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Abstract

Controlled study of high-density plasmas, such as those found in fusion reactions and stars,

is difficult due to their highly-magnetized environments. A specialized high magnetic field

(High-B) trap was developed at the University of Michigan in Georg Raithel’s research

group to study such highly magnetized, high density plasmas using rubidium atoms. By

replacing the atom source with a Zeeman slower, a well-studied device to slow and cool

atoms, the atom flux could be increased by a factor more than 1000, leading to higher

High-B plasma densities. The goal of this project is to design a Zeeman slower that differs

from standard designs by accounting for the considerable fall-off bias field from the High-B

trap. We created a Python model that computes the modified magnetic field generated by

a set of solenoids with operating and design parameters which can be optimized to match

the desired Zeeman field within 4 G. This Zeeman slower design allows for operation with

or without the High-B bias field.
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Chapter 1: Introduction

A specialized strong magnetic field atomic trapping/plasma chamber was developed

by Dr. Georg Raithel at the University of Michigan to study and characterize plasmas and

atoms confined under strong magnetic field conditions.1–7 This device, known here as the

High-B apparatus, is capable of achieving an atom trap within fields ranging up to 2.9 T.1

One particular goal of these experiments was to work towards the observation and

measurement of Three Body Recombination (TBR) in this strong field regime, which has

been predicted theoretically but not yet observed.8,9 The trap should enable the

observation of TBR in the high-magnetic field regime but was unable to do so in part due

to low plasma density.7 The High-B apparatus used a Low Velocity Intensive Source

(LVIS)10 to inject atoms into the high-field region, which provided an atomic flux of 5×108

per second.5 Increasing the plasma density within the High-B chamber would allow further

experiments to observe TBR, as well as study dipole blockade interactions in a strong

field11 (including spatial imaging of the blockade using magnetic lensing), Rydberg

quadrupole interactions,12 and plasmas in the strong-coupling regime.13

I have designed a modified σ+ (decreasing field) Zeeman slower that will provide an

increased atom flux to generate denser plasmas within the existing High-B experimental

chamber. Zeeman slowers have been proven to be capable of producing a flux greater than

1012 atoms per second when working with standard Magneto-Optical Traps (MOTs).14,15

Standard MOTs have either zero magnetic field at the trap location or a weak bias field

(typically under 0.02 T).16 This increased flux will increase the plasma density and allow
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for characterization of the non-linear behavior previously observed in the trap.1,4 There are

currently no known atomic slowing devices that have been designed for use in such strong

magnetic fields as created by the High-B chamber.

Phillips and Metcalf first showed in 1982 that a counter-propagating laser beam of

fixed frequency shining on an incident stream of atoms will slow the hot atoms down from

thermal velocities (typically over 1500 mph (670 m/s)) to under 45 mph (20 m/s).17

Typical atomic sources used for trapping experiments involve heating a metallic source

until it vaporizes into a gas within the vacuum system. The velocity distribution is

characterized by a Boltzmann curve and depends on how the hot gas leaves the oven.18 As

the atoms slow down, the Doppler effect causes them to interact with the slowing laser at a

lower frequency. This change in frequency is known as a Doppler shift. There is a limit to

how large a shift can take place before the atoms are no longer able to interact with the

slowing laser.16 This limit arises from the Gaussian distribution of intensity over frequency

and laser cavity modes.19

If the atomic transition energy between the ground and excited states of the atom is

equal to the energy of the incident light, they are said to be on resonance. Therefore, the

Doppler shift will cause the frequency in the atom’s frame of reference to be larger, shifting

it out of the resonance condition. This effect depends upon the velocity, so it will change as

the atoms decelerate. The atomic transition energy is also impacted by the presence of an

external magnetic field through the Zeeman shift. The Zeeman shift is caused by the

interaction of an external magnetic field with the spin magnetic dipoles of the protons,
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neutrons, and electrons. Magnetic dipoles have a tendency to align either parallel or

anti-parallel to an external magnetic field, which changes the energy of the system.20–22

The internal interaction between orbital and nuclear spin creates the hyperfine structure.

When an external magnetic field is applied, these hyperfine energy levels will change based

on the dot product of the magnetic field and the angular momentum operators of the atom

to create the Zeeman energy levels. The change in energy for any particular hyperfine level

due to an external magnetic field is known as a Zeeman shift. The Zeeman shift from a

spatially varying magnetic field can then compensate for the Doppler shift and keep the

atoms on resonance. Such a device that balances the Doppler and Zeeman shifts is known

as a Zeeman slower, and the design and modeling of a modified slower is the focus of my

research.16

The Zeeman slowing technique has been well optimized in recent years.23–27 The

effects of the apparatus design on field profile have been thoroughly studied, with the

primary design philosophy requiring a constant deceleration throughout the slower. There

is a limit to the atomic deceleration which corresponds to a limit to the gradient of the

magnetic field. This limitation is called the adiabatic requirement which arises from the

maximum rate of energy change allowed to maintain resonance between the laser and

atomic transition frequency.28 Failing this requirement will result in a Zeeman shift out of

resonance with the laser, and the loss of atoms into dark states (ones that no longer can be

excited by the slowing laser).16 Since this adiabatic requirement depends on the gradient of

the magnetic field, the shape of the field isn’t unique. Because the force the laser exerts on
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the atoms is velocity dependent, it is difficult to analytically calculate the acceleration.

The solution is typically obtained by using a frame of reference that is constantly

decelerating and based on atoms with the correct velocity to be resonance in the presence

of the external magnetic field from the Zeeman coils.16,25,28–30 There are three standard

types of Zeeman slowers based on the polarization of the slowing laser and the sign of the

magnetic field gradient (whether the field increases or decreases in magnitude).

The light is circularly polarized and denoted by σ+/− (see Figure 2.2 for

orientations) and drives a transition that links two states with an energy difference equal to

that of one photon from the slowing laser based on the frequency/wavelength.28–30 The

total angular momentum of the state will change by one unit. The hyperfine state of the

ground level with the highest transition energy is driven by σ+ light, while the lowest

energy transition is driven by σ−. When the laser beam direction is parallel with the

magnetic field axis and is circularly polarized as σ+, this corresponds to the first type of

Zeeman slower. The field profile will be decreasing in order to obtain the desired slowing

effect. When the laser beam is σ− polarized and anti-parallel to the magnetic field, this

corresponds to the second type of Zeeman slower. The third type is termed zero-cross (or

spin-flip), which combines the two. As its name implies, the zero-cross type has a magnetic

field that crosses zero along the length of the slower, which requires additional optics and

re-pumping to prevent the atoms from dropping out of the slowing resonance.14,26 The laser

direction needs to be opposite to the atomic motion; otherwise, the atoms will accelerate

away from the atomic source (rather than slowing down). The slowing of rubidium with σ−
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light has been previously investigated and detailed in publications by Dedman, Barrett,

Mayer et al., Slowe, among many others.14,25,29,31 I will discuss each type of Zeeman slower

in additional detail in the Methods chapter.

The proposed slower will utilize a decreasing field (σ+) profile as there are

additional complications that prevent using an increasing field profile and the spin-flip

design would pose issues with atoms falling out of trappable states. While an increasing

field profile would better fit the shape of the High-B fall-off field, such a slower uses atomic

sub-states which are not able to be trapped.32 The designed slower is unique because it

loads a continuous stream of atoms into the High-B trap, which is a unique atom/plasma

trap. A solenoid was designed to generate a magnetic field that, when summed with fall-off

field from the High-B trap, produces a net field equal to that of a standard Zeeman slower.

Additionally, the gradient of this net field must be smooth enough to ensure the adiabatic

following condition (adiabaticity) is met to maximize the number of atoms into the High-B

chamber the trapping of and subsequent plasma generation. To ensure the atoms reach the

trap, they will exit the slower with the required kinetic energy to reach the trap, taking

into account the energy lost to the magnetic field.1

The goal is to design a modified Zeeman slower which is able to operate under four

separate conditions: rubidium atoms with the High-B active (producing the large bias

field), rubidium atoms without the High-B active (no bias field), strontium atoms with the

High-B active, and strontium without the High-B. The cases without the High-B active are

just the standard ideal Zeeman slower designs for rubidium and strontium.15,31,33 All four



CHAPTER 1. INTRODUCTION 6

of these conditions will utilize the same coil pack geometry but will have different currents

running through the coil packs. The primary focus is to design a slower for rubidium while

investigating the feasibility of slowing strontium as well. As will be discussed in Section 3

later, it is impractical to design a single device for the slowing of both rubidium and

strontium.

