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Abstract 

This thesis describes a series of experiments designed to evaluate the hypothesis that Type I taste receptor 

cells play a critical role in the detection and transduction of sodium taste via of epithelial sodium channels 

(ENaCs). Experiment 1 validated the function of a simple and affordable behavioral apparatus (hardware 

and software) for testing taste preference and taste aversion in mice. Experiment 2 demonstrated a 

pharmacological method for rapid induction of salt appetite in mice. Experiment 3 showed that 

optogenetic stimulation of Type I taste receptor cells (TRCs) in transgenic mice could drive consumption 

of tap water under conditions of salt hunger. The fourth and final experiment assessed whether 

conditioned taste aversions to sodium would generalize to optogenetic stimulation of Type I taste receptor 

cells in transgenic mice, with inconclusive results. 
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Introduction 

Humans are conventionally considered to have five exteroreceptive senses: sight, hearing, touch, 

taste, and smell. While vision, audition, and somatosensation are fairly well understood systems, the 

chemical senses (gustation and olfaction) remain somewhat more mysterious. Several potential 

explanations may account for this. One may be a question of interest; arguably, vision, hearing, and touch 

are just more relevant to our functional capacity than taste or smell and have thus received more attention. 

However, this sort of argument would ignore the fundamental role that these two senses play in ingestive 

behavior, which in turn has substantial repercussions on both physical health and quality of life. Loss of 

either sense can be associated with reduced appetite, weight loss, and physical complications (Schiffman, 

1997) in addition to depression (Smeets et al., 2009) and increased suicidality (Joo, Hwang, Han, Seo, & 

Kang, 2015). Additionally, industrial research in food science targets the systems of taste and smell to 

generate appetitive and inexpensive food, which has in turn contributed to a variety of ingestion-related 

systemic health problems in our society, from hypertension (Ma, He, & MacGregor, 2015) and stroke 

(Polonia, Monteiro, Almeida, Silva, & Bertoquini, 2016) to diabetes (Popkin, 2015) and obesity 

(Vandevijvere, Chow, Hall, Umali, & Swinburn, 2015).  

Clearly, we are not lacking an incentive to study taste and smell. What we lack, rather, is stimulus 

control. Light and sound are relatively simple stimuli to manipulate; one can accurately control the 

duration, wavelength, and amplitude of a light or sound generated. These stimuli can be finely tuned, and 

then applied and removed at the speed of light and sound, respectively. Touch is slightly more difficult to 

manipulate, but it is ultimately not prohibitively difficult to control the location, duration, and intensity of 

a tactile stimulus. The same is not the case for smell and taste. Both taste and smell exist to detect 

complex chemical mixtures, which by default must be dissolved and delivered in some fluid. Particularly 

for olfaction, this makes stimulus intensity, onset, and offset difficult to control.  

Taste presents similar challenges in controlling stimulus application and removal, with some 

added complications. Taste is intrinsically tied to multiple other sensory systems. Traditionally, 

presentation of a taste stimulus dissolved in fluid necessarily provides tactile, thermal, and frequently 
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olfactory components as well, which have the ability to activate taste receptors independently of a taste 

stimulus (Cruz & Green, 2000; Lundy & Contreras, 1999; Ogawa, Sato, & Yamashita, 1968) or to 

modulate that activation (Breza, Curtis, & Contreras, 2006; Burseg, Camacho, Knoop, & Bult, 2010; 

Lemon, 2017; Shimemura, Fujita, & Kashimori, 2016). Additionally, taste stimuli could influence taste 

bud cells independent from specialized receptors, as many are hyperosmotic, acidic, or basic, or can 

actually function as neurotransmitters themselves, as is the case with many amino acids. This has made it 

incredibly difficult to study discreet components of the taste system, as all stimuli presented have the dual 

challenge of being temporally indistinct and being embedded in what is in some cases a literal torrent of 

extraneous noise. As a result, most investigators try to minimize tactile and thermal transients by 

maintaining a constant flow of solutions through the oral cavity and controlling solution temperature 

(Breza et al., 2006; Lemon, Kang, & Li, 2016; Lundy & Contreras, 1997). Fortunately, the inception of 

genetic engineering has provided a variety of new methods for addressing those problems. Light, one of 

the more easily controlled stimuli, is also one of the few things which will not naturally activate taste 

receptors, but by genetically modifying taste receptor cells to express light-sensitive ion channels, we can 

selectively alter their activity. This, for essentially the first time, has opened the door to fine analysis 

identifying the function of receptor cells and what taste qualities they signal to the brain. 

That is our purpose here: While the taste-receptor cells responsible for detecting most tastes have 

been provisionally identified (Clapp, Yang, Stoick, Kinnamon, & Kinnamon, 2004; Kataoka et al., 2008), 

the taste of salt remains poorly understood. As such, we have conducted a series of experiments using an 

optogenetic model to examine the cellular antecedents of salt taste in mice.  
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Literature Review 

As one of our five basic senses, the system of taste is critical to our experience of the world. 

Heterotrophs all across the spectrum of biological complexity have their survival contingent on taking 

foreign matter into their bodies, which is an inherently risky proposition. To begin with, many foreign 

substances in our environment are toxic. Ingestion of lethal substances is a constant danger to most 

organisms, and it becomes critical to have some system in place to identify those substances before it's 

too late. A variety of senses are helpful in this capacity; vision and olfaction allow us to identify and 

avoid things in our environment that we know to be poisonous. Some toxic organisms subject to being 

ingested have even developed their own visual cues to assist us in making that discrimination. However, 

these systems of detection are imperfect. Visual cues are not always present, and when present, they are 

not always reliable. Furthermore, most external cues of toxicity rely on previous experience with that 

particular cue, which is less than ideal when trying to avoid a lethal substance. Overall, it is beneficial to 

have a system in place to not merely identify potential sources of toxins but to specifically detect the 

toxins themselves.  

Additional considerations ought to be made; the percentage of substances in our environment that 

are toxic are far outweighed by substances that merely lack nutritional value, either universally or in the 

context of a specific need state. As a result, it becomes imperative to detect useful and necessary 

chemicals in addition to the detection of harmful substances. This is where taste comes into play. While 

vision and smell allow us to act on our learned experience of nutrition in the environment, taste acts as a 

gatekeeper, detecting toxic or nutritional substances directly, to allow us to reject or ingest them 

respectively. This system can be informed by learning (Garcia, Kimeldorf, & Koelling, 1955) but does 

not depend on it (Grill & Norgren, 1978); from the first day we are born, humans are programmed to 

reject substances that taste bitter and to ingest substances that taste sweet (Steiner, 1973; Steiner, Glaser, 

Hawilo, & Berridge, 2001). This has made taste critical to our survival whenever and wherever food is 

scarce. All of those implications shift in situations where food is readily available and ingested toxins are 

relatively rare. In modern societies, while hunger remains an issue, issues of overconsumption have also 
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become problematic. When highly palatable food is highly available, the natural survival mechanism 

motivating us to ingest sweet and salty foods can endanger our health. In American society alone, 

overconsumption of highly caloric foods is associated with obesity (Ludwig et al., 1999; Ruhm, 2012), a 

condition associated with a projected cost of $190 billion annually in medical expenses (Cawley & 

Meyerhoefer, 2012). Overconsumption of salty foods is associated with hypertension and stroke, which 

exact staggering medical costs, potentially as much as $800 billion by 2030 (Heidenreich et al., 2011). A 

mere 10% reduction in sodium intake would be projected to save $83 million in annual healthcare costs 

(Webb et al., 2017). As such, it becomes critically important for us to understand the taste system that so 

impacts our own health, so that by better understanding it we may be able to modify its function to better 

suit our needs. 

Any understanding of taste must necessarily begin with the tongue. Not only does it contain the 

vast majority of the chemoreceptors associated with our sense of taste as we traditionally understand it, 

but the physical morphology of the tongue also has substantial implications in taste. This morphology is 

represented in the form of papillae, the multitude of small protruding structures on the tongue. Four types 

of taste papillae have been characterized: fungiform, foliate, circumvallate, and filiform papillae. The 

overwhelming majority of papillae on the tongue are the filiform (Hume & Potten, 1976; Iwasaki, 

Okumura, & Kumakura, 1999), which contain no taste receptors (Mbiene, Maccallum, & Mistretta, 

1997). However, they are thought to serve a number of other functions; they serve as important structural 

components of the tongue (Wong et al., 2000) and as tactile receptors (Suemune et al., 1992). As such, 

these papillae do serve a critical role in feeding but are not themselves receptive to taste. 

The remaining papillae all contain taste buds. Commonly confused for papillae, taste buds are 

clusters of taste receptor cells embedded within the papillae. A single papilla can contain one or more 

buds. Fungiform papillae in mice and rats typically contain a single taste bud (Venkatesan, Boggs, & Liu, 

2016), whereas in humans they can contain multiple buds (Arvidson & Friberg, 1980). These fungiform 

papillae are clustered on the dorsal surface of the anterior two thirds of the tongue, and as such, they are 

innervated by the chorda tympani (Oakley, 1975), a branch of the facial nerve (Cranial Nerve [CN] VII). 
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They serve as a highly important structure tied to taste discrimination (Spector, Markison, St. John, & 

Garcea, 1997), particularly salt-sensing (Slotnick, Sheelar, & Rentmeister-Bryant, 1991; St. John & 

Spector, 1998). Like the filiform papillae, fungiform papillae likely serve an important function for 

somatic sensation in the oral cavity as well (Suemune et al., 1992). 

Circumvallate papillae are clustered medially on the posterior tongue. Humans tend to have many 

circumvallate papillae, but mice have only one (Jung, Akita, & Kim, 2004). This provides an interesting 

contrast to their fungiform papillae; while they have many fungiform papillae that each contain one taste 

bud, mice only have a single circumvallate papilla, which contains over a hundred taste buds (Miller & 

Whitney, 1989). The taste buds of the circumvallate papilla are innervated by the glossopharyngeal nerve 

(CN IX). 

Finally, the foliate papillae are situated along the lateral surface of the posterior of the tongue. 

While less numerous than the fungiform papillae, the foliate papillae do contain multiple taste buds 

(Venkatesan et al., 2016). Like the circumvallate, the taste buds of the foliate papillae are innervated by 

CN IX. In rodents the response profiles of the glossopharyngeal nerve, which innervates these papillae, 

are quite different than those associated with the fungiform papillae. Specifically, the glossopharyngeal 

nerve is only weakly responsive to sodium salts, and has substantially more specialized responses to bitter 

stimuli (Frank, 1991). As a result, it seems likely that the foliate and circumvallate papillae serve a 

different function from that of the fungiform papillae, potentially as a warning mechanism against toxic 

substances. 

Additionally, the taste receptor cells in a bud are centered around a taste pore, a feature of the 

papillae that establishes contact between the sensory surface of the taste system and the external 

environment. The structure of this pore alone may be significantly related to global taste function 

(Whiddon, Rynberg, Mast, & Breza, 2018), as not all papillae possess an obvious pore, and the proportion 

that lack a pore seems to increase with age. Interestingly, in early development, taste receptors in pore-

lacking papillae remain functional, as portions of the papillar tissue are permeable (Mbiene & Farbman, 

1993). 
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Taste bud cells have been categorized into three main varieties: Types I, II, and III. These cells 

are not entirely understood in the totality of their function, though some types and subtypes have been 

more thoroughly described than others. Type II cells are perhaps the most clearly understood; subtypes of 

cells in this category are known to respond preferentially to sweet, bitter, or umami stimuli, with 

essentially little to no overlap in taste quality functionality. These response patterns are determined by the 

membrane protein that acts as a receptor; sweet stimuli are detected by a combination of the T1R2 and 

T1R3 receptors (Li et al., 2002; Nelson et al., 2001), while umami stimuli are primarily detected by the 

T1R1 and T1R3 receptors (Li et al., 2002; Nelson et al., 2002), though perhaps not entirely (Blonde, 

Travers, & Spector, 2018). Bitter stimuli are detected by a slate of varying T2R receptors (Chandrashekar 

et al., 2000), reflecting the importance of detecting a wide variety of potentially toxic substances. It has 

been proposed that information is communicated to the afferent nerve fiber without a traditional synapse, 

via release of ATP (Y. J. Huang et al., 2007), since Type II cells lack traditional synapses (Chaudhari & 

Roper, 2010). 

The function of Type III cells has been identified somewhat less definitively. On one hand, they 

are the only receptor in the taste system known to have a synapse with their afferent nerve fiber (Murray, 

1993; Yee, Yang, Bottger, Finger, & Kinnamon, 2001) and release serotonin and norepinephrine (Y. A. 

Huang, Maruyama, & Roper, 2008). On the other, their best stimulus remains somewhat unclear. They 

are known to respond to sour tastes (Y. A. Huang, Maruyama, Stimac, & Roper, 2008) and acids via a 

polycystic kidney disease-like ion channel (PKD2L1) (Horio et al., 2011), but elimination of these 

channels does not totally abolish sour taste. Targeted ablation of PKD2L1 cells, however, results in 

complete loss of sour taste (A. L. Huang et al., 2006), indicating that Type III cells that express PKD2L1 

channels are necessary for sour taste. They may also play a role in detecting salt stimuli through an 

amiloride (a potassium-sparing diuretic and epithelial sodium channel blocker) insensitive pathway 

(Lewandowski, Sukumaran, Margolskee, & Bachmanov, 2016). 

The least understood of the taste receptor cell types is the Type I cell. These cells have been 

hypothesized to serve purely supportive, glial-like function (Dvoryanchikov, Sinclair, Perea-Martinez, 
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Wang, & Chaudhari, 2009), but that has not been firmly established. On the other hand, there is some 

evidence that they may express epithelial sodium channels (ENaC) (Vandenbeuch, Clapp, & Kinnamon, 

2008), a membrane protein well understood to play a substantial role in detecting sodium salts (Heck, 

Mierson, & DeSimone, 1984). As GAD 65 (glutamic acid decarboxylase, an enzyme that breaks down 

glutimate into GABA) expressing cells, they are also known to release the neurotransmitter GABA 

(Dvoryanchikov, Huang, Barro-Soria, Chaudhari, & Roper, 2011) and are hypothesized to release ATP 

(Houser, Breza, Balasubramanian, Travers, & Travers, 2017), which can serve as a neurotransmitter as 

well (Burnstock, 1972; Finger et al., 2005). 

Further complicating matters, the receptor type or types responsible for detecting nonsodium salts 

independent of the ENaC pathway has not been identified. It may be that the Type I cells serve this 

function, or the Type III cells. It could be that these two receptor types identify different kinds of salts or 

work together to discriminate salts similar to the function of cones in the retina. 

However varied these cell types are in their receptive function, they share in common their 

pathways for communication with the brain. All taste information from the tongue is communicated to the 

brain via a combination of the facial and glossopharyngeal cranial nerves. The facial nerve contacts the 

anterior two thirds of the tongue and innervates the taste receptors there, while the glossopharyngeal 

nerve innervates the posterior third of the tongue. Additionally, the vagus nerve communicates some 

taste-like chemoreception signals from the epiglottis and gut (Contreras, Beckstead, & Norgren, 1982; 

Contreras, Gomez, & Norgren, 1980).  

While the facial nerve (CN VII) carries considerably more information than its chemosensory 

component, the taste information communicated by CN VII is largely segregated to a subdivision of the 

nerve known as the chorda tympani (CT). The nerve fibers of the chorda tympani begin on the basal 

surface of the taste buds of the anterior two thirds of the tongue (Oakley, 1975) and from there run down 

the length of the tongue to the geniculate ganglion, before synapsing in the rostral portion of the nucleus 

of the solitary tract (NTS) in the medulla (Contreras et al., 1980). Taste responses in the chorda tympani 

have been studied extensively, allowing for a reconstruction of various neural response profiles to taste 
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stimuli. This study of taste response profiles has resulted in the identification of a number of stereotyped 

categories for taste-responsive neurons, breaking down along the lines of the taste stimuli they respond 

best to. Classically, there are clusters of cells that respond best to sucrose (sweet), sodium chloride (salty), 

hydrochloric acid (sour), or quinine hydrochloride (bitter) (Frank, 1974).   

We are particularly interested in the neurons that respond best to salts. Based on single cell and 

behavioral data with amiloride, our working hypothesis is that Type I taste bud cells transmit sodium 

(Na
+
) taste to NaCl-best neurons via ENaCs, whereas Type III taste bud cells transmit sodium taste to 

acid-generalist neurons via an unknown receptor mechanism. The pertinence of salt-sensing cells in salt 

taste is fairly obvious, but sour-sensing cells also have a very important role to play. While the vast 

majority of the response of salt-best neurons is amiloride-sensitive, the sour-best neurons have also been 

found to respond to salts, a response which is largely insensitive to amiloride (Hettinger & Frank, 1990). 

This suggests multiple neural pathways for salt-taste transduction, a finding that invites further study into 

the intricacies of salt detection. Neurons that respond preferentially to sodium salts (NaCl-best neurons) 

are known to communicate with ENaC-expressing taste-bud cells, as their responses to sodium salts are 

greatly diminished by amiloride and amiloride analogs (Breza & Contreras, 2012a, 2012b; Breza, 

Nikonov, & Contreras, 2010; Lundy & Contreras, 1999; Ninomiya & Funakoshi, 1988; Rehnberg, 

MacKinnon, Hettinger, & Frank, 1993). In contrast, neurons that respond broadly to both salts and acids 

(acid-generalists or electrolyte generalists) are  not affected by amiloride (Lundy & Contreras, 1999; 

Ninomiya & Funakoshi, 1988; Rehnberg et al., 1993) or amiloride analogs (Breza & Contreras, 2012a, 

2012b; Breza et al., 2010), suggesting they are in contact with taste-bud cells that express a different salt-

taste receptor. While the CT is often over-generalized as a taste-specific nerve, it is also know to transmit 

tactile (Finger et al., 2005) and thermal information (Breza et al., 2006; Lundy & Contreras, 1999; Ogawa 

et al., 1968). In addition to the CT, an additional subdivision of the facial nerve, the greater superficial 

petrosal nerve (GSP), which innervates the soft palate and nasoincisor duct in rodents, is also known to 

transmit salt taste information through amiloride-sensitive and amiloride-insensitive mechanisms 

(Dinkins & Travers, 1998; Nejad, 1986; Sollars & Hill, 1998). This may be a particularly pertinent 
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pathway to salt taste transduction in some animals, as even animals that demonstrate no amiloride-

sensitive salt response in the CT have yet displayed amiloride-sensitive detection of salts in their 

behavior, indicating a CT-independent pathway (Eylam & Spector, 2005). This is important because 

amiloride functions by blocking ENaC in both the kidneys and the tongue (Heck et al., 1984), thus 

inhibiting the major sodium-detecting receptor protein. 

Behavior 

A great deal of investigation of the taste system is conducted using electrophysiology and 

recording from either individual cells in the brain or whole nerves. However, while these 

electrophysiological techniques allow a great deal of experimental control with which to study taste 

system function, the behavioral and perceptual correlates and implications of physiological findings are 

not always clear. Often, it is useful or even necessary to collect information from the behavior of animals 

as well, whether they are human or rodent. 

Very different techniques tend to prevail in human and rodent models, for obvious reasons. While 

the ability of humans to communicate verbally is very useful for sensory discrimination tasks (Hettinger, 

Gent, Marks, & Frank, 1999) and threshold testing (Bartoshuk, Gent, Catalanotto, & Goodspeed, 1983), 

ethical considerations preclude the use of some more robust and specific behavioral models. For instance, 

it is generally impossible to eliminate the function of a cranial nerve in a human subject, though special 

anesthetic procedures do permit this in some cases (Lehman, Bartoshuk, Catalanotto, Kveton, & 

Lowlicht, 1995). In a rodent, one can sever the nerve in question. 

This is reflected in a variety of other interventions used to study behavior in rodents; consumption 

is a fairly direct indicator of taste perception, and consumption can be manipulated. Commonly, some 

state of physiological need is created by limiting access to water or specific nutrients or using 

pharmacology to make some needed substance physiologically unavailable. Water deprivation can be 

achieved by restricting access to water or pharmacologically by injection of polyethylene glycol (Stricker, 

Gannon, & Smith, 1992). Hyponutremia can be accomplished similarly; salt depletion can be induced via 

dietary sodium restriction (Contreras, 1977; Prakash & Norgren, 1991) or by the use of diuretics that 
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prevent retention of sodium (Caloiero & Lundy, 2004). These interventions in turn drive consumption 

under controlled conditions; water deprivation causes animals to drink water, which is highly effective in 

forcing consumption of normally noxious stimuli (Spector & St. John, 1998), or simply condensing 

consumption into a more easily studied window.  Similarly, depriving an animal of sodium motivates that 

animal to consume sodium in quantities and at concentrations typically avoided (Berridge, Flynn, 

Schulkin, & Grill, 1984). 

Alternatively, interventions can be made to induce avoidance of stimuli, even those normally 

preferred. The classic example of this paradigm is conditioned taste aversion, where presentation of some 

taste stimulus is paired with a treatment that sickens the subject (Garcia et al., 1955). Thereafter, that taste 

stimulus will tend to be avoided when possible. The combination of this technique and need inducement 

allows us to study stimulus quality directly; two stimuli may elicit similar neural responses, but if an 

aversion conditioned to one stimulus also causes avoidance of the other, then it can be concluded that the 

two stimuli have a comparable quality. Unfortunately, establishing that the quality of two substances is 

comparable does not guarantee that they are identical. For instance, conditioned taste aversion studies 

indicate that a combination of monosodium glutamate and amiloride produces a taste comparable to 

sucrose and a variety of other sweet stimuli (Heyer, Taylor-Burds, Tran, & Delay, 2003), but animals are 

nevertheless capable of discriminating between this mixture and the same sweet stimuli (Heyer, Taylor-

Burds, Mitzelfelt, & Delay, 2004). 

Genetic Modification 

While we have been able to establish equivalence or discrepancy of stimulus quality across 

different stimuli, it has long been a challenge to tie stimulus quality to physiological or anatomical 

structures. Historically some success in understanding the anatomy of taste sensation has been achieved 

by dissecting various nerve fibers and measuring the resultant effect on behavior (Frankmann, Sollars, & 

Bernstein, 1996; St. John, Garcea, & Spector, 1994; Vigorito, Sclafani, & Jacquin, 1987), but attempting 

to increase the granularity of our understanding is tied with increasing difficulties. While we have long 

been aware that stimulation of the taste buds results in patterned neural responses that correspond in a 
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stereotyped fashion to understood stimuli (Breza et al., 2006; Nakamura & Norgren, 1993; Nishijo & 

Norgren, 1997), we have been unable to identify the cellular mechanisms of that discrimination until 

fairly recently. The introduction of genetic engineering as a tool of science revolutionized the study of 

taste. Rather than stimulating the tongue with various chemicals that could act on an indeterminate 

number of receptors and pathways, genetic engineering has given us the ability to stimulate individual cell 

types specifically (Zemelman, Lee, Ng, & Miesenböck, 2002), or even observe the activation of specific 

cells directly (Nakai, Ohkura, & Imoto, 2001). This has revolutionized the study of taste, serving as the 

basis for identifying the function of specific taste receptor cells (TRCs). Generally, this has taken the form 

of designer receptors exclusively activated by designer drugs (DREADD) or receptors activated solely by 

a synthetic ligand (RASSL; Coward et al., 1998), where taste receptor cells are genetically modified to 

express a receptor that can only be activated by an otherwise tasteless drug (Mueller et al., 2005; Zhao et 

al., 2003).  

Increasingly, taste researchers are also looking to optogenetic tools, a set of genetic modifications 

that cause cells to express light-activated ion channels or light-emitting proteins, or both, all under the 

control of specific genetic promoters. This allows researchers to stimulate specific cell types with light, an 

indisputably tasteless stimulus, or observe exactly which cells respond to a traditional chemical stimulus. 

These techniques have enabled unprecedented opportunities to examine individual receptor function, and 

even the organization of taste in the brain (Fletcher, Ogg, Lu, Ogg, & Boughter, 2017). Unfortunately, the 

integration of optogenetic and behavioral techniques is still in its infancy. While some physiological 

studies have directly assessed the impact of light stimulation on the tongue, behavioral studies typically 

involve stimulation of the brain (Peng et al., 2015; Zocchi, Wennemuth, & Oka, 2017), often based on 

theories that have been refuted (Fletcher et al., 2017; Mast, Breza, & Contreras, 2017). Virtually no 

studies have been published assessing the impact of optogenetic stimulation of TRCs on animal behavior 

relative to primary tastes. 

Lickometery 
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In studying ingestive behavior, there are certain indispensable tools that scientists rely on. For 

obvious reasons, it is vital to reliably quantify the consumption of taste solutions, and a huge variety of 

mechanisms have been developed to address this need, from simple to complex. In the study of rodents, 

many of these tools focus on recording the licking of some fluid delivery spout; in general, these devices 

are known as lickometers. 

The literature surrounding the development and use of lickometers is itself vast and arcane. The 

earliest documentation of a device recognizable as a lickometer extends as far back as 1951, with the 

device dubbed an "Electronic Drinkometer" (Hill & Stellar, 1951). While this was the first lickometer in 

the modern sense, it was labeled a "drinkometer" in reference to an even older class of mechanisms 

designed to measure the volume of fluid an animal consumes. This addressed a fairly pressing need in 

taste research, as measurements of fluid quantity can be highly problematic. Temporal resolution of 

drinking measures are quite poor; most systems for measuring volume return only a single value per 

behavioral trial. Methods that provide improved temporal resolution sacrifice resolution in volume, and 

require intensive monitoring (Hill & Stellar, 1951). Even single measurements of fluid consumed per 

session are relatively error-prone, considering that mice drink an average of 5.8 ml per day (Gannon, 

Smith, Henderson, & Hendrick, 1992), and substantially less in a 20–30 minute session. The most reliable 

way to quantify volume consumed is to control it directly, which then interferes with the natural behavior 

of the animal (Hill & Stellar, 1951; Weijnen, 1989). 

One might assume that all lickometers are therefore drinkometers. However, the avenue of 

methods research that invention gave birth to has expanded continuously over the past 66 years, in the 

process revealing that the prototype lickometer fundamentally failed to achieve the desired goal; licking, 

as it turns out, does not reliably predict fluid volume consumed (Weijnen, 1989). On the other hand, all of 

that study has also established a value in measuring licks beyond an attempt to estimate drinking. A 

tremendous amount of work has been done to characterize patterns in licking that can elucidate the 

psychophysical processes of appetite and ingestion with far greater nuance than gross measurements of 
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fluid quantity. As such, lickometers can serve a valuable role as a companion or alternative to volume 

measurement.  

Over time, there been numerous evolutions in the physical construction of lickometers. The 

Electronic Drinkometer was the first such device, and many designs retain the basic function of the 

original apparatus; by licking a spout, the mouse closes an electric circuit which in turn registers a lick 

(Davis, 1961; Dole, Ho, & Gentry, 1983; Hayar, Bryant, Boughter, & Heck, 2006). However, that design 

is not ideally suited to all purposes, and many different versions of the lickometer have been developed 

that rely on very different principles. Some rely on the disruption of a light beam (Hu, Lai, Shyu, & Tung, 

1998; Schoenbaum, Garmon, & Setlow, 2001), while others rely on force transduction to generate a 

signal, either by measuring the disturbance of the drinking spout (Ossenkopp, Cooley, & Vanderwolf, 

1980), or by forgoing the traditional spout and delivering solutions on the surface of a ball, the rotations 

of which are used to quantify licking (Spector et al., 2015). 

Each technique for recording licks has strengths and weaknesses. Typically, the electronic 

lickometer's weaknesses stem from its metal components and the electrical current they pass; metal spouts 

and grounding components make electronic lickometers incompatible with microwave irradiation of the 

testing chamber. The electric signal of the lickometer itself can interfere with neural recording or, in some 

cases, risk detection by the animal itself if the current is strong enough to be felt. Most designs overcome 

at least one of these issues; modern lickometers limit their signal below the 5 μA current detectable by 

rats (Weijnen, 1989), and some recent designs further limit that signal to the extent of eliminating neural 

artifacts (Hayar et al., 2006). There are trade-offs involved; the weaker the signal of the lickometer, the 

more difficult it is to discriminate genuine licks from nose-pokes and other extraneous contacts (Hayar et 

al., 2006; Raymond, Mast, & Breza, 2018). Electronic lickometers do have many advantages as well. As 

the change in current that electronic lickometers record results from direct contact with the drinking 

spout, electronic lickometers are capable of capturing the exact moment of contact and release of contact 

for each individual lick, allowing for certainty that every event recorded constitutes actual contact with 

the spout, and further permitting the exact duration of that contact to be established. Additionally, 
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electronic lickometers are elegant in their simplicity; provided a system for recording electrical current, 

the apparatus itself requires only a metal spout and a metal ground. This allows for a great deal of 

adaptability and design customization, to the extent that electronic lickometers can be easily added to an 

existing cage (Dole et al., 1983). 

Photobeam lickometers have a different set of strengths and weaknesses; they do not pass a 

current through the animal, making them undetectable by the animals and eliminating the possibility of 

electrical artifacts in brain recordings. As they do not rely on metal to form a circuit in the testing 

chamber, they are also compatible with microwaves. They do have limitations; since photobeam 

lickometers are based on the breaking of a beam of light very close to the drinking spout, the events they 

record imply contact and drinking, but they do not record contacts directly, making it less certain that any 

given activation represents a genuine contact of the mouse with the spout. This also makes licking 

microstructure more difficult to ascertain. While it is possible to construct a photobeam lickometer 

independently (Schoenbaum et al., 2001), it is substantially more difficult than building an electronic 

apparatus (which can ultimately boil down to some light soldering). 

Force transducing lickometers carry all of the benefits of photobeam lickometers, as well as some 

of the perks of electronic designs. Here, rather than recording contact with the spout electrically or by the 

breaking of a proximal light beam, drinking events are recorded whenever the animal moves a physical 

mechanism. Some designs are analogous to a ballpoint pen (Spector et al., 2015), where fluid is delivered 

on a rolling ball, and the movement of that ball by the animal's tongue is directly measured. Others mimic 

an elecronic lickometer in form, but rather than recording current changes associated with making and 

breaking a circuit, the apparatus measures current changes associated with the physical movements of a 

drinking spout licked by the animal (Ossenkopp et al., 1980). Either design overcomes some of the basic 

potential concerns of electronic lickometers; they pass no current and require no metal in the testing 

chamber, making them undetectable, artifact-free, and microwave-compatible. Additionally, as they do 

measure contact with a drinking spout, they serve as a higher-fidelity measure than photobeam 

lickometers. Their weaknesses are mainly related to accessibility; these designs are much more physically 
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complex than electronic lickometers, making them much more difficult to implement independently. 

Additionally, in the case of the force-ball lickometer, the design may be incompatible with some 

behavioral optogenetic tests; the ball itself would interfere with any integration of light stimulation in the 

drinking apparatus, though not with optrodes implanted in the animal. It was our interest in combining 

optogenetic manipulation with conventional behavioral assays that motivated the design of the lickometer 

apparatus described below. 

Hypothesis 

We were particularly interested in two substantive gaps in the understanding of taste at the 

receptor level: the lack of a known receptor cell for salt taste, and the lack of a known taste stimulus for 

Type I taste receptor cells. It was our hypothesis that the Type I TRCs play a substantive role in the 

transduction of salt taste, explaining both missing pieces of information simultaneously. We reasoned that 

sodium appetite and sodium aversion would serve as reliable indicators of behavior driven by the 

sensation of sodium salts and that simulating this behavior by selective optogenetic stimulation of the 

Type I TRCs would provide evidence of salt-taste transduction by the Type I TRCs. 
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General Methods 

Subjects 

Three genetic strains of mice were used in this series of experiments: C57BL/6J mice (B6); Ai32 

mice, a genetically modified C57BL/6J strain with the genotype for CRE-dependent expression of 

Channel Rhodopsin II and Enhanced Yellow Fluorescent Protein; and GAD65CRE/Ai32 (ChR2) Crossed 

mice, a genetically modified C57BL/6J strain with phenotypic expression of ChR2 and EYFP liberated 

exclusively on GAD65 expressing cells. 

Housing 

Mice were group-housed according to sex in standard plastic shoebox cages (28 x 17.5 x 13 cm) 

prior to testing. Unless otherwise noted, animals had ad-libitim access to food (LabDiet #5015) and tap 

water. Mice were kept on a reverse dark-light cycle (lights on from 7 pm to 7 am), and were tested during 

their dark cycle exclusively. 

Testing Chamber 

All behavioral tests were conducted in an acrylic chamber (Figures 1 & 2) measuring 13.5 x 11.5 

x 12.5 cm. Two ports milled in the 11.5 cm side of the chamber were spaced 5 cm apart, 2 cm above the 

chamber floor. The chamber was floored with a tin plate. Water bottles were constructed from standard 

steel drinking spouts (8 mm diameter) joined to 15 ml centrifuge tubes by silicone stoppers. The 

lickometer circuit was routed through a 3.5 mm stereo microphone input on a desktop computer, where 

the left and right leads were connected to two separate drinking bottles via alligator clips, and the ground 

pin was connected to the chamber's tin floor, also by alligator clip. The circuit supplies 2.8 V DC, which 

can be reduced by the addition of resistors. 

Solutions 

Though some previous behavioral research has used deionized water as the solvent for mixing 

taste solutions, we mixed all taste solutions in tap water, as our animals have never had access to 

deionized water, and because deionized water is bitter to rodents (Grobe & Spector, 2008; Loney, Blonde, 

Eckel, & Spector, 2012).  
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Experiment 1: An Open-Source Lickometer 

Purpose 

Our first aim was to use readily (and cheaply) available materials and open-source software to 

construct and validate an affordable and reliable alternative to commercially available lickometer 

hardware, which can be prohibitively expensive. 

 Subjects 

Subjects were six adult B6 mice, including three male (36.3 ± 3.9 g) and three female (32.1 ± 3.4 

g) mice. Mice had previous experience with the experimental apparatus.  

Procedure 

Twenty-four hours prior to testing, water was removed from the home cages, though free access 

to chow remained. Animals were tested on two subsequent days and received all of their fluid during the 

test sessions. Water was replaced on the home cage at the end of testing on the second day. Lickometer 

recordings were initially captured with 10 MΩ resistors added to the recording circuit, and the experiment 

was repeated 20 days later with the additional resistance removed. 

In the 30 minute experimental trials, animals were given simultaneous free access to two drinking 

spouts, one containing tap water and the other containing a 0.2 M sucrose solution. Bottles were reversed 

on the second day of testing to account for the established phenomenon of side preference (Bachmanov, 

Reed, Beauchamp, & Tordoff, 2002). 

Data Analysis 

Data were exported from Audacity (an open-source audio recording program) to R (an open-

source statistical analysis program), where it was analyzed by our custom script. The script operates by 

setting a threshold at -3 standard deviations and recording time codes for electrical disturbances that cross 

that threshold. Thresholds were set manually for one session, in which an intermittent fault in the path to 

ground increased background noise. By default, the program removes events occurring within 40 ms of 

previous events, per established practice (John D. Boughter, personal communication, March 31, 2017). 
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This cutoff is variable, accommodating the variable lick rate of different mouse strains (Boughter et al., 

2012; Glatt, St. John, Lu, & Boughter, 2016). 

For comparison, we also exported our files to Spike2, a professional waveform analysis software 

package (Cambridge Electronic Design [CED], Cambridge, England) that has been demonstrated as an 

effective lick-counting program (Hayar et al., 2006). R was then used to conduct statistical analysis of the 

results. 

Results 

To validate the results of the R script against Spike2 in assessing the lickometer recordings, t-tests 

and correlation coefficients were calculated comparing licks counted on water, licks counted on sucrose, 

and the preference score for sucrose versus water. No significant differences were found on any of the 

three measures, and the scores for R and Spike2 were found to be highly correlated on all measures. 

Results are recorded in Table 1 and illustrated in Figure 3. Additionally, interlick intervals (ILIs, the 

interval in milliseconds between licks) were calculated for all licks, and distributions thereof (Figure 4) 

are consistent with previous lickometry findings, from the positioning of the main distribution around 

~110 ms to the small secondary distribution at around twice that interval (Glatt et al., 2016). An 

additional small distribution of licks near 50 ms in the 10 MΩ condition is presumably a reflection of 

signal fidelity; increasing the resistance in the recording circuit dramatically reduced the amplitude of the 

signal relative to electrical noise (Figure 5), resulting in the counting of several false "double contacts." 

Importantly, these instances of double contact can be automatically removed, as is the standard practice in 

the field. We chose to leave them in this case, both in order to maintain adherence to our 40 ms cutoff and 

to illustrate the potential problems with the excess noise associated with high-resistance recordings. The 

analysis program allows for the selection of different thresholds, per user requirements. 

Additionally, several tests were performed assessing the impact of electrical resistance in the 

recording equipment. Results are shown in Table 2, and illustrated in Figure 6. Mean primary interlick 

interval (MPI) describes a characteristic ILI by calculating the "mean of all ILIs less than or equal to 160 
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ms" (Glatt et al., 2016). Essentially, this summarizes an animal's average rate of licking, excluding long 

pauses. 

Only a single significant difference was found, which was somewhat surprising given the severe 

degradation of signal fidelity occurring at 10 MΩ of added resistance. It’s unclear why the lick count for 

sucrose increased when resistance was removed; clearly, it is not the result of aversive current, so we 

speculate that the shift may be due to increasing familiarity with the mechanism, particularly given that 

there was no change in MPI. 

Finally, we ran a few tests comparing sucrose and water consumption (Table 3, Figure 7). Indices 

of preference for sucrose over tap water were observed consistent with expectations. Sex differences in 

preference score were also tested, and found non-significant (p = 0.34). 
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Experiment 2: The Rapid Induction of Salt Appetite in Mice 

Purpose  

Our second aim was to replicate and expand upon previous findings demonstrating induction of 

sodium appetite by self-administration of the potassium-sparing diuretic amiloride (Caloiero & Lundy, 

2004). Where the previous study had been conducted in rats and had used amiloride in conjunction with 

sodium-deplete diet, we aimed to assess whether the drug could also be used in mice, without altering 

diet. Additionally, we attempted to create an inactive control treatment for amiloride by destroying the 

drug with light. 

Subjects  

A total of 18 naive B6 mice were used in this study, including 8 females (26.5 ± 0.96 g) and 10 

males (37.8 ± 1.93 g . All animals were          mice     = 156 days). Mice were divided evenly into 

three groups: treatment with standard amiloride, treatment with photo-bleached amiloride, or no 

treatment. 

Amiloride  

Powdered amiloride was dissolved in tap water to a concentration of 300 μM, and half of this 

solution was set aside to be used directly. In an attempt to create an inactivated analog for the drug (since 

it is recommended to protect amiloride from light), the remainder of the solution was placed in a clear 

glass flask and exposed directly to a 40 W incandescent lamp. Total exposure time amounted to 

approximately 72 hrs. The two amiloride solutions were then placed in the home-cage water bottles of the 

mice in the experimental groups.  

Procedure  

Approximately 36 hrs prior to testing, water bottles were changed on the home cage (tap water, 

water + 300 μM amiloride, or water + 300 μM photo-bleached amiloride). Access to food (LabDiet 

#5015) and water were not restricted. At the time of testing, animals were removed from the home cage 

and placed within a custom-built lickometer apparatus. Inside the chamber, animals had 30 min of free 

access to two solutions; 0.3 M NaCl and tap water. Licking data on both spouts were collected by the 
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apparatus, and recorded in the open-source audio program Audacity. Each trial was repeated on the 

following day with the bottles reversed to account for any inherent side preference.  

Data Analysis  

Raw data recordings were exported from Audacity as .CSV files (Spike2) and imported into R (an 

open-source statistical software package). These data were processed via a custom script written to 

accompany the apparatus, calculating total lick counts on both spouts, as well as MPI, lick efficiency (% 

of ILIs under 160 ms), frequency and duration of lick bursts (clusters of at least three licks with ILIs not 

greater than 1 s) (Glatt et al., 2016), and frequency and duration of pauses between bursts. Once this 

information had been computed, R was also used to conduct statistical analysis of the data. Statistical 

tests were comprised primarily of contrast analyses when parametric tests were permissible and Kruskal-

Wallis tests with subsequent pairwise Wilcox tests when data were not normally distributed. 

Results 

In order to evaluate the effect of self-administration of amiloride on sodium appetite, a number of 

contrast tests were conducted. Tests initially compared the two amiloride conditions to the water control 

condition,  revealing a number of significant differences on various licking measurements, from 

macrostructural features like preference score and total licks to either saline or water, to microstructural 

measures such as burst duration (measured as the number of licks in a "burst," or a series of licks with a 

delay of no more than one second between any two licks), MPI, and lick efficiency. Subsequently, 

contrast tests were conducted comparing these same measures across the two amiloride conditions (photo-

bleached and unadulterated; Tables 4 & 5). Preference score, burst duration, MPI, and lick efficiency for 

sodium solutions all vary significantly between the amiloride and control conditions, but not between 

amiloride conditions (Figures 8–11). 
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Experiment 3: Preference for Light in Salt-Hungry Mice 

Purpose 

Our third aim was to study the role of Type I TRCs in salt taste by assessing the effect of 

selective stimulation of Type I TRCs in mice motivated to consume sodium. We hypothesized that mice 

genetically modified with light-activated Type I TRCS would prefer illuminated water over otherwise 

identical water when under conditions of sodium depletion. 

Subjects 

A total of 15 naïve male animals (nine ChR2; six Ai32) were used in this study (37.91 ± 1.56 g). 

 Procedure 

Approximately 48 hrs prior to testing, water bottles were changed on the home cage (water + 300 

µM amiloride). Access to food and water were not restricted. At the time of testing, animals were 

removed from the home cage and placed within a custom-built lickometer apparatus. Inside the chamber, 

animals had 30 min of free access to two bottles. Both bottles contained tap water, but one was modified 

with a 1 mm fiber optic cable producing 10 mW of light at a 470 nm (Figure 2), the standard wavelength 

for stimulating Channel Rhodopsin 2 (Nagel et al., 2003). Licking data on both spouts were collected by 

the apparatus, and recorded in Audacity before being exported to R for analysis. Each trial was repeated 

on the following day with the bottles reversed to account for any inherent side preference. Additionally, 

all animals completed an identical series of trials under sodium-replete (no amiloride) conditions. 

Results 

In order to assess the interaction of salt depletion and selective activation of Type I TRCs, we 

conducted a series of contrast tests measuring changes in licking behavior across genetic strain and 

depletion state. Our slate of contrasts first assessed effects of genetic strain by contrasting ChR2 and Ai32 

subjects and then measured for effects of depletion state by contrasting depleted and non-depleted states 

for each strain individually (Tables 6 & 7). Effects of strain were pronounced: ChR2 mice demonstrated a 

significant preference for light relative to Ai32 controls (F(1,49) = 27.67, p < 0.01, R
2
 = 0.36; Figure 12). 

This difference in preference was driven exclusively by the ChR2 animals' appetite for illuminated water, 
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which they licked significantly more often than Ai32 animals (F(1,49) = 12.49, p < 0.01, R
2
 = 0.20), as 

there was no effect of strain on licking of water alone (F(1,49) = 1.03, p = 0.32, R
2
 = 0.02; Figure 13). 

Similarly, ChR2 animals licked light in significantly larger bursts than Ai32 animals (F(1,49) = 5.12, p = 

0.03, R
2
 = 0.09; Figure 14), though lick efficiency was unaffected (p = 0.23). 

The effects of depletion state add further insight: when salt depleted, ChR2 animals' preference 

for light increased significantly (F(1,49) = 15.81, p < 0.01, R
2
 = 0.24). Again this difference in preference 

is driven by a change in behavior toward light rather than water: Licking of illuminated water increased 

significantly when the ChR2 animals were salt depleted (F(1,49) = 35.66, p < 0.01, R
2
 = 0.42), but their 

licking of water alone was unchanged (F(1,49) = 2.69, p = 0.11, R
2
 = 0.05). This result is in sharp contrast 

to the Ai32 mice, which did not change their behavior toward light when sodium-depleted (F(1,49) = 

0.28, p = 0.60, R
2
 = 0.01) and, in fact, slightly increased their licking of unilluminated water (F(1,49) = 

5.84, p = 0.02, R
2
 = 0.11; Figure 12). This increase in water drinking by the Ai32 controls is interesting, 

and may indicate the diuretic effect of amiloride, as Caloiero (2004) noted that animals in their 

experiment drank untreated water to recoup lost weight in a 24-hour break period between amiloride 

treatment and testing, an opportunity that our animals did not have. 
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Experiment 4: Aversion for Light in Mice with a Conditioned Aversion to ENaC-Mediated or 

ENaC-Independent Salt Taste 

Purpose 

Accepting that Type I TRCs contribute to salt taste, our next aim was to examine which neural 

pathway transduces that contribution. We hypothesized that if Type I TRCs transduce salt-taste 

information along an ENaC-Mediated pathway, a conditioned taste aversion to sodium gluconate, a 

compound thought to act exclusively on the ENaC-mediated salt-detection pathway (Breza & Contreras, 

2012b; Geran & Spector, 2000; Ye, Heck, & DeSimone, 1993), should generalize to light stimulation of 

Type I TRCs. 

Subjects 

Sixteen ChR2 mice were be used, including eight male and eight female mice. 

Procedure 

Animals received two training sessions with the apparatus. Water was removed from the home 

cage 24 hrs prior to testing. On the day of testing, mice were removed from the home cage and placed in 

the testing chamber, where they had 30 min of free access to two bottles, one containing 0.2 M sucrose 

and the other containing tap water. The procedure was repeated with the bottles reversed on the following 

day, after which water was replaced on the home cage. 

After a break of two days, taste aversion conditioning began. Water was removed from the home 

cage 24 hrs prior to acquisition trials. On Days 1 and 3, animals were weighed and transferred from the 

home cage to the testing chamber, where they were given 15 min of ad-libitum exposure to 0.1 M sodium 

gluconate. Immediately after the trial, experimental animals were given an injection of 0.15 M lithium 

chloride (2.0 mEq/kg body wt). Control animals received an equivalent injection of 0.15 M NaCl. Five 

hours after the trial, they were given 15 minutes of free access to tap water in the home cage. On Day 2, 

animals were again weighed and placed in the testing chamber, where they were given 15 min of free 

access to one bottle containing tap water before being returned to the home cage. Five hours after testing, 

they received 15 min of free access to tap water in the home cage. On Days 4 and 5, animals were 
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removed from the home cage and given 15 min of free access to two bottles, both of which contained tap 

water. Additionally, one bottle was threaded with a 1mm optic fiber producing 10 mW of light of a 

wavelength of 470 nm. Bottle position was reversed between Days 4 and 5. 

Data Analysis 

Lickometer recordings produced in Audacity were exported to R and analyzed by a lick-counting 

program to assess preference between water and water with light, compared across control and 

experimental conditions. 

Results 

There was no significant difference in preference for light between the control and experimental 

groups (p = 0.47; Figure 15). MPI for illuminated water was significantly shorter (p = 0.04, d = 0.73), and 

lick efficiency was significantly lower (p = 0.05, d = 0.73), but licks per burst did not significantly vary (p 

= 0.20), nor did the total count of licks to light (p = 0.10) or water (p = 0.94; Figure 16). Overall, it 

appeared that lithium injections did not substantially or reliably alter behavior toward light (Table 8). As 

such, we decided to verify the aversion, and found that the animals given lithium injections demonstrated 

no change in lick total between the first and second acquisition trials (p = 0.86). Similarly, there was no 

change in licks per burst (p = 0.93), lick efficiency (p = 0.43), or MPI (p = 0.76; Figure 17). Descriptive 

statistics are given in Table 9. As such, it appears that mice did not form an aversion to the conditioned 

stimulus, sodium gluconate. 
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Discussion 

Salt taste plays a crucial role in our interactions with food, which in turn means that salt has a 

considerable impact on our lives. Historically, this has hinged on the role of sodium as a scarce and 

essential nutrient, shaping our society in ways that we scarcely comprehend (Kurlansky, 2002). More 

recently, that scarcity has reversed itself, and we now routinely contend with the detrimental health 

effects of excessive sodium consumption (Ma et al., 2015; Polonia et al., 2016). This makes the study of 

salt consumption an important issue in public health, of which salt taste is an obviously relevant 

component. 

Despite this, the mechanisms of salt taste remain poorly understood. It is understand that most, 

but not all, of the gustatory nerve responses to salt rely on epithelial sodium channels (Heck et al., 1984), 

but it is not know what type of taste-bud cell transduces salt taste via this mechanism. The receptor of 

ENaC-independent salt-taste has not identified, let alone the variety of cells that house them. It has been 

established that there are neuronal subtypes in various taste-processing centers of the nervous system that 

respond preferentially to sodium (Breza et al., 2010; Frank, 1974; Nishijo & Norgren, 1990). It is 

unknown, however, what receptor cells they communicate with. With this series of experiments, our goal 

was to begin to shed some light on these cellular mechanisms. 

Our first task was the development of an affordable mechanism to measure taste-guided behavior 

in mice. Once we discovered that a circuit routed through a standard desktop microphone input could act 

as a serviceable electronic lickometer, we were able to refine that mechanism into a behavioral chamber 

and write a program to identify licks in the resulting electrical recording. Having done that, we were able 

to successfully validate our program against professional spike-counting software and confirm that both 

programs recorded patterns of licks that reflected those observed by previous researchers. While our 

mechanism is limited to free-access trails of a small number of solutions (up to four), our design offers 

one feature missing from most other lickometers published or sold: accessibility. A combination of free 

software and simple materials (Raymond et al., 2018) makes our design ideal for a number of uses, 

particularly teaching, or in our case, basic preference testing. 
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Having developed a tool to measure behaviors tied to salt taste, our next objective was to 

guarantee that we could reliably manipulate those behaviors. As our ultimate goal was to optogentically 

activate Type I TRCS to simulate salt taste, we required a clear behavioral indicator of salt taste to serve 

as a comparison. Salt hunger stood out as an obvious candidate, and our next experiment explored a 

method for inducing sodium appetite in mice. Using a previous study in rats as a template (Caloiero & 

Lundy, 2004), we were able to use self-administered amiloride to rapidly drive consumption of salt. This 

technique provided several benefits relative to dietary sodium restriction: Amiloride was able to induce 

salt appetite more quickly and affordably than altering the animals' diet. More importantly, mice could 

consume high concentrations of sodium in the testing chamber and still demonstrate sodium appetite on 

the next day, a crucial feature allowing us to repeat two-bottle preference-tests on back-to-back days, 

reversing bottles to account for side preference. A secondary dimension of this experiment also produced 

interesting results; our attempt to create an inactive control for amiloride (which is known to be light-

sensitive) by destroying it with prolonged direct exposure to a powerful incandescent light proved totally 

ineffective, suggesting that the drug is fairly resistant to artificial light. This is not totally surprising, as 

previous studies have shown amiloride to be effective without taking special precautions to protect it 

against (presumably less intense) light exposure (Caloiero & Lundy, 2004). It is worth noting that 

epithelial sodium channels are apical on TRCs (Breza & Contreras, 2012b), meaning that any amiloride 

lingering in the oral cavity of the subjects subsequent to self-administration is immediately washed away 

from the TRCs when the mice lick the taste solutions in the testing chamber. This is important, as it 

prevents the amiloride self-administered in the home cage from having a direct, suppressive impact on 

sodium detection in the testing chamber, confirmed by the sodium appetite demonstrated in these trials 

(topical amiloride in taste solutions inhibits sodium appetite; Bernstein & Hennessy, 1987).  

With the second experiment completed, we had everything we needed to begin our examination 

of the Type I TRCs: an apparatus capable of measuring licks, an amiloride treatment capable of inducing 

licking of sodium solutions, and a transgenic animal with light-activated Type I TRCs. We hypothesized 

that if the Type I TRCs play a role in transducing the taste of sodium, treating the transgenic animals with 
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amiloride should motivate them to lick illuminated water as though it contained sodium. Using a light-

insensitive transgenic parent strain as a control group in addition to sodium replete animals of both strains 

allowed us to directly assess simulated sodium appetite, controlling for the potential of incidental 

preference for light. The results were conclusive; sodium-depleted light-sensitive animals consumed light 

voraciously, and animals in any other condition did not. Stimulation of the Type I TRCs simulates a taste 

that sodium-depleted animals are driven to consume. This alone does not clarify the exact taste being 

simulated, but it does guarantee that there is a sodium-like component in the taste being produced. 

Further, it seems that light is simulating ENaC-mediated sodium taste (rather than the ENaC-independent 

pathway alone) as previous research has demonstrated that sodium depletion does not drive consumption 

of non-sodium salts (Roitman & Bernstein, 1999), nor even sodium salts when ENaC has been suppressed 

by topical amiloride (Bernstein & Hennessy, 1987). 

Experiment 3 demonstrated that selective activation of the Type I TRCs simulates ENaC-

mediated salt taste, but it did not address the question of whether additional tastes were being simulated 

simultaneously. In an attempt to examine that issue more closely, we next attempted to condition an 

aversion selectively to the ENaC-mediated salt taste pathway by pairing injections of lithium chloride 

with exposure to sodium gluconate, which preferentially activates the amiloride-sensitive component of 

salt taste (Breza & Contreras, 2012b; Smith, Treesukosol, Paedae, Contreras, & Spector, 2012).  It was 

our hypothesis that if an aversion to sodium gluconate generalized to light, we could conclude that light 

stimulation of Type I TRCs also preferentially simulated ENaC-mediated taste. Unfortunately, results 

were inconclusive. While some of the microstructural indicators of palatability were significantly shifted 

in experimental mice relative to controls, others were not, nor were more obvious indications of appetite 

like total lick count or even preference for light relative to water. Confused by these results, we went back 

and examined the data from the acquisition trials to confirm whether we had successfully conditioned an 

aversion and found similarly dubious results. Comparing the first and second acquisition trials of the 

lithium-injected mice yielded no significant differences, suggesting that the aversion to sodium gluconate 

was not effectively conditioned. This leaves open the question of what exactly the light tastes like when it 
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stimulates the Type I TRCs: Experiment 3 established an ENaC-mediated component, but the possibility 

of additional side-band tastes remains. 

Conclusion 

In the series of experiments described above, we were able to validate a simple lickometer, 

confirm a method for rapid induction of sodium appetite in mice, and use optogenetic techniques to 

simulate salt taste by stimulating Type I TRCs directly. These findings are significant for several reasons. 

Primarily, they answer the core question motivating the experiments; Type I TRCs make some substantial 

contribution to the detection of sodium by the taste system. This information contains a dual importance, 

as it satisfies two previously unanswered questions simultaneously by identifying a TRC type that detects 

salt and identifying a taste stimulus detected by Type I TRCs. The secondary importance of these 

experiments follows from the significance of that finding; they are a further proof of concept in the 

ongoing movement toward open science. All of the experiments detailed here were conducted under a 

mandate of affordability, a guideline explicit in the first two experiments and implicitly interwoven in the 

remainder as a result. Not only were we able to demonstrate that Type I TRCs transduce sodium taste, we 

were able to demonstrate that cutting-edge research in the field of taste can be accomplished affordably.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 30 

 

References 

Arvidson, K., & Friberg, U. (1980). Human taste: Response and taste bud number in fungiform papillae. 

Science, 209(4458), 807-808.  

Bachmanov, A. A., Reed, D. R., Beauchamp, G. K., & Tordoff, M. G. (2002). Food intake, water intake, 

and drinking spout side preference of 28 mouse strains. Behavior Genetics, 32(6), 435-443.  

Bartoshuk, L. M., Gent, J., Catalanotto, F. A., & Goodspeed, R. B. (1983). Clinical evaluation of taste. 

American Journal of Otolaryngology, 4(4), 257-260.  

Bernstein, I. L., & Hennessy, C. J. (1987). Amiloride-sensitive sodium channels and expression of 

sodium appetite in rats. American Journal of Physiology, 253(2 Pt 2), R371-374.  

Berridge, K. C., Flynn, F. W., Schulkin, J., & Grill, H. J. (1984). Sodium depletion enhances salt 

palatability in rats. Behavioral Neuroscience, 98(4), 652-660.  

Blonde, G. D., Travers, S. P., & Spector, A. C. (2018). Taste sensitivity to a mixture of monosodium 

glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 

amino acid receptor. American Journal of Physiology. Regulatory, Integrative and Comparative 

Physiology. doi:10.1152/ajpregu.00352.2017 

Boughter, J. D., Jr., Mulligan, M. K., St. John, S. J., Tokita, K., Lu, L., Heck, D. H., & Williams, R. W. 

(2012). Genetic control of a central pattern generator: rhythmic oromotor movement in mice is 

controlled by a major locus near Atp1a2. PLoS One, 7(5), e38169. 

doi:10.1371/journal.pone.0038169 

Breza, J. M., & Contreras, R. J. (2012a). Acetic acid modulates spike rate and spike latency to salt in 

peripheral gustatory neurons of rats. Journal of Neurophysiology, 108(9), 2405-2418.  

Breza, J. M., & Contreras, R. J. (2012b). Anion size modulates salt taste in rats. Journal of 

Neurophysiology, 107(6), 1632-1648.  

Breza, J. M., Curtis, K. S., & Contreras, R. J. (2006). Temperature modulates taste responsiveness and 

stimulates gustatory neurons in the rat geniculate ganglion. Journal of Neurophysiology, 95(2), 

674-685. doi:10.1152/jn.00793.2005 



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 31 

 

Breza, J. M., Nikonov, A. A., & Contreras, R. J. (2010). Response latency to lingual taste stimulation 

distinguishes neuron types within the geniculate ganglion. Journal of Neurophysiology, 103(4), 

1771-1784. doi:10.1152/jn.00785.2009 

Burnstock, G. (1972). Purinergic nerves. Pharmacological Reviews, 24(3), 509-581.  

Burseg, K. M., Camacho, S., Knoop, J., & Bult, J. H. (2010). Sweet taste intensity is enhanced by 

temporal fluctuation of aroma and taste, and depends on phase shift. Physiology & Behavior, 

101(5), 726-730. doi:10.1016/j.physbeh.2010.08.014 

Caloiero, V. G., & Lundy, R. F. (2004). A novel method for induction of salt appetite in rats. Brain 

Research Bulletin, 64(1), 1-7. doi:10.1016/j.brainresbull.2004.03.009 

Cawley, J., & Meyerhoefer, C. (2012). The medical care costs of obesity: An instrumental variables 

approach. Journal of Health Economics, 31(1), 219-230. 

doi:https://doi.org/10.1016/j.jhealeco.2011.10.003 

Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., . . . Ryba, N. J. (2000). 

T2Rs function as bitter taste receptors. Cell, 100(6), 703-711.  

Chaudhari, N., & Roper, S. D. (2010). The cell biology of taste. The Journal of Cell Biology, 190(3), 285-

296. doi:10.1083/jcb.201003144 

Clapp, T. R., Yang, R., Stoick, C. L., Kinnamon, S. C., & Kinnamon, J. C. (2004). Morphologic 

characterization of rat taste receptor cells that express components of the phospholipase C 

signaling pathway. Journal of Comparative Neurology, 468(3), 311-321. doi:10.1002/cne.10963 

Contreras, R. J. (1977). Changes in gustatory nerve discharges with sodium deficiency: a single unit 

analysis. Brain Research, 121(2), 373-378.  

Contreras, R. J., Beckstead, R. M., & Norgren, R. (1982). The central projections of the trigeminal, facial, 

glossopharyngeal and vagus nerves: an autoradiographic study in the rat. Journal of the 

Autonomic Nervous System, 6(3), 303-322.  

Contreras, R. J., Gomez, M. M., & Norgren, R. (1980). Central origins of cranial nerve parasympathetic 

neurons in the rat. Journal of Comparative Neurology, 190(2), 373-394.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 32 

 

Coward, P., Wada, H. G., Falk, M. S., Chan, S. D. H., Meng, F., Akil, H., & Conklin, B. R. (1998). 

Controlling signaling with a specifically designed G(i)-coupled receptor. Proceedings of the 

National Acadademy of Sciences of the United States of America, 95(1), 352-357.  

Cruz, A., & Green, B. G. (2000). Thermal stimulation of taste. Nature, 403(6772), 889-892. 

doi:10.1038/35002581 

Davis, J. D. (1961). Electronic drinkometer and recorder. Journal of the Experimental Analysis of 

Behavior, 4, 145-147. doi:10.1901/jeab.1961.4-145 

Dinkins, M. E., & Travers, S. P. (1998). Effects of chorda tympani nerve anesthesia on taste responses in 

the NST. Chemical Senses, 23(6), 661-673.  

Dole, V. P., Ho, A., & Gentry, R. T. (1983). An improved technique for monitoring the drinking behavior 

of mice. Physiology & Behavior, 30(6), 971-974.  

Dvoryanchikov, G., Huang, Y. A., Barro-Soria, R., Chaudhari, N., & Roper, S. D. (2011). GABA, its 

receptors, and GABAergic inhibition in mouse taste buds. Journal of Neuroscience, 31(15), 5782-

5791. doi:10.1523/jneurosci.5559-10.2011 

Dvoryanchikov, G., Sinclair, M. S., Perea-Martinez, I., Wang, T., & Chaudhari, N. (2009). Inward 

rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds. 

Journal of Comparative Neurology, 517(1), 1-14. doi:10.1002/cne.22152 

Eylam, S., & Spector, A. C. (2005). Taste discrimination between NaCl and KCl is disrupted by amiloride 

in inbred mice with amiloride-insensitive chorda tympani nerves. American Journal of 

Physiology. Regulatory, Integrative and Comparative Physiology, 288(5), R1361-1368. 

doi:10.1152/ajpregu.00796.2004 

Finger, T. E., Danilova, V., Barrows, J., Bartel, D. L., Vigers, A. J., Stone, L., . . . Kinnamon, S. C. 

(2005). ATP signaling is crucial for communication from taste buds to gustatory nerves. Science, 

310(5753), 1495-1499.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 33 

 

Fletcher, M. L., Ogg, M. C., Lu, L., Ogg, R. J., & Boughter, J. D. (2017). Overlapping representation of 

primary tastes in a defined region of the gustatory cortex. Journal of Neuroscience, 37(32), 7595-

7605.  

Frank, M. E. (1974). The classification of mammalian afferent taste fibers. Chemical Senses and Flavor, 

1, 53-60.  

Frank, M. E. (1991). Taste-responsive neurons of the glossopharyngeal nerve of the rat. Journal of 

Neurophysiology, 65(6), 1452-1463.  

Frankmann, S. P., Sollars, S. I., & Bernstein, I. L. (1996). Sodium appetite in the sham-drinking rat after 

chorda tympani nerve transection. American Journal of Physiology, 271(2 Pt 2), R339-345.  

Gannon, K. S., Smith, J. C., Henderson, R., & Hendrick, P. (1992). A system for studying the 

microstructure of ingestive behavior in mice. Physiology & Behavior, 51(3), 515-521.  

Garcia, J., Kimeldorf, D. J., & Koelling, R. A. (1955). Conditioned aversion to saccharin resulting from 

exposure to gamma radiation. Science, 122, 157-158.  

Geran, L. C., & Spector, A. C. (2000). Sodium taste detectability in rats is independent of anion size: the 

psychophysical characteristics of the transcellular sodium taste transduction pathway. Behavioral 

Neuroscience, 114(6), 1229-1238.  

Glatt, R. A., St. John, S. J., Lu, L., & Boughter, J. D., Jr. (2016). Temporal and qualitative dynamics of 

conditioned taste aversions in C57BL/6J and DBA/2J mice self-administering LiCl. Physiology & 

Behavior, 153, 97-108. doi:10.1016/j.physbeh.2015.10.033 

Grill, H. J., & Norgren, R. (1978). Neurological tests and behavioral deficits in chronic thalamic and 

chronic decerebrate rats. Brain Research, 143(2), 299-312.  

Grobe, C. L., & Spector, A. C. (2008). Constructing quality profiles for taste compounds in rats: A novel 

paradigm. Physiology & Behavior. doi:10.1016/j.physbeh.2008.07.007 

Hayar, A., Bryant, J. L., Boughter, J. D., & Heck, D. H. (2006). A low-cost solution to measure mouse 

licking in an electrophysiological setup with a standard analog-to-digital converter. Journal of 

Neuroscience Methods, 153(2), 203-207. doi:10.1016/j.jneumeth.2005.10.023 



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 34 

 

Heck, G. L., Mierson, S., & DeSimone, J. A. (1984). Salt taste transduction occurs through an amiloride-

sensitive sodium transport pathway. Science, 223(4634), 403-405.  

Heidenreich, P. A., Trogdon, J. G., Khavjou, O. A., Butler, J., Dracup, K., Ezekowitz, M. D., . . . Woo, Y. 

J. (2011). Forecasting the future of cardiovascular disease in the United States: a policy statement 

from the American Heart Association. Circulation, 123(8), 933-944. 

doi:10.1161/CIR.0b013e31820a55f5 

Hettinger, T. P., & Frank, M. E. (1990). Specificity of amiloride inhibition of hamster taste responses. 

Brain Research, 513(1), 24-34.  

Hettinger, T. P., Gent, J. F., Marks, L. E., & Frank, M. E. (1999). A confusion matrix for the study of 

taste perception. Perception & Psychophysics, 61(8), 1510-1521.  

Heyer, B. R., Taylor-Burds, C. C., Mitzelfelt, J. D., & Delay, E. R. (2004). Monosodium glutamate and 

sweet taste: discrimination between the tastes of sweet stimuli and glutamate in rats. Chemical 

Senses, 29(8), 721-729. doi:10.1093/chemse/bjh081 

Heyer, B. R., Taylor-Burds, C. C., Tran, L. H., & Delay, E. R. (2003). Monosodium glutamate and sweet 

taste: generalization of conditioned taste aversion between glutamate and sweet stimuli in rats. 

Chemical Senses, 28(7), 631-641.  

Hill, J. H., & Stellar, E. (1951). An electronic drinkometer. Science, 114(2950), 43-44.  

Horio, N., Yoshida, R., Yasumatsu, K., Yanagawa, Y., Ishimaru, Y., Matsunami, H., & Ninomiya, Y. 

(2011). Sour taste responses in mice lacking PKD channels. PLoS One, 6(5), e20007. 

doi:10.1371/journal.pone.0020007 

Houser, G., Breza, J. M., Balasubramanian, K., Travers, J. B., & Travers, S. P. (2017, April). Light-

Driven Responses from Putative Type I Taste Bud Cells Expressing Channelrhodopsin-2. Poster 

presented at the Association for Chemoreception Sciences Annual Meeting, Bonita Springs, FL. 

Hu, W. C., Lai, C. Y., Shyu, L. Y., & Tung, C. S. (1998). A methodological improvement and system 

validation to obtain precise behavioral parameters for schedule-induced polydipsia. Chinese 

Journal of Physiology, 41(1), 9-17.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 35 

 

Huang, A. L., Chen, X., Hoon, M. A., Chandrashekar, J., Guo, W., Trankner, D., . . . Zuker, C. S. (2006). 

The cells and logic for mammalian sour taste detection. Nature, 442(7105), 934-938.  

Huang, Y. A., Maruyama, Y., & Roper, S. D. (2008). Norepinephrine is coreleased with serotonin in 

mouse taste buds. J Neurosci, 28(49), 13088-13093. doi:10.1523/jneurosci.4187-08.2008 

Huang, Y. A., Maruyama, Y., Stimac, R., & Roper, S. D. (2008). Presynaptic (Type III) cells in mouse 

taste buds sense sour (acid) taste. Journal of Physiology, 586(Pt 12), 2903-2912. 

doi:10.1113/jphysiol.2008.151233 

Huang, Y. J., Maruyama, Y., Dvoryanchikov, G., Pereira, E., Chaudhari, N., & Roper, S. D. (2007). The 

role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. 

Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6436-

6441.  

Hume, W. J., & Potten, C. S. (1976). The ordered columnar structure of mouse filiform papillae. Journal 

of Cell Science, 22(1), 149-160.  

Iwasaki, S., Okumura, Y., & Kumakura, M. (1999). Ultrastructural study of the relationship between the 

morphogenesis of filiform papillae and the keratinization of the lingual epithelium in the mouse. 

Cells Tissues Organs, 165(2), 91-103. doi:10.1159/000016679 

Joo, Y.-H., Hwang, S.-H., Han, K.-d., Seo, J.-H., & Kang, J.-M. (2015). Relationship between olfactory 

dysfunction and suicidal ideation: The Korea National Health and Nutrition Examination Survey. 

American Journal of Rhinology & Allergy, 29(4), 268-272. doi:10.2500/ajra.2015.29.4194 

Jung, H. S., Akita, K., & Kim, J. Y. (2004). Spacing patterns on tongue surface-gustatory papilla. 

International Journal of Developmental Biology, 48(2-3), 157-161. doi:10.1387/ijdb.041824hj 

Kataoka, S., Yang, R., Ishimaru, Y., Matsunami, H., Sevigny, J., Kinnamon, J. C., & Finger, T. E. (2008). 

The candidate sour taste receptor, PKD2L1, is expressed by Type III taste cells in the mouse. 

Chemical Senses, 33(3), 243-254.  

Kurlansky, M. (2002). Salt: A world history. New York, NY: Walker and Co. 



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 36 

 

Lehman, C. D., Bartoshuk, L. M., Catalanotto, F. C., Kveton, J. F., & Lowlicht, R. A. (1995). Effect of 

anesthesia of the chorda tympani nerve on taste perception in humans. Physiology & Behavior, 

57(5), 943-951. doi:10.1016/0031-9384(95)91121-R 

Lemon, C. H. (2017). Modulation of taste processing by temperature. American Journal of Physiology. 

Regulatory, Integrative and Comparative Physiology, 313(4), R305-R321. 

doi:10.1152/ajpregu.00089.2017 

Lemon, C. H., Kang, Y., & Li, J. (2016). Separate functions for responses to oral temperature in thermo-

gustatory and trigeminal neurons. Chemical Senses, 41(5), 457-471. doi:10.1093/chemse/bjw022 

Lewandowski, B. C., Sukumaran, S. K., Margolskee, R. F., & Bachmanov, A. A. (2016). Amiloride-

insensitive salt taste is mediated by two populations of Type III taste cells with distinct 

transduction mechanisms. Journal of Neuroscience, 36(6), 1942-1953. 

doi:10.1523/jneurosci.2947-15.2016 

Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., & Adler, E. (2002). Human receptors for sweet and 

umami taste. Proceedings of the National Academy of Sciences of the United States of America, 

99(7), 4692-4696.  

Loney, G. C., Blonde, G. D., Eckel, L. A., & Spector, A. C. (2012). Determinants of taste preference and 

acceptability: quality versus hedonics. Journal of Neuroscience, 32(29), 10086-10092. 

doi:10.1523/jneurosci.6036-11.2012 

Ludwig, D. S., Majzoub, J. A., Al-Zahrani, A., Dallal, G. E., Blanco, I., & Roberts, S. B. (1999). High 

glycemic index foods, overeating, and obesity. Pediatrics, 103(3), E26.  

Lundy, R. F., Jr., & Contreras, R. J. (1997). Temperature and amiloride alter taste nerve responses to 

Na+, K+, and NH+4 salts in rats. Brain Research, 744(2), 309-317. doi:10.1016/S0006-

8993(96)01118-3 

Lundy, R. F., Jr., & Contreras, R. J. (1999). Gustatory neuron types in rat geniculate ganglion. Journal of 

Neurophysiology, 82(6), 2970-2988.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 37 

 

Ma, Y., He, F. J., & MacGregor, G. A. (2015). High Salt Intake. Hypertension, 71(5), 843-849. 

doi:10.1161/HYPERTENSIONAHA.115.05948 

Mast, T. G., Breza, J. M., & Contreras, R. J. (2017). Thirst increases chorda tympani responses to sodium 

chloride. Chemical Senses, 42(8), 675-681. doi:10.1093/chemse/bjx052 

Mbiene, J. P., & Farbman, A. I. (1993). Evidence for stimulus access to taste cells and nerves during 

development: an electron microscopic study. Microscopy Research and Technique, 26(2), 94-105. 

doi:10.1002/jemt.1070260203 

Mbiene, J. P., Maccallum, D. K., & Mistretta, C. M. (1997). Organ cultures of embryonic rat tongue 

support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. 

Journal of Comparative Neurology, 377(3), 324-340. doi:10.1002/(SICI)1096-

9861(19970120)377:3<324::AID-CNE2>3.0.CO;2-4 

Miller, I. J., Jr., & Whitney, G. (1989). Sucrose octaacetate-taster mice have more vallate taste buds than 

non-tasters. Neuroscience Letters, 100(1-3), 271-275.  

Mueller, K. L., Hoon, M. A., Erlenbach, I., Chandrashekar, J., Zuker, C. S., & Ryba, N. J. (2005). The 

receptors and coding logic for bitter taste. Nature, 434(7030), 225-229.  

Murray, R. G. (1993). Cellular relations in mouse circumvallate taste buds. Microscopy Research and 

Technique, 26(3), 209-224. doi:10.1002/jemt.1070260304 

Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., . . . Bamberg, E. (2003). 

Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of 

the National Academy of Sciences of the United States of America, 100(24), 13940-13945.  

Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single 

green fluorescent protein. Nature Biotechnology, 19, 137. doi:10.1038/84397 

Nakamura, K., & Norgren, R. (1993). Taste responses of neurons in the nucleus of the solitary tract of 

awake rats: an extended stimulus array. Journal of Neurophysiology, 70(3), 879-891.  

Nejad, M. S. (1986). The neural activities of the greater superficial petrosal nerve of the rat in response to 

chemical stimulation of the palate. Chemical Senses, 11, 283-293.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 38 

 

Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J., & Zuker, C. S. (2002). An 

amino-acid taste receptor. Nature, 416(6877), 199-202.  

Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J., & Zuker, C. S. (2001). Mammalian 

sweet taste receptors. Cell, 106(3), 381-390.  

Ninomiya, Y., & Funakoshi, M. (1988). Amiloride inhibition of responses of rat single chorda tympani 

fibers to chemical and electrical tongue stimulations. Brain Research, 451(1-2), 319-325. 

doi:0006-8993(88)90777-9 

Nishijo, H., & Norgren, R. (1990). Responses from parabrachial gustatory neurons in behaving rats. 

Journal of Neurophysiology, 63(4), 707-724.  

Nishijo, H., & Norgren, R. (1997). Parabrachial neural coding of taste stimuli in awake rats. Journal of 

Neurophysiology, 78(5), 2254-2268.  

Oakley, B. (1975). Receptive fields of cat taste fibers. Chemical Senses, 1(4), 431-442. 

doi:10.1093/chemse/1.4.431 

Ogawa, H., Sato, M., & Yamashita, S. (1968). Multiple sensitivity of chordat typani fibres of the rat and 

hamster to gustatory and thermal stimuli. Journal of Physiology, 199(1), 223-240.  

Ossenkopp, K. P., Cooley, R. K., & Vanderwolf, C. H. (1980). A simple method of monitoring licking 

responses that is compatible with electrophysiological recording. Physiology & Behavior, 24(4), 

801-803.  

Peng, Y., Gillis-Smith, S., Jin, H., Tränkner, D., Ryba, N. J. P., & Zuker, C. S. (2015). Sweet and bitter 

taste in the brain of awake behaving animals. Nature, 527(7579), 512-515.  

Polonia, J., Monteiro, J., Almeida, J., Silva, J. A., & Bertoquini, S. (2016). High salt intake is associated 

with a higher risk of cardiovascular events: a 7.2-year evaluation of a cohort of hypertensive 

patients. Blood Pressure Monitoring, 21(5), 301-306. doi:10.1097/MBP.0000000000000205 

Popkin, B. M. (2015). Nutrition transition and the global diabetes epidemic. Current Diabetes Reports, 

15(9), 64. doi:10.1007/s11892-015-0631-4 



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 39 

 

Prakash, M. R., & Norgren, R. (1991). Comparing salt appetites: induction with intracranial hormones or 

dietary sodium restriction. Brain Research Bulletin, 27(3-4), 397-401.  

Raymond, M. A., Mast, T. G., & Breza, J. M. (2018). An open-source lickometer and microstructure 

analysis program. HardwareX, 4, e00035. doi:10.1016/j.ohx.2018.e00035 

Rehnberg, B. G., MacKinnon, B. I., Hettinger, T. P., & Frank, M. E. (1993). Anion modulation of taste 

responses in sodium-sensitive neurons of the hamster chorda tympani nerve. Journal of General 

Physiology, 101(3), 453-465.  

Roitman, M. F., & Bernstein, I. L. (1999). Amiloride-sensitive sodium signals and salt appetite: multiple 

gustatory pathways. American Journal of Physiology, 276(6 Pt 2), R1732-1738.  

Ruhm, C. J. (2012). Understanding overeating and obesity. Journal of Health Economics, 31(6), 781-796. 

doi:10.1016/j.jhealeco.2012.07.004 

Schiffman, S. S. (1997). Taste and smell losses in normal aging and disease. JAMA, 278(16), 1357-1362.  

Schoenbaum, G., Garmon, J. W., & Setlow, B. (2001). A novel method for detecting licking behavior 

during recording of electrophysiological signals from the brain. Journal of Neuroscience 

Methods, 106(2), 139-146.  

Shimemura, T., Fujita, K., & Kashimori, Y. (2016). A neural mechanism of taste perception modulated 

by odor information. Chemical Senses, 41(7), 579-589. doi:10.1093/chemse/bjw062 

Slotnick, B. M., Sheelar, S., & Rentmeister-Bryant, H. (1991). Transection of the chorda tympani and 

insertion of ear pins for stereotaxic surgery: equivalent effects on taste sensitivity. Physiology & 

Behavior, 50(6), 1123-1127.  

Smeets, M. A. M., Veldhuizen, M. G., Galle, S., Gouweloos, J., de Haan, A.-M. J. A., Vernooij, J., . . . 

Kroeze, J. H. A. (2009). Sense of smell disorder and health-related quality of life. Rehabilitation 

Psychology, 54(4), 404-412.  

Smith, K. R., Treesukosol, Y., Paedae, A. B., Contreras, R. J., & Spector, A. C. (2012). Contribution of 

the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion 



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 40 

 

generalization and chorda tympani nerve responses. American Journal of Physiology. Regulatory, 

Integrative and Comparative Physiology, 303(11), R1195-1205. doi:10.1152/ajpregu.00154.2012 

Sollars, S. I., & Hill, D. L. (1998). Taste responses in the greater superficial petrosal nerve: substantial 

sodium salt and amiloride sensitivities demonstrated in two rat strains. Behavioral Neuroscience, 

112(4), 991-1000.  

Spector, A. C., Blonde, G. D., Henderson, R. P., Treesukosol, Y., Hendrick, P., Newsome, R., . . . 

Donaldson, J. A. (2015). A new gustometer for taste testing in rodents. Chemical Senses, 40(3), 

187-196. doi:10.1093/chemse/bju072 

Spector, A. C., Markison, S., St. John, S. J., & Garcea, M. (1997). Sucrose vs. maltose taste 

discrimination by rats depends on the input of the seventh cranial nerve. American Journal of 

Physiology, 272(4 Pt 2), R1210-1218.  

Spector, A. C., & St. John, S. J. (1998). Role of taste in the microstructure of quinine ingestion by rats. 

American Journal of Physiology, 274(6 Pt 2), R1687-1703.  

St. John, S. J., Garcea, M., & Spector, A. C. (1994). Combined, but not single, gustatory nerve transection 

substantially alters taste-guided licking behavior to quinine in rats. Behavioral Neuroscience, 

108(1), 131-140.  

St. John, S. J., & Spector, A. C. (1998). Behavioral discrimination between quinine and KCl is dependent 

on input from the seventh cranial nerve: implications for the functional roles of the gustatory 

nerves in rats. Journal of Neuroscience, 18(11), 4353-4362.  

Steiner, J. E. (1973). The gustofacial response: Observation on normal and anencephalic newborn infants. 

Symposium on Oral Sensation and Perception, 4, 254-278.  

Steiner, J. E., Glaser, D., Hawilo, M. E., & Berridge, K. C. (2001). Comparative expression of hedonic 

impact: affective reactions to taste by human infants and other primates. Neuroscience and 

Biobehavioral Reviews, 25(1), 53-74.  

Stricker, E. M., Gannon, K. S., & Smith, J. C. (1992). Thirst and salt appetite induced by hypovolemia in 

rats: analysis of drinking behavior. Physiology & Behavior, 51(1), 27-37.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 41 

 

Suemune, S., Nishimori, T., Hosoi, M., Suzuki, Y., Tsuru, H., Kawata, T., . . . Maeda, N. (1992). 

Trigeminal nerve endings of lingual mucosa and musculature of the rat. Brain Research, 586(1), 

162-165.  

Vandenbeuch, A., Clapp, T. R., & Kinnamon, S. C. (2008). Amiloride-sensitive channels in type I 

fungiform taste cells in mouse. BMC Neuroscience, 9, 1.  

Vandevijvere, S., Chow, C. C., Hall, K. D., Umali, E., & Swinburn, B. A. (2015). Increased food energy 

supply as a major driver of the obesity epidemic: A global analysis. Bulletin of the World Health 

Organization, 93(7), 446-456. doi:10.2471/BLT.14.150565 

Venkatesan, N., Boggs, K., & Liu, H. X. (2016). Taste bud labeling in whole tongue epithelial sheet in 

adult mice. Tissue Engineering. Part C, Methods, 22(4), 332-337. 

doi:10.1089/ten.TEC.2015.0377 

Vigorito, M., Sclafani, A., & Jacquin, M. F. (1987). Effects of gustatory deafferentation on Polycose and 

sucrose appetite in the rat. Neuroscience and Biobehavioral Reviews, 11(2), 201-209.  

Webb, M., Fahimi, S., Singh, G. M., Khatibzadeh, S., Micha, R., Powles, J., & Mozaffarian, D. (2017). 

Cost effectiveness of a government supported policy strategy to decrease sodium intake: Global 

analysis across 183 nations. BMJ, 356. doi:10.1136/bmj.i6699 

Weijnen, J. A. W. M. (1989). Lick sensors as tools in behavioral and neuroscience research. Physiology & 

Behavior, 46(6), 923-928. doi:10.1016/0031-9384(89)90192-3 

Whiddon, Z. D., Rynberg, S. T., Mast, T. G., & Breza, J. M. (2018). Aging decreases chorda-tympani 

nerve responses to NaCl and alters morphology of fungiform taste pores in rats. Chemical Senses, 

43(2), 117-128. doi:10.1093/chemse/bjx076 

Wong, P., Colucci-Guyon, E., Takahashi, K., Gu, C., Babinet, C., & Coulombe, P. A. (2000). Introducing 

a null mutation in the mouse K α and K β genes reveals their essential structural role in the oral 

mucosa. The Journal of Cell Biology, 150(4), 921-928.  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 42 

 

Ye, Q., Heck, G. L., & DeSimone, J. A. (1993). Voltage dependence of the rat chorda tympani response 

to Na+ salts: implications for the functional organization of taste receptor cells. Journal of 

Neurophysiology, 70(1), 167-178.  

Yee, C. L., Yang, R., Bottger, B., Finger, T. E., & Kinnamon, J. C. (2001). "Type III" cells of rat taste 

buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene 

product 9.5, and serotonin. Journal of Comparative Neurology, 440(1), 97-108.  

Zemelman, B. V., Lee, G. A., Ng, M., & Miesenböck, G. (2002). Selective photostimulation of 

genetically chARGed neurons. Neuron, 33(1), 15-22. doi:10.1016/S0896-6273(01)00574-8 

Zhao, G. Q., Zhang, Y., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J., & Zuker, C. S. 

(2003). The receptors for mammalian sweet and umami taste. Cell, 115(3), 255-266.  

Zocchi, D., Wennemuth, G., & Oka, Y. (2017). The cellular mechanism for water detection in the 

mammalian taste system. Nature Neuroscience, 20(7), 927-933. doi:10.1038/nn.4575 

 

 

  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 43 

 

Figures 

 

Figure 1. Computer rendering of the lickometer apparatus. A: Illustration of the lickometer chamber, 

exploded. The main body of the chamber is composed of cut acrylic sheets, with acrylic doors that slide 

into place on bracketed tracks. A delrin bottle holder attached to the chamber via velcro, and a tin plate 

cut and fitted to the chamber interior serves as an electrical ground. B: The lickometer chamber, 

assembled and rotated 180°. 
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Figure 2. Photograph of an optic fiber cable passed through a water bottle. The fiber terminates just inside 

the aperture of the bottle's spout. Thus positioned, the fiber illuminates the subject's tongue whenever the 

spout is licked.  
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Figure 3. Graphs illustrating the licks counted by two software packages; R and Spike 2 (S2). Shown are 

records of calculated preference scores (A), and mean licks recorded to sucrose (B) and water (C). By all 

three measures, the counts produced by both programs are virtually identical.  
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Figure 4. Histogram of interlick intervals recorded in Experiment 1. Histograms show all ILIs recorded 

across all test sessions (A), or separated by those with no resistance added (B), or using 10 MΩ of 

additional resistance (C). The distribution of ILIs peaks at 110 ms, with a secondary distribution around 

220 ms, a phenomenon documented in previous lickometer research (Glatt et al., 2016).  



OPTOGENETIC EXAMINATION OF SALT TASTE IN MICE 47 

 

 

Figure 5. Traces of the raw lickometer signal, each showing a recording of a two-second period of time. 

The red line indicated the threshold for detection of a lick, and the green line indicates when the lick-

counting program has registered a lick and recorded the event. One trace was recorded on a circuit with 

no added resistance (A), the other on a circuit with 10 MΩ of added resistance. It is evident that adding 

resistance to the recording circuit dramatically decreases the magnitude of the lickometer signal, severely 

reducing the signal-to-noise ratio.  
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Figure 6. Graphs of licking data separated by resistance added to the recording circuit. Only one 

difference shown is significant; mice licked sucrose (B) significantly more often when no resistance was 

added to the circuit (p = 0.03, d = 1.53). Given the lack of other significant differences, we are inclined to 

interpret this as a practice effect, as the same mice had previously undergone the same testing procedure 

with 10 MΩ of resistance added to the recording circuit. 
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Figure 7. Graphs of palatability indicators as a function of taste solution. Findings show that mice in our 

lickometer apparatus tended to find 0.2 M sucrose more palatable than tap water. All differences are 

significant (p < 0.05).  
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Figure 8. Preference for 0.3 M NaCl solution across different amiloride treatment conditions. There was 

no difference in preference between mice treated with unadulterated or light-treated amiloride (p = 0.45), 

but those two groups had a significantly higher preference for NaCl than the untreated control condition 

(p < 0.01), indicating that self-administration of 300 µM amiloride is sufficient to drive sodium appetite in 

mice. 
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Figure 9. Mean licks per burst separated by amiloride treatment condition. Mice treated with amiloride 

drank NaCl solution in significantly longer bursts than untreated control animals (p < 0.01), with no 

difference between treatment groups (p = 0.92).  
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Figure 10. MPI separated by amiloride treatment condition. Mice treated with amiloride had significantly 

longer MPIs than untreated control animals (p < 0.01), but there was no difference between treatment 

groups (p = 0.10). It has been proposed that longer MPIs may indicate increased palatability (Glatt et al., 

2016).  
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Figure 11. Lick efficiency across amiloride treatment condition. The licks to NaCl solution of mice 

treated with amiloride occurred mainly in bursts, unlike untreated control mice. The difference is 

significant (p < 0.01). This indicates that when treated with amiloride, mice were more likely to taste 

NaCl solution and continue drinking, rather than sampling and retreating.  
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Figure 12. Preference for illuminated water over plain tap water. Mice with light-sensitive Type I TRCs 

had a significantly higher preference for light than light-insensitive mice (p < 0.01), a preference that 

dramatically increased when the light-sensitive mice were sodium-depleted (p < 0.01). Sodium depletion 

had no effect on light-insensitive mice (p =0.60). These findings indicate that stimulation of the Type I 

TRCs simulates the taste of sodium.  
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Figure 13. Mean licks recorded to water or illuminated water across condition of sodium depletion. There 

was a significant effect of sodium depletion on licks to light in the light-sensitive animals (p < 0.01), but 

not the light-insensitive animals (p = 0.60). Additionally, sodium-replete animals demonstrated no 

difference in licking of light across genetic strain (p = 0.53).  
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Figure 14. Average number of licks per burst of licks across amiloride treatment condition. Genetic strain 

had a significant effect on burst duration, with light-sensitive animals licking in longer bursts than 

controls (p =0.03). Sodium-depletion had a significant effect on the duration of bursts delivered to light 

for both strains (p < 0.05), but in control mice, this increase was not significantly different than their 

increased burst duration for water (p = 0.89). Light-sensitive mice, on the other hand, had significantly 

longer bursts to light compared to water when sodium-depleted (p < 0.01).  
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Figure 15. Preference for light relative to water in light-sensitive mice compared across CTA conditions. 

Whether mice were injected with NaCl or LiCl during pairings with sodium gluconate had no significant 

effect on preference score (p = 0.47).  
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Figure 16. Mean licks counts to light and water compared across CTA condition. There were no 

significant differences in total lick count, regardless of whether mice were injected with LiCl or NaCl 

during acquisition trials. Combined with the insignificant difference in preference score, these results 

indicate that mice who experienced the taste of sodium gluconate paired with lithium injections did not 

significantly avoid light.  
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Figure 17. Various microstructural indicators of palatability measured during acquisition trails with 

sodium gluconate. There were no significant differences, indicating that injections of 0.15 M lithium 

chloride failed to condition an aversion to 0.1 M sodium gluconate.  
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Tables 

Table 1 

Comparisons of Licks Identified by Two Different Software Packages Processing the Same Set of 

Lickometer Recordings 

 R Spike2    

 Mean SE Mean SE p d r 

Water Licks 249.62 31.59 250.38 31.61 0.99 0.00 1.00 

Sucrose Licks 679.62 70.05 685.88 71.76 0.95 0.02 1.00 

Preference Score 0.70 0.04 0.70 0.04 0.99 0.01 1.00 

Notes. SE indicates standard error, and d indicates Cohen's d. 
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Table 2 

Measurements of Several Indicators of Palatability, Compared Across Sessions with Either no Added 

Resistance or 10 MΩ of Resistance Added to the Recording Circuit 

 0 MΩ 10 MΩ   

 Mean SE Mean SE p d 

Preference Score 0.73 0.05 0.67 0.03 0.38 0.53 

Sucrose Licks 801.83 77.84 557.42 49.38 0.03 1.53 

Water Licks 226.75 29.66 272.50 32.29 0.32 0.60 

Sucrose MPI 108.70 2.19 111.17 1.64 0.39 0.52 

Water MPI 105.34 1.87 105.42 3.14 0.98 0.01 
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Table 3 

Comparisons of Consumption of 0.2 M Sucrose and Tap Water During Experiment 1 

 Sucrose Tap Water    

 Mean SE Mean SE p d r 

Total Licks 679.62 57.35 249.62 22.01 0.00 2.86 -0.25 

MPI 109.93 1.36 105.38 1.74 0.05 0.84 0.61 

# of Bursts 25.54 2.53 13.71 1.01 0.00 1.77 0.22 

Licks per Burst 25.04 1.79 16.46 1.38 0.00 1.55 0.80 
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Table 4 

Contrast Tests Comparing Several Measures of Palatability Across Animals Treated with Amiloride or 

Water and Across Animals Treated with Photo-Bleached Amiloride or Unadulterated Amiloride 

 Amiloride vs H2O Photo-Bleached Amiloride vs Standard 

Amiloride 

 F(1,33) p R
2 

F(1,33) p R
2 

Preference 

Score  

127.90 < 0.01 0.79 0.58 0.45 0.02 

Total Licks 

(NaCl)  

28.18 < 0.01 0.46 0.57 0.46 0.02 

Total Licks 

(H2O)  

2.33 0.14 0.07 0.32 0.57 0.01 

Licks/Burst 

(NaCl)  

34.93 < 0.01 0.51 0.01 0.92 0.00 

Lick Efficiency 

(NaCl)  

59.51 < 0.01 0.64 0.70 0.41 0.02 
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Table 5 

Descriptive Statistics for a Number of Indicators of Palatability, Separated by Amiloride Treatment 

Condition 

 Amiloride Photo-Bleached Amiloride Water 

 Mean SE Mean SE Mean SE 

Preference 

Score  

0.88 0.01 0.85 0.02 0.51 0.04 

Total Licks 

(NaCl)  

782.25 96.39 678.25 138.45 94.17 15.93 

Total Licks 

(H2O)  

116.67 14.91 106.50 13.71 87.92 8.39 

Licks/Burst 

(NaCl)  

28.11 2.85 28.55 4.04 6.96 1.32 

Lick Efficiency 

(NaCl)  

0.74 0.03 0.69 0.05 0.30 0.04 
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Table 6 

Contrast Tests Assessing Effects of Genetic Strain, and of Sodium Depletion Within Strains, on a Number 

of Indicators of Palatability of Water or Water Illuminated with 470 nm Light 

 ChR2 vs. Ai32 Dep vs. Rep (ChR2) Dep vs. Rep (Ai32) 

 F(1,49) p R
2 

F(1,49) p R
2 

F(1,49) p  R
2 

Preference 

Score  

27.67 < 0.01 0.36 15.81 < 0.01 0.24 0.29 0.60 0.01 

Total Licks 

(470 nm)  

12.49 < 0.01 0.20 35.66 < 0.01 0.42 0.28 0.60 0.01 

Total Licks 

(H2O)  

1.03 0.32 0.02 2.69 0.11 0.05 5.84 0.02 0.11 

Licks/Burst 

(470 nm)  

5.12 0.03 0.09 18.26 < 0.01 0.27 4.66 0.04 0.09 

Efficiency 

(470 nm)  

1.47 0.23 0.03 49.22 < 0.01 0.50 14.56 < 0.01 0.23 
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Table 7 

Descriptive Statistics for a Number of Indicators of Palatability of Water or Water Illuminated with 470 

nm Light, Separated by Genetic Strain and Amiloride Treatment Condition 

 ChR2-Dep ChR2-Rep Ai32-Dep Ai32-Rep 

 Mean SE Mean SE Mean SE Mean SE 

Preference 

Score  

0.79 0.04 0.56 0.03 0.41 0.08 0.45 0.04 

Total Licks 

(470 nm)  

482.06 83.83 61.62 9.88 99.80 24.71 51.80 11.63 

Total Licks 

(H2O)  

105.24 21.15 56.81 11.75 152.00 45.88 60.30 9.66 

Licks/Burst 

(470 nm)  

17.37 1.24 7.46 1.88 11.51 3.16 5.08 0.37 

Efficiency 

(470 nm)  

0.65 0.02 0.31 0.03 0.55 0.07 0.32 0.02 
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Table 8 

Descriptive Statistics for a Number of Indicators of Palatability, Separated by CTA Condition. Data 

Collected during Generalization Trials Comparing Water and Water Illuminated with 470 nm Light 

 LiCl Injection NaCl Injection 

 Mean SE Mean SE 

Preference Score  0.45 0.06 0.51 0.06 

Total Licks (470 nm)  201.38 30.00 288.56 40.63 

Total Licks (H2O)  285.75 54.56 280.38 41.80 

Licks/Burst (470 nm)  20.71 2.99 27.22 3.93 

Efficiency (470 nm)  0.75 0.05 0.85 0.02 

MPI (470 nm) 95.72 4.08 107.43 3.69 
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Table 9 

Descriptive Statistics for a Number of Indicators of Palatability, Recorded during Acquisition Trails with 

Sodium Gluconate, Followed by Injections of Lithium Chloride. Data are Separated by Day: Day 1 

Indicating the First Exposure to Sodium Gluconate, and Day 2 Indicating the Second Exposure 

 Day 1 Day 2 

 Mean SE Mean SE 

Total Licks  420.00 64.16 407.50 17.48 

Licks/Burst  17.90 2.13 17.65 1.55 

Efficiency  0.82 0.02 0.84 0.01 

MPI 101.33 2.07 102.24 2.12 
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