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ABSTRACT

Image Reconstruction Through Polyfiltered Variation Minimization

by

Michael Hagen

Chair: Dr. Andrew Ross

There has been considerable interest in reconstruction of remotely sensed imagery

from incomplete frequency measurements for some time now. Given the nature of

the collection process, it may be that portions of the spectrum are either missing

or corrupted such that one is left with an incomplete representation of the origi-

nal image. The advances in both the theory and available software for sparse signal

reconstruction through function minimization make it an attractive approach for

recreating the missing frequency data. It is the aim of this thesis to generalize the

reconstruction technique known as Total Variation (TV) minimization from a sig-

nal processing perspective and to show that it is but one instance of a more general

class of multi-filter operators. The approach will be demonstrated using freely avail-

able third-party software, and the reconstruction accuracy of TV minimization will

be compared to that of several of the developed alternative operators. Last, the re-

lationship between these operators and the frequencies to be reconstructed will be

examined.

ix



CHAPTER I

Theory And Background

1.1 Total Variation Minimization

It is well known that a sparse signal can be reconstructed exactly from incomplete

frequency information using the `1 norm [1]. The most common formulations of the

problem are usually referred to as Basis Pursuit (BP) and Basis Pursuit Denoise

(BPDN) [2] and are given by

min
x
‖x‖1 s.t. Ax = b (1.1)

min
x
‖x‖1 s.t. ‖Ax− b‖2 ≤ σ, (1.2)

respectively, where b ∈ Cm is the vector of known frequency measurements and

A ∈ Cm×n, m < n, is the incomplete DFT matrix the rows of which correspond

to the known frequencies. A and b may be some other basis in which the signal

can be represented and need not be frequency. For this thesis, however, we will

solely use orthogonal frequency components in the constraints. A requirement for

the above reconstruction to be successful is that the signal meet some threshold of

sparseness with respect to the `1 norm [3]; otherwise, there will not be enough in-

formation in the incomplete frequency data and, in the limiting case as the signal

becomes more and more dense, the entire set of orthogonal frequency measurements
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will be required. In this last case, x = A−1b and no minimization is necessary.

For completeness of the above formulation, we note that for the Cartesian product

x ∈ CK ⊗ CK ⊗ · · · ⊗ CK , the definition of the `1 norm is

‖x‖1 =
K−1∑
k=0

‖xk‖2, (1.3)

which for the most common cases of x ∈ RK and x ∈ CK works out to be the sum

of absolute values and the sum of the moduli, respectively.

For cases where the signal may not be sparse in the `1 norm, other measures are

used as the objective function, measures for which the signal is expected to have a

greater degree of sparsity. One of these alternate measures is the Total Variation

(TV) of the signal. The TV operator is generally intended for 2-D signals and can

be thought of as the `1 norm of an estimate of the gradient:

TV(X) =
M−1∑
i=0

N−1∑
j=0

√
(Xi,j+1 − Xi,j)

2 + (Xi+1,j − Xi,j)
2, (1.4)

where X ∈ RM×N . Thus, the general TV problem is similar to the BP problems

above:

min
X

TV(X) s.t. Ax = b (1.5)

min
X

TV(X) s.t. ‖Ax− b‖2 ≤ σ (1.6)

where x = vec(X) is a vectorized version of the image and the DFT constraint

matrix is modified accordingly such that A ∈ RK×MN , K < MN , and b ∈ RK .

1.2 Total Variation As A Filter

Another way to view the TV operator is as the `1 norm of the vectorized output

of two FIR filters applied to the image. If we consider the first-order filter H =

2



[1;−1], then

TV(X) = ‖vec(HT ∗X)⊗ vec(H ∗X)‖1, (1.7)

where ⊗ indicates a Cartesian product. (We will often omit the vec operator for

readability though we include it here since the `1 norm has a different definition

when applied to matrices than it does to vectors.) Elementary filter theory tells us

that we can rewrite this in terms of the Fourier transform, F :

H ∗X = F−1(F(H)�F(X)), (1.8)

so that we may analyze what it is that TV is measuring by looking at the product

of the filter’s spectrum and the spectrum of the input image. Since the filter is one-

dimensional, it suffices to plot the frequency response of H knowing that HT has

the same effect but along the rows of the image. This is done in Figure 1.1, where

the high-pass nature of the TV operation can be seen. This high-pass nature illus-

trates how using TV rather than a straight `1 can give a sparse representation to

an otherwise dense signal, viz. by filtering out the signal’s lower frequency compo-

nents. It also raises the question of the effectiveness of using other filters that have

different passbands and transition regions than the first-order TV filter given above.