To obtain the desired field profile, the standard tapered solenoid approach will be

used with controllable and modular coil packs. Having a modular design will allow for

variations in the trapping field strength as well as the use of different atoms/isotopes.

Steps to optimize the slower based on previous work will be taken.24,25,27 This slower will

be unique as it will use the large fringe field from the High-B chamber as the majority of

its slowing field. The main trapping field reaches a strength of 2.6 T under standard

operating conditions, so the magnetic field magnitude will continue to increase after the

atoms exit the slower, unlike standard MOTs which approach very low magnitude fields for

trapping. The challenges of this project will be matching the coil field to this fringe field so

that there are not significant losses due to atoms falling out of resonance.

There is currently an operational Zeeman slower in the Raithel research laboratory

at the University of Michigan which was built by Mhaskar, but it was designed specifically

to work for the 87Rb isotope and uses the zero-crossing configuration.26 With the High-B

field being as strong as it is, there is a roughly 160 G field at the planned exit point for the

slower. In comparison, Mhaksars slower would have a field strength of -82 G at the same

point. It would be too difficult to modify the existing slower to compensate for the
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presence of the High-B fall-off field as it was not designed with that in mind. This other

slower also was designed to load a standard MOT, which requires a lower output velocity

and magnetic field strength.26

The design of this modified Zeeman slower must also prove physically viable for real

world constraints and considerations. These design constraints will be discussed later on.

The values for the High-B bias field are obtained from existing FORTRAN code previously

used to model the High-B chamber’s magnetic field. Designing the modified slower involved

creating a complete computational model in Python that calculated the magnetic field

from a pack of coiled wires using the Biot-Savart law. This coil pack model was then

optimized based on physical parameters and constraints in order to fit the magnetic field

profiles of the ideal Zeeman magnetic field and that of the coil packs (with or without the

bias, depending on the desired mode of operation).

Chapter 2 describes the methods used and is comprised of four subsections: the first

subsection is a description of the mechanisms that define and limit the Zeeman slowing

process; the second is a description of how those mechanisms are typically used with the

three main standard types of Zeeman slowers; the third is a description of the main

modification of the Zeeman slower; and the fourth is a description of how everything was

modeled in Python including details of my optimization process. Finally, there is also a

brief discussion how the heat generation was modeled to ensure the system would not

overheat given the design specifications.

Chapter 3 describes the results and is comprised of two subsections describing the
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resulting optimized design and details of how my Python algorithm obtained them. There

were significant computational challenges with optimizing so many parameters, which I

discuss in this section.

Chapter 4 is a summary of research and design work I have completed and includes

a discussion the state of the design with regards to the steps required for construction.

There are Appendices for the derivation of the full Biot-Savart model that I used for

the magnetic field calculations as well as an in-depth discussion of the hyperfine structure

and how it applies to the cycling transition, particularly of rubidium. I also discuss how to

do the hyperfine calculations using Python as I personally had significant difficulty

ensuring the excited energy levels were properly calculated.

So let us begin with the two most important questions to answer first: What is a

Zeeman slower and how does it work?
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Chapter 2: Methods

The application of standard Zeeman slowers have been well discussed and

optimized.17,25,28,29,31 I have designed a modified Zeeman slower which will be used with the

High-B chamber. In this chapter, I will first discuss the atomic structure of the atom and

how it behaves within an external magnetic field. In these conditions, rubidium can be

treated as a two-level system. I will then discuss what this means for the design goal of

reducing the mean velocity of the incident atoms. Then I derive the ideal Zeeman field

along with the constraints involved. Then I will discuss how this modified Zeeman slower

will utilize the fall-off bias from the High-B chamber. Lastly, I will cover the numerical

model I created in Python to simulate the magnetic field generated from a solenoid and

how I optimized the combination of many solenoids to fit the magnetic field profiles that

would slow the atoms as expected.

2.1 The Ideal Zeeman Slower

The technique of Zeeman slowing is based upon the principle of radiative force,

which is the force an atom experiences due to the spontaneous absorption, followed by

emission, of a photon. For a two level system (or an effective two-level system, as selection

rules limit our cycling transition to be), this force is defined as:16

F =
h̄kΓ

2

so
1 + so + 4(δ/Γ)2

(2.1)
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where so = I/IS is the saturation parameter and is the ratio of the laser intensity to the

transition saturation intensity, k is the wave-number of the laser, Γ = 1/τ is the linewidth

(inverse of the excitation lifetime, τ), and δ is the total detuning difference between the

atoms and the laser light. This force comes from the transfer of momentum between the

photon and atom and is related to the scattering rate. The scattering rate, γP , is a

Lorentzian with respect to the detuning, δ, and given as

γP =
soΓ/2

1 + so + 4δ2

Γ2

(2.2)

which, for circularly polarized light, gives us a force equation neatly defined by ~F = h~kγP .

The scattering rate is a function of both laser detuning and intensity. This detuning is

given by16,25,26

δ = ωl − ωa − δD (2.3)

with ωl being the frequency of the laser, ωa the frequency of the atomic transition, and δD

being the Doppler shift in light frequency experienced by the atoms. The Doppler shift is

the change in laser frequency that the atoms experience from the moving reference frame of

the atom with velocity ~va and is given by ωl′ = ωl − ~kl · ~va. It is typical to write Doppler

detuning as16

δD = −~kl · ~va (2.4)
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so as to define it as a velocity-dependent difference in the frequency. We will treat the

atomic frequency ωa in a similar manner by breaking it up into the zero-field, zero velocity

transition frequency, ωo and the shift caused by an external field, ∆ωfield. For a magnetic

field, ∆ωfield is known as the Zeeman Shift and is given by21,22

∆ωZeeman = ±µ
′

h̄
· ~B (2.5)

where µ′ is the magnetic moment of the transition. The value of µ′ depends on the Lande

g-factors for the ground and excited states of the atom and is defined as gFmFµB when in

low magnetic fields (known as the Zeeman regime). Stronger magnetic fields fields (known

as the Paschen-Back regime) causes a decoupling effect between the |JmJImI〉 states and

is more complicated to solve. Solving for the intermediate field is computationally difficult

as it requires re-diagonalizing the hyperfine and interaction (from the laser) Hamiltonians

for every magnetic field value. I used this last method to solve for the energy levels in my

system.16

For 85Rb, which utilizes the cycling transition of

|F = 3,mF = ±3〉 ⇒ |F ′ = 4,mF ′ = ±4〉, we have gF=3 = 1/3 and gF ′=4 = 1/2 for the

ground and excited states, respectively.16 F is the total angular momentum of a system

defined as the sum of the spin, orbital, and nuclear angular momenta, denoted by ~S, ~L, and

~I, respectively. The cycling transition refers to states that are linked together in the

presence of the slowing laser (based on polarization). For 85Rb, a laser of 780.24 nm has

enough energy to link the
∣∣5S1/2

〉
ground state, |g〉, with the

∣∣5P3/2

〉
excited state, |e〉.
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Circularly polarized light will change the electron angular momentum by ±1, provided

there is a transition available to a higher/lower state.21,22 We can take advantage of this

after lifting the degeneracy by applying a magnetic field before shifting the laser frequency

so that it interacts with only one of the Zeeman sub-levels. To cycle (i.e., to optically

pump) a transition, it is typical to utilize circularly polarized light and ground level states

which only have one excited state that can be populated.

