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Abstract 
This project is focused on the construction of an optical fiber strain gauge that is based on 

a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference 
pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum 
cantilever. When the cantilever experiences flexural stress, the interference pattern should 
change. By observing this change, it is possible to determine the strain experienced by the 
cantilever. I describe the design and construction of our optical fiber strain gauge as well as the 
characterization of different parts of the apparatus.  
  



v  

Table of Contents 
Dedication ....................................................................................................................................... ii 
Acknowledgments.......................................................................................................................... iii 
Abstract .......................................................................................................................................... iv 
Chapter One: Introduction and Literature Review ...........................................................................1 

1.   Introduction ....................................................................................................................1 
2.   Literature Review...........................................................................................................3 

Chapter Two: Reference Work and Theoretical Basis ..................................................................10 
Chapter Three: Methodology and The Optical Alignment ............................................................19 

1.   Methodology ................................................................................................................19 
2.   The Optical Alignment ................................................................................................20 

Chapter Four: Data and Analysis ...................................................................................................23 
1. Sensitivity of Optical Fiber Strain Gauge ....................................................................23 
2. Measuring the Beam Profile ........................................................................................25 

A. Determination of the Beam Profile Using the Knife-Edge Method: 
Experimental Method, Data, and Analysis ............................................................25 

B. Determination of the Beam Profile Using an Optical Fiber: 
Experimental Method, Data, and Analysis ............................................................30 

3. Measuring the Efficiency of Coupling the Free Space Beam to the Fiber: 
Experimental Method, Data, and Analysis ..................................................................34 

Chapter Five: Summary .................................................................................................................39 
References ......................................................................................................................................40 
APPENDIX A: PYTHON CODES ...............................................................................................43 



vi  

a. PYTHON CODE FOR CALCULATING THE STRAIN GAUGE SENSITIVITY.........43 
b.  PYTHON CODE FOR PLOTTING THE RAW POWER AND STAGE READINGS 

FOR THE BEAM PROFILE—KNIFE-EDGE METHOD ...............................................45 
c. PYTHON CODE FOR PLOTTING THE CORRECTED POWER AND STAGE 

READINGS FOR THE BEAM PROFILE—KNIFE-EDGE METHOD ..........................46 
d. PYTHON CODE FOR EVALUATING THE LASER BEAM DIAMETER FOR BEAM 

PROFILE—KNIFE-EDGE METHOD .............................................................................48 
e. PYTHON CODE FOR PLOTTING THE RAW POWER AND STAGE READINGS 

FOR THE BEAM PROFILE—SINGLE-MODE OPTICAL FIBER ................................50 
f. PYTHON CODE FOR EVALUATING THE LASER BEAM DIAMETER FOR BEAM 

PROFILE—SINGLE-MODE OPTICAL FIBER ..............................................................52 
g. PYTHON CODE FOR PLOTTING THE SENSITIVITY OF THE COUPLING OF THE 

FREE SPACE BEAM TO THE FIBER ............................................................................55 
APPENDIX B: CALCULATIONS FOR BEAM PROFILE .........................................................57 

a. CALCULATING THE DIAMETER OF A BEAM ..........................................................57 
b. CALCULATING I0mn  .......................................................................................................58 

  



vii  

List of Figures 
Fig. 1: A diagram to illustrate the definition of strain .....................................................................2 
Fig. 2: Reproduction of Fig. 1 from Ref. 7. (a) Point sensor. (b) Intrinsic distributed sensor. (c) 
            Quasi-distributed sensor.......................................................................................................3 
Fig. 3: Reproduction of Fig. 1 from Ref. 8. A schematic diagram showing the periodic phase 
            gratings .................................................................................................................................5 
Fig. 4: The apparatus described by Pomarico, Sicre, Patrignani, and De Pasquale .........................6 
Fig. 5: Reproduction of Fig. 1 from Ref. 10. Tapered single-mode optical fiber ............................7 
Fig. 6: The apparatus described by Arregui et al.to study optical fiber strain gauge with a 
            resistive gauge ......................................................................................................................8 
Fig. 7: Reproduction of Fig. 2 from Ref. 11. The extrinsic Fabry-Perot interferometer .................9 
Fig. 8: Reproduction of Fig. 1 of Ref. 5.  Apparatus for measuring optical fiber strain described 
            by Butter and Hocker .........................................................................................................10 
Fig. 9: The shear force diagram and bending moment diagram for a cantilever loaded at its free 
            end at =  ........................................................................................................................11 
Fig. 10: The cantilever before and after it is loaded ......................................................................12 
Fig. 11: A schematic diagram of the optical fiber strain gauge .....................................................19 
Fig. 12: Setup for optical pre-alignment ........................................................................................21 
Fig. 13: Setup for the optical fiber strain measurement .................................................................22 
Fig. 14: A contour plot of the sensitivity versus strain-optic tensor elements for a fiber mode 
             diameter of 5.3 m ............................................................................................................24 
Fig. 15: A contour plot of the sensitivity versus strain-optic tensor elements for a fiber mode 
             diameter of 3.6 m ............................................................................................................25 



viii  

Fig. 16: A schematic diagram of the apparatus for using the knife-edge technique for determining 
             the beam profile ................................................................................................................26 
Fig. 17: A photograph of the experimental setup for using the knife-edge technique to determine 
             the beam profile ................................................................................................................26 
Fig. 18: Plot of the raw power reading versus the raw stage reading ............................................27 
Fig. 19: Plot of  ( )  versus ⁄ −  ...................................................................................28 

Fig. 20: Plot of ( )  versus ⁄ −  with the fit function ...................................................29 
Fig. 21: A schematic diagram of the apparatus for using the single-mode optical fiber to 
              determine the beam profile ..............................................................................................30 
Fig. 22: The apparatus for using the single-mode optical fiber cable for determining the beam 
              profile ...............................................................................................................................31 
Fig. 23: Plot of the raw stage reading versus the transmitted power .............................................32 
Fig. 24: Comparison of the beam profile measured with the optical fiber to the theoretical beam 
              profile when = 250  ...............................................................................................33 
Fig. 25: Comparison of the beam profile measured with the optical fiber to the theoretical beam 
              profile when = 260  ...............................................................................................33 
Fig. 26: Comparison of the beam profile measured with the optical fiber to the theoretical beam 
              profile when = 270  ...............................................................................................34 
Fig. 27: A schematic diagram of the apparatus for measuring the sensitivity of the coupling of 
             the free space beam to the fiber ........................................................................................35 
Fig. 28: The apparatus for measuring the sensitivity of the coupling of the free space beam 
             to the fiber .........................................................................................................................36 
Fig. 29: Fiber coupling sensitivity .................................................................................................37 



1  

Chapter One: Introduction and Literature Review 
1. Introduction 

During the last fifty years, the optical fiber has been developed and exploited in a variety 
of applications such as telecommunication systems, power transmission, and sensors. Optical 
fiber sensors are used for measuring quantities such as strain, temperature, and the load 
reliability of civil structures.1 This shows the importance of optical fiber sensors. Because of its 
important applications, the demand for highly sensitive sensors, especially strain sensors, is 
increasing. For this reason, we chose to build an optical fiber-based strain gauge. Optical fiber-
based strain gauges were developed after electrical resistance-based gauges, which use a metallic 
wire as the strain transducer instead of an optical fiber.2 The resistance of such a wire depends on 
both strain and temperature.2 These wires are made of different alloys, such as nickel-chromium 
alloys, platinum alloys, and copper-nickel alloys. The electrical resistance-based strain gauges 
can be inexpensive: for example, one 3-element rosette (Omega SGD-1/120-RY21) costs 
approximately $28.3 However, they are not as accurate as the optical fiber strain gauges. The 
resistance-based strain gauges have uncertainties ranging from  (±2.1  to ± 50.08 ). 4 
Consequently, the aim of this project is to measure the strain of a cantilever by using an optical 
fiber strain gauge. After completing these measurements, we should be able to answer the 
following questions: Can we build an optical based strain gauge? If so, what is its sensitivity? 

This thesis is organized as follows. The current chapter provides an introduction to the 
concepts of stress and strain and a brief review of the literature. The second chapter provides 
more details about the optical strain gauge described by Butter and Hocker.5 The third chapter 
provides a description of the apparatus and experimental methods. The fourth chapter presents 
the data and an analysis of the data. Finally, the fifth chapter is a summary of this project.  
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Stress is defined as the force per unit of a cross sectional area. Applied stress causes a 
material to deform. The average value of stress can be calculated as  =  , where   is the 
average stress,  is the force applied to the cross section, and  is the area of the cross section. 
The strain can be defined as the scaled deformation of a body resulting from an applied stress. 
We illustrate these concepts in Fig.1, which shows a bar that experiences axial forces. 

 
Fig. 1: A diagram to illustrate the definition of strain. 

