9375.0
32

0
9138.052 

 


n lb

l
nP  and  




33

0
9375.09389.052

n
nP , which is consistent 

with Theorem 1. 

 

We now consider a second empirical analysis, based on a weekday observation, where the following data 

applies: c = $13.00, s = $1.60, b = $.10, l = s – b = $1.50,  = 0.066, and g = 55 minutes to clean the grill. Table 2, in 

similar fashion to Table 1, provides the resulting optimum recommendation:  

 

 
Table 2: Empirical Results – Weekday 

t x Total Cost  t x Total Cost 

0 0 11.920  31 4 5.530 

1 1 11.800  32 5 5.320 

2 1 11.580  33 5 5.100 

3 1 11.380  34 5 4.890 

4 1 11.180  35 5 4.670 

5 1 10.980  36 5 4.460 

6 1 10.790  37 5 4.250 

7 2 10.660  38 5 4.030 

8 2 10.360  39 5 3.820 

9 2 10.150  40 5 3.610 

10 2 10.000  41 5 3.400 

11 2 9.730  42 6 3.190 

12 2 9.530  43 6 2.980 

13 2 9.330  44 6 2.760 

14 4 9.120  45 6 2.550 

15 4 8.900  46 6 2.330 

16 4 8.690  47 6 2.120 

17 4 8.480  48 6 1.910 

18 4 8.270  49 6 1.690 

19 4 8.060  50 6 1.480 

20 4 7.850  51 6 1.270 

21 4 7.640  52 6 1.060 

22 4 7.430  53 7 0.850 

23 4 7.220  54 7 0.630 

24 4 7.000  55 7 0.417 

25 4 6.790  56 7 0.419 

26 4 6.580  57 7 0.422 

27 4 6.370  58 7 0.424 

28 4 6.150  59 7 0.428 

29 4 5.940  60 7 0.430 

30 4 5.730     
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From Table 2 we can see that the cost is minimized when the grill is turned off 55 minutes before closing time and 

with 7* x  pretzels prepared when the grill is shut off. (Note again that  

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COMPARATIVE STATICS AND SENSITIVITY ANALYSIS 

 

 This section considers the sensitivity of the optimal solution with respect to changes in the problem’s 

exogenous variables. In particular, we utilize the model to predict how the optimal values for the endogenous 

variables will respond to changes in some of the model’s exogenous variables (wholesale pretzel cost, pretzel demand, 

time required to complete shut down procedures, and number of employees working at the end of the evening).  

 

 The wholesale cost of a pretzel is a parameter that will impact the shut down procedures. Each portion of 

pretzel dough has a wholesale cost of $4.00. An experienced pretzel roller can make 50 pretzels from a batch of 

dough, an average roller can make 40, and a novice roller can make only 30. As shown in table 2, the experience of 

the pretzel employee does not affect the optimum t, which remains at 52 where t=g. However, the optimum x and total 

cost values do fluctuate based on the experience level. Table 3 illustrates numerically these results as well the changes 

in the marginal cost. Note from the results that the marginal cost at the optimal solution decreases as the employee 

becomes increasingly proficient at rolling pretzels.    

 

 
Table 3: Sensitivity Of Optimal Solution To Pretzel Cost (B) 

Pretzels/Batch b t* x* Total Cost Marginal Cost 

49 0.08163 52 34 0.886  

46 0.08696 52 34 0.932 0.046 

43 0.09302 52 34 0.984 0.052 

40 0.10000 52 33 1.042 0.058 

37 0.10810 52 33 1.105 0.063 

34 0.11765 52 33 1.178 0.073 

31 0.12903 52 33 1.266 0.088 

 

 

 Changes in the pretzel demand  will also impact on the optimum value for x as well as total cost. As with 

the wholesale cost sensitivity analysis, 52* t  (where t=g). For a typical weekday night, the demand is 0.07 per 

minute, as compared to a weekend night where demand is 0.49. Based on the large range of optimum x values 

between these two  values (see Table 4) it is important for the owner to estimate the number of pretzels to have on 

hand accurately. Each 0.05 increase in  represents a 2.6 unit increase in arrivals per minute. Each additional 2.6 

customers that arrive per minute increase the optimum number of pretzels to have prepared by either three or four. 

Table 4 illustrates these results. 

 

 Next, we examine how changes in the time required to complete shut down procedures (g) will affect the 

optimum x and total cost. As before, in this sensitivity analysis the optimum t equals g (in general, this result has not 

been proven to hold for all realizations of parameter values). The changes in g, holding all other parameter values 

constant, are illustrated in Table 5. As expected, the quicker the establishment can be shut down, the smaller the 

resulting costs will be. It would be to the owner’s advantage to strive to reduce the shut down time. 
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Table 4: Sensitivity Of Optimal Solution To Demand Rate () 

 t* x* Total Cost 

0.05 52 5 0.36 

0.10 52 9 0.49 

0.15 52 12 0.59 

0.20 52 16 0.68 

0.25 52 19 0.76 

0.30 52 22 0.82 

0.35 52 25 0.88 

0.40 52 28 0.94 

0.45 52 31 1.00 

0.50 52 34 1.05 

0.55 52 37 1.10 

 

 

Table 5: Sensitivity Of Optimal Solution To Time Required To Complete Shutdown Procedures (G) 

g t* x* Total Cost 

15 15 12 0.58 

20 20 15 0.66 

25 25 18 0.73 

30 30 21 0.80 

35 35 24 0.86 

40 40 27 0.92 

45 45 29 0.97 

50 50 32 1.02 

55 55 35 1.07 

60 60 38 1.11 

 

 

 Lastly, as the employee cost is more substantial than the pretzel cost, we investigate changes in the number 

of employees working at the end of the evening. In this scenario, the third employee leaves work when the shut down 

begins. The remaining two employees execute the shut down procedures. As a result the wage cost is reduced by 

$6.50 (the hourly wage for the employee) to $13.00. Based on the stuff reduction by one, it has been observed that g 

will increase by five minutes at g=57. In this scenario the minimum total cost of $1.09 is achieved at 57* t  (where 

t=g). The additional pretzel cost of $0.05 over the optimum cost in table 1 can be attributed to the demand for the 

additional five minutes. However, this extra expense is more than offset by the $6.50 wage savings.  

 

CONCLUSION 

 

 This paper has considered the determination of the optimum time to begin shut down procedures in a fast 

food establishment and the amount of items to have prepared at that time. Based on the empirical results of a pretzel 

study, the operation should begin the shut down procedures exactly g minutes before closing. At that point the shut 

down procedures will be completed at closing time. In this scenario there are no additional wage costs for overtime. 

The optimum amount of pretzels to have on hand when shut down begins depends on the demand rate, whose value 

fluctuates depending on the day of the week.  

 

Even though the optimal time to begin shut down procedures cannot be obtained via an analytical method, 

the model has practical implications. With the help of a computer the owner of the pretzel establishment may be able 

to minimize the daily total costs with efficient shut down procedures. 
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Table 6: Sensitivity Of Optimal Solution To Number Of Employees 

t* x* Total Cost 

0 0 12.35 

5 5 11.61 

10 8 10.67 

15 12 9.68 

20 15 8.68 

25 18 7.67 

30 21 6.65 

35 24 5.63 

40 27 4.60 

45 29 3.57 

50 32 2.54 

55 35 1.50 

57 36 1.09 

60 38 1.11 

 

 

SUGGESTIONS FOR FUTURE RESEARCH  

 

The model can be expanded in several directions. An interesting extension for future research would be to 

consider the problem of perishability if the last batch is prepared too early. Another extension may be to include a 

multi-period problem with dynamic programming to investigate the demand over one complete workday. 
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APPENDIX: 

 

Theorem 1:  (a) Prepare one more item as long as: 
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To find the optimal solution, differentiation of the above expression with respect to t yields 
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For cost minimization, setting the above expression equal to zero and rearranging terms yields  
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Second, when t < g follows that  
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Following similar analysis as above it follows that  
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As before setting this expression equal to zero and rearranging terms yields 
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The second order condition for cost minimization for both cases t < g and t > g is  
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(b) Using equation (3) 
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we have that  
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Thus, if    txCtxC ,,1  , then increase inventory by one unit, i.e., increase x by one so long that  
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Thus, the cost  txC ,  is minimized for the first x for which  
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