These Lande-factors work out such that µ′ = ±µB for the states of the cycling

transitions. The positive sign corresponds to the mF states with a positive value, and the

negative corresponds to those with a negative value. The ratio µB
h̄

is approximately 14.4

GHz/T and defines how the resonant frequency for the transition shifts with magnetic

field. In general, this results in the Zeeman shift of the frequency of

∆ωZeeman = ±µB
h̄

∣∣∣~B∣∣∣ (2.6)

where sign of the Zeeman shift depends upon which cycling transition is used and is

determined by the polarization and orientation of the light with respect to the atomic

velocity. To drive these transitions (known as the D2 transition, as seen in Figure 2.1) for

both species of rubidium, a laser with a wavelength of 780.24 nm is used.16 The hyperfine

structure is discussed in further detail, including all Clebsch-Gordon coefficients required to

calculate the Zeeman shift for the rubidium states 5S1/2 and 5P3/2, in Appendix A.
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Figure 2.1: Cycling Transitions for Rubidium Zeeman Slower. Selection rules limit transi-
tions to cases where ∆mF = 0,±1. By using circularly polarized light, we require a change of
±1 to the angular momentum per interaction. The top half of the plot contains the hyperfine
structure of the 5P3/2 excited state of 85Rb. The bottom half contains the 5S1/2 ground state
of 85Rb

The standard notation is that the lower (upper) sign corresponds to σ−(σ+) slowers,

and is with reference to the laser propagation.29,31 Figure 2.2 shows the the difference

between the two forms of circular polarization. The cycling transitions as seen in Figure

2.1 are driven by using this circularly polarized light. A change in ∆mF = +1 corresponds

to σ+ light and ∆mF = −1 to σ− light. The designed slower uses the σ+ transition for the

upper energy levels.
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Figure 2.2: Relative orientation of the circular polarization with respect to the slowing laser
propagation direction. This is important as the polarization determines the states in the
cycling transition, and only low-field seeking states can be trapped.

As will be discussed momentarily, σ− slower designs have a magnetic field profile

that increases in strength as the atoms slow, and σ+ slowers have a decreasing magnetic

field strength. We can then take this relation for the Zeeman shift, along with the Doppler

shift, and plug them into the total detuning equation. For the special case of δ = 0, we

obtain what is known as the resonance condition28

ωl + ~k · ~va = ωo ±
µB
h̄

∣∣∣~B∣∣∣ (2.7)

where the frequency shift from the atoms slowing down is exactly accounted for by the

Zeeman shift, so the incoming light is still able to drive the cycling transition. Being

perfectly resonant is not ideal, and it has been shown that the atomic velocity must be
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lower than the resonant velocity for the deceleration to maintain stability.28–31 We observe

this by taking our radiative force, Equation 2.1, and solving Newton’s second law of

motion, F = ma, for the atoms. To account for this force being velocity dependent, a

reference frame that is uniformly decelerating is used, and we end up with the same

detuning equation as in Equation 2.3.28,30 The mathematics behind this approach are

covered in detail by Napolitano.28

Solving for the equations of motion for the atom in this decelerating reference frame

provides an upper limit to the acceleration, and therefore a limit for the magnetic field

gradient as well. This limiting condition is known as the adiabatic following condition.28,30

The major consequences of this requirement, frequently referred to as the adiabaticity are

as follows:

1. The velocity (and acceleration) must be lower than the resonant velocity (and

acceleration) for a stable system.

2. The velocity (and acceleration) therefore limits the gradient of the magnetic field.

3. The acceleration will be constant for resonant atoms.

4. Failing to maintain adiabaticity will result in atoms not being slowed.

The maximum acceleration is defined as16,25,30

amax =
Γh̄k

2m

so
1 + so

(2.8)
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and is what shapes the magnetic field. We use the resonance equation, and with the

substitution of ∆ω = ωl − ωa, we arrive at an equation relating the positional velocity to

the spatial magnetic field profile:

v(z) =
1

k
(∓µ′B(z)−∆ω) (2.9)

where once again the sign for the magnetic field term depends upon the slower design.

These conditions, together with the stability requirement, provide the required shape for

the σ+/− fields. It is worth noting that the sign convention is tied to the polarization and

not the magnetic field strength or gradient.

For this modified slower, we are using the σ+ configuration and placing the output

side of the slower such that the magnetic field required will be almost completely generated

by the High-B chamber. If we solve for the magnetic field as a function of the velocity for

the σ+ slower, we get

B(z) =
h̄

µB
(kv(z) + ∆ω) (2.10)

which we can then solve by utilizing the constant acceleration assumption in conjunction

with the boundary conditions for the velocity. The magnetic field will be tapered and will

be of a form that has a maximum of Bbias +Btaper for v(z = 0) = vo and a minimum of

Bbias for v(z = L) = vf , where L is the length of the slower. This field shape is chosen to

match the adiabaticity requirements above and has been shown to work in many

publications.24,28,29,31 These velocities are typically experimentally determined by the atom
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source characteristics together with the initial velocity and the capture velocities of the

trap. We can then use the kinematic equations and velocity extrema to obtain

B(v = vo, z = 0) = Bbias +Btaper =
h̄

µB
(kvo + ∆ω) (2.11)

B(v = vf , z = L) = Bbias =
h̄

µB
(kvf + ∆ω) (2.12)

which provide

Bbias =
h̄

µB
(kvf + ∆ω) , Btaper = +

h̄k

µB
(vo − vf ) (2.13)

and are used to find the ideal Zeeman slower field given by31

B(z) = Bbias ±Btaper

√
1− z/L (2.14)

which is a wonderfully simple equation to describe the magnetic field. While this equation

represents the ideal Zeeman slower field, it is not practical as any imperfection or deviation

from the field shown in Figure 2.3 will break adiabaticity and force the atoms out of the

slowing process. The standard way to account for these sorts of imperfections and

fluctuations is to introduce a design parameter, η < 1, which limits your acceleration

by25,28,29,31

ao = ηamax (2.15)

This design parameter helps ensure that our deceleration remains smaller than the

maximum, and dictates the length of the slower.
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 Ideal Decreasing Field,  = 1.0
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Figure 2.3: Magnetic field profile for σ− , σ+, and spin-flip style slowers with η broadening
effect. The length of a Zeeman slower is determined by the design parameter, η. The
broadened deceleration curve is chosen to allow for variance in the deceleration in a lab
setting. Attempting to construct a slower for the η = 1 case would result in poor performance
as any atoms that slowed faster than the maximum deceleration rate would have unstable
velocity trajectories and would fall out of the slowing process. This occurs since the Doppler
shift would no longer match the Zeeman shift as the atoms have too much velocity. η = 0.792
is determined by choosing L = 0.68 m and solving Equation 2.16

For an object undergoing constant acceleration with set initial and final velocities,

you can decrease the acceleration by having it take place over a longer distance. So as we

decrease η, the slower will get longer based on

L =
v2
o − v2

f

2ηamax
(2.16)

where you can set η = 1 to determine the minimum distance for the slower. Alternatively,

you can design a slower with a particular length and extract the corresponding η value

instead. The final velocity for the slower needs to match the capture velocity of the High-B



CHAPTER 2. METHODS 19

Trap and is typically defined for the on-resonant atoms (experiencing constant

deceleration) as

v(z) =
√
v2
o − 2aoz (2.17)

and being one of the standard kinematic relations.

For a typical MOT, the output of your Zeeman slower should have the lowest

velocity you can with the weakest magnetic field so as to not interfere with the MOT

fields.17 The High-B trap will have a large magnetic potential energy barrier that the

rubidium atoms must overcome. This can be thought of as the amount of energy it would

take to roll a ball to the top of a hill, which changes based on how far up the hill you start.

This magnetic potential energy, UB, can can be calculated by34

UB = −~µ · ~B (2.18)

where ~µ is the magnetic dipole moment and ~B is the magnetic field being traversed. If we

use the assumption that the kinetic energy is zero at the peak of the magnetic field, which

coincides with the trap location and design, then we can determine the trapping velocity

using energy analysis through the Hamiltonian, H. It is assumed that all other possible

energies are small enough to be neglected,
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Hi = Hf

Ti + Ui = Tf + Uf

1

2
mv2

i + µBi =
1

2
mv2

f + µBf

vi,trap =
√

2µ∆B/m (2.19)

where T and U are the kinetic and potential energies, v is the transverse velocity of the

particle, and m is the atomic mass. For rubidium atoms with a 2.6 T High-B field, this

corresponds to roughly 18.5 m/s. The source for the rubidium atoms is the oven that was

designed and built for the previous Zeeman slower in the Raithel research group by

Mhaskar.26 The oven provides an effusive source of roughly 1015 hot atoms and is able to

produce a velocity profile with a peak velocity of 380 m/s, a standard deviation of 138 m/s,

at a temperature of 430 K.26 We see how decreasing η leads to a longer slower and a

broader magnetic field gradient in Figure 2.3. Any designed Zeeman slower must have a

gradient less than the η = 1 case. This gradient can be calculated by taking the partial

derivative of the magnetic field given in Equation 2.14 such that

∂B

∂z
=
h̄k

µB

∂v(z)

∂z
=

h̄kao
µBv(z)

⇒
∣∣∣∣∂B∂z

∣∣∣∣
max

≤ h̄kao
µBv(z)

(2.20)

which will remain true so long as ao < amax, and is typically ensured by the use of the

design parameter, η.
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The last element of the Zeeman slower equation is the total detuning, ∆ω. Although

this is an experimentally determined parameter, there are a few related considerations and

limitations. For the σ− configuration, the total detuning must be negative, and for σ+ and

zero-crossing configurations it must be positive(or zero).29 Having finished deriving the

equations for a standard σ+ slower, I will now discuss the types of Zeeman slower

configurations along with their pros and cons.