1.3 Polyfiltered Variation

We would like to expand the TV problem to a more general operation, and this is

easy to do in light of the definition used in (1.7). All that is required is to exchange

the filter H for whatever filters are of interest. Moreover, there is no reason to limit

the operation to two filters. We refer to this generalization as polyfiltering and de-

3



Figure 1.1: The magnitude of the frequency response for the TV filter.

fine it as follows

P(X) = (H1 ∗X)⊗ (H2 ∗X)⊗ · · · ⊗ (HL ∗X). (1.9)

We then define Polyfiltered Variation (PV) as the `1 norm of the vectorized version

of the above L-dimensional Cartesian product:

PV(X) = ‖P(X)‖1

=
∑
i

√
p2
i1 + p2

i2 + · · ·+ p2
iL, (1.10)

where pi1 ⊗ pi2 ⊗ · · · ⊗ piL is the ith element of P(X).

An implicit assumption made in the above definition of (1.9) is that dim Hi =

dim Hj for all individual filters. If this is not the case, then the filter with smaller

dimension may be padded with zeros so that the dimensions match up. We will

make the assumption from here on that this is the case. To give an example of this

zero padding as well as a specific instance of polyfiltering, if we set L = 2 and

4



choose

H1 =

 1 0

−1 0

 (1.11)

H2 =

 1 −1

0 0

 , (1.12)

then the PV reduces to the original TV formulation.

1.4 Significance Of The PV Interpretation

With the above interpretation, we can reformulate the TV minimization problem to

a more general case of which TV is one specific instance:

min
x

PV(x) s.t. Ax = b (1.13)

min
x

PV(x) s.t. ‖Ax− b‖2 ≤ σ. (1.14)

The significance of developing the problem as a series of FIR filters is that our con-

straints are composed of incomplete frequency measurements. Since the effect of

an FIR filter is determined by its frequency response, it stands to reason that we

would expect different filters to affect the problem differently. Moreover, we would

expect there to be a relation between the frequency response of the filters used in

the PV minimization and the set of incomplete frequency measurements.

5



CHAPTER II

Application

2.1 Problem Application

The problem to which we would like to apply PV minimization is estimating miss-

ing frequency samples from 2-D imagery. We estimate the missing frequency sam-

ples by estimating the complete image, that is, the image formed from the full set

of orthogonal Fourier basis vectors. Starting with the image shown in Figure 2.1,

we simulate the corruption or unavailability of frequency samples by zeroing out a

subset of them. This is shown in Figure 2.2 where the noticeably distorted incom-

plete image is shown along with the portions of the spectrum that were zeroed. To

get an estimate of the complete image from the incomplete set of frequency sam-

ples, we solve

x∗ = arg min
x

PV(x) s.t. Ax = b, (2.1)

where we have used equality constraints rather than the more general case of ‖Ax−

b‖2 < σ for reasons stemming from the software used to solve the problem (see

Section 3.3).

In the above formulation, x ∈ CMN is a vectorized representation of an M × N im-

age. The rows of the matrix A are the Fourier vectors corresponding to the known

frequency samples, and the vector b is the vector of these known frequency sam-

6



(a) Original Image (b) Original Spectrum

Figure 2.1: Original (complete) image and the magnitude of its frequency represen-
tation.

(a) Incomplete Image (b) Incomplete Spectrum

Figure 2.2: Incomplete image and the magnitude of its frequency representation.
The black regions of the spectrum signify the missing frequency mea-
surements.

ples, viz. all non-blacked-out samples in Figure 2.1(b). The solution to 2.1, x∗, is

what is used as an estimate of the complete image. For the current example, this

estimate and its spectrum are shown in Figure 2.3.

Theory shows that the above approach is valid for l0, `1, and TV minimization if

the complete image has a required degree of sparsity or is sparse after applying the

TV transformation [1], [3], [4]. We will not address this theory here. To the con-

trary, we will operate under the conjecture that these theoretical results extend to

PV minimization.

7



(a) Reconstructed Image (b) Reconstructed Spectrum

Figure 2.3: Estimate of the complete image and the magnitude of its frequency rep-
resentation. PV minimization was performed using Soebel filters in this
case.