Figure 1 illustrates how a bar undergoes a change in length ∆ = −  after 
experiencing tensile or compressive forces. The strain is the ratio ∆ / , where  is the original 
length of the bar and ∆  is the difference between the final length and the original length of the 
bar. The strain is unitless. The change in length can be positive in the case of tensile forces or 
negative in case of compressive forces.6 The symbol for the strain that will be used in this project 
is .6  

The strain in an optical fiber is the scaled change of its optical path-length due to an 
applied stress. This change is caused by changes in the refractive indices of the core and cladding 
of the optical fiber as well as by changes in the physical dimensions of the fiber. Consequently, 
the optical fiber strain can be determined by observing the interference pattern produced when 
light transmitted by the fiber overlaps with the light transmitted through a reference fiber. 
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2. Literature Review: 
There are different types of optical fiber sensors for measuring strain that can be 

classified into three categories according to spatial resolution: point sensor,7 intrinsic distributed 
sensors, and quasi-distributed sensors.7 Point sensors are used for measuring a specific 
measurand at a specific point.7 Intrinsic distributed sensors can measure the measurand along the 
optical fiber.7 Quasi-distributed sensors are sensors that measure the measurand at more than one 
point along the length of the optical fiber.7 Fig. 2 shows the three types of the sensors. 

 
Fig. 2: Reproduction of Fig. 1 from Ref. 7. (a) Point sensor. (b) Intrinsic distributed 

sensor. (c) Quasi-distributed sensor.  
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The different types of optical fiber sensors can also be classified into categories according to the 
main concept that each one uses: interferometric sensors, distributed fiber optic sensors, 
luminescent optical fiber sensors, plastic optical fiber sensors, and in-fiber Bragg grating 
sensors.7 Interferometric optical fiber sensors are based on the concept of superposing two 
signals.7 Distributed fiber optic sensors exploit the concept of light scattering.7 Luminescent 
optical fiber sensors are based on causing the fiber to luminesce by doping it with materials such 
as neodymium and erbium.7 Plastic optical fiber sensors are based on using optical fibers that are 
made of plastic, which have the advantage of low cost and the disadvantage of data loss.7 In-fiber 
Bragg grating sensors are based on the idea of writing Bragg gratings, which are simple elements 
for sensing, into optical fiber cables.7 One of the probable applications of in-fiber Bragg grating 
sensors’ is monitoring strain.7 This is accomplished by determining the shift in the Bragg 
condition compared to an optical path.7 The optical fiber cable is used in this method to obtain 
higher sensitivity.7 Although this sensor can be a good strain monitor, interferometric sensing is 
more useful.7  

Having described the different categories of optical strain sensors, we proceed to discuss 
some of the early work that has been done in measuring strain using optical fiber. C.D. Butter 
and G.B. Hocker determined the strain experienced by the surface of a cantilever by using an 
optical fiber strain gauge constructed from two bare single-mode optical fibers glued on the 
cantilever.5 Their purpose for building this gauge was to create a sensitive optical fiber strain 
gauge to measure the strain in any structure to which these fibers are attached.5 Because our 
project is a modified version of this gauge, more information will be given in chapter two. 

Meltz, Glenn, and Snitzer followed a different approach to measure the optical fiber 
strain. They used periodic phase gratings in the core of an optical fiber,8 as shown in Fig. 3. 
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Fig 3: Reproduction of Fig. 1 from Ref. 8. A schematic diagram showing the periodic phase 

gratings. 
As the figure shows, a laser light source sends the light into a beam splitter which divides 

the light into two beams.8 One beam is directed towards a spectrometer, which measures the 
amount of absorbed light.8 The other beam is directed towards a lens, which focuses the light 
into the core of an optical fiber.8 A, B, and C are the regions of the fiber core where the 
wavelength gratings were written.8 The wavelength gratings were generated by transversely 
directed ultraviolet radiation.8 The gratings were designed to work with different chosen angles 
of incidence.8 The fiber core was made of either glass or Germanium-doped silica.8 The core was 
attached to a specific plate or part of construction.8 Depending on the strain experienced by the 
gratings, the grating period will change, leading to different Bragg conditions and shifts in the 
peaks in the reflected intensity. The magnitude of the shifts are a measure of the strain. 

Pomarico, Sicre, Patrignani, and De Pasquale suggested using an intrinsic optical fiber 
sensor to measure the strain of surfaces.9 For this purpose, they used two multimode optical 
fibers following the interferometric sensors method.9 They used a HeNe Laser as a light source.9 
The light was divided by a beam splitter into two beams that were focused into two separate 
multimode fibers.9 One of the multimode fibers was set up as a reference fiber.9 The other fiber 
was set up as the strained fiber which was fastened to translation stages by epoxy.9  Both fibers 
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direct the transmitted light through them into a CCD camera sensor.9 The distance that separated 
the ends of the fibers, which was adjustable for selecting the speckle size, was denoted by . The 
camera was connected to image processing unit to record the images.9 Fig. 4 illustrates the 
apparatus. 

 
Fig. 4: The apparatus described by Pomarico, Sicre, Patrignani, and De Pasquale. 

Pomarico, Sicre, Patrignani, and De Pasquale selected the multimode fiber for this project 
because of its wide core compared to the single-mode fiber.9 Their aim was to allow as many 
modes of light as possible, which, because of their different optical paths, will form an 
interference pattern.9 These patterns will generate a specific intensity distribution that is 
comparable to a speckle pattern.9 This intensity distribution will be modified when the fiber is 
strained because of the changes in the phase of the light wave.9 The intensity pattern of the 
strained fiber is compared to that of the reference fiber by spatial correlation.9 After performing a 
specific calibration that depends on , Pomarico et al. claimed that their results showed the 
ability to measure sub-micrometer deformations.9 

Arregui, Matias, and Lopez-Amo followed a different approach to build an optical fiber 
strain gauge with low cost.10 They achieved that by building a tapered single-mode optical 



7  

fiber.10 They built the tapered fiber by dividing the fiber into three regions—contracting, waist, 
and expanding tapered regions—as illustrated in Fig. 5.10  

 
Fig. 5: Reproduction of Fig. 1 from Ref. 10. Tapered single-mode optical fiber. 

As shown in Fig. 5, zone I is the contracting part of the fiber where the fiber profile is 
contracting, zone II is the waist, and zone III is the expanding area.10 First, they generated the 
tapered fiber from graded index single-mode fiber.10 They used an organic solvent to remove the 
cover of 10 cm sample of the original 2 m of single-mode fiber.10 They then tapered the uncoated 
area of the fiber. The process of tapering was accomplished by stripping portions of the fiber and 
then stretching the stripped portions.10 After that, “they fixed it onto two symmetrical points with 
respect to the tapered zone on a micrometer using adhesive cyanocrilate.”10 By fixing the tapered 
fiber on the two points, they characterized the optical fiber strain gauge.10 They found that the 
optimum of the optical fiber strain gauge can be obtained by selecting the tapered fiber’s waist 
diameter.10 Then, they measured the strain of an aluminum cantilever using the two best optical 
fiber strain gauges according to their characterization. The setup that they built is illustrated in 
Fig. 6. 
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Fig. 6: The apparatus described by Arregui et al. to study optical fiber strain gauge with a 

resistive gauge. 
As Fig. 6 shows, the tapered fiber is fixed on the cantilever. They found that the 52 m 

optical fiber strain gauge has a measurement range bigger than that of both resistive gauges and 
Bragg grating gauges.10 They claim that these results show that gauge designing can be done by 
choosing certain tapers for different applications of gauges.10 

 Unlike Pomarico et al., Jiang and Gerard developed an extrinsic optical fiber strain 
gauge.11 For this purpose, they replaced the cavity of a Fabry-Perot interferometer with a thin 
transparent film that services as a low finesse Fabry-Perot interferometer.11 Also, instead of the 
two mirrors of different reflectivity of the original Fabry-Perot interferometer, they used the ends 
of two optical fibers as mirrors11 as shown in Fig. 7. 
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Fig. 7: Reproduction of Fig. 2 from Ref. 11. The extrinsic Fabry-Perot interferometer.  

Fig. 7 shows the extrinsic Fabry-Perot interferometer made by gluing two optical fibers to 
a metal connector while the two ends of the fiber are separated by a thin film. Jiang and Gerard 
used a thin film that is made of polyurethane.11 They claim that the transparent thin film reduces 
the defects of the original setup.11 Also, the film material gave them the advantage of having 
two-phases of the film, soft and hard segments which added properties to the setup.11 Jiang and 
Gerard stated that the accuracy of the gauge reached 5 × 10 .11 Moreover, they stated that this 
gauge can be used as a gauge of other parameters such as pressure.11 
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Chapter Two: Reference Work and Theoretical Basis 
As stated in the abstract, this project is an attempt to build an optical fiber strain gauge 

that is based on the gauge described by Butter and Hocker.5 Their apparatus is shown in Fig. 8. 

 
Fig. 8: Reproduction of Fig. 1 of Ref. 5.  Apparatus for measuring optical fiber strain 

described by Butter and Hocker. 
As Fig. 8 shows, the laser light is divided by a beam splitter to pass through the two bare 

single-mode fibers. This laser is supposed to have a coherence length much longer than the 
optical path length difference between the two paths. A transverse force  is applied to the 
cantilever, which causes the cantilever to bend, thereby stretching or compressing the two bare 
fibers attached to it. Butter and Hocker determined the strain by observing the shift in the 
interference pattern that was generated by the overlap of the light from both optical fiber cables. 
This shift was a result of the change in the optical path-length in the fibers.5 By observing the 
change in the interference pattern, they claimed that the optical fiber strain gauge is able to 
measure strains of < 0.4 × 10 . Our project is a modified version of this experiment, with the 
aim of simplifying the setup and specifying experimental details needed to obtain reproducible 
results. 
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The theoretical basis of this experiment was described by C.D. Butter and G.B. Hocker.5 
A more detailed version of that description, based on notes by Dr. E. Behringer, is presented 
below.  

First, we will describe how to obtain an expression for the strain in the fibers using 
concepts from engineering mechanics. We begin by presenting the shear force and bending 
moment diagrams for a cantilever that is subject to a concentrated load  at its free end. 

 
Fig. 9: The shear force diagram and bending moment diagram for a cantilever loaded at 

its free end at =  
From the shear force diagram, we see that the shear force  is 

( ) =                                               0 ≤ ≤  (1) 
where  is the cantilever length. Then the bending moment, , is obtained by considering the 
shear force diagram in Fig. 9 and applying the relation  =  : 

( ) = − ( − )                            0 ≤ ≤  (2) 
we note that ( = 0) = −  and ( = ) = 0 as expected at the fixed end ( = 0) and the 
free end ( = ). By the flexure formula, the flexural stress is 

= − = − − ( − )  (3) 
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where  is the axial stress,  is the moment in the y direction,  is the vertical position in the 
cross section relative to the neutral plane, and  is the moment of inertia. Note that the load   is 
positive and  is positive for locations in the cross section between the neutral surface and the 
surface to which the load is applied. If we let the cantilever have width  and height = 2 , 
then its moment of inertia is 

=  1
12  = 1

12  (2 ) = 2
3  = 1

3  (2 ) = 1
3   (4) 

where = (2 ) is the cross sectional area of the cantilever. Substitution of (4) into (3) gives 

= 3  ( − )  ⇒  = 3  ( − )   (5) 

where we set = +   because  is the vertical height from the neutral axis of the cantilever and 
hence = . The positive sign for  is to refer to the distance between the neutral surface and 
the surface to which the load is applied. The result for  will be positive, which indicates tensile 
stress. When the load acts on the free end of the cantilever, the cantilever bends and the free end 
is displaced by . Fig. 10 illustrates the displacement of the cantilever after the cantilever is 
loaded.  

 
Fig. 10: The cantilever before and after it is loaded. 
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The displacement of the end of the cantilever , shown in Fig. 10, is obtained from the textbook 
by Gere and Goodno6: 

= −
3 = −  (6) 

where we substituted (4) for , and  is the elastic modulus. This displacement is related to the 
stress by dividing (5) by  and then substituting for /  using (6): 

= = 3 ( − ) = −3 ( − ) = −3 ( − ) (7) 

This is similar to Eq. (9) of Butter and Hocker, which has  in place of ( − ) here. We 
would get their result if we assumed ( ) = −  but this cannot be correct if = 0 is at the 
fixed end. If they have chosen = 0 at the free end, then their Eq. (9) is correct, but the fixed 
end would be at = − . Therefore, to relate  here to the position  used by Butter and 
Hocker, we use 

= −   ⇒ = +  (8) 
Then, 

− = − ( + ) = −  (9) 
so their Eq. (9) is 

= 3  = 3  [−( − )] =  −3  ( − ) (10) 

which agrees with (7). The average strain over the length of the fiber is 

̅ = 1 ( ) = 1 −3  ( − ) =  1 3 ( − )  (11) 

Let = − ⇒ =   

̅ = 1 3  = 1 3 1
2 | =  1 3  −

2  (12) 
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̅ = −3
2  (13) 

Because the displacement of the free end < 0, this is a positive (tensile) strain. This 
result agrees with Eq. (10) of Butter and Hocker. The numbers that Butter and Hocker used to 
calculate ̅ are = 0.30 , = 10.28 × 10   for one fringe shift, and = 0.25 × 10  . 
The average strain is 

̅ = −3(−10.28 × 10  )(0.25 × 10  )
2(0.30 ) = 4.28 × 10  (14) 

We cannot explain why Butter and Hocker reported that ̅ = 4.35 × 10 . 
 We now discuss the optics-related part of the calculations with the goal of relating optical 
properties of the fiber to the average strain in the fiber. The light wave traveling through a fiber 
of length  accumulates a phase  defined as  

=   (15) 
where  is the propagation constant for that mode (we have a single-mode fiber). If we strain the 
fiber, its propagation constant and the length will change, so the change in phase is 
∆ =  ∆ + ∆  (16) 

Because ∆ = , this becomes 
∆ =  + ∆  (17) 

The change ∆  arises from two effects, as noted by Butter and Hocker: first, there is the 
strain-optics effect, where strain changes the refractive index; and second, there is a waveguide 
mode dispersion effect, where the change in the core diameter  changes the mode. 
The second term of (17) is then 

∆ = ∆ + ∆  (18) 

The propagation constant  may be expressed as 
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=   (19) 
where <  <  and =  . Because ≈ 0.01 , it is a reasonable 
approximation to write 

≈  (20) 
Then, 

= =  (21) 

The change in refractive index ∆  is obtained from the relation 

∆ 1 =    (22) 

which is the change in the optical indicatrix.  is the strain vector, and  is the strain-optic 
tensor. 

The strain vector for the situation here is 

 =  
−−000

 
(23) 

where  is the Poisson’s ratio for the fiber material.  
For a homogeneous isotropic medium,  has only two non-zero numerical values,  and . 
The change in the optical indicatrix in the  and  directions is then 

∆ 1
,

=  (1 − ) −  (24) 

Butter and Hocker claim that 

∆ = −1
2 ∆ 1

,
 (25) 
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which comes from ∆ = ∆ . Substitution of (24) into (25) gives 

∆ = −1
2 [ (1 − ) − ] (26) 

Equations (26) and (21) can be used in (18) to evaluate the first term on the right side of (18). 
 We turn to the second term on the right side of (18). The change in the diameter of the 
fiber is  
∆ = −  (27) 
 Note that Butter and Hocker neglect the minus sign in (27); ∆ < 0 for tensile strain ( > 0). 
We now need to evaluate . Butter and Hocker claim that it can be shown that 

= 2  (28) 

where  is the slope of the −  dispersion curve at the point that describes the waveguide 
mode. Using (17), (18), (21), (26), (27), and (28), we obtain 
∆ = + ∆ + ∆ ,      or (29) 

∆ = + −
2 [ (1 − ) − ] + 2 (− ) (30) 

∆ = − [(1 − ) − ] −    (31) 

Butter and Hocker state that for typical glasses, = 1.5, = 0.25, ≈  ≈ 0.3, and that in 
the single mode region of −  dispersion curve,  ≈ 2.5 and / ≈ 0.5. With 

 ~ 2 × 10  and = 1.5 × 10 , we obtain 
∆ = 1.5 × 10 − (1.50 × 10 ) (1.5)

2 [(1 − 0.25) × 0.3 − (0.25) × 0.3]

− (0.25)(2.5) (0.5)
2(1.5 × 10 )(2 × 10 )  

(32) 
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and 
∆ = 1.5 × 10 − 2.5 × 10  − 1.63 × 10  ≈ 1.25 × 10   (33)  

 As Butter and Hocker state, the third term 1.63 × 10   is negligible. It is even more 
negligible if the mode diameter is larger. They therefore adopt the expression for the phase 
change per unit stress per unit length as 
∆ = − 2 [(1 − ) − ] = 1.25 × 10  =  (34)  

 By making a round trip through the fiber,  is effectively doubled. Also, because they 
used a fiber under tension and a fiber under compression, the relative phase change is doubled. 
Therefore, the phase difference between the signals traveling through the two fibers is 
∆ − ∆ =  (2 ) − (− )(2 ) = 2 (2 )  (35)  
then,  
∆ − ∆ =  2 (2 )  (36)  
 To see one fringe pass by a reference mark, the relative phase change must be 2 . Thus, 
2 = 2 (2 )  (37)  
This is for one fringe. Because the strain is dependent on the position  along the fiber,  is 
replaced by its average value: 
2 = 2 (̅2 )  (38)  
 The average strain that can be measured by observing one fringe shift is 

̅ = 2 =  2(0.3)(1.25 × 10  ) = 4.19 × 10  (39)  

We note that Thorlabs, the supplier of the bare, single-mode fiber that is glued to the 
cantilever, could only provide some of the data to characterize the fiber:  = 1.459 and =
2.2796. The mode diameter of the fiber is specified to be = 3.6 × 10   to 5.3 × 10  . 
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Our cantilever has width  = 2.5 in , thickness  2 = 0.25 in , and length 12 in  then we can 
calculate the average strain: 

= = 1.459 × 2 = 1.459 × 2
6.33 × 10  ≈ 1.45 × 10  m  

with = 0.113 and = 0.252 for optical fibers.12 Then, for one fringe, and core diameter 
of = 5.3 × 10  m 

∆ = 1.45 × 10

− (1.45 × 10 ) (1.459)
2 [(1 − 0.25) × 0.252 − (0.25) × 0.113]

− (0.25)(2.2796) (0.5)
2(1.45 × 10 )(5.3 × 10 ) ≈ 1.20 × 10 m 

 

(40) 

̅ = 2 =  2(0.3048)(1.20 × 10  ) ≈ 4.28 × 10  (15) 

For a core diameter of = 3.6 × 10  m, 

∆ ≈ 1.20 × 10 m (42) 

Then 
̅  ≈ 4.28 × 10  (43) 

In both cases we can round the average strain to be 
̅  ≈ 4.28 × 10  (44) 
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Chapter Three: Methodology and The Optical Alignment 
1. Methodology 
 In this chapter, I describe the design, components, construction, and procedure of the 
experiment. The experiment is, essentially, a modified version of the one performed by Butter 
and Hocker, as described in Chapter 2. The design for this experiment is shown in Fig. 11. 