2.2 Different Types of Zeeman Slowers

There are three types of Zeeman slowers: σ+, σ−, and zero crossing (also denoted

spin-flip).28,29,31 The adiabaticity requirements limit the design of our slower based on two

main factors: the orientation of the laser propagation with respect to the atomic velocity

direction and whether the magnetic field is increasing or decreasing. This second factor

comes from the sign attached to the dipole moment, µ′.

The sign of the Doppler shift, δD, is determined by whether the laser is

co-propagating the atoms or counter-propagating them. For co-propagation, it means that

the wavevector, ~k, and the the atoms are traveling in the same direction, or parallel.

Counter-propagation means they are traveling in opposite directions with each other, or

anti-parallel. For the counter-propagation configuration, the Doppler shift experienced by

the atoms will be positive (negative for co-propagation).16 For a Zeeman slower, the laser

must be counter-propagating with respect to the atoms in order for the force to slow the

atoms.
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This slower uses a laser counter-propagating the atomic beam. If we look at the

hyperfine levels from Figure A.1, we notice several intersections in energy levels. This

means we regain degeneracy at that point and could no longer determine which state the

atom is in. We want to avoid these interactions as the atoms may hop into the unwanted

level as the atom is in a superposition of states at that frequency. This can be done by

forcing a greater negative (blue shift) detuning of the σ+ states with a high bias magnetic

field. Revisiting Equation 2.9 and using the negative detuning for the σ− slowers, we see

that the magnetic field must increase in magnitude for the atoms to decelerate.

The σ+ design is the decreasing field configuration and was the first style used for

slowing atoms.17 This configuration cycles the upper-most states for the transition mF

sublevels. The main drawback is that all of the atoms moving slower than the initial

resonant velocity will eventually become resonant with the laser frequency and experience

slowing. This is true even for atoms with a negative velocity and makes it exceedingly

difficult to ensure the atoms are slowed to the desired velocity.31 This issue with extraction

is made even more difficult for typical MOT systems as the overall magnetic field needs to

return near zero for trapping, which mean the hyperfine mF states become degenerate and

could possibly fall into dark states which can not be slowed. The modified slower has no

such requirement to lose degeneracy and, as such, can continue to increase the magnetic

field into the chamber. This means that any atoms that drop out of the slowing process

will not be resonant further down stream as the detuning will become too great for the

laser to interact with the atoms.
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The zero crossing (or spin flip) design is similar to the σ+ decreasing field. In

practice, a zero crossing slower takes the magnetic field for a decreasing field slower and

offsets it such that it will have to cross through a magnetic field zero. This is usually done

by having a second, smaller coil setup that has its current traveling opposite in direction to

the main solenoid. One of the main advantages of this configuration is that, while the total

shift in magnetic field is the same, it takes place at far lower values and therefore requires

less current to generate. The primary disadvantage is the inability to distinguish between

your states at the zero field point. This means that atoms will drop out of the cycling

transition at the zero-cross point. A second laser, deemed the repumper, is added to the

setup to excite atoms back into the cycling transition to counteract the losses to dark

states. The previous Zeeman slower in the Raithel Lab used this configuration.

The σ− design, the increasing field configuration, was shown above. Unlike for a

decreasing field, the atoms will be resonant throughout the entire slower until they reach

the maximum magnetic field. This means that the difficulty in atom extraction caused by

atoms being pushed back into the slower does not exist. This configuration is also less

prone to fluctuation in the laser frequency and intensity.31 The typical drawback is caused

by the large (relative) magnetic field from the slower output. If you are attempting to load

a standard MOT, this field would likely interfere with the trapping field. Decreasing the

magnetic field also causes the Zeeman shifted energy levels to mix in the same way they do

for the zero-crossing configuration. As the magnetic field from the High-B chamber

continues to increase sharply after the slower coils end, this state mixing will not be an
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issue for this modified Zeeman slower.

With all of the pieces in place for a standard ideal Zeeman slower field, we can now

turn our attention towards implementing the bias field from the High-B chamber.

2.3 Modifying the Zeeman Slower

The modified Zeeman slower will use the large drop-off magnetic field from the

High-B chamber as has been mentioned. This required obtaining the magnetic field profile

for the chamber so that the appropriate region could be truncated as seen in Figure 2.4.

While the region looks insignificant relative to the main trap field, the bias field reaches a

strength of 156 G, which is near the minimum field strength (161 G)for the ideal Zeeman

slower from Equation 2.14 for η = 0.792. I used a FORTRAN code which calculates the

magnetic field profile for the High-B chamber that was written by Dr. Raithel.1,35

The modified slower must account for the difference between the required magnetic

field for an ideal Zeeman slower and the bias field from the High-B chamber. I denote this

as the Target Zeeman Coil Field (Target Field) and is the field the solenoid must be able to

produce for this modified slower. The relationship between the ideal, bias, and target fields

is shown in Figure 2.5.
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Figure 2.4: Magnetic field profile for the High-B chamber. The dotted line is the full field
for up to 1.5 m away from the trap center. The solid red section corresponds to the region
where the modified Zeeman slower will be placed.
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Figure 2.5: The Target Zeeman Coil Field of the modified Zeeman slower. The target field
is the difference between the ideal Zeeman field and the High-B Bias field.
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2.4 Generating the Desired Magnetic Field

The magnetic field for a loop of current is described by the Biot-Savart Law.20,34

~B(~r) =
µo
4π

∫ ~I × r̂

r2
d`′ (2.21)

A complete derivation of the magnetic field components for any point in space can be

found in Appendix B. Since the atoms are traveling down the center of the solenoid, it is

adequate to only use the axial magnetic field component and this is given by

B(z) =
µoI

2

a2

(a2 + z2)3/2
(2.22)

where a is the radius of our loop of wire. The Target Field is generated by summing the

field contributions of multiple layers of wires tightly wound into discrete solenoids. Several

such solenoids are then placed in line to create the Slower. To match the Target Field as

best as possible, a curve fit optimization was performed using the Python package lmfit.36

This optimization took twelve such solenoids and varied how many wires long (the length),

how many wires thick (the depth), and the current flowing through each of the solenoids in

order to obtain the best possible fit for the target field. Each of these parameters was

constrained in order to ensure that a valid solution was obtained.

There are additional design requirements which came up during discussions

regarding the construction of the device. One of the main ones was the heat generated by

the wire as current is passed through them. This was calculated using the joule heating
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relation20

P = I2ρ
l

A
(2.23)

where ρ is the resistivity, l is the length of wire, and A is the cross-sectional area of current

flow. An alternative method of determining the joule heating that can be used for a

uniform current density, J , is

∂P

∂V
= J2ρ (2.24)

which provides the power/volume for the system. For the Zeeman coils, this volume is

cylindrical and excludes the volume of the inner vacuum chamber. These heating power

calculations meant some additional work had to be done to find a good balance between

cost, heat, and diameter of wire used for the magnet coils. It was determined that using

wire of approximately 15/16 AWG in size (corresponding to roughly 1.5 mm diameter)

provided the best balance between these variables. The remaining considerations were

primarily issues that did not change the process of obtaining a solution and will be

discussed in Chapter 3.
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Chapter 3: Results

As previously mentioned in the Methods section, I need to generate a magnetic field

which consists of the difference between the ideal Zeeman slower field and the bias field

from the High-B chamber, as seen in Figure 2.5. Here, I discuss the modeling,

optimization, design constraints/considerations, and how they contributed to the final

design. I begin with the results and work through the required design aspects, and then I

describe the difficulties in coding for optimization as well as many of the methods I utilized

to reduce the computational load.

3.1 Optimized Zeeman Coil Results

The magnetic field is generated by running current through copper wire wrapped

around a vacuum tube with a 1 inch outer diameter. The length of the solenoid is

approximately given by Equation 2.16, as additional loops of wrapped wire were allowed on

either side of the designed length, L, to serve as input and extraction coils. The input coil

needs to bring the magnetic field up to strength for the slowing process to start but also

needs to break the adiabaticity requirement so no slowing occurs outside the designed

length. There will be atoms at resonance during this initial region, but they should break

adiabaticity before the main slowing process begins.

The slower is designed for atoms with an initial velocity of 350 m/s to remain nearly

resonant throughout the slowing process. If there is additional slowing before the atoms

reach the designed starting point, it would be equivalent to having a slightly longer
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designed slower with a slightly higher initial velocity. A sharp initial gradient prevents the

slowing process from starting until the atoms reach the designated starting point of the

slower.

The extraction coil similarly serves to break the adiabatic requirement for a long

enough region that the atoms traveling with our ∼ 20 m/s High-B capture velocity will be

too far Zeeman detuned for the Doppler detuning to bring them close enough to resonance

to allow additional unwanted slowing to take place.

Magnetic fields follow the principle of superposition, so we can add up the magnetic

field contributions of single loops of wire as described by Equation 2.21. Before an attempt

to fit our target field can be made, a model for the shape of the Zeeman slower must be

determined. We decided to go for a more modular approach of several discrete, smaller

solenoids, which give the overall slower a tapered shape. This would allow us to create

several different field profiles by changing the currents passing through the solenoids. This

would allow slowing of multiple species of atoms with a single device. The solenoids were

modeled in Python by taking a single loop of wire, and the magnetic field it generates, and

adding up consecutive loops in two ways: stacking and adjacent.

The stacking loops effectively generated a disk of current, and the magnetic field

contribution for each loop accounted for the increasing radius as more wires were stacked

up. These disks were then stacked adjacently for the length of that solenoid section. This

secondary addition took advantage of the symmetry inherent in the axial magnetic field for

a loop of current.
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Each of these solenoids have their own uniform current density, based on how much

current passes through it. While the current density is uniform for an individual solenoid,

the shape of each solenoid is allowed to vary based on the length (in units of wire

diameters) and thickness (in units of wire diameters). This allows several degrees of

freedom, as we can vary the following:

1. The number of solenoids used.

2. The length of each individual solenoid.

3. The thickness of each solenoid (radius).

4. The amount of current passing through each solenoid.

5. The overall length of the slower.

6. The diameter of the copper wire.

These are the parameters which were allowed to vary to produce the final optimized

solution from the Python model I generated. The final design used 20 solenoids, a wire

diameter of 1.5 mm, and was optimized using the lmfit package.36 The results are seen in

Table 3.1.
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Table 3.1: Solenoid Parameters for Modified 85Rb Zeeman Slower Design

Sol. Index Sol.
Thickness
(# wires)

Sol. Outer
Rad (m)

Sol.
Thickness
(Exc. Vac)

Sol.
Len(#
wires)

Sol. Len
(m)

Wire
Len (m)

Rb no bias
Current
(A)

Rb with
bias

Current
(A)

0 16 0.0367 0.024 10 0.015 18.7993 5.4997 5.3027
1 15 0.0352 0.0225 25 0.0375 43.1773 3.2542 3.1212
2 15 0.0352 0.0225 25 0.0375 43.1773 3.1648 3.0207
3 15 0.0352 0.0225 25 0.0375 43.1773 3.0936 2.9353
4 14 0.0337 0.021 25 0.0375 39.4741 3.1582 2.9763
5 14 0.0337 0.021 25 0.0375 39.4741 3.1062 2.9042
6 14 0.0337 0.021 25 0.0375 39.4741 3.0540 2.8283
7 13 0.0322 0.0195 25 0.0375 35.8888 3.1247 2.8612
8 13 0.0322 0.0195 25 0.0375 35.8888 3.0634 2.7673
9 13 0.0322 0.0195 25 0.0375 35.8888 2.9988 2.6635
10 12 0.0307 0.018 25 0.0375 32.4212 3.0621 2.6641
11 12 0.0307 0.018 25 0.0375 32.4212 3.0067 2.5485
12 11 0.0292 0.0165 25 0.0375 29.0715 3.0670 2.5138
13 11 0.0292 0.0165 25 0.0375 29.0715 2.9630 2.3250
14 11 0.0292 0.0165 25 0.0375 29.0715 2.8386 2.0971
15 10 0.0277 0.015 25 0.0375 25.8396 2.8860 1.9565
16 9 0.0262 0.0135 25 0.0375 22.7255 2.9198 1.7398
17 9 0.0262 0.0135 25 0.0375 22.7255 2.7126 1.2944
18 8 0.0247 0.012 25 0.0375 19.7292 2.6055 0.7330
19 7 0.0232 0.0105 39 0.0585 26.2871 2.1610 -0.4556

We see in Table 3.1 that the average current for the optimized solution, excluding

the input coil, is approximately 3 A. We can see the resulting magnetic fields for these

Zeeman coil solutions plotted with respect to the ideal, bias, and modified Zeeman coil

fields in Figures 3.1 and 3.2. If we sum up the lengths of each solenoid (wide), we get the

slower length to be 0.7485 m. The discrepancy between the design length (0.68 m), which

is based on η, and this length (0.7485 m) comes from allowing the coils to extend beyond

the length of the slower on both sides. This is particularly important for the input side of

the slower to ensure the magnetic field is at the desired strength for the slowing process at

that point. In adding the length of each loop of wire in the solution, the total amount of
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copper wire is 644 m. However, this value assumes each loop is independent of each other,

excluding slight overlaps between loops, so the total amount of wire length needed will be

higher.
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Figure 3.1: Curve fit for ideal Zeeman slower. The optimized curve fit solution for the ideal
Zeeman slower is shown by the dotted line in comparison to the ideal Zeeman magnetic field
for η = 0.792. Parameters are as shown in Table 3.1.
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Figure 3.2: Curve fit for modified Zeeman slower. The optimized curve fit solution for the
modified Zeeman slower is shown by the dotted line in comparison to the ideal Zeeman
magnetic field for η = 0.792. Parameters are as shown in Table 3.1. The red dotted line
shows the total contribution in magnetic field from the Zeeman Coils and the High-B field.

We can see in Figure 3.3 that both rubidium designs adhere to the adiabatic

following condition limit (as defined in Equation 2.20) for the duration of the slower. The

flat section of the plot corresponds to a resonant velocity of 20 m/s, which is the capture

velocity for the High-B chamber. While a typical Zeeman slower is utilized for trapping at

a magnetic zero point in a standard MOT setup, our slower outputs into a magnetic field

with a strong gradient. We observe this by the sharp spike upwards in the gradient after the

region of the slower. We use this to our advantage to help break from the slowing process.
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Figure 3.3: Adiabaticity of modified Zeeman slower. The gradient of the modified Zeeman
coil solution fields in comparison to the maximum adiabaticity as given in Equation 2.20
(shown in purple). Any point where the gradient surpasses the adiabatic limit causes atoms
in resonance at that velocity (or faster) to drop out of the slowing process as they will be
too far detuned from resonance.

An additional solenoid, called the extraction coil, is placed at the end of the slower

to generate a significant magnetic field gradient, forcing the atoms out of the slowing

process. Figure 3.4 illustrates how the extraction coil forces the atoms out of the

adiabaticity. Additional tuning of this extraction coil will be done during operation of the

experiment.
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Figure 3.4: Adiabaticity of the modified Zeeman slower including extraction coil. The high
gradient of the extraction coil forces the atoms to quickly break free from the slowing process.
This is indicated by the spike in gradient after the green bar, which signifies the designed
end of the slowing process.

Copper wire is typically sold by the pound (which typically has a conversion factor

of 125 ft/lb). We went with 16 AWG (corresponding to wire diameter of 1.291 mm) Heavy

GP/MR-200 MW35C/200C insulated copper wire from BAE Wire & Insulation. The total

length of copper wire is proportional to the diameter and is dependent on the total cross

sectional area. Several different wire diameters were tested using the algorithm, and the 16

AWG wire proved the best when it came to minimizing both the heat generation and total

length of wire required. This copper wire is coated in a Polyester/Polyamide-imide shell
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which will electrically isolate each coil wrap and prevent shorts between layers. The

coating is rated up to 200◦C, which is above the expected temperature limit of the slower.

The Biot-Savart calculations use a wire diameter of 1.5 mm, but the difference in thickness

from 16 AWG wire (0.209 mm) will be made up by applying a thin coating of epoxy resin

between the layers of wire to help maintain the shape and positioning of the loops.

Smaller wire can be used and would reduce the current required by adding more

loops per length of the slower. This will also increase the total amount of wire required and

is likely to increase the heat generation due to the smaller cross-section of the wire. One of

our design goals was requiring less than 6 A of current within the system.

The total joule heating was calculated using two different methods. The first

method used Equation 2.23 and added up the power contribution from each individual wire

from each solenoid. This gave a total joule heating power of 59 W. The second method

uses 2.24 and is equivalent to approximating the cross sectional area for the current to be a

rectangle based on the total length and width of each solenoid. The second method yielded

a joule heating power of 25.5 W. This difference is to be expected as the same amount of

current is spread out over a larger cross sectional area for the second method as it assumes

the current is flowing through the area in between the wires. These two values provide

rough boundaries to what we should expect from the heat generation as the actual system

should fall somewhere between these ideal cases. As the inner wires are effectively sealed

by the outer layers, the contribution from the inner layers is approximated to be that of a

solid cylinder.
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Figure 3.5: Numerical integration of velocity for multiple detuning values. This numerical
integration of the force equation provides a positional velocity curve using the Fourth-Order
Runge-Kutta approximation and coded in Python. A laser detuning near 130 MHz will
produce atoms that have an initial velocity of 350 m/s with the proper capture velocity of
∼20 m/s. This illustrates the sensitivity of the output velocity to the detuning frequency of
the slowing laser.

As a final check to ensure that the magnetic field generated by the Zeeman slower

design would work as intended, a final numerical integration using the Runge-Kutta

method to the fourth order was used for the acceleration from Equation 2.1, where the

position and velocity are obtained by integration, but the positional magnetic field values

are fed in from the Zeeman coil field. Figure 3.5 shows the velocity curves for several

different detuning values, ∆ω. The field was designed for a detuning of ∆ω = 150 MHz

between the laser frequency and the zero-field, zero-velocity atomic transition line and



CHAPTER 3. RESULTS 38

would require the slowing process to stop precisely at the designed position of 0.68 m along

the slower. Figure 3.5 shows that using such a detuning would stop all atoms with an

initial velocity of 350 m/s, meaning fewer atoms will be provided for the High-B than an

optimized design can provide.

The effects that incorporating the extraction coil into the model has on the

adiabaticity and velocity of the atoms can be seen in Figures 3.4 and 3.6, respectively.

When the gradient surpases the adiabatic limit due to the extraction coil, roughly around

0.75 cm, we see in Figure 3.6 that all atoms with this initial velocity, regardless of the

detuning parameter, will cease slowing.
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Figure 3.6: Numerical integration of velocity with extraction coil. Similar to Figure 3.5,
we see the atoms all cease slowing when adiabaticity is broken by the extraction coil. This
provides the fine tuning for the output velocity through the laser detuning.
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Fortunately, the detuning parameter is experimentally determined so we are free to

change it as required. When the extended field is taken into account, the laser detuning

should be closer to 130 MHz in order to produce atoms with the goal velocity of 18.5 m/s.

The extraction velocity is highly sensitive to variations of the detuning parameter. With

the addition of an extraction coil, the detuning that corresponds to our capture velocity is

shifted higher, closer to 160 MHz, to accommodate the increased Zeeman shift at the

extraction.

Figure 3.7: AutoCAD model of the modified Zeeman slower design. The shaded regions
indicate the different solenoids.

Once the design became finalized, it was modeled in AutoCAD, as seen in Figure 3.7.

3.2 It Came From Python

As I mentioned earlier in the Results section, I had to optimize a system with many

bounded, constrained, and interconnected variables. This is not an easy task to

accomplish. After the first few unsuccessful attempts to create my own optimizer for these

parameters, I developed a mathematical model for the general function that I needed to

optimize in terms of my generated magnetic field, BGen,



CHAPTER 3. RESULTS 40

BGen(z) =
N∑
m=1

Im ∗ (
SLm∑

i=SLm−1

B(xi)) (3.1)

with Im being the mth of N solenoids, SLm is the wire index position, SL0 = 0 for

completeness, and B(xi) is the total magnetic field contribution for the xi wires deep at

that particular location. I then attempted to use some of the built-in SciPy functions such

as curve fit, optimize, and minimize, but none of these are able to handle the fact that, as

the length of each solenoid was changed, the next solenoid needed to move so as remove

any gaps or overlaps created. I eventually came across the lmfit package which adds the

freedom of bounds, constraints, and even expressions between the model to optimize. For

the actual optimization algorithm that lmfit used, I chose Adaptive Memory Programming

for Global Optimization (ampgo), rather than the standard least squares or Nelder-Mead

methods. The ampgo method provided the highest quality solutions in the least amount of

time (between 1-2 hours per solution). While the typical least squares method could often

provide solutions in a few minutes (given good initial parameters), these fits are not global

optimizations and often can be significantly improved. The global nature of ampgo in

attempting to find the absolute best fit possible was an influencing factor in its use.

As I mentioned previously, I used the symmetry of the magnetic field and clever

indexing to slice off the section of this field that would correspond to the current loop being

shifted from a global origin. To prevent issues with losing far away contributions, these

B(xi) fields ranged up to 2 meters away along the optical axis of the slower. To further

reduce the computation, B(xi) was pulled from an array which contained the pre-calculated
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magnetic field data for a single wire position with i layers deep (See Figure 3.8). This

means that while there were 40,000 data points per element in this array, it would only

take computational time when the program was first ran and merely be called as an object

each time a solenoid changed its physical parameters during the optimization process.
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Figure 3.8: Magnetic field profiles for various wire thickness counts, B(xi). These magnetic
field profiles are evaluated for a single wire location along the slower. This field data were
pre-calculated as current normalized profiles and stored in a single massive array.

I mentioned above that the wire diameter was determined by running several

iterations of the optimizer and comparing the heat output. It is important to note this

meant the optimizer needed to be far more generalized than it initially was, in particular
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the length of each individual coil pack had to be defined as a function based on the number

of solenoids and the diameter of the wire. This was a required step because while I was

able to limit the overall length of the slower, it was in such a manner that the last coil pack

would be forced to make up the difference between the total length and the sum length of

all the other coils. In other words, without this additional limitation to the length of each

solenoid, there was nothing preventing the optimizer from surpassing the designated total

length before it reached the final solenoid.

The quality of a curve fit or optimization tends to heavily rely upon the initial fit

parameters. While I initially had my algorithm import an external csv parameter file, I

eventually found a more generalized method that provided a fairly decent initial fit,

regardless of wire diameter or number of solenoids. Exploiting the shape of the expected

magnetic field (square root plus an offset as per Equation 2.10), I divided my total slower

into equal length solenoids but applied the same such form of An = B + C ∗
√

1− n/N .

This equation allows for both the current and depth parameters to have a form similar to

that of the desired magnetic field that they generate. Using this equation, I was then able

to generate initial parameters for the current and solenoid depths which would be

congruent to the overall field shape. It is very likely that optimizing such a general solution

could generate a great quality Zeeman field, but that is outside the scope of this project.

The algorithm and methods I have defined do not just solve the rubidium Zeeman

slower design problem, they are able to create any desired magnetic field given any bias

field shape/strength. The only limiting factors involve ensuring the fields line up properly
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and use the same positional step sizes.

I created a Python model which optimized the curve fit for the magnetic field profile

of a Zeeman slower using the lmfit package. The model, which I coded from scratch, used

the Biot-Savart law to calculate the magnetic field for a loop of current carrying wire along

the axis of symmetry. The ideal Zeeman field was composed of two separate parts: the

fall-off bias field from the High-B and the field generated by a set of independent solenoids.

Using 20 solenoids, I was able to generate a field that never differed by more than 4G from

the ideal field. I verified the slower would work by numerically integrating the force acting

on the atoms as well as checked that the field never exceeded the adiabatic limits described

in Chapter 2.

While I have shown that the slower will function exactly on the symmetry axis of

the solenoids, the off-axis effects would be interesting to model and compare. My

computational model is capable of this calculation, but the simplicity of the axial form of

the Biot-Savart law improved computational time during the optimization process.

As a final code related note, all of the code mentioned here, except for the packages

used, was written by me for this project but may be found at

https://github.com/Jehiren/ZeemanCode.
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Chapter 4: Conclusion

4.1 Designing a Modified Zeeman Slower

There are many interesting phenomena that occur when plasmas are contained in

strong magnetic fields, especially in fields stronger than 1 T, as can be obtained in the

High-B trap. In order to study these plasmas, a sufficiently high flux of slowed atoms must

be provided into the trapping apparatus. The experiments previously conducted in the

High-B chamber were done with a lower plasma density as the atom source used, the LVIS,

could only produce an atomic flux of roughly 107 atoms/s. This low plasma density limited

the observation of low probability events, such as Three-Body Recombination. In order to

provide significantly greater atomic flux, this LVIS is to be replaced by a modified Zeeman

slower. Zeeman slowers are well studied devices which have been proven to be capable of

providing atomic flux upwards of 1012 atoms/s.

I have designed a modified Zeeman slower that will provide a constant flux of slowed

atoms into the High-B chamber. This modified slower incorporates the significant fringe

field of the High-B chamber into its magnetic field profile. Zeeman slowers typically are

used for standard MOTs, which typically trap in a region with zero magnetic field. The

modified slower must be able to incorporate the non-homogeneous High-B bias field and

produce a steady flux of slowed and cooled atoms which can be trapped within the High-B

trap.

As the magnetic field continues to sharply increase in the region after the slower,
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there are additional considerations that are required regarding which cycling transition can

be utilized. While an increasing field slower would be ideal, as it would match the natural

field profile of the High-B trap field (increases toward the trap center), the

|F = 3,mF = −3〉 and |F ′ = 4,mF ′ = −4〉 are high-field seeking states which will

accelerate towards stronger magnetic fields. Atoms in these states are not trappable due to

this acceleration.

My modified design is optimized to work both with and without the High-B fringe

field using a modular design consisting of multiple adjacent solenoids. Each of these

solenoids, 20 in total, had three free parameters to optimize: length, depth, and current.

My Python algorithm then performed an optimization to obtain the best possible fit for

the system. The total field must meet the adiabatic requirement condition, which limits

the gradient of the field based on the position and velocity for each point along the slower.

I used my Python algorithm to obtain solutions for strontium atoms, but those are

poor in quality as they used a design parameter of η = 0.077, meaning a significant portion

of the atoms would be lost due to the expansion of the atomic beam over the longitudinal

distance of the slower. An ideal strontium slower has a length of approximately 7 cm as the

maximum deceleration of strontium is roughly 10 times greater. Attempting to modify the

rubidium slower to work with strontium is a poor fit. Additionally, this optimizer can

recreate any magnetic field profile, within reason, using these solenoids.

With the completed design parameters, I then modeled the slower in AutoCAD. All

that remains is figuring out the fine details of constructing the slower in terms of parts,
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labor, and possible design alterations that allow for ease of use of the slower in the lab.

4.2 Future Work

Now that a theoretical design has been completed and proven to meet the technical

requirements, the next steps are to physically build and test the slower. With all

construction situations, there are typically unforeseen changes that must be made to

accommodate a functional lab environment. There were several minor considerations that

were incorporated into the slower design throughout the project, but there is a major

revision required with the algorithm that will fundamentally change how the solution is

generated.

Layer 1
Layer 2

Layer 4
Layer 3

Layer 1
Layer 2

Layer 4
Layer 3

Figure 4.1: Model for layered design approach. This new design approach will attempt to
generate a solution using stacked layers rather than several discrete smaller solenoids.

The design change is to consider stacking consecutive layers of wire along the entire

slower body as illustrated in Figure 4.1. The solution presented above in Chapter 3 utilized

20 independent power supplies to provide the DC current to pass into the wires. This was

not a feasible design as it meant there were now 20 independent variables that could all be
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adjusted, which is simply too much to allow for fine tuning. In comparison to the

difficulties of wiring the 20 solenoid currents, this layered design would be far simpler.

By removing strontium from the design considerations, the ideal situation can be

reduced to a single current passing through the main body of the slower solenoid. This

would provide a tunable field where adiabaticity should be maintained even with minor

adjustments to the overall current. This would change which atoms are traveling at

resonant velocities during the slowing process, allowing fine tuning for the output velocity

of the slower. The addition of an extraction coil is still a requirement to ensure adiabaticity

is broken in a controlled manner, halting the slowing process once atoms reach the desired

speed. These changes are currently in progress and a finalized design should completed

before August 2019.
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Appendix A: Hyperfine Structure

To calculate the hyperfine structure of rubidium, we take our total Hamiltonian to

be the sum of the hyperfine and field interaction Hamiltonians, Ĥtot = Ĥhfs + Ĥint, where

Ĥint is the Hamiltonian for the interaction with an external field and is given along the axis

of quantization (taken to be the direction of the magnetic field, typically the z component),

Ĥint =
µB
h̄

(gsŜz + gLL̂z + gI Îz)Bz (A.1)

where µB is the Bohr Magneton, gs, gL, and gI , are the Lande g-factors for the Spin,

Orbital, and Nuclear angular momenta, respectively. Ŝz, L̂z, and Îz are the z-component

operators for the Spin, Total, and Nuclear angular momenta, respectively. The total

angular momentum is defined as the vector sum of these three components and denoted by

F̂ = Ŝ + L̂ + Î. In the absence of a magnetic field, the spin and orbital angular momenta

have no interactions and can be combined into Ĵ, which is the total angular momentum of

the electron (excluding contributions from the nucleus).

After applying the raising/lowering operators, we obtain the Clebsch-Gordon

coefficients that write our |F,mF 〉 states in the |I,mI〉 |J,mJ〉 states and since we are only

interested in the J=3/2 states, we will abbreviate the notation where integer kets denote

|F,mF 〉 states and the non-integer kets are given (for 85Rb) as |mI ,mJ〉 where I = 5/2 and

J = 3/2, unless otherwise stated. Going through this process for the 5P3/2 excited state of

85Rb gives us:
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F = 4

|4, 4〉 = |5/2, 3/2〉

|4, 3〉 =
√

5/8 |3/2, 3/2〉+
√

3/8 |5/2, 1/2〉

|4, 2〉 =
√

5/14 |1/2, 3/2〉+
√

15/28 |3/2, 1/2〉+
√

3/28 |5/2,−1/2〉

|4, 1〉 =
√

5/28 |−1/2, 3/2〉+
√

15/28 |1/2, 1/2〉+
√

15/56 |3/2,−1/2〉+
√

1/56 |5/2,−3/2〉

|4, 0〉 =
√

1/14 |−3/2, 3/2〉+
√

3/7 |−1/2, 1/2〉+
√

3/7 |1/2,−1/2〉+
√

1/14 |3/2,−3/2〉

|4,−1〉 =
√

1/56 |−5/2, 3/2〉+
√

15/56 |−3/2, 1/2〉+
√

15/28 |−1/2,−1/2〉+
√

5/28 |1/2,−3/2〉

|4,−2〉 =
√

3/28 |−5/2, 1/2〉+
√

15/28 |−3/2,−1/2〉+
√

5/14 |−1/2,−3/2〉

|4,−3〉 =
√

3/8 |−5/2,−1/2〉+
√

5/8 |−3/2,−3/2〉

|4,−4〉 = |−5/2,−3/2〉

F = 3

|3, 3〉 =
√

5/8 |5/2, 1/2〉 −
√

3/8 |3/2, 3/2〉

|3, 2〉 = −
√

1/2 |1/2, 3/2〉+
√

1/12 |3/2, 1/2〉+
√

5/12 |5/2,−1/2〉

|3, 1〉 = −
√

9/20 |−1/2, 3/2〉 −
√

1/60 |1/2, 1/2〉+
√

49/120 |3/2,−1/2〉+
√

1/8 |5/2,−3/2〉

|3, 0〉 = −
√

3/10 |−3/2, 3/2〉 −
√

1/5 |−1/2, 1/2〉+
√

1/5 |1/2,−1/2〉+
√

3/10 |3/2,−3/2〉

|3,−1〉 = −
√

1/8 |−5/2, 3/2〉 −
√

49/120 |−3/2, 1/2〉+
√

1/160 |−1/2,−1/2〉+
√

9/20 |1/2,−3/2〉

|3,−2〉 = −
√

5/12 |−5/2, 1/2〉 −
√

1/12 |−3/2,−1/2〉+
√

1/12 |−1/2,−3/2〉

|3,−3〉 = −
√

5/8 |−5/2,−1/2〉+
√

3/8 |−3/2,−3/2〉
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F = 2

|2, 2〉 =
√

1/7 |1/2, 3/2〉 −
√

8/21 |3/2, 1/2〉+
√

10/21 |5/2,−1/2〉

|2, 1〉 =
√

9/28 |−1/2, 3/2〉 −
√

25/84 |1/2, 1/2〉+
√

1/42 |3/2,−1/2〉+
√

5/14 |5/2,−3/2〉

|2, 0〉 =
√

3/7 |−3/2, 3/2〉 −
√

1/14 |−1/2, 1/2〉 −
√

1/14 |1/2,−1/2〉+
√

3/7 |3/2,−3/2〉

|2,−1〉 =
√

5/14 |−5/2, 3/2〉+
√

1/42 |−3/2, 1/2〉 −
√

25/84 |−1/2,−1/2〉+
√

9/28 |1/2,−3/2〉

|2,−2〉 =
√

10/21 |−5/2, 1/2〉 −
√

8/21 |−3/2,−1/2〉+
√

1/7 |−1/2,−3/2〉

F = 1

|1, 1〉 = −
√

1/20 |−1/2, 3/2〉+
√

3/20 |1/2, 1/2〉 −
√

3/10 |3/2,−1/2〉+
√

1/2 |5/2,−3/2〉

|1, 0〉 = −
√

1/5 |−3/2, 3/2〉+
√

3/10 |−1/2, 1/2〉 −
√

3/10 |1/2,−1/2〉+
√

1/5 |3/2,−3/2〉

|1,−1〉 = −
√

1/2 |−5/2, 3/2〉+
√

3/10 |−3/2, 1/2〉 −
√

3/20 |−1/2,−1/2〉+
√

1/20 |1/2,−3/2〉

which allows us to write our degenerate F states in the low field in terms of the |mI ,mJ〉

basis. Doing this removes needing perturbation theory as we will instead re-diagonalize the

Hamiltonian at every magnetic field evaluation using python. This is the intermediate

magnetic field Zeeman effect.
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Figure A.1: Hyperfine structure for the 5P3/2 excited state of rubidium. There are 24 possible
states, corresponding to the 4 |mJ〉 states {3/2, 1/2, -1/2, -3/2}, and the 6 |mI〉 states of
{5/2, 3/2, 1/2, -1/2, -3/2, -5/2}.
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Figure A.2: Hyperfine structure for ground state of rubidium. The states start grouped by
|F,mF 〉 states on the left and groups of |mJ〉 on the right. There are 12 states in total, with
the seven initially on top corresponding to the |F = 3〉 state and the bottom 5 corresponding
to the |F = 2〉 state.
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For the 5S1/2 ground state of 85Rb we have Clebsch-Gordon coefficients of:

F = 3

|3, 3〉 = |5/2, 1/2〉

|3, 2〉 =
√

5/6 |3/2, 1/2〉+
√

1/6 |5/2,−1/2〉

|3, 1〉 =
√

2/3 |1/2, 1/2〉+
√

1/3 |3/2,−1/2〉

|3, 0〉 =
√

1/2 |−1/2, 1/2〉+
√

1/2 |1/2,−1/2〉

|3,−1〉 =
√

1/3 |−3/2, 1/2〉+
√

2/3 |−1/2,−1/2〉

|3,−2〉 =
√

1/6 |−5/2, 1/2〉+
√

5/6 |−3/2,−1/2〉

|3,−3〉 =
√

5/8 |3/2,−1/2〉

F = 2

|2, 2〉 =
√

1/6 |3/2, 1/2〉 −
√

5/6 |5/2,−1/2〉

|2, 1〉 =
√

1/3 |1/2, 1/2〉 −
√

2/3 |3/2,−1/2〉

|2, 0〉 =
√

1/2 |−1/2, 1/2〉 −
√

1/2 |1/2,−1/2〉

|2,−1〉 =
√

2/3 |−3/2, 1/2〉 −
√

1/3 |−1/2,−1/2〉

|2,−2〉 =
√

5/6 |−5/2, 1/2〉 −
√

1/6 |−3/2,−1/2〉

We see the hyperfine structure for the ground state of rubidium in figure A.2 and

the hyperfine structure for the 5P3/2 excited state in figure A.1. The states are defined by
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their |F 〉 quantum number in the low field (Zeeman) regime, but this breaks down due to

spin-orbital decoupling at higher magnetic fields. In this higher magnetic field regime

(Paschen-Back), the states are defined by the |mI ,mJ〉 where the |mI〉 states are clustered

together based on their |mJ〉 state.
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Appendix B: Biot-Savart Derivation

To numerically evaluate the magnetic field from a loop of current, we break the

integral of the Biot-Savart law (as seen in equation 2.21):

~B(~r) =
µo
4π

∫ ~I × r̂

r2
d`′ (B.1)

into the discrete contribution, dB, for a particular section of the loop, d`′. This gives us

the differential form of the Biot-Savart Law:

~dB =
µo~Id`

′×~r

4πr3
(B.2)

for some wire of current, I, along a path d`′. We use the convention that primed

coordinates denote the geometry of the source points. The loop of current will be parallel

to the xy-plane and offset by an amount of ~ro = (xo, yo, zo) in standard Cartesian

coordinates. We want to evaluate the magnetic field at some point P defined by the

position vector ~r = (x, y, z), which gives us a displacement vector

~d = ~r− ~r′ (B.3)

where the source points are obtained by using a conversion from cylindrical symmetry for a

circle with radius a:
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x′ = xo + a cos(φ′)

y′ = yo + a sin(φ′)

z′ = zo (B.4)

This allows us to find our displacement vector:

~d = (x− xo − a cos(φ′), y − yo − a sin(φ′), z − zo) (B.5)

which we will substitute for r into equation B.2 above. The line integral over the loop is

done by integrating over the differential vector line elements given by

d`′ = dx′x̂ + dy′ŷ + dz′ẑ. Bx, By, and Bz are the x-, y- , and z- components of the

magnetic field. We can evaluate the cross product and get:

dBx =
x̂[a(z − zo) cos(φ′)]dφ′

|d|3

dBy =
ŷ[a(z − zo) sin(φ′)]dφ′

|d|3

dBz =
ẑ[a2 + a(yo − y) sin(φ′) + a(xo − x) cos(φ′)]dφ′

|d|3
(B.6)

with
∣∣∣~d∣∣∣ being the magnitude of our displacement vector and given as:

∣∣∣~d∣∣∣2 = (x− xo)2 + (y − yo)2 + (z − zo)2 + a2 + 2a[(xo − x) cos(φ′) + (yo − y) sin(φ′)] (B.7)
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where we numerically integrate around φ′ with my Python code to determine the magnetic

field for a discrete section of the magnetic field. The calculations for the loops used in the

optimizer separated the loop into 20 sections. The code evaluated the magnetic field for all

of the points in a Cartesian volume d3r. This meant there would be points P being

evaluated which would approach the current-carrying wire location, which blows up to

infinity as ~d approached 0. To avoid this issue during evaluation, a conditional check was

made that would replace any distance smaller than a given minimum distance with that

minimum distance value. This meant that any displacement less than 0.1µm was evaluated

as 0.1µm.

Computationally solving the Biot-Savart law in this manner allows us to avoid the

issue of solving the elliptical integral obtained from attempting to determine an exact

analytical solution to Equation 2.21.
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