2.2 Optical Imagery

Fourier optics shows that various lenses, mirrors, and other apparatuses such as

slits can be described by Fourier analysis, which is to say that their effects can be

defined by how they act on individual frequency components. If an optical sensor

uses one of these components that is defective for some reason (say, a dirty lens or

improperly manufactured mirror), then it can result in imagery formed from a mix

of uncorrupted and corrupted frequency samples. If this sensor is irretrievable (e.g.,

on an orbiting platform) or if it is cost-prohibitive to replace the defective compo-

nents, then the most attractive option may be to try to reconstruct the corrupted

frequency samples in software using these `1 minimization techniques.

2.3 Radar Imagery

Synthetic Aperture Radar (SAR) imagery can likewise suffer from corrupted fre-

quency measurements. The causes may be hardware related, similar to the above

examples for an optical sensor; however, SAR sensors tend to operate at frequencies

that are heavily used for other purposes such as electronic communications, thereby

8



making them susceptible to Radio Frequency Interference (RFI). A common effect

of RFI is to saturate certain portions of the image’s spectrum with what is essen-

tially noise, which can render the image unusable unless it is somehow mitigated.

Looking at the SAR image and its spectrum shown in Figure 2.4, we can illustrate

a common effect of RFI by adding high-powered noise to its spectrum, as is done

in Figure 2.5 where the white bands show the location of the added noise. One can

see from the latter that the effect of the RFI is to make the image so noisy that

only the brightest of targets are still visible. Overall, the image has lost all prac-

tical interpretability. The simplest approach to take in order to mitigate the RFI

is to zero out the affected frequency samples and form the image from the incom-

plete set. The results of doing this are shown in Figure 2.6. It appears that zeroing

out the RFI has successfully ameliorated its effects, and indeed it has with respect

to the added noise. However, in doing so, a large distortion has been introduced

into the image. In Figure 2.7, a close-up of a region of the image is shown for both

the complete (original) and incomplete cases. The RFI has been removed but at a

cost of a large amount of image distortion. This is one area where PV minimization

could be applied. Namely, after zeroing out the RFI, the remaining frequency sam-

ples can be used in a PV minimization problem in order to estimate the complete

image and remove the introduced distortion.

9



(a) Original Image (b) Original Spectrum

Figure 2.4: Original (complete) image and the magnitude of its frequency represen-
tation.

(a) Image With Synthetic RFI Added (b) Spectrum With Synthetic RFI Added

Figure 2.5: Result of adding synthetic high-power RFI to the image in Figure 2.4.
The white bands in the spectrum show the added noise.

(a) Incomplete Image With RFI Zeroed (b) Incomplete Spectrum With RFI Zeroed

Figure 2.6: Result of zeroing out synthetic high-power RFI in Figure 2.5(a). The
zeroes in the spectrum are visible as the black bands.

10



(a) Original Image (b) Incomplete Image

Figure 2.7: Close-up comparison of the original image and the incomplete image
that results from zeroing out the RFI. Forming the image from the in-
complete set of frequency samples has introduced noticeable distortion.
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CHAPTER III

Software Implementation

3.1 Polyfiltering As A Single Linear Transformation

Convolution, being a linear transformation, has a matrix representation. The con-

struction of such a matrix is straightforward and is little more than the elements of

one of the vectors, usually the smaller of the two, repeated but shifted on each row.

For our case, it would be a matrix the rows of which are shifted copies of the filter

coefficients padded with zeros to match the dimensions. As to notation, we will use

the same symbol H when referring to either the filter or its matrix representation

and rely on context to make clear which is implied. Thus, H ∗X would imply that

H is the array of filter coefficients. Likewise, HX would indicate that H is the ma-

trix representation of such.

We can represent the polyfiltering operation as a single matrix P by concatenating

the L dimensions of P(X) together. To do so, all that is required is to stack the

filtering matrices on top of one another:

P(X) =



H1

H2

...

HL


X = PX. (3.1)
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Moreover, we can transform the 2-D input array X ∈ RM×N to a 1-D signal by

stacking its columns on top of one another to form x = vec(X) ∈ RMN . We

will take for granted the well known fact that given the matrix-matrix product

AX,A ∈ RL×M ,X ∈ RM×N , there is an equivalent matrix Avec ∈ RMN×MN

such that vec(AX) = Avecx. We will use the lowercase x when referring to the

vectorized form of an image and will omit the vec subscript from the matrix oper-

ator, relying instead on whether the right-hand element in the product is upper- or

lowercase to make clear the form of the matrix. With this in mind, the polyfiltered

signal will often be written in vectorized form as

P(x) = Px. (3.2)

This vectorized representation allows for an alternate expression for the polyfil-

tered variation defined previously in (1.10). Defining the selection matrix Si as an

L ×MN matrix of all zeros except for ones in elements (0, i), (1, i + MN), (2, i +

2MN), · · · , (L − 1, i + (L − 1)MN) allows us to represent the ith element of the

Cartesian product P(x) as the L × 1 vector SiPx. From this point it is a simple

extension to arrive at

PV(x) =
∑
i

‖SiPx‖2. (3.3)

We thereby have an alternate expression for the PV of an image as a general sum

of `2 norms.

3.2 Convex Optimization Using PV

Referring to the form of polyfiltering given in (3.2), we have that P : RMN →

RLMN , or, equivalently, P ∈ RLMN×MN , which means that P has a non-trivial

nullspace N . We mention this because for any x ∈ N (P) we have that PV(x) =

0 < x = 0, thereby making PV a semi-norm rather than a true norm. However,

13



if we restrict the input to a subspace such that PV(x) = 0 ⇔ x = 0, then we can

treat PV(x) as a true norm. From the fundamental theorem of linear algebra we

have that N (P) ⊥ R(PT). Therefore, if we restrict x to the range of the adjoint

of P, then PV(x) is a norm. This is significant because it gives us a convex func-

tion (the norm) over a convex set (any vector subspace is a convex set), which then

means that the problem

min
x∈R(PT)

PV(x) s.t. ‖Ax− b‖2 ≤ σ (3.4)

has a unique global minimum [5]. Given the interpretation of PV as set of FIR fil-

ters, the nullspace of P is simply composed of the nulls of the filters. We can thus

restate the above as requiring that x not contain any frequency components for

which the frequency response of all the used filters is zero. However, it is expected

that frequencies which, while not identically nulled to zero value, are attenuated a

significant amount (the definition of ’significant’ purposely being left open-ended)

will play a role numerically due to either algorithmic implementations or finite pre-

cision arithmetic.

3.3 TVAL3

In order to solve the PV minimization problem, we have modified the TVAL3 MAT-

LAB software written by Cheng Bo Li [6]. We have done this by augmenting it to

implement any arbitrary linear transform rather than only the TV operation for

which it was written. We represent each specific PV implementation as a single ma-

trix as in (3.1). This gives us the sum of l2 norms cost function in (3.3). This in

turn allows for a simple, closed-form gradient that we can then substitute into the

augmented Lagrangian equations used by the TVAL3 solver regardless of the linear

transformation. This allows us to use the same solver for `1, TV, and all the other

14



PV implementations discussed herein.

The main drawback to the TVAL3 software is that the augmented Lagrangian

method it uses to solve the problem does not allow us to solve the more general

problem of

min
x

PV(x) s.t. ‖Ax− b‖2 ≤ σ. (3.5)

Rather, we are restricted to equality constraints such that all results herein are

found from the following formulation:

min
x

PV(x) s.t. Ax = b. (3.6)

Even with this limitation, TVAL3 was deemed superior to other packages such as

[7], [8], and [9] due to the inability of the others to accurately process images larger

than 128× 128 pixels without excessive memory requirements or numerical instabil-

ity problems.
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CHAPTER IV

Example PV Implementations

4.1 General Purpose

4.1.1 `1

The most basic of PV implementations is to use a single identity filter, H = [1]. In

this case, the PV problem reduces to the standard `1 minimization. The filter is an

all-pass filter as it leaves all frequency components unchanged.

4.1.2 TV

To implement the TV problem using the PV framework, we use the following two

previously mentioned filters:

H1 =

 1 0

−1 0

 (4.1)

H2 =

 1 −1

0 0

 , (4.2)

The frequency responses of the two filters are shown in Figure 4.1.
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(a) Filter 1 (b) Filter 2

Figure 4.1: Frequency responses of the two TV filters.

4.1.3 Soebel

The Soebel filters see applications most often in edge detection and gradient esti-

mation [10]. The filters have the following form:

H1 =


1 0 −1

2 0 −2

1 0 −1

 (4.3)

H2 =


1 2 1

0 0 0

−1 −2 −1

 . (4.4)

The frequency responses of the two filters are shown in Figure 4.2.
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(a) Filter 1 (b) Filter 2

Figure 4.2: Frequency responses of the two Soebel filters.

4.1.4 Prewitt

Similar to the Soebel filters, the Prewitt filters see applications most often in edge

detection and gradient estimation [10]. The filters have the following form:

H1 =


1 0 −1

1 0 −1

1 0 −1

 (4.5)

H2 =


1 1 1

0 0 0

−1 −1 −1

 . (4.6)

The frequency responses of the two filters are shown in Figure 4.3. Moreover, though

we do not implement it here, given the general form of PV and how the software is

set up, we could easily add a third and fourth filter, each meant to act along the

diagonals of an image rather than the rows and columns. These diagonal Prewitt
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(a) Filter 1 (b) Filter 2

Figure 4.3: Frequency responses of the two Prewitt filters.

filters are given by [10]

H3 =


0 1 1

−1 0 1

−1 −1 0

 (4.7)

H4 =


−1 −1 0

−1 0 1

0 1 1

 . (4.8)

4.1.5 2nd Derivative

The last general purpose PV implementation we will describe is a set of three filters

meant to estimate the 2nd derivative of an image:

H1 =


1 −2 1

0 0 0

0 0 0

 (4.9)
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(a) Filter 1 (b) Filter 2 (c) Filter 3

Figure 4.4: Frequency responses of the filters used to estimate the 2nd derivative of
the image.

H2 =


−1/4 0 1/4

0 0 0

1/4 0 −1/4

 (4.10)

H3 =


1 0 0

−2 0 0

1 0 0

 (4.11)

The frequency responses of these three filters are shown in Figure 4.4.

4.2 Problem Specific

4.2.1 TV + Notch Filter

Given the flexibility of the PV solver to work with any linear transformation, we

can also use filters that are tailored to specific problems. Here we will combine

the same TV filters described above with a notch filter meant to remove energy

known to cause poor performance. More specifically, consider the input optical im-

age shown in Figure 4.5. We have modified the spectrum of the original image such

that it has two small areas of concentrated energy, visible as the two bright circles

in Figure 4.5(b). In Figure 4.6 is shown the missing frequency samples that we will

be estimating and the resulting incomplete image.
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(a) Complete Image (b) Complete Spectrum

Figure 4.5: Input image used in the TV + Notch example and its spectrum.

(a) Incomplete Image (b) Incomplete Spectrum

Figure 4.6: The incomplete image and its spectrum used in the TV + Notch exam-
ple.

We know from the basic properties of the Fourier transform that we expect the en-

ergy in these small areas of the frequency domain to be diffuse in the image do-

main. Furthermore, when we look at the frequency responses of the TV filters shown

previously in Figure 4.1, we know that this concentrated energy will be passed by

both of them nearly unchanged. This tells us that the usual approach to recon-

structing the missing data (i.e., TV minimization) will not perform well because

TV(x) will not give a sparse representation. To address this we can augment the

TV filters to include notches where the concentrated energy is located. An example

of this TV + Notch design is shown in Figure 4.7.
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(a) Filter 1 (b) Filter 2

Figure 4.7: Frequency responses of the TV + Notch filters.

(a) Reconstructed Image (b) Reconstructed Spectrum

Figure 4.8: The estimated complete image and its spectrum as found using TV
minimization.

To conclude this example we show the results of reconstructing the above incom-

plete image using the usual TV minimization in Figure 4.8 and the results from

using the TV + Notch implementation in Figure 4.9. Though neither method re-

constructs the image without error, by using the TV + Notch rather than the usual

TV, the reconstruction error (defined in Section 5.1) was reduced 27% from 1.1512

to 0.8447. Moreover, the correlation coefficient between the original and recon-

structed frequency samples was increased from 0.2341 to 0.5384, which is an im-

provement of 130%.
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(a) Reconstructed Image (b) Reconstructed Spectrum

Figure 4.9: The estimated complete image and its spectrum as found using TV +
Notch minimization.

4.2.2 `1 + Matched Filter

Another instance of a problem specific filter is a matched filter used to compress

a signal with broad support. If we consider a quadratic phase complex exponen-

tial with uniform amplitude, then we have the following general form for it and its

Fourier transform:

rect

(
t

T

)
ejπαt

2 F←→ rect

(
f

αT

)
e−jπf

2/α, (4.12)

where j =
√
−1, f is frequency, T is the signal duration, and α is known as the

chirprate and has units of Hz/s2. Note that the term αT on the right hand side

is the bandwidth of the signal, that is, the difference between the maximum and

minimum frequencies. To implement a matched filter, we convolve this signal with

a time-reversed and conjugated version of itself. This gives

rect

(
t

T

)
ejπαt

2 ∗ rect

(
−t
T

)
e−jπα(−t)2 F←→ rect

(
f

αT

)
e−jπf

2/αejπf
2/α. (4.13)
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(a) Amplitude (b) Phase (c) Matched Filter Output

Figure 4.10: The phase and amplitude of a quadratic phase signal along with its
output from a matched filter.

The two complex exponentials on the right cancel out, and we are left with just the

rect function in the frequency domain, the inverse Fourier transform of which is

rect

(
f

αT

)
F−1

←→ sinc (αTt) . (4.14)

Thus, the result of matched filtering the quadratic phase signal is that it yields a

sinc function, the width of which is inversely proportional to αT , the bandwidth of

the signal. The foregoing is illustrated in Figure 4.10

The above is easily extended to 2-D such that we can form an image from a quadratic

phase signal (also called a target) that has wide support in the image domain but is

compressible with a matched filter. Taking this further, we know that the usual

`1 reconstruction will perform poorly on such a signal since it is not sparse; how-

ever, since matched filtering is a convolution (more generally it is a linear transfor-

mation), we can incorporate the matched filter into the PV problem formulation

and, according to our conjecture, improve the performance. To work through this

we begin with the image of a single target in Figure 4.11, where the 2-D quadratic

phase is also shown. We then form an image with 20 such targets located randomly

throughout the image. This is shown in Figure 4.12 along with the result of apply-

ing a matched filter to the image, which shows clearly the sparsity it induces.

To show the difference in reconstruction performance between `1 reconstruction and
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(a) Single Target Image (b) Single Target Phase

Figure 4.11: Amplitude of single quadratic phase target with wide support in the
image domain. On the right is its 2-D quadratic phase.

(a) 20 Target Image (b) Matched Filter Output

Figure 4.12: Amplitude of 20 quadratic phase signals summed together and the
output after matched filtering.
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(a) Incomplete 20 Target Image (b) Incomplete 20 Target Spectrum

Figure 4.13: The incomplete image used in the `1 and `1 + matched filter recon-
structions.

(a) `1 Reconstructed Image (b) `1 Reconstructed Spectrum

Figure 4.14: The estimated complete image as found using `1 minimization.

a PV implementation that combines `1 with a matched filter, we use the incomplete

image illustrated in Figure 4.13. The results of the `1 reconstruction are pictured in

Figure 4.14 and the results of combining the `1 with a matched filter in Figure 4.15.

Quantitatively, the reconstruction error (see Section 5.1) was reduced from 1.1267

to 0.6387 by using the matched filter, and the correlation coefficient increased by

two orders of magnitude from 0.0129 to 0.7808. We thus see a significant improve-

ment by tailoring the PV implementation to fit the data rather than using the typi-

cal `1 reconstruction method.
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(a) `1 + Matched Filter Reconstructed Image (b) `1 + Matched Filter Reconstructed Spec-
trum

Figure 4.15: The estimated complete image as found using `1 + matched filter min-
imization.
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CHAPTER V

Experimental Results

5.1 Reconstruction Metrics

We use two metrics to evaluate the performance of the various reconstructions. The

first is a weighted two-norm of the difference between the original and missing fre-

quency samples; the second is the correlation coefficient between these same two

sets. Specifically, if Xm is the set of missing frequency samples and Xr the set of

the reconstructed frequency samples, then the first type of error, which we call the

reconstruction error, is given by

εr =
‖Xm −Xr‖2
‖Xm‖2

. (5.1)

The second metric is a measure of the similarity between the missing components of

the image and their reconstructed counterparts. Since the correlation coefficient is

invariant to Fourier transforms, we can calculate this relation over the same sets as

above:

σr = corr (Xm,Xr) . (5.2)

The reconstruction error will give an idea of the relative distance between the orig-

inal and the estimated frequency samples. The correlation coefficient, on the other

hand, is meant to provide an idea of how similar the reconstructed image is to the
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(a) Optical Image 1 (b) Optical Image 2 (c) Optical Image 3

Figure 5.1: The three rural optical test images. The three images comprise a con-
tiguous area of rural Michigan west of Ann Arbor.

original regardless of the distance between them.

5.2 Optical

We will run two experiments on six overhead optical images: three of a rural area

and three of an urban area. The images are publicly available from ESRI’s ArcGIS

Web Map Server [11] and are shown in Figures 5.1 and 5.2. Each image is 556 by

413 pixels with 1 meter spacing, which covers 0.005 degrees of both latitude and

longitude. (Note that they have been displayed with square pixels so as not to dis-

tort them, while their spectrums have not [e.g., Figure 5.3]. Hence, the spectrums

will appear square rather than rectangular like the input images do. We have made

this choice to minimize the un-used whitespace in the images.)

We will use four PV implementations for each case and each image: TV, Soebel,

Prewitt, and 2nd derivative. The definition and frequency responses of each were

given in Section 4.1. We do not use `1 as it is known to perform poorly in this situ-

ation due to the lack of sparsity in optical images of the earth’s surface (thus trans-

forms are used to induce sparsity).
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(a) Optical Image 4 (b) Optical Image 5 (c) Optical Image 6

Figure 5.2: The three urban optical test images. The three images comprise a con-
tiguous area of downtown Ypsilanti, Michigan.

(a) 7% Block Size (b) 21% Block Size (c) 36% Block Size

Figure 5.3: Example optical spectrums with various block sizes removed.

5.2.1 Reconstruction Vs. Percent Missing

For the first experiment with the overhead optical images, we will remove an in-

creasingly large contiguous block of frequency samples and record the reconstruc-

tion error and the correlation. The block of missing frequency samples is illustrated

in Figure 5.3 for the cases of 7%, 21%, and 36% of the data missing. The centers of

the blocks remain stationary while the lower and upper extents are increased in a

step-wise manner. The percentage of missing samples ranges from 0% to slightly

less than 50%. The purpose of this experiment is to see how TV minimization,

which is what one will find in the current literature, performs relative to the other

three filters. Moreover, we would like to see if there is a difference in performance

between rural images composed of natural targets and urban images where one

would expect sharper edges from the man-made objects.

In Figures 5.4 through 5.9, the results of the above are displayed. It is clear that
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.4: Reconstruction vs. percent missing experimental results for optical test
image 1 (rural).

TV outperforms the other three filters in all six cases for both metrics. It was thought

that the Soebel and Prewitt filters might outperform the TV filters in the rural

case, but this is not supported by the data. There are also two distinct shapes for

the reconstruction error curves according to the scene type (i.e., rural or urban).

The rural images all have reconstruction error curves that increase sharply and

then level out quickly at a high error value. This tells us that none of these filters

performs particularly well for this experiment, though, as already mentioned, TV

is the best suited of the four. For the urban images we see that the error curves

eventually reach the same error level but take more than twice as long to get there,

which suggests that one can expect much better performance out of the urban-type

images, at least up to a certain point.

We note that the 2nd derivative estimate appears to have failed to converge once

for the 5th image and twice for the 6th. Theses failures, however, do not impact the

behavior visible in the plots.

5.2.2 Reconstruction Vs. Noise Level

The second optical experiment will fix the missing frequency samples to be a con-

tiguous block that accounts for 12.8% of the frequency samples. We will then add
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.5: Reconstruction vs. percent missing experimental results for optical test
image 2 (rural).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.6: Reconstruction vs. percent missing experimental results for optical test
image 3 (rural).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.7: Reconstruction vs. percent missing experimental results for optical test
image 4 (urban).
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.8: Reconstruction vs. percent missing experimental results for optical test
image 5 (urban).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.9: Reconstruction vs. percent missing experimental results for optical test
image 6 (urban).
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(a) Starting Incomplete Spec-
trum

(b) 38% Noise Scalar (c) 95% Noise Scalar

Figure 5.10: The incomplete spectrum showing the missing frequency samples for
this experiment along with two example noise levels.

an increasing amount of uniformly distributed random noise to the image and record

the performance metrics for the same four filters. The scalar used to control the

noise level will vary from 0% of the image mean to 100%. The missing frequency

samples and two example noise levels are illustrated in Figure 5.10. The motivation

for this experiment is that both the Soebel and Prewitt filters are known to give

better gradient estimates in the presence of noise [10] than TV, thereby leading

to the supposition that they should outperform TV in the reconstruction of noisy

data.

The results of this experiment are shown in Figures 5.11 through 5.16. As pre-

dicted, both the Soebel and Prewitt filters outperform the TV implementation;

however, it is not until the noise scalar reaches 20% in each case that they do so.

Moreover, we again see two distinct shapes to the curves according to whether the

image was rural or urban.

5.3 Radar

For the experiments with the SAR images we will use the `1, TV, and 2nd deriva-

tive filters. In theory, the ideal error-free SAR image has uniform amplitude in the

frequency domain, so we expect the `1 reconstruction to perform best in such a sit-

uation since it should lead to the sparsest representation. We base this expectation
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.11: Reconstruction vs. noise level experimental results for optical test im-
age 1 (rural).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.12: Reconstruction vs. noise level experimental results for optical test im-
age 2 (rural).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.13: Reconstruction vs. noise level experimental results for optical test im-
age 3 (rural).
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.14: Reconstruction vs. noise level experimental results for optical test im-
age 4 (urban).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.15: Reconstruction vs. noise level experimental results for optical test im-
age 5 (urban).

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.16: Reconstruction vs. noise level experimental results for optical test im-
age 6 (urban).
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(a) SAR Image 1 (b) SAR Image 1 Spectrum

Figure 5.17: The first SAR test image and the magnitude of its spectrum.

on the conjecture that a sinc function, which is what an error-free SAR spectrum

leads to for each target in the image, is the sparsest possible image domain function

for a finite length signal. It might be possible to prove this using the Gini coeffi-

cient [12], but we do not pursue that here.

The images used herein are taken from the publicly available images provided by

Sandia National Laboratories’ MiniSAR system [13]. The system operates in the

Ku-band and provides resolution on the order of 0.10(m) in both range and az-

imuth.

5.3.1 Reconstruction Vs. Percent Missing - Contiguous

Similar to the first optical experiment above, we will remove an increasingly large

contiguous block of frequency samples from two SAR images and record the recon-

struction metrics for each. In Figures 5.17 and 5.18 the two test images and the

magnitudes of their spectrums are shown. In Figure 5.19 three example spectrums

for the first image with various frequency block sizes removed are displayed.

The reconstruction metrics for this experiment are shown in Figures 5.20 and 5.21.

The surprising result is that both TV and the 2nd derivative implementations out-

perform `1 for both metrics on both images. Moreover, TV appears anywhere from
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(a) SAR Image 2 (b) SAR Image 2 Spectrum

Figure 5.18: The second SAR test image and the magnitude of its spectrum.

(a) 3% Block Size (b) 16% Block Size (c) 34% Block Size

Figure 5.19: Example SAR spectrums with various block sizes removed.
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.20: The reconstruction metrics for the first SAR image for the first SAR
experiment.

slightly to consistently better than the 2nd derivative. To get an idea of the differ-

ent results, we show the incomplete spectrum for the case of 20% of the frequency

samples missing and the reconstructed spectrums for all three implementations in

Figures 5.22 through 5.25. Based on these spectrums, it appears that the `1 im-

plementation is estimating a denser spectrum than the other two, which appear to

be mostly reconstructing higher-energy patterns only. The manifestation of this

difference in the image domain is suspected to be a reduction in the noise and/or

low-energy returns. We try to measure this using the area outlined in red in Fig-

ure 5.26, where we also plot the average power in this area for each reconstructed

image. Ignoring the downward spikes in the TV and 2nd derivative curves (which

represent cases where the minimization hit the iteration limit), we see that as the

percentage of missing samples increases, the TV and 2nd derivative implementations

leave out more and more of the energy from this low-return area.

5.3.2 Reconstruction Vs. Percent Missing - Random

Since the amplitude of SAR spectrums tends to be fairly flat, we can expect the

image domain contribution of each frequency sample to be roughly equal. This is

in contrast to optical imagery, where the vast majority of the frequency domain
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(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.21: The reconstruction metrics for the second SAR image for the first SAR
experiment.

(a) Incomplete Spