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 Abstract 

Mycosubtilin is a naturally occurring antifungal obtained from Bacillus subtilis that also 

displays limited antibiotic activity. Structurally, mycosubtilin is a macrocyclic 

lipoheptapeptide of sequence Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the N-terminal Asn joined 

by a β-amino fatty acid. Besides the antifungal and antibiotic activities, these molecules are 

also hemolytic in nature. Hence, the purpose of this study is to synthesize a potent antifungal 

analogue of mycosubtilin, with a modified β-amino fatty acid, devoid of any hemolytic 

activity. A chemoenzymatic approach was used to synthesize the cyclic peptide, which 

involved the synthesis of the linear peptide chain of desired amino acid sequence, thiophenyl 

derivatization of the peptide at the C-terminus, followed by its enzymatic cyclization using 

the isolated thioesterase from B. subtilis. Thus far, we have successfully synthesized the 

analogue of mycosubtilin. Future work will focus on purifying the product and testing it for 

antifungal and hemolytic activity. 
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1. Introduction 

1.1. Pathogenic Resistance and Lipopeptides: 

The development of resistance by bacteria and fungi to most of the clinically 

available antimicrobials has been an emerging concern to modern medicine. Though the 

resistance is more commonly reported in bacteria, the problem is equally critical in the 

management of fungal infections due to the availability of only a very limited number of 

antifungal agents for systemic infections. The use of several other antifungal agents is limited 

to the skin infections due to their harmful side effects (Vandeputte et al., 2012). The 

increasing emergence of drug-resistant pathogenic strains along with the lack of options to 

treat systemic fungal infections emphasizes the need for a new class of antifungals with a 

novel mechanism of action. Despite the technological advances in the areas of synthetic 

chemistry, nature is the major source of new drugs, and natural products still play a crucial 

role in the drug discovery process. Two promising classes of naturally occurring compounds 

that have gained enormous attention in past few decades are host-defense antimicrobial 

peptides (AMPs) and lipopeptides. 

Host-defense antimicrobial peptides (AMPs) are produced by all kinds of living 

organisms and constitute an important element of the innate immune system of any organism. 

These molecules are broad spectrum in their activity, being active against bacteria, fungi, and 

most other pathogens (Boman, 1995; Hancock and Diamond, 2000; Zasloff, 2002). 

Structurally, they are composed of 12-50 amino acids, approximately 50% of which are 

hydrophobic in nature. The level of hydrophobicity is an important determinant of the 

activity. Most of them adopt an amphipathic structure in proximity to membranes, which is 

considered to be essential for antimicrobial activity (Shai and Oren, 2001; Tossi and Sandri, 
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2002). AMPs are quite diverse as more than 1700 natural compounds have been isolated to 

date, and many more analogues have been synthesized (Brahmachary et al., 2004). Studies 

on the mechanism of action of AMPs have revealed that they act by disrupting membranes of 

pathogens, unlike conventional antibiotics, which have DNA or enzymes as specific targets. 

Also, the action of AMPs is rapid and more damaging. Due to these reasons, it is 

comparatively difficult for the pathogens to develop resistance against AMPs (Hancock and 

Sahl, 2006; Jenssen et al., 2006; Peschel and Sahl, 2006; Zasloff, 2002). It is believed that 

these AMPs, owing to their positive charge, bind to negatively charged LPS 

(lipopolysaccharide) of gram negative bacteria or lipoteichoic acid of gram positive bacteria, 

which is followed by permeation and disruption of the phospholipid membrane. In fungi, 

AMPs cause lysis by initially binding to the membrane phosphatidylinositol (PI) or cell wall 

(rich in polybranched β-D-glucan) (Avrahami and Shai, 2004; Balkovec, 1994; De Lucca and 

Walsh, 1999; Powers and Hancock, 2003; Thevissen et al., 1999). Furthermore, it was found 

that these AMPs damage membranes by first accumulating at the cell surface at a 

concentration enough to penetrate the membrane, followed by membrane destruction in a 

detergent-like manner (Pouny et al., 1992; Shai, 2002). Hence, AMPs have demonstrated 

huge potential as lead molecules in the discovery of antimicrobials against multi-drug 

resistant pathogens. 

Lipopeptides are amphipathic compounds produced only by bacteria and fungi 

(Balkovec, 1994; De Lucca and Walsh, 1999). They are characterized by a hydrophobic lipid 

tail attached to a peptide moiety. The fatty acid can have a varied number of carbon atoms, 

while the peptide portion may be either cationic or anionic and can be composed of both 

proteinaceous and non-proteinaceous amino acids. The length of lipid tail and the amino acid 
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sequence of peptide chain determine the cell specificity and spectrum of antimicrobial 

activity of the lipopeptide (Makovitzki et al., 2006). A few classical examples of lipopeptides 

with a cationic peptide motif are polymyxin B and colistin, while those with an anionic 

peptide motif are daptomycin and surfactin (Jerala, 2007; Strieker and Marahiel, 2009). The 

mechanism of action of most of these lipopeptides is still not completely understood. There 

has been a consensus that these lipopeptides, due to their hydrophobic nature, act on 

membranes to show their lytic activity. However, one of the biggest hurdles in the clinical 

use of these lipopeptides is their non-specific action. They damage both pathogenic and host 

cells. Recently, daptomycin was approved by the Food and Drug Administration for topical 

use only (Steenbergen et al., 2005). Table 1 shows some natural product-based lipopeptide 

antibiotics currently in preclinical and clinical studies (Pirri et al., 2009). Nevertheless, the 

use of lipopeptides for treating systemic infections is still limited. 

Lipopeptides, especially the ones obtained from Bacillus species, also find their use 

as biocontrol agents to combat several phytopathogens, including bacteria, fungi, and 

oomycetes (Ongena and Jacques, 2008). 

One of the most common bacterial strains that is known for producing a wide variety 

of antimicrobial lipopeptides is Bacillus subtilis. Approximately 4-5% of its genome encodes 

for more than two dozen antimicrobials (Stein, 2005). 
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Table 1: Natural product derived lipopeptides currently in pre-clinical and clinical studies. 

Compound 

name 

(commercial 

name) 

Therapeutic 

area 

Method of 

Manufacture 

Lead compound 

& 

producing 

organism 

Company Phase 

Daptomycin 

(Cubicin) 

Complicated 
infections of 

skin & 
skin structure/S. 
aureus 

bacteremia 
& right-sided 

endocarditis 

Fermentation Daptomycin & 
Streptomyces 

roseosporus 
NRRL11379 

Cubist Market 

CB-182, 804 Gram-negative 
infections 

Semi-
synthetic 

----- Cubist IND 

WAP-8294A2 MRSA 
infections 

Fermentation WAP-8294A2 & 
Lysobacter sp. 

aRigen Phase I 

NAB739 & 

NAB7061 

MDR Gram-
negative 
bacterial 

infections 

Semi-
synthetic 

Polymyxin 
B/colistin & 
Bacillus 

polymyxa 

Northern 
Antibiotics 

Preclinical 

MX-2401 Serious gram 
positive 

bacterial 
infections 

Semi-
synthetic 

Amphomycin & 
Streptomyces 

canus 
ATCC 12237 

Migenix Preclinical 

Lipohexapepti

des HB1275 & 

HB1345 

Acne, rosacea, 
MRSA & 

coutaneous 
mycoses 

Synthetic HB1275 & 
HB1345 None 

Helix 
Biomedix 

Preclinical 

Telavancin Complicated 

skin & skin 
structure 
infections 

(cSSSI) caused 
by Gram-

positive bacteria 

Semi-

synthetic 

Vancomyncin & 

Amycolatopsis 
orientalis 

Theravance NDA 

Caspofungin 

(Cancidas) 

Antifungal Semi-
synthetic 

Echinocandins & 
Glarea 

lozoyensis 

Merck and 
Co. 

Market 

Micafungin 

(Mycamine) 

Antifungal Semi-
synthetic 

Echinocandins & 
Coleophoma 
empetri 

Astellas 
Pharmaceut
icals 

Market 

Anidulafungin 

(Eraxis) 

Antifungal Semi-

synthetic 

Echinocandins & 

Aspergillus 
nidulans 

Pfizer 

Pharmaceut
icals 

Market 
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1.2. Bacillus Lipopeptides: 

Iturins, surfactins, and fengycins are the major classes of macrocyclic biologically 

active lipopeptides, among more than two dozen antibiotics isolated from different strains of 

Bacillus (Ongena and Jacques, 2008). Iturins are mainly produced by B. subtilis (Bonmatin et 

al., 2003) and B. amyloliquefaciens (Koumoutsi et al., 2004); surfactins and similar 

lipopeptides by B. coagulans (Huszcza and Burczyk, 2006), B. pumilus, and B. licheniformis 

(Peypoux et al., 1999); and fengycins by B. cereus (Tsuge et al., 1999), B. thuringiensis (Kim 

et al., 2004), B. subtilis (Jacques et al., 1999), and B. amyloliquefaciens. These compounds 

are macrocyclic in nature and possess antibacterial, antifungal, and surfactant properties. In a 

study by Chen et al. (2008), the antimicrobial activity of B. subtilis lipoheptapeptides was 

demonstrated against the species F. graminearum, R. solani, P. irregulare, C. fulvum, B. 

cineria, A. niger, and P. expansum. In general, surfactins possess broad spectrum 

antibacterial activity, while iturins and fengycins are fungicidal in nature. Due to these 

antimicrobial lipopeptides, B. subtilis finds its potential application as a biocontrol agent in 

the agriculture and food industries. 

Surfactins have several variants, but all of them are heptapeptides cyclized by the 

hydroxyl group of a β-hydroxy fatty acid (Figure 1) (Peypoux et al., 1999). Surfactins are 

strong surfactants which endow them with powerful emulsifying properties. Furthermore, 

due to their amphiphilic nature, they have the ability to disrupt biological membranes. 

Studies have suggested that at concentrations of CMC (Critical Micellar Concentration), 

surfactins can completely dissolve and disrupt a membrane (Carrillo et al., 2003; Heerklotz 

and Seelig, 2007). However, the amount of cholesterol in the membrane can adversely affect 

the membrane perturbing ability of surfactins. High cholesterol content in membranes 
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diminishes the surfactin activity (Carrillo et al., 2003). This explains why surfactins possess 

strong antibacterial, antiviral, and hemolytic activities, but no marked fungicidal activity. 

The antimicrobial activity of iturins against different strains like M. luteus, S. 

cerevisiae, and Candida species has been established (Besson et al., 1978; Besson et al., 

1979; Fickers et al., 2009). Basically, iturins possess strong antifungal activity against 

different kinds of fungi and yeasts, and mild antibacterial activity against Micrococcus and 

Sarcina species (Delcambe and Devignat, 1957).  However, these molecules are also strongly 

hemolytic, which limits their clinical use. Iturins are characterized by a heptapeptide of alpha 

amino acids of the LDDLLDL configuration cyclized with a beta amino fatty acid of the R 

configuration. Iturins (A-E), Bacillomycins L, D, F, Lc, and mycosubtilin are some of the 

variants of the iturin class which have some common structural properties (Figure 1) 

(Ongena and Jacques, 2008). 
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Figure 1: Structures of major classes of lipopetides from strains of Bacillus and the amino 

acid sequence of their structural variants. Bacillus lipopeptides are characterized 

by a macrocyclic peptide ring structure attached to a lipid tail. 
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1.3. Mycosubtilin: 

Mycosubtilin is the most potent antifungal agent from the iturin class (Besson et al., 

1979). It is composed of a heptapeptide of α-amino acids cyclized by a beta amino acid that 

has a long fatty acid chain attached to it. The amino acid sequence of mycosubtilin follows 

the order Asn-Tyr-Asn-Gln-Pro-Ser-Asn from N to C terminus, with the characteristic 

configuration LDDLLDL. The natural molecule has C14 to C17 carbon atoms in the β-amino 

acid (Peypoux et al., 1976). 

Structurally, mycosubtilin differs from iturin A only in the inversion of the last two 

amino acids. Hence, iturin A contains D-Asn and L-Ser, while mycosubtilin contains D-Ser 

and L-Asn as the amino acids at C-terminus (Figure 2). This slight structural difference leads 

to a dramatic difference in their activities. Recent studies have shown the superiority of 

mycosubtilin over iturin A as antimicrobial agents (Maget-Dana and Peypoux, 1994). 

Structure-activity relationship (SAR) studies provide a better idea of the amino acids and 

groups required for the antifungal activity of iturins, which further help in optimizing their 

activities. 

 

Figure 2: Structure of mycosubtilin and iturin A. α-amino acids are shown in color and the β-

amino fatty acid is shown in black. Natural occurring molecule contains 14 to 17 

carbon atoms in the β-amino acid. 



 

9 
 

1.3.1. Structure-Activity Relationship (SAR) studies: 

Previous SAR studies have shown that the first three amino acids in iturins, L-Asx 

(x=p or n), D-Tyr, and D-Asn are important for the retention of antimicrobial activity. This is 

evident from the fact that the replacement of L-Asn in iturin A by L-Asp in iturin C leads to a 

loss of antimicrobial activity (Volpon et al., 2007). Also, the methylation of the phenolic 

group of D-Tyr causes substantial reduction in activity. This suggests that these three amino 

acids in iturins may be responsible for interaction with the target membranes. 

SAR studies revealed the importance of a tyrosine residue at the 2nd position for the 

retention of antimicrobial activity. Methylation or acetylation of the phenolic group of 

tyrosine resulted in a substantial decrease in the antibacterial activity of mycosubtilin on 

Micrococcus luteus. Methylation caused an absolute loss of activity with 0% growth 

inhibition of M. luteus after 8 hours for 20 µg/ml concentration of antibiotic. Acetylation of 

the tyrosine phenolic group in mycosubtilin resulted in slightly higher activity than the 

methylated derivative, with 6% inhibition at 20 µg/ml and 22% inhibition at 60 µg/ml, 

compared to 0% and 3% with the methylated derivative, respectively. This indicates the 

importance of a polar hydroxyl group in the activity of mycosubtilin. A similar reduction in 

activity was observed with acetylation of the hydroxyl group of serine in mycosubtilin, again 

indicating the importance of polarity in retention of activity (Peypoux et al., 1979). 

Besson et al. (1979) performed the antifungal activity testing of iturin A, 

mycosubtilin, bacillomycin L, and their derivatives on S. cerevisiae and found that 

methylation and acetylation of tyrosine and serine lead to a marked reduction in antifungal 

activity, similar to antibacterial activity on M. luteus. Hence, it was concluded that the polar 

hydroxyl groups play a crucial role in the antimicrobial activity of iturins. 
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The conformational studies on mycosubtilin in solution by 2-D NMR demonstrated 

that the cyclic peptide is highly rigid in the region of L-proline and more flexible in the 

region of D-tyrosine (Genest et al., 1987). This supports the fact that the flexible D-tyrosine 

may be responsible for interactions with lipid/biological membranes and possibly for their 

disruption. 

1.3.2. Mechanism of Action: 

The mechanism of action of mycosubtilin has not been fully elucidated. A number of 

studies have been reported on the interaction of mycosubtilin with target cellular membranes; 

however, the molecular mechanism behind its activity is not yet thoroughly explored (Nasir 

and Besson, 2011). It has been proposed that iturins act by inducing pore formation in 

cytoplasmic membranes, which leads to an increase in K+ permeability (Maget-Dana and 

Peypoux, 1994). The change in permeability of plasma membranes also leads to the release 

of biomolecules like proteins, nucleotides, and lipids from cells, which ultimately causes cell 

death (Besson and Michel, 1989). 

In a study by Maget-Dana et al. (1985), the ability of iturin A to form pores in the 

membranes was evaluated by the measurement of electrical conductance in bimolecular lipid 

membranes (BLM). The addition of low concentrations of iturin A to the bimolecular 

membrane showed an increase in the electrical conductance of the membrane in discrete 

patterns. This suggests the formation of pores in the membranes by iturins. Additionally, 

iturins in the presence of cholesterol showed a dramatic increase in the electrical conductance 

of the membrane. This is attributed to the simultaneous opening of pores, along with 

formation of new pores. Hence, the study suggests that iturins may induce pore formation in 
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the membranes, the extent of which depends on the concentration of cholesterol in the 

membrane. 

The monolayer and multilamellar studies on the interaction of mycosubtilin with 

phosphatidylcholine phospholipid (DPMC) and cholesterol containing membranes suggest 

that mycosubtilin has a higher affinity for cholesterol than phosholipids. Nasir et al. (2010) 

demonstrated the ability of mycosubtilin to bind to DPMC phospholipid monolayer 

membranes and reported the constant exclusion pressure during the mycosubtilin-membrane 

interaction. This interaction involves mycosubtilin aggregate formation in the phospholipid 

monolayer, leading to a change in conformation and damage to the membrane. In another 

study by Nasir and Besson (2011), the higher exclusion pressure was demonstrated for the 

phospholipid/cholesterol (DMPC-cholesterol) model compared to phospholipid (DPMC) 

alone, indicating the higher affinity of mycosubtilin for cholesterol than for phospholipids. 

The monolayer studies on cholesterol containing membranes indicate the involvement of the 

hydroxyl group of cholesterol in the interaction with mycosubtilin, as lower exclusion 

pressure was observed on derivatization of hydroxyl to an acetyl group. The multilamellar 

studies have shown significant structural changes in the peptide backbone and the tyrosyl 

residue of mycosubtilin induced by cholesterol, indicating the involvement of the tyrosyl 

phenolic group of mycosubtilin in the cholesterol-mycosubtilin interaction. Hence, in 

conclusion, mycosubtilin possesses preferential affinity for cholesterol over other sterols and 

lipids, and its antifungal activity is possibly the result of the interaction between its polar 

residues and the hydroxyl group of cholesterol in biological membranes. 

In the antifungal activity study of mycosubtilin and other iturins on S. cerevisiae, 

cholesterol was found to be a strong inhibitor of the activity (Besson et al., 1979). 
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Furthermore, no reduction in activity was observed with cholesterol derivatives like 

cholesterol methyl ether, cholesterol acetate, and cholesterol stearate. These results are in 

accordance with the other results suggesting mycosubtilin interaction with the hydroxyl 

group of cholesterol. 

 

1.4. Mycosubtilin Production: 

There are three major biosynthetic pathways by which Bacillus species synthesize 

secondary metabolites: Polyketide synthetases (PKSs), non-ribosomal peptide synthetases 

(NRPSs), and hybrid PKSs/NRPSs. These pathways, owing to their modular nature, produce 

both a structurally and functionally diverse group of biologically active molecules, which 

includes immunosuppressants, antimicrobials, and antitumor agents. 

Type I PKSs in bacteria are the multifunctional proteins with multiple catalytic sites, 

termed as modules. Each module catalyzes one cycle of chain elongation and is composed of 

multiple domains. A typical module is composed minimally of an acyltransferase (AT) 

domain, acyl carrier protein (ACP), and a ketoacyl synthase (KS) domain. AT and ACP are 

involved in building block unit selection and loading, while the KS domain catalyzes the 

chain elongation or condensation reaction between the growing chain and the building 

blocks. These modules can have some additional domains like a ketoreductase (KR) for 

reducing a β-ketone to an alcohol, a dehydratase (DH) for dehydration of an alcohol to an 

alkene, and an enoyl reductase (ER) to yield the saturated product. An amino-transferase 

(AMT) domain is the link between PKSs and NRPSs in hybrid PKSs/NRPSs systems that 

converts a fatty acid to an amino acid (Figure 3) (Du et al., 2001). 
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Non-ribosomal peptides are short peptides of generally less than 20 amino acids. 

NRPs can be linear, cyclic, or branched and may contain both proteinaceous and non-

proteinaceous amino acids. The ability of NRPSs to incorporate a wide variety of amino 

acids in the growing peptide chain, combined with its modular nature, explains the huge 

diversity in the products produced by this pathway. The order and number of modules in 

NRPSs determine the sequence and number of amino acids in the peptide chain. A typical 

module is composed of an adenylation (A) domain for activation of a specific amino acid as 

an aminoacyl adenylate, a thiolation (T) domain or peptidyl carrier protein (PCP) for 

thioesterification of the amino acid and its attachment to a PCP domain, and a condensation 

(C) domain for the transpeptidation reaction and chain elongation (Figure 3). Additional 

domains for epimerization (E) and N-methylation can modify the amino acids before their 

incorporation in the chain (De Crecy-Lagard et al., 1995; Marahiel et al., 1997). 

PKSs and NRPSs share a similar modular strategy for the biosynthesis of two 

different types of natural products. Both of them have a carrier protein, which is tethered to 

the growing chain throughout the elongation process. Once the chain reaches the most C-

terminal carrier protein and has grown completely in length, it is released by the thioesterase 

(TE) domain located at the distal C-terminus of the pathway (Figure 3). 

The release of the product involves initial transfer of the chain from the terminal 

carrier protein (ACP or PCP) to the serine residue of the TE domain to form a product-O-TE 

intermediate. This is followed by either a hydrolysis reaction to give a linear product (the 

hydrolysis product) or cyclization of the chain to yield a cyclization product (Figure 3). 

Mycosubtilin is produced by a PKSs/NRPSs hybrid system, which is composed of 

four open reading frames fenF, mycA, mycB, and mycC (Figure 3) (Duitman et al., 1999). 
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Figure 3: A) Diagram showing PKSs/NRPSs biosynthetic pathway for mycosubtilin 

production. PKS domains are depicted with squares and NRPSs domains are 

depicted with circles. Each module is shown in a different color. AL= acyl 

CoA ligase, ACP= acyl carrier protein, KS= ketosynthase, AMT= 

aminotransferase, C= condensation, PCP= peptidyl carrier protein, A= 

adenylation, E= epimerization, TE= thioesterase. 

B) Cyclization of the linear peptide chain by TE (thioesterase) domain located at 

the distal C-terminus of the biosynthetic pathway. 

 

The process starts when aminoacyl ligase (AL) domain loads palmitic acid onto the 

carrier protein, ACP1, and fenF loads malonyl-CoA onto ACP2. This is followed by their 

condensation by KS domain to give a β-keto thioester, which is readily aminated by AMT 

domain to produce a β-amino thioester tethered to PCP domain. At this point, the β-amino 

thioester enters the NRPSs pathway. The adenylation (A) domain then activates the first 

A 

B 
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amino acid, asparagine, which is incorporated into the growing chain by the condensation (C) 

domain. The chain then moves to the PCP domain of the next amino acid, tyrosine. The 

process continues until all the amino acids are sequentially added to the growing chain by 

each cluster of domains and the fully grown peptide chain reaches the terminal PCP domain 

(Duitman et al., 1999). The TE (thioesterase) domain, here, catalyzes the final step of 

cyclization to produce macrocyclic mycosubtilin. 

 

1.5. Isolated thioesterase as a tool for cyclization: 

TE domains can produce different cyclization products, depending on the type and 

location of the nucleophile in the linear chain. If the nucleophile is an amino group at the N-

terminus of the peptide, head-to-tail cyclization takes place to yield the product. Similarly, a 

branched cyclic molecule results if the nucleophile is a group in the side chain. 

Previous studies have demonstrated the ability of isolated thioesterase domains to 

cyclize lipopeptides of diverse families. This promiscuity of catalytic activity of thioesterase 

can be utilized to produce a pool of natural macrocyclic products and their variants. Trauger 

et al. (2000) demonstrated the ability of isolated TE from the Tyrocidine NRPS pathway to 

cyclize peptides that meet minimal requirements of a few conserved amino acids. This was 

followed by another study by Kohli et al. (2001), in which thioesterases isolated from 

different biosynthetic pathways of tyrocidine, gramicidin S, and surfactin were tested for 

their cyclization ability (Figure 4). All of the TEs were found to be liberal in their substrate 

selection for catalytic activity. Furthermore, a small pool of cyclic peptides was produced 

using isolated Tyc TE. This special ability of isolated TEs offers an excellent way to 

synthesize macrocyclic lipopeptides using a chemoenzymatic approach. 
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Figure 4: Diagram showing the cyclization of peptide thioester substrates using isolated TEs 

from biosynthetic pathways of tyrocidine A, gramicidin S and surfactin A to yield 

respective macrocyclic products. 

 

1.6. Hypothesis: 

With the identification of some mycoses-causing fungal strains resistant to the current 

therapy, molecules like mycosubtilin have gained enormous interest in the past few years. 
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Additionally, mycosubtilin has shown its potent activity against a few resistant fungal strains 

(Fickers et al., 2009). Clearly, mycosubtilin has a huge potential as an effective antifungal 

agent. However, its clinical use has been limited by its deleterious hemolytic activity (Besson 

et al., 1989). 

This study aims at synthesizing an analogue of mycosubtilin, with strong antifungal 

but little or no hemolytic activity. Assuming that the hemolytic activity is partially or 

completely controlled by the lipid tail, more specifically, we are synthesizing a mycosubtilin 

analogue with a modified lipid tail. The synthetic analogue has the same α-amino acid 

sequence as the natural occurring molecule; however, it has just 7 carbon atoms in the β-

amino acid compared to 14 to 17 carbon atoms in the natural mycosubtilin. Hence, the 

present study probes the effect of shortening the lipid tail on the antifungal and hemolytic 

activity of mycosubtilin. 

A chemoenzymatic approach was used to synthesize the mycosubtilin analogue. The 

linear peptide chain was synthesized using solid phase peptide synthesis (Figure 5) and 

cyclized using the TE excised from the mycosubtilin biosynthetic pathway of B. subtilis 

ATCC 6633. 

 

1.7. Solid Phase Peptide Synthesis (SPPS): 

As the name suggests, in SPPS, the peptide is synthesized on a solid support followed 

by its cleavage to yield the desired peptide product. Different kinds of resins are used as solid 

support. The α-amino group and the reactive side chains of all the amino acids are protected 

to prevent any polymerization or side reactions. The process starts by attaching the C-

terminus of the first amino acid to the resin. This is followed by sequential addition of the 
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amino acids to the resin to obtain the peptide chain of desired amino acid sequence 

(Merrifield, 1963). 

Each amino acid addition involves a set of coupling-wash-deprotection-wash steps 

(Figure 5) (Protein Technologies, Inc.). For the amino acid addition to the growing peptide 

chain, initially the N-terminus of the amino acid (attached to resin) is deprotected using 

piperidine. Also, the C-terminus of the incoming amino acid is activated using an activating 

agent, HBTU or HOBt, to form a reactive ester which allows a better nucleophilic attack 

from nitrogen to form an amide bond. Each deprotection and coupling is followed by a wash 

step to remove any excess reagent left from the last reaction. 

 

 

Figure 5: Scheme for Solid Phase Peptide Synthesis (SPPS). 



 

19 
 

Once the complete chain of amino acids is synthesized, the peptide is cleaved from 

the resin and the side chain protecting groups are removed to yield the desired product. 

SPPS is the accepted method for synthesizing peptides on the laboratory scale. The 

extreme success of this method in the field of peptide synthesis lies in the high yield of 

product obtained compared to any other method, which is the result of repeated wash cycles 

and the addition of amino acids in excess to the resin. 

One of the simple, reliable, and efficient synthesizers based on the principle of SPPS 

is the PS3 synthesizer (Figure 6) (Protein Technologies, Inc.). The resin is added to the 

reaction vessel and the Fmoc-amino acids, mixed with activating agent, are added to the 

vials. These vials are then loaded onto the carousel from C to N terminus. Piperidine is used 

as the deprotecting agent, and a base is used to aid in the activation of amino acids. 

  

 

Figure 6: PS3 Peptide Synthesizer. Fmoc-amino acids mixed with activating agent are 

placed in the vials. Piperidine is the deprotecting agent and DMF 

(dimethylformamide) is the solvent. 
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2. Experimental Procedures 

Mycosubtilin was synthesized on a laboratory scale using a three-step approach, 

which involved initial formation of the linear peptide chain of the desired amino acid 

sequence (by SPPS), followed by derivatization of the peptide at the C-terminus using 

thiophenol, and finally enzymatic cyclization of this modified peptide using an isolated 

thioesterase (TEase) domain from the mycosubtilin biosynthetic pathway in Bacillus subtilis 

ATCC 6633. 

 

2.1. Synthesis of linear N-terminal protected peptide: 

 The peptide of the amino acid sequence 3-aminoheptanoic acid-Asn-Tyr-Asn-Gln-

Pro-Ser-Asn was synthesized by solid phase peptide synthesis using Asn-derivatized 2-

chlorotrityl resin, Fmoc protected amino acids (except for 3-aminoheptanoic acid which was 

Boc protected), the activating agent HBTU, and the deprotecting agent piperidine (Kohli et 

al., 2001). This N-terminal Boc protected peptide was then cleaved from the solid support to 

make the C-terminus free to react with thiophenol. The side chain protecting groups and N-

terminal Boc protecting group ensure selective reaction of thiophenol with the carboxyl 

group at the C-terminus of the peptide. The details follow below. 

2.1.1. Reagents: 

H-Asn(Trt)-2-ClTrt resin, Fmoc protected α-amino acids, Boc protected β-3-amino-

heptanoic acid, HBTU (O-benzotriazolyl-N,N,N',N'-tetramethyluronium-

hexafluorophosphate), piperidine, DIEA (N,N-diisopropylethylamine), DMF (N,N-

dimethylformamide), acetic acid, trifluoroethanol, methylene chloride, cold n-hexane, cold 

diethyl ether, and 35% acetonitrile/water solution. 
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2.1.2. Methods: 

A) Solid Phase Peptide Synthesis: 

The Fmoc-protected amino acids (0.4 mmol) mixed with activating agent HBTU (0.4 

mmol) in separate vials were loaded on the peptide synthesizer in the desired sequence from 

C-terminus to N- terminus (D-Ser, Pro, Gln, D-Asn, D-Tyr, Asn and β-3-amino-heptanoic 

acid). The reactive side chains were protected with t-butyl (Tyr and Ser) and trityl (Gln and 

Asn) groups. Asn-derivatized 2-chlorotrityl resin (0.1 mmol) was added to the reaction 

vessel, and the peptide synthesis was initiated using DMF as solvent and piperidine as Fmoc-

deprotecting agent. The synthesizer was programmed and the peptide synthesis was set to run 

overnight. 

B) Peptide Cleavage from Resin: 

The peptide was cleaved from the resin by reacting it with a mixture of 2 ml acetic 

acid, 2 ml trifluoroethanol, and 6 ml methylene chloride for 3 hours at 24˚C. The resin was 

then removed by filtration. 

C) Precipitation and Lyophilization: 

50 ml cold n-hexane was added to the peptide solution followed by the addition of 50 

ml cold diethyl ether. No precipitation was observed. The solvents were then removed by 

rotary evaporation, and 2-3 ml of water was added to precipitate the peptide. The peptide was 

then dissolved in 35% acetonitrile solution in water and lyophilized to obtain a dried 

crystalline powder. 
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2.2. Thiophenyl derivatization of the peptide: 

 The peptide was derivatized at the C-terminus by first activating the carboxyl group 

with DCC and HOBt and then reacting it with thiophenol (Sieber et al., 2004). The side chain 

protecting groups, along with the Boc protecting group, were removed to get the deprotected 

peptidyl thioester. Details of the reaction follow below. 

2.2.1. Reagents: 

 DCC (N,N'-dicyclohexylcarbodiimide), HOBt (1-hydroxybenzotriazole hydrate), 

thiophenol, potassium carbonate, THF (tetrahydrofuran), copper sulphate-treated silica, TFA 

(trifluoroacetic acid), trifluoroethanol, cold diethyl ether, 35% acetonitrile/water solution, 

and methanol. 

2.2.2. Methods: 

A) Derivatization: 

The protected peptide (0.1 mmol) was reacted with DCC (0.2 mmol), HOBt (0.2 

mmol), and thiophenol (1 mmol) in THF for 3 hours. Potassium carbonate (0.4 mmol) was 

added after 30 minutes. The reaction mixture was run through a filter packed with CuSO4-

treated silica to get rid of residual thiophenol. 

B) Deprotection: 

The solvent was removed in a rotary evaporator and the side chain protecting groups 

were removed by treating it with a mixture of 9.5 ml TFA, 0.25 ml trifluoroethanol, and 0.25 

ml water for 2 hours. 
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C) Precipitation, Filtration and Lyophilization: 

The deprotected peptide was precipitated using 50 ml cold diethyl ether, filtered, 

dissolved in 35% acetonitrile/water solution, and lyophilized to get the dried thiophenyl 

derivative of the peptide. 

D) Purification: 

The peptide was purified by Reverse Phase High Performance Liquid 

Chromatography (RP-HPLC) using an acetonitrile-water solvent system as the mobile phase. 

The C-18 highly hydrophobic column was employed as the stationary phase. After dissolving 

the peptide in a minimal amount of methanol, it was injected into the loop and was purified 

using a solvent gradient system of 10 to 50% acetonitrile over 2 hours at the flow rate of 10 

ml/min. The absorbance was observed at 280 nm due to the presence of the tyrosine residue 

in the peptide. The eluent, corresponding to the peaks, was collected in test tubes and 

lyophilized. The purity of the peptide was tested by analytical RP-HPLC and found to be 

95% by peak integration. 

E) Mass Spectrometric Analysis: 

The purified peptide was then characterized by electrospray ionization-Mass 

Spectrometry (ESI-MS) and time-of-flight (TOF) mass analyzer using ultramark 1621 

(Lancaster Synthesis) as a calibration standard for the range 922-2021 amu. Results will be 

presented in the Results and Discussion section. 

 

2.3. Cloning, Expression, and Purification of PCP-TE domain from Bacillus subtilis: 

 The thioesterase from B. subtilis ATCC 6633 was cloned into the ampicillin-resistant 

pET 21b plasmid vector using standard cloning procedure to give a C-terminal His-tag. It 
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was then overexpressed in E. coli, and proteins were purified using nickel affinity 

chromatography. Details are provided below. 

2.3.1. Reagents: 

 B. subtilis ATCC 6633 strain, pET 21b plasmid vector, Plasmid Miniprep kit, 

Instagene matrix, Master mix, PCR clean up kit, primers, restriction enzymes (XhoI and 

NdeI), ligases, E. coli BL21 cells, isopropyl β-D-thiogalacto-pyranoside, lysozyme, resin, 

and imidazole solution. 

2.3.2. Methods: 

A) Cloning: 

The cloning was done using an ampicillin-resistant pET 21b plasmid vector (Figure 

7). E. coli cells containing plasmid DNA were plated on LB agar media. A small culture was 

then taken and inoculated into LB broth media (containing ampicillin), which was agitated 

overnight at 37˚C. It was centrifuged at 4000 rpm for 10 minutes; the supernatant was 

discarded and plasmid DNA was purified from the pellets using a Plasmid Miniprep kit. The 

concentration of DNA in solution was determined spectrophotometrically using water as the 

blank. 

B. subtilis ATCC 6633 colonies were grown in agar media. A small amount of culture 

was scraped and suspended in 1 ml of autoclaved water. It was centrifuged (11000 rpm for 1 

minute), and the supernatant was discarded. The genomic DNA was isolated by incubation 

with 200 µl of Instagene matrix at 56˚C for 30 minutes and 100˚C for 8 minutes. It was 

centrifuged (12000 rpm for 3 minutes), and the supernatant was used for amplification of 

genomic DNA using PCR (Polymerase Chain Reaction). A mixture of 25 µl of Master mix, 1 

µl each of the two primers (20 µM concentration), and 3 µl of water was added to 20 µl of 
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genomic DNA solution, and PCR was set for DNA amplification. The amplified DNA was 

then subjected to gel electrophoresis and bands were compared to the standard ladder. A PCR 

clean-up kit was used to get rid of the remaining nucleotides, buffer, and dye. Two volumes 

(84 µl) of DNA binding buffer were added to the PCR product. The PCR product was 

transferred to the Zymo-spin column, and trapped DNA was washed with wash buffer and 

eluted using 8 µl of water. 

 

 

Figure 7: Diagram showing pET-21b plasmid DNA with a list of commonly used restriction 

enzymes. Ampicillin resistant gene is shown in green (BV Tech). 

  

Both the plasmid DNA and insert (4 µl) were digested by incubating with 1 µl of 

XhoI and 1 µl of NdeI restriction enzymes at 37˚C for 1 hour (Figure 7). The enzymes were 
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deactivated by heating at 65˚C for 20 minutes. The digested insert and plasmid DNA were 

joined by incubating with DNA ligase in ligase buffer solution for 3 hours at room 

temperature. The construct was confirmed via DNA sequencing. 

B) Expression: 

 The plasmid construct was transformed into E. coli BL21 competent cells for protein 

expression. The cells were grown in the TB media in a volume of 2 liters at 37˚C, which was 

then cooled to 18˚C. Isopropyl β-D-thiogalacto-pyranoside was then added at a final 

concentration of 0.2mM and agitated overnight. It was then centrifuged and pellets obtained 

were used to harvest proteins. 

C) Purification: 

 The proteins were purified from pellets by lysing the cells in the presence of 

lysozyme and lysis buffer using sonication. The pellets were suspended in 25 ml of lysis 

buffer, cooled and then subjected to repeated cycles of sonication for 15 seconds with 45 

second intervals. It was then centrifuged for 30 minutes and the supernatant was incubated 

with nickel beads to trap the desired proteins on the beads. The slurry was then poured on the 

column and washed with lysis buffer. Non-specific proteins were removed by 20 mM 

imidazole solution and finally, the desired proteins were eluted using 400 mM imidazole 

solution (Figure 8). The identity of proteins was confirmed by SDS-PAGE. 

 



 

27 
 

 

Figure 8: Peptide purification using Affinity Chromatography. 

 

2.4. DTNB-Thiols Assay: 

 The catalytic activity of enzyme was tested by DTNB-Thiols Assay. The peptide was 

treated with the enzyme and DTNB was added to the reaction mixture. The observation of 

yellow color indicates a positive enzyme activity (Reaction 1) (Thermo Scientific). The 

details follow below. 

2.4.1. Reagents: 

 HEPES, sodium chloride, DMSO (Dimethyl Sulfoxide), peptidyl thiophenol, enzyme 

(thioesterase), and DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)) 

2.4.2. Methods: 

  Buffer solution was prepared with a final concentration of 25mM HEPES and 50mM 

NaCl (pH 7.0). 5 µl of peptide solution (1mM) in DMSO was mixed with 37 µl of buffer 

solution and the reaction was initiated by adding 8 µl of enzyme. The reaction was set to go 
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for 1 hour. A saturated solution of DTNB in 50 mM phosphate buffer (pH 8.0) was added to 

the reaction mixture and the absorbance was measured at 412 nm (Reaction 1). A higher 

absorbance compared to the control indicates a positive enzyme activity. 

 

 

Reaction 1: DTNB reacts with free thiophenol (produced by TE) to produce yellow color. 

The absorbance was observed at 412 nm. 

 

2.5. Cyclization of thiophenyl peptide substrate using the isolated PCP-TE: 

 The thiophenyl peptide substrate was cyclized using the isolated thioesterase domain 

using a similar reaction as described in the DTNB-Thiols Assay, and analyzed by Mass 

Spectrometry (ESI-MS). Results will be presented in the Results and Discussion section. 
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3. Results and Discussion 

3.1. Peptide synthesis and derivatization: 

Mass Spectrometry (ESI-MS) of the thiophenyl derivatized peptide showed peaks at 

molecular weight 1055, 1056, and 1077 Da (Figure 9). 

 

 

Figure 9: Mass Spectrometry (ESI-MS) of peptidyl thiophenol. 

 

The expected molecular weight of the derivatized peptide was 1055 Da. Peaks at 

1056 and 1077 Da correspond to Peptide + H+ and sodium adduct of the peptide respectively. 

These results confirm the identity of the derivatized peptide and indicate that the synthesis 

protocol was successful. Sharp peaks affirm the purity of product. 

 

3.2. Cloning, Expression, and Purification of PCP-TE domain: 

The Gel electrophoresis of the PCR product showed a sharp band at 1000 bp, which 

matches with the expected base pairs of the PCP-TE domain from Bacillus subtilis. This 

PCP-TE domain was then cloned into the pET21b vector to give the C-terminal histidine tag. 

The identity of the construct was confirmed by DNA sequencing results. It was then 
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overexpressed in E. coli and proteins were purified using nickel affinity beads. SDS-PAGE 

of the purified proteins showed bands just below 37 kDa in accordance with the reported data 

(Figure 10). 

 

 

Figure 10: SDS-PAGE of the purified protein. L= Ladder and P= Protein. 

 

3.3. DTNB-Thiols Assay: 

 In this assay, DTNB reacts with the free thiol to produce a yellow color, the 

absorbance of which is measured spectrophotometrically (Reaction 1). Hence, an active 

thioester, owing to its ability to yield a free thiophenol from thiophenyl peptide, will give a 

higher absorbance compared to the control. An absorbance of 0.232 was observed for the 

enzyme-treated peptide, which verified the enzyme activity of isolated thioesterase. 
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3.4. Cyclization of thiophenyl peptide substrate using the isolated PCP-TE: 

 The derivatized peptide was treated with isolated thioesterase in the presence of 

buffer and the reaction was run overnight. Mass spectrometry of the reaction mixture showed 

multiple peaks including the peak at 945 Da that corresponds to the cyclic product indicating 

that the cyclization by the enzyme was successful (Figure 11). The TE recognized the 

thiophenyl peptide as substrate despite it not being the natural substrate. This gives hope that 

the process can be utilized to cyclize a larger set of novel analogues. A very small peak at 

963 Da, corresponding to the hydrolysis product, was also observed corroborating a positive 

thioesterase activity. However, the purification of peptide using HPLC remains a challenge. 

 

  

Figure 11: Mass Spectrometry (ESI-MS) of the cyclic peptide (mycosubtilin analogue). 

 

 One of the possible reasons behind the failure of peptide purification is the low yield 

of peptide. The thiophenyl peptide obtained after derivatization was just 7 mg. Even if 

assuming that all the substrate was converted to the cyclic peptide, it is a very small quantity 

for HPLC to purify. Furthermore, the final cyclic product, unlike other peptides, was 

insoluble or partially soluble in commonly used solvents like methanol and acetonitrile. 
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Hence, synthesizing the peptide in a considerably larger quantity and finding the right 

combination of solvents to solubilize it, is worth a try prior to peptide purification by HPLC. 
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4. Conclusion & Future Work 

The analogue of mycosubtilin with a short lipid tail was successfully synthesized 

using the process of peptide synthesis and enzyme expression and catalysis. Though the 

desired product from the reaction mixture could not be isolated, the feasibility of synthesis of 

macrocyclic peptides on the laboratory scale using a chemoenzymatic approach was 

demonstrated. This approach can be further utilized in the synthesis of a wide array of 

naturally occurring macrocyclic compounds, which will not only help in Structure-Activity 

Relationship (SAR) studies of these molecules, but also understanding their mechanism of 

action. Furthermore, the catalytic activity of TE was confirmed by the DTNB-Thiols Assay. 

Future work will be based on purifying the cyclic molecule followed by testing it for 

antifungal and hemolytic activity to probe the effect of shortening the lipid tail on the activity 

of mycosubtilin. A number of analogues will be synthesized by modifying the β-amino fatty 

acid using this approach. Future analogs will have modifications that vary the double bonds, 

branching, length, and substitution of the fatty acid side chain. 
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