 
Fig. 11: A schematic diagram of the optical fiber strain gauge.  

As Fig. 11 shows, a Melles Griot (05-LHD-991) He-Ne laser13 that has a wavelength of 
633 nm and maximum power of approximately 11 mW served as the beam source. The laser tube 
is mounted in a tilt stage (Newport ULM-Tilt)14 that allows two different tilt adjustments. The tilt 
stage is attached to translation stages that permit motion in the x-, y-, and z- directions. The laser 
beam is focused by a Melles Griot objective lens15 that has a magnifying power of 63 ×  to focus 
the laser beam onto the end of a Newport fiber coupler.16 The objective lens is attached to a long, 
fixed mounting bracket 56 mm (2.20") Mounting Arm (Thorlabs AMA009).17 The objective lens 
is mounted in a Compact L-Shaped RMS Threaded Flexure Stage Mount (Thorlabs HCS013).18 
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The bracket is directly attached to a 3-Axis MicroBlock Compact Flexure Stage with Fine 
Thread Thumbscrew Drives (Thorlabs MBT602). 19  A FC/APC-Connectorized Fiber Holder 
(Thorlabs HFB005)20 is also attached to the flexure stage. This fiber holder holds one end of a 
Single Wavelength Fiber Coupler, 1 x 2, 50/50, 633nm, FC/APC (Newport F-CPL-S12635-
FC/APC).16 The fiber coupler splits the laser beam and allows coupling into two Thorlabs 2 
meter bare fiber-SM600 with FC/APC ends.21 The two bare fibers are glued by epoxy to a 30 cm 
cantilever. The two input ends of the bare fibers are attached to the fiber coupler by mating 
sleeves (Thorlabs ADAFC3).22 The two output ends of the bare fibers are mounted on posts and 
stands through adapters for each end. A screen was used to monitor the expected interference 
patterns. A 0.5 in diameter stainless steel mounting post is mounted on a Mitutoyo translation 
stage with a smallest scale division of 0.0001 inch23 to displace the end of the cantilever.  
2. The Optical Alignment 

Coupling the laser into the fiber coupler requires significant care and fine control of the 
relative positions of the laser, objective, and the end of the fiber coupler. Before attaching the 
fiber splitter to the holder on the flexure stage, we attached a 1 m, single-mode optical fiber 
(Thorlabs SM600)24 to the fiber holder and measured the power transmitted into the fiber. This 
step helped us to align the fiber holder so that we can simply replace the single-mode fiber with 
the fiber coupler. Fig. 12 is a photograph of the laser and flexure stage when the single-mode 
fiber is attached to the fiber holder.  
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Fig. 12: Setup for optical pre-alignment. 

As Fig. 12 illustrates, the laser was mounted on three translation stages. That allowed the 
laser to move in xyz-directions in addition to the tilting stage that allowed the laser tube to tilt 
vertically and horizontally (“pitch” and “yaw”). On the other hand, the Thorlabs microblock 
stage was mounted on a translation stage, which allowed the microblock stage and all 
attachments to be moved in one direction. After setting all the equipment, the laser beam height 
was measured as well as the expansion of the beam. This was done to ensure that the laser was 
not tilted so that the laser beam passed straight through the objective lens and the fiber connector. 
The objective lens was removed first to ensure that the fiber connector was properly aligned. 
Now, by placing the objective lens again and moving all equipment relative to the objective lens, 
the power was maximized and almost perfect alignment was obtained since the transmitted 
power reached approximately 10 mW.  
 After the pre-alignment was performed, we started setting up the whole system. The 
aluminum cantilever is an aluminum plate that is 30 cm long, 10 cm wide, and 0.25 in thick. The 
cantilever has two shallow grooves, one on each side. The optical fibers were glued into the 
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grooves. The gluing process required care to avoid breaking the fibers because the fibers were 
bare fibers with cladding and core only. The glued fibers on the cantilever were left one day to 
dry. The cantilever was then moved very gently, to avoid damage, to the table. The cantilever 
was fixed perpendicularly by two Thorlabs brackets that were fixed on the table. In order to 
apply stress on the cantilever, an optical post mounted on a translation stage was placed in front 
of the free end of the cantilever. After setting up the cantilever and the fibers, the coated single-
mode fiber was replaced by the fiber coupler. The ends of the fiber coupler were connected to the 
input ends of the two bare fibers by two fiber connectors. The other two ends were mounted on 
adapters, which were mounted on posts and stands to prevent the motion of the fiber ends. Fig. 
13 shows the experimental setup of the apparatus. 

 
Fig. 13: Setup for the optical fiber strain measurement. 
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Chapter Four: Data and Analysis 
 After finishing the setup, we started the process of seeking interference patterns. We were 
able to see the laser light transmitted through both ends of the bare fibers. To obtain interference 
pattern, the light from the ends of the bare fibers was made to overlap. However, we were not 
able to see any fringes. As a result, the polarization of the laser beam from the laser tube, the 
polarization of the fiber coupler and the polarization of the fibers were tested. The polarization 
was examined because if the polarization two beams were mutually perpendicular, then no 
interference would result. We then connected the fiber coupler outputs directly to the adapters to 
see if we would be able to get an interference pattern. Although we made sure that the both ends 
had the same polarization orientation, we were not able to obtain any interference fringes. Then, 
to get a collinear overlap, we used a plate beam splitter between the two ends, but still no fringes 
were observed. Then, we connected the bare fibers again to see if we would obtain interference, 
but the results did not change. Because of time constraints, we decided to calculate theoretically 
how sensitive the optical strain gauge might be. Second, we measured the beam profile to 
understand the original beam. Third, we measured the efficiency of the coupling of the free space 
beam to the fiber. These measurements will be useful for future researchers. 
1. Sensitivity of Optical Fiber Strain Gauge 
 In this section, we will compute the sensitivity of the optical fiber strain gauge by using a 
Python program. We define the sensitivity as the strain required to produce one fringe shift. A 
detailed description of the code, which was written by Dr. Behringer, is in the APPENDIX 
section. Basically, this code evaluates (39) from chapter 2. Assuming a mode diameter of  5.3 ∗
10  m, we used the Python program to calculate the sensitivity of the strain gauge versus the 
values of the strain tensor elements  and . The plot is shown in Fig. 14. 
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Fig 14: A contour plot of the sensitivity versus strain-optic tensor elements for a fiber mode 

diameter of 5.3 m. 
 The corresponding plot of the sensitivity is shown in Fig. 15, assuming the lower value of 
the mode diameter of the fiber of 3.6 μm, as quoted by Thorlabs for SM600 fiber. 
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Fig 15: A contour plot of the sensitivity versus strain-optic tensor elements for a fiber mode 

diameter of 3.6 m. 
 As seen in Fig. 14 and Fig. 15, the larger mode diameter results in greater sensitivity 

because the same values of strain-optic tensor elements results in a smaller strain to produce the 
fringe shift. 
2. Measuring the Beam Profile 

A. Determination of the Beam Profile Using the Knife-Edge Method: 
Experimental Method, Data, and Analysis 

 We used the knife-edge method to determine the beam profile. The method involves 
translating an opaque knife-edge across the laser beam while measuring the power transmitted 
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past the knife-edge. Initially, when the knife-edge is far from the beam, the measured power is 
maximum. Finally, the beam is completely blocked from the detector and the measured power is 
(ideally) zero. A schematic diagram of the experimental setup is shown in Fig. 16, and a 
photograph is shown in Fig. 17. 

 
Fig. 16: A schematic diagram of the apparatus for using the knife-edge technique for 

determining the beam profile. 

 
Fig. 17: A photograph of the experimental setup for using the knife-edge technique to 

determine the beam profile. 
A Melles Griot (05-LHD-991) He-Ne laser that has a wavelength of 633 nm served as the 

beam source.13 It produced a beam of 10.780 mW ± 0.020 mW as measured using a Newport 
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Model 818 SL Detector together with a Newport Model 1916C Optical Power Meter.25 The laser 
was connected to a JDS Uniphase (1202-1) power supply.26 A Mitutoyo translation stage with a 
smallest scale division of 0.0001 inch23 was located in front of the laser and supported a right-
angle bracket that served as the knife edge. The stage sat on ThorLabs baseplates and was 
confined so it does not move.  

The measurements we present here were taken with the room lights off. The position of 
the knife-edge spanned scale readings from 0.3250 to 0.4550 inches and power measurements 
were recorded after changing the position by 0.0010 ± 0.0001 inch every time until the laser 
beam was totally blocked. The power meter reading started from 10.780 mW ± 0.020 mW and 
decreased to 0.000 mW ± 0.026 mW when the laser beam was totally blocked. After taking the 
readings, I determined the diameter of the laser beam using the method described by Tiffany 
Thompson.27 A plot of the raw power reading versus the raw stage reading x is shown in Fig. 18. 

 
Fig. 18: Plot of the raw power reading versus the raw stage reading. 
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I calculated ⁄ −  where ⁄  is the position where ( ) = 0.5, where =
− .9  was 0.000 mW,  was about 10.780 mW, and  , as a result, was 

10.780 mW. A plot of  ( )  versus ⁄ −  is shown below in Fig. 19. 

 
Fig. 19: Plot of  ( )  versus ⁄ − . 

The beam radius was determined using a Python code written by Dr. Ernest Behringer 
and modified by me. The laser beam radius is √  and Fig. 20 shows the plot we generated using 
the Python program, which performs a least squares fit to the theoretical knife-edge beam profile 
function. The best value of  is approximately (0.0106) inch. 
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Fig. 20: Plot of ( )  versus ⁄ −  with the fit function. 

The calculations are as follows: 
( )  =  +  erf    

which can be derived by assuming a Gaussian beam profile for the TEM00 mode: 
( ±) =   ⁄  
( ±) =     then, the radius of the laser beam is 

±  =    , which approximately equals to 0.0062 inches or ≈ 0.16 mm, which gives 

us a laser beam diameter of approximately 0.32 mm. 
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B. Determination of the Beam Profile Using an Optical Fiber: 
Experimental Method, Data, and Analysis 

 We used an optical fiber to measure the beam profile. We used the same setup as before, 
but the knife-edge was replaced by a 1 m, single-mode optical fiber that has a diameter of 3.6–
5.3µm at 633 nm, cladding diameter of 125 µm, 0.13 NA, and FC/APC ends from ThorLabs 
(SM600).24 The optical fiber is connected to a 3-axis microblock stage (Thorlabs MBT602)19 that 
is mounted on the Mitutoyo horizontal translation stage. The optical fiber was connected to the 
stage by using a Thorlabs FC/APC-Connectorized Fiber Holder. On the other end, the optical fiber 
cable was connected to the detector by using a Newport FC/APC Fiber Adapter for 818 & 918D 
Series Sensors (884-FCA) as shown in Fig. 21 and Fig. 22 

 
Fig. 21: A schematic diagram of the apparatus for using the single-mode optical fiber to 

determine the beam profile. 
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Fig. 22: The apparatus for using the single-mode optical fiber cable for determining the 

beam profile. 
The stage reading started from 0.5250 inches and ended with 0.6100 inches ± 0.0001 inch 

until none of the beam hit the fiber. The power data started with approximately 221.4 nW and 
reached the peak when the detector reading was 1.557 mW ± 0.003 mW and then decreased to 
238.5 nW with uncertainty of 0.1 nW. We used a Python program to plot the data, which are 
shown in Fig. 23. 
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Fig. 23: Plot of the raw stage reading versus the transmitted power. 

The measured power was then divided by the maximum power so that the highest value 
of the resulting scaled power becomes 1.00. Although the room lights were on when these data 
were taken, there was no background subtraction because there was no change in power reading 
when the room lights were turned off. After that, another Python program calculated the 
theoretical beam profile, taking into account the finite radius of the fiber. Figures 24, 25, and 26 
compare the measured beam profile from Fig. 23 to the theoretically-predicted beam profile 
calculated using assuming beam radii  of 250, 260, and 270 m, which correspond to beam 
diameters of 500, 520, and 540 m respectively.  
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Fig. 24: Comparison of the beam profile measured with the optical fiber to the theoretical 

beam profile when = 250 . 

 
Fig. 25: Comparison of the beam profile measured with the optical fiber to the theoretical 

beam profile when = 260 . 
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Fig. 26: Comparison of the beam profile measured with the optical fiber to the theoretical beam 

profile when = 270 . 
 Although the theoretical beam profiles for these values of  did not perfectly fit the data, 
they gave us a sense of the best fit that we could obtain. Now, when we compared the values of 
the beam diameter obtained by using optical fiber with the beam diameter obtained by knife-
edge, we saw that they do not match. In fact, we realized that the beam diameter obtained by 
using the fiber was approximately twice the beam diameter obtained by using the knife-edge. 
3. Measuring the Efficiency of Coupling the Free Space Beam to the Fiber: 

Experimental Method, Data, and Analysis 
 In order to see how sensitive the coupling of the free space laser to a fiber can be, we 
used the same fiber we used to measure the beam profile. The setup was similar to the beam 
profile setup, but we changed the direction of the translation. We also used a Thorlab 4X 
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objective lens (RMS4X)28 to focus the laser beam into the fiber. The laser beam was directed to 
the Thorlab 4X objective lens, which was mounted on a stand. The objective lens focused the 
laser beam into a single-mode optical fiber (ThorLabs SM600).24 The optical fiber was attached 
to a FC/APC-Connectorized Fiber Holder (Thorlabs HFB005)20 which was mounted on the 3-
axis Thorlabs microblock translation stage. The microblock stage was fixed on a z-axis Mitutoyo 
translation stage. The other end of the optical fiber was connected to the detector by using a 
Newport FC/APC Fiber Adapter for 818 & 918D Series Sensors (884-FCA) as shown in Fig. 27 
and Fig. 28 

 
Fig. 27: A schematic diagram of the apparatus for measuring the sensitivity of the coupling 

of the free space beam to the fiber. 
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Fig. 28: The apparatus for measuring the sensitivity of the coupling of the free space beam to 

the fiber. 
 Again, a maximum transmitted power of 218.5 W was obtained before taking the data. 
The process of taking data is exactly similar to the beam profile. The only difference in this 
experiment was moving the fiber closer to and farther from the objective. The stage reading 
started from 0.1580 in and ended with 0.2210 in ± 0.0001 in, and power measurements were 
recorded after changing the position by 0.0005 ± 0.0001 in every time. We started the power data 
from approximately 199.7 m ± 0.1 W and reached the peak when the detector reading was 
218.5 W ± 0.02 W and then decreased to 199.7 W with uncertainty of 0.1 W. We used a 
Python program to plot the data as shown in Fig. 29. 
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Fig. 29: Fiber coupling sensitivity. 

 As can be seen from Fig. 29, when the fiber was moved closer to the objective, the power 
increased then it reached maximum. Now, when the fiber was moved even closer, we saw that 
the power was decreasing faster than the part where it was increasing. The distance between the 
fiber and the objective to obtain maximum power depends on the focal length of the objective. It 
might not be shown explicitly in Fig. 29, but once the power reaches its maximum value, it 
becomes so sensitive that with a very simple touch, the power decreases. For this reason, I 
include here a portion of the data table.  
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Stage [in] Power 
[W] 

 
Table 1: Power versus stage readings for fiber coupling sensitivity.  

 
  

0.1910 217.8
0.1915 218.1
0.1920 218.2
0.1925 218.3
0.1930 218.4
0.1935 218.4
0.1940 218.4
0.1945 218.4
0.1950 218.4
0.1955 218.5
0.1960 218.4
0.1965 218.4
0.1970 218.4
0.1975 218.3
0.1980 218.3
0.1985 218.3
0.1990 218.2
0.1995 218.1
0.2000 218.0
0.2005 217.9
0.2010 217.8
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Chapter Five: Summary 
 This project was an attempt to reconstruct the optical fiber strain gauge described by 
Butter and Hocker. A modified version of the apparatus was built, but no interference pattern 
resulted when overlapping the two beams transmitted through the two bare optical fibers. The 
idea was to measure the shift in the interference pattern as a function of the applied force on the 
cantilever. Unfortunately, because we had a limited time and because we did not observe any 
interference pattern, we were not able to accomplish our goal to measure strain. We have 
performed calculations and measurements that will help this project to succeed in the future. 
These calculations included using a Python code to compute the expected sensitivity of the 
optical fiber strain gauge. We also measured the beam profile using two methods: the knife-edge 
method and the optical fiber method. Finally, we measured the sensitivity of the coupling of the 
free space beam to the fiber. These measurements will help future researchers to modify the 
gauge so that it produces interference fringes. By calculating the optical fiber strain gauge 
sensitivity theoretically, we establish the expected sensitivity of the strain gauge. By measuring 
the beam profile, we have established the diameter of the free space beam. Finally, by measuring 
the sensitivity of the coupling of the free space beam to the fiber, we give future researchers data 
about the difficulty of “launching the fiber”.  
 For future researcher, I suggest to changing the objective lens that was used in the 
experiment to improve the likelihood of obtaining interference fringes.  The reason is that the 
objective lens that was used in the experiment was not clean. Consequently, the resulting 
wavefront was not spherical and led to having a very faint interference pattern that couldnot be 
observed. 
  



40  

References 
                                                           
1 Hong-Nan Li, Dong-Sheng Li, and Gang-Bing Song, J. ENG STRUCT. 26, 1647 (2004). 
2 Omega.com manual, http://www.omega.com/literature/transactions/volume3/strain.html. 
3 Omega rectangular 3-element rosette planar compact geometry (SGD-1/120-RY21), 
http://www.omega.com/pptst/SGD_3-ELEMENT45.html.  
4 Omega.com, practical strain gage measurements, 
http://www.omega.com/techref/pdf/StrainGage_Measurement.pdf.  
5 C. D. Butter and G. B. Hocker. J. Appl. Opt. 17, 2867 (1978). 
6 J. M. Gere and B. J. Goodno, Mechanics of Materials, 8th ed. (Cengage Learning, Stamford, Ct, 
USA, 2012). pp. 2-118. 
7 K. T. V. Grattan and Dr. T. Sun, J. Sens. Actuators, A. 82, 40 (2000).  
8 G. Meltz, W. H. Glenn and E. Snitzer, U. S. Patent No. 4,761,073 (2 August 1988). 
9 Juan A. Pomarico, Enrique E. Sicre, Dante Patrignani and Lorenzo De Pasquale, J. OPT 
LASER TECHNOL. 31, 219 (1999). 
10 Francisco J. Arregui, Ignacio R. Matias and Manuel Lopez-Amo, J. Sens. Actuators, A. 79, 91 
(2000). 
11 Mingzheng Jiang and Edmund Gerhard, J. Sens. Actuators, A. 88, 41 (2001). 
12 Lars Hoffmanna , Mathias S. Müllera,  Sebastian Krämerb, Matthias Giebelc, Günther 
Schwotzerc , and Torsten Wieduwiltc. J. Proc. Estonian Acad. Sci. Eng. 13, 363 (2007). 
13 (05-LHD-991) He-Ne laser, mellesgriot, http://mellesgriot.com. 
14 (ULM-Tilt) Cylindrical Laser Mount, 1.0-1.75 in., High-Resolution AJS Adjusters, Newport, 
http://search.newport.com/?x2=sku&q2=ULM-TILT.  
15 (63X) objective lens, Newport, http://www.newport.com/ . 



41  

                                                                                                                                                                                           
16 (F-CPL-S12635) Single Wavelength Fiber Coupler, 1 x 2, 50/50, 633nm, Newport, 
http://search.newport.com/?q=*&x2=sku&q2=F-CPL-S12635 . 
17 (AMA009) Long, Fixed Mounting Bracket, 56 mm Long, Thorlabs, 
www.thorlabs.com/thorproduct.cfm?partnumber=AMA009. 
18 (HCS013) RMS-Threaded Flexure Stage Mount, Thorlabs, 
http://www.thorlabs.com/thorproduct.cfm?partnumber=HCS013 . 
19 (MBT602) 3-Axis MicroBlock Compact Flexure Stage, Fine Thread Thumbscrew Drives, 
Imperial Taps, Thorlabs, http://www.thorlabs.com/thorproduct.cfm?partnumber=MBT602 . 
20 (HFB005) FC/APC-Connectorized Fiber Holder for Multi-Axis Stages, Thorlabs, 
http://www.thorlabs.com/thorproduct.cfm?partnumber=HFB005 . 
21 (SM600) customized two meter bare single mode optical fiber with FC/APC ends, Thorlabs, 
https://www.thorlabs.com/ .  
22 (ADAFC3) FC/APC to FC/APC Mating Sleeve, Narrow Key (2.0 mm), Square Flange, 
Thorlabs, https://www.thorlabs.com/thorproduct.cfm?partnumber=ADAFC3 . 
23 Mitutoyo translation stage with a smallest scale division of 0.0001 inch, Mitutoyo Corporation, 
http://www.mitutoyo.com. 
24 (SM600) customized one meter single-mode optical fiber with FC/APC end, ThorLabs, 
https://www.thorlabs.com/ . 
25 SL Detector, Model 818 and Newport Optical Power Meter, Model 1916C, Newport 
Corporation, http://www.newport.com. 
26 JDS Uniphase (1202-1) power supply, JDSU, http://www.jdsu.com/en-us/Pages/Home.aspx. 
27 T. C. Thompson, M.S. research project, Eastern Michigan University, 2011. 



42  

                                                                                                                                                                                           
28 (RMS4X) 4X Olympus Plan Achromat Objective, 0.10 NA, 18.5 mm WD, Thorlabs, 
http://www.thorlabs.com/thorproduct.cfm?partnumber=RMS4X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43  

                                                                                                                                                                                           
APPENDIX A: PYTHON CODES 

a. PYTHON CODE FOR CALCULAING THE STRAIN GAUGE SENSITIVITY 
# # Optical_Strain_Gauge_Sensitivity_plot_v3.py # # This program generates a contour plot showing  # contours for sensitivity  # as a function of different parameters # characterizing the cantilever optical strain gauge. #  # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu # # 20160325 by ERB #  # import the commands needed to make the plot from pylab import xlabel,ylabel,show,colorbar,figure,title,contour,grid  # import the command needed to make a 1D array from numpy import arange,meshgrid,pi  # input parameters mu = 0.25 # Poisson's ratio for the fiber n = 1.459 # index of refraction of the fiber a = 0.5*0.25*2.54e-2 # half the thickness of the cantilever [m] b = 2.5*2.54e-2 # width of the cantilever [m] V = 2.2796 # value of fiber parameter V dbdV = 0.5 # value of b-V dispersion curve at the mode L = 0.30 # cantilever length [m] D = 5.30e-6 # value of the mode diameter of the fiber [m] #D = 3.60e-7 # Lower value of mode diameter quoted by Thorlabs for SM600 fiber [m] D_um = D*1.0e6 # value of the mode diameter of the fiber [um] #D_um = D*1.0e7 beta = 1.5e7 # propagation constant [rad/m]  
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                                                                                                                                                                                           # interval and endpoints for the different parameters # first, the propagation constant p11_low = .10 # low value of propagation constant [rad/m] p11_high = .50 # high value of propagation constant [rad/m] delta_p11 = 0.01 # interval of propagation constant [rad/m] # second, the strain-optic tensor elements, assuming p11 = p12 p12_low = 0.10 # low value of mode diameter [m] p12_high = 0.50 # high value of mode diameter [m] delta_p12 = 0.01 # interval of mode diameter [m]   p11_1D = arange(p11_low,p11_high,delta_p11) # p11 data point array p12_1D = arange(p12_low,p12_high,delta_p12) # p12 data point array  print "len(p11_1D) = ", len(p11_1D) print "len(p12_1D) = ", len(p12_1D)  # create the grid of values on which the period will be evaluated p11, p12 = meshgrid(p11_1D,p12_1D)  # calculate phase change per unit strain per unit length term1 = beta term2 = -0.5*beta*n*n*((1.0-mu)*p12 - mu*p11) term3 = -0.5*mu*V*V*V*dbdV/(beta*D*D) C1 = term1 + term2 + term3  # calculate the strain that corresponds to a single fringe shift strain_one_fringe = 0.5*pi/(L*C1)  # make a contour plot of the speed vs Apar and Aperp figure() # specify contour levels levels = arange(3.00e-7,5.00e-7,0.5e-7) contour(p11,p12,strain_one_fringe,levels) #title("Strain corresponding to one fringe, $\beta = %s \, \n D = %s \, \\mu m$"%(beta,D_um)) title("Strain corresponding to one fringe \n $\\beta = %e \, rad/m, \, D = %s \, \mu m$"%(beta,D_um)) xlabel("Strain-Optic Tensor Element $p_{11}$",size=16) ylabel("Strain-Optic Tensor Element $p_{12}$",size=16) grid() colorbar() show() 
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b. PYTHON CODE FOR PLOTTING THE RAW POWER AND STAGE READINGS FOR 

THE BEAM PROFILE—KNIFE-EDGE METHOD 
# # PHY692_Plot_Of_Power_And_Stage_Raw_Readings_For_Laser_TEM00_Mode.py # # This file will generate a plot of  # the raw power reading versus the raw stage reading #for laser TEM00 mode by the knife-edge method # # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu # # 20150127 by ERB # # Modified by: # Najwa Sulaiman # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # nsulaima@emich.edu # # 20150624 by NS # 20150716 by NS # 20150823 by NS # 20160313 by NS # import pylab as p import numpy as np  X_Points = np.linspace(0.3250, 0.4550, 131) P_Points = [10.780, 10.780, 10.780, 10.780, 10.780, 10.770, 10.770, 10.770, 10.770, 10.760, 10.760, 10.760, 10.760, 10.760, 10.760, 10.750, 10.730, 10.720, 10.690, 10.650, 10.600, 10.530, 10.440, 10.330, 10.210, 10.070, 9.860, 9.640, 9.380, 9.100, 8.775, 8.396, 7.961, 7.450, 6.882, 6.326, 5.740, 5.107, 4.529, 3.932, 3.392, 2.885, 2.467, 2.042, 1.678, 1.391, 1.135, 0.919, 
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                                                                                                                                                                                           0.707, 0.551, 0.434, 0.338, 0.270, 0.217, 0.173, 0.144, 0.128, 0.116, 0.103, 0.094, 0.084, 0.079, 0.076, 0.074, 0.073, 0.072, 0.071, 0.069, 0.067, 0.065, 0.063, 0.061, 0.060, 0.057, 0.054, 0.053, 0.050, 0.048, 0.046, 0.043, 0.040, 0.038, 0.036, 0.033, 0.032, 0.029, 0.027, 0.025, 0.024, 0.022, 0.020, 0.018, 0.017, 0.015, 0.014, 0.012, 0.011, 0.010, 0.009, 0.008, 0.008, 0.007, 0.006, 0.006, 0.005, 0.005, 0.004, 0.004, 0.004, 0.003, 0.003, 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000] p.xlim(min(X_Points),max(X_Points)) p.ylim(min(P_Points),max(P_Points))  # Error bar data here X_points_err = 0.001*p.ones(len(X_Points)) Powercorr_points_err = 0.01*p.ones(len(P_Points))  p.xlabel("Knife-edge position $x$ [inches]", size = 16) p.ylabel("Transmitted power $P$ [mW]", size = 16) p.grid(True) p.errorbar(X_Points,P_Points,xerr=X_points_err,yerr=Powercorr_points_err,fmt="go") p.plot(X_Points,P_Points,"b") p.show() 
c. PYTHON CODE FOR PLOTTING THE CORRECTED POWER AND STAGE 

READINGS FOR THE BEAM PROFILE—KNIFE-EDGE METHOD 
# #PHY692_Plot_Of_Corrected_Power_And_Stage_Readings_For_TEM00_Mode_KE.py # # This file will generate a plot of  # the modified power reading versus the modified stage reading # for TEM00 laser mode # # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu # 
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                                                                                                                                                                                           # 20150127 by ERB # # Modified by: # Najwa Sulaiman # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # nsulaima@emich.edu # # 20150624 by NS # 20150824 by NS # 20160313 by NS # import pylab as p import numpy as np  X_mod = np.linspace(0.0366, -0.0684, 106) P_mod = [1.000, 1.000, 1.000, 1.000, 1.000, 0.999, 0.999, 0.999, 0.999, 0.998, 0.998, 0.998, 0.998, 0.998, 0.998, 0.997, 0.995, 0.994, 0.992, 0.988, 0.983, 0.977, 0.968, 0.958, 0.947, 0.934, 0.915, 0.894, 0.870, 0.844, 0.814, 0.779, 0.738, 0.691, 0.638, 0.587, 0.532, 0.474, 0.420, 0.365, 0.315, 0.268, 0.229, 0.189, 0.156, 0.129, 0.105, 0.085, 0.066, 0.051, 0.040, 0.031, 0.025, 0.020, 0.016, 0.013, 0.012, 0.011, 0.010, 0.009, 0.008, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.005, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.004, 0.004, 0.003, 0.003, 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000, 0.000]  # Error bar data here X_points_err = 0.001*p.ones(len(X_mod)) Powercorr_points_err = 0.01*p.ones(len(P_mod))  p.xlim(min(X_mod),max(X_mod)) p.ylim(min(P_mod),max(P_mod))  p.xlabel("$x_{1/2}-x$ [inch]", size = 16) p.ylabel("$(P-P_{bkgd})/P_{max}$", size = 16) p.grid(True) p.errorbar(X_mod,P_mod,xerr=X_points_err,yerr=Powercorr_points_err,fmt="go") p.plot(X_mod,P_mod,"b") p.show() 
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d. PYTHON CODE FOR EVALUATING THE LASER BEAM DIAMETER FOR BEAM 

PROFILE—KNIFE-EDGE METHOD 
# # PHY692_Beam_Profile_Analysis_TEM00_KE.py # # This file will generate a plot of # beam profile data and fit function # for TEM00 laser mode # # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu #  # Najwa Sulaiman # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # nsulaima@emich.edu #  # 20150128 by ERB # 20150506 by NS # 20150824 by NS # 20160313 by NS # # import the commands needed to make the plot and fit the data from pylab import xlim,xlabel,ylim,ylabel,grid,show,plot,legend from numpy import linspace,ones from scipy.special import erf from scipy.optimize import leastsq from matplotlib.pyplot import errorbar  # Input your data.  # This is not so bad if you don't have much data.  # Here, the first array will be the independent variable # and the second array will be the dependent variable.  # # Initialize the vector of parameters 
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                                                                                                                                                                                           w0 = 0.01 # The initial guess for w0 print(w0) # # Noisy 'data' generated here. # Xcorr is the independent variable. # Powercorr is the dependent variable. Xcorr_points = linspace(0.0366, -0.0684, 106) Powercorr_points = [1.000, 1.000, 1.000, 1.000, 1.000, 0.999, 0.999, 0.999, 0.999, 0.998, 0.998, 0.998, 0.998, 0.998, 0.998, 0.997, 0.995, 0.994, 0.992, 0.988, 0.983, 0.977, 0.968, 0.958, 0.947, 0.934, 0.915, 0.894, 0.870, 0.844, 0.814, 0.779, 0.738, 0.691, 0.638, 0.587, 0.532, 0.474, 0.420, 0.365, 0.315, 0.268, 0.229, 0.189, 0.156, 0.129, 0.105, 0.085, 0.066, 0.051, 0.040, 0.031, 0.025, 0.020, 0.016, 0.013, 0.012, 0.011, 0.010, 0.009, 0.008, 0.007, 0.007, 0.007, 0.007, 0.007, 0.007, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.005, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.004, 0.004, 0.003, 0.003, 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000, 0.000]  # Error bar data here Xcorr_points_err = 0.0001*ones(len(Xcorr_points)) Powercorr_points_err = 0.01*ones(len(Powercorr_points))  # Define the residuals to be minimized # def residuals(w0, y, x): err = y - 0.5*(1.0+erf(x/w0)) return err # Define the fit function: 0.5*(1.0 + erf(x/w0)) # def peval(x, w0): return 0.5*(1.0 + erf(x/w0)) # Generate the arrays needed to make a smooth plot of the guess function Xcorr_inch_fit = linspace(min(Xcorr_points),max(Xcorr_points),106) Powercorr_guess = peval(Xcorr_inch_fit, w0)  # Run the least squares function to minimize the residuals plsq = leastsq(residuals, w0, args=(Powercorr_points, Xcorr_points)) print(plsq[0])  
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                                                                                                                                                                                           # Generate the arrays needed to make a smooth plot of the fit function Powercorr_fit = peval(Xcorr_inch_fit, plsq[0])  # Define the limits of the horizontal axis xlim(min(Xcorr_points),max(Xcorr_points))  # Label the horizontal axis, with units xlabel("$x_{1/2}-x$ [inch]", size = 16)  # Define the limits of the vertical axis ylim(min(Powercorr_points),max(Powercorr_points))  # Label the vertical axis, with units ylabel("$(P-P_{bkgd})/P_{max}$", size = 16)  # Make a grid on the plot grid(True) 
 # Generate the plot. The plot symbols will be green (g) circles (o). #plot(Xcorr_points,Powercorr_points,"go",label="Data") errorbar(Xcorr_points,Powercorr_points,xerr=Xcorr_points_err,yerr=Powercorr_points_err,fmt="go",label="Data") plot(Xcorr_inch_fit,Powercorr_guess,"r--",label="Guess") plot(Xcorr_inch_fit,Powercorr_fit,"b",label="Fit") legend(loc=2) show() 

e. PYTHON CODE FOR PLOTTING THE RAW POWER AND STAGE READINGS FOR 
THE BEAM PROFILE—SINGLE-MODE OPTICAL FIBER 
# # PHY692_Plot_Of_Power_And_Stage_Raw_Readings # Using_Optical_Fiber_For_Laser_TEM00_Mode.py # # This file will generate a plot of  # the raw power reading versus the raw stage reading # using optical fiber for laser TEM00 mode # # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University 
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                                                                                                                                                                                           # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu # # 20150127 by ERB # # Modified by: # Najwa Sulaiman # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # nsulaima@emich.edu # # 20150624 by NS # 20150716 by NS # 20150720 by NS # 20150823 by NS # 20160313 by NS #  import pylab as p import numpy as np  X_Points = np.linspace(0.5250, 0.6100, 86) P_Points = [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.001, 0.001, 0.002, 0.002, 0.002, 0.003, 0.005, 0.011, 0.021, 0.037, 0.053, 0.070, 0.098, 0.146, 0.210, 0.279, 0.348, 0.412, 0.496, 0.588, 0.692, 0.807, 0.963, 1.087, 1.240, 1.385, 1.507, 1.557, 1.533, 1.469, 1.389, 1.307, 1.196, 1.065, 0.916, 0.710, 0.596, 0.457, 0.380, 0.323, 0.263, 0.205, 0.144, 0.102, 0.077, 0.055, 0.034, 0.028, 0.020, 0.009, 0.009, 0.008, 0.006, 0.005, 0.004, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.000, 0.000]  # Error bar data here X_points_err = 0.001*p.ones(len(X_Points)) Powercorr_points_err = 0.01*p.ones(len(P_Points))  p.xlim(min(X_Points),max(X_Points)) p.ylim(min(P_Points),max(P_Points))  p.xlabel("Raw stage reading $x$ [inches]", size = 16) p.ylabel("Transmitted power $P$ [nW]", size = 16) p.grid(True) 
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                                                                                                                                                                                           p.errorbar(X_Points,P_Points,xerr=X_points_err,yerr=Powercorr_points_err,fmt="go") p.plot(X_Points,P_Points,"b") p.show() 
f. PYTHON CODE FOR EVALUATING THE LASER BEAM DIAMETER FOR BEAM 

PROFILE—SINGLE-MODE OPTICAL FIBER 
# # PHY697_Fiber-sampled_TEM00_v5.py # # This file will calculate the double integral  # of the TEMmn mode over a circular area  # that represents the input aperture of a fiber optic # that is scanned along the x-direction # # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu # # 20150701 by ERB, using earlier code from NS and ERB # 20150708 by ERB, correcting modification by NS # 20160517 by NS  # import the commands to generate/manipulate values, and do integration from numpy import linspace,sqrt,exp,zeros,ones from scipy.integrate import nquad from scipy.special import eval_hermite  # import the commands needed to make the plot from pylab import plot,xlim,xlabel,ylim,ylabel,grid,show,title,legend from matplotlib.pyplot import errorbar  # input variables I0 = 1.0 # maximum irradiance [mW/um2] m=0 # order of the Hermite polynomial in the x direction n=0 # order of the Hermite polynomial in the y direction R = 62.5 # radius of the fiber [um] 
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                                                                                                                                                                                           w = 250.0 # beam radius [um] mpts = 2 # number of vertical positions for the detector aperture yc = linspace(-0.0001,0.0001,mpts+1) # vertical position of the center of the fiber optic [um] npts = 67 # number of points at which the power is measured # horizontal position of the center of the fiber optic xc = linspace(-640.0,760.0,npts+1) # Powercorr_points contains the dependent variable values (measurements). # Optical power readings (no-units) Powercorr = [0.000, 0.000, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.002, 0.003, 0.007, 0.013, 0.024, 0.034, 0.045, 0.063, 0.094, 0.135, 0.179, 0.224, 0.265, 0.319, 0.378, 0.444, 0.518, 0.618, 0.698, 0.796, 0.890, 0.968, 1.000, 0.985, 0.943, 0.892, 0.839, 0.768, 0.684, 0.588, 0.456, 0.383, 0.294, 0.244, 0.207, 0.169, 0.132, 0.092, 0.066, 0.049, 0.035, 0.022, 0.018, 0.013, 0.006, 0.006, 0.005, 0.004, 0.003, 0.003, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000, 0.000]  # Error bar data here xc_err = 0.0001*ones(len(xc)) Powercorr_err = 0.01*ones(len(Powercorr))  # scaled variable values  # Note that all lengths are 'scaled' by R (fiber radius). w_sc = w/R  yc_sc = yc/R xc_sc = xc/R xcsc = 0.0 # an initial value just as a placeholder ycsc = 0.0 # an initial value just as a placeholder  # define array of powers, with initial values of zero power = zeros((mpts+1,npts+1))  # define the function that we are integrating - note that x and y are scaled def f(x,y): return I0 * ((eval_hermite(m, sqrt(2)*x/w_sc)*exp(-x**2/w_sc**2))**2) * (eval_hermite(n, sqrt(2)*y/w_sc)*exp(-y**2/w_sc**2))**2  def bounds_x(): return [xcsc-1,xcsc+1]  # define the bounds of y 
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                                                                                                                                                                                           def bounds_y(x): return [ycsc - sqrt(1.0-(x-xcsc)**2),ycsc + sqrt(1.0-(x-xcsc)**2)]   # loop over vertical positions for j in range(0,mpts+1): ycsc = yc_sc[j] # loop over horizontal positions for i in range(0,npts+1): # update xcsc xcsc = xc_sc[i]  # perform the integration using nquad  # NOTE that the order in which the bounds are given in the  # nquad argument is [inner integration bounds, outer integration bounds]  # NOTE also that the output of nquad consists of two elements: # the first element is the value of the integral  temp = nquad(f, [bounds_y, bounds_x]) power[j][i] = temp[0] # Define the limits of the horizontal axis xlim(min(xc),max(xc))  # Label the horizontal axis, with units xlabel("Fiber optic position $x$ [$\\mu m$]", size = 16)  # Define the limits of the vertical axis ylim(0.0,1.0)  # Label the vertical axis, with units ylabel("Scaled power $P$", size = 16)  # Make a grid on the plot grid(True)  # Make the plot title title("Fiber radius $R$ = %s $\mu m$, beam radius $w$ = %s $\mu m$"%(R,w))  # Generate the plot. errorbar(xc,Powercorr,xerr=xc_err,yerr=Powercorr_err,fmt="go",label="Data") plot(xc,power[0]/max(power[0]),"b-",label="Theory") legend(loc=2)  # Show the plot show() 
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g. PYTHON CODE FOR PLOTTING THE SENSITIVITY OF THE COUPLING OF THE 

FREE SPACE BEAM TO THE FIBER 
# # PHY692_Plot_Of_Power_And_Stage_Fiber_Efficiency.py # # This file will generate a plot of  # the power reading versus the stage reading # for measuring the fiber efficiency. # # Written by: # # Ernest R. Behringer # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # (734) 487-8799 # ebehringe@emich.edu # # 20150127 by ERB # # Modified by: # Najwa Sulaiman # Department of Physics and Astronomy # Eastern Michigan University # Ypsilanti, MI 48197 # nsulaima@emich.edu # # 20150624 by NS # 20150716 by NS # 20150823 by NS # 20160402 by NS # import pylab as p import numpy as np  X_Points = np.linspace(0.1580, 0.2210, 127) P_Points = [199.7, 200.1, 200.6, 201.0, 201.6, 201.9, 202.2, 202.8, 203.2, 203.4, 204.0, 204.3, 204.6, 205.2, 205.5, 206.1, 206.5, 206.9, 207.2, 207.5, 207.9, 208.3, 208.6, 209.1, 209.4, 209.7, 210.0, 210.3, 210.7, 211.0, 211.1, 211.5, 211.8, 212.0, 212.3, 212.6, 212.7, 212.9, 213.2, 213.5, 213.7, 214.1, 214.2, 214.4, 214.4, 214.5, 214.6, 214.7, 215.0, 215.2, 215.5, 215.5, 215.5, 215.6, 215.7, 215.8, 216.2, 216.3, 216.3, 216.5, 216.6, 216.8, 217.0, 217.2, 217.5, 217.7, 217.8, 218.1, 218.2, 218.3, 
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                                                                                                                                                                                           218.4, 218.4, 218.4, 218.4, 218.4, 218.5, 218.4, 218.4, 218.4, 218.3, 218.3, 218.3, 218.2, 218.1, 218.0, 217.9, 217.8, 217.6, 217.6, 217.5, 217.2, 216.9, 216.6, 216.3, 216.1, 215.8, 215.4, 214.9, 214.6, 214.2, 214.0, 213.5, 213.1, 212.8, 212.3, 211.7, 211.0, 210.5, 209.9, 209.2, 208.5, 208.0, 207.4, 206.7, 206.0, 205.5, 204.7, 203.9, 203.4, 203.0, 202.4, 201.6, 201.0, 200.9, 200.2, 200.0, 199.7]  # Error bar data here X_points_err = 0.0005*p.ones(len(X_Points)) Powercorr_points_err = 0.01*p.ones(len(P_Points))  p.xlim(min(X_Points),max(X_Points)) p.ylim(min(P_Points),max(P_Points))  p.xlabel("Optical Fiber position $z$ [inches]", size = 16) p.ylabel("Transmitted power $P$ [$\mu$W]", size = 16) p.grid(True) p.errorbar(X_Points,P_Points,xerr=X_points_err,yerr=Powercorr_points_err,fmt="go") p.plot(X_Points,P_Points,"b") p.show() 
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APPENDIX B: CALCULATIONS FOR BEAM PROFILE 

a. CALCULATING THE DIAMETER OF A BEAM 
 For calculating the beam diameter, we first determine /  where ⁄  is the position 

where ( ) = 0.5, where = − .9 To find /  we need to divide the 

transmitted power data by the maximum obtained power. Then we look where the two closest 
data to 0.5 are. After defining the two data, we see what stage readings correspond to these data. 
Let 

 , ≡  , /    where P1,2 are the two closest power readings to P=0.5 
where  

< 0.5 <    
Then, 

− 
− =  

Where ,  are the corresponding stage readings. 
Then, 
0.5 −

/ − =  

Then, 

/ =  0.5 − +   

 After finding / , we subtract the stage readings from /  and plot it in python program 
or evaluating the diameter. The Python code will give us the best value for ( ), then we use the 
relation: 
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( )  =  +  erf    

Which can be derived by assuming a Gaussian beam profile for the TEM00 mode: 
( ±) =   ⁄  

When  ( ±) =   Then the radius of the laser beam is: 

±  =    . Consequently, 2 ±  =  2(ln(2)) which is the beam diameter. 

b. CALCULATING I0mn 
 Having the relation: 

( , ) =  exp −2(  +   ) √2 √2  

Let =  √       →               =        →            =  √   

=  √2       →               =  2       →            =  √2   

Then, 

( , ) =  2 exp[−( + )] ( ) ( ) 

=  2 exp(− ) exp( − ) ( ) ( ) 

But, 

( ) ( ) exp(− ) = √ 2 !  

Then, 

=  2 
(2 !)(2 !)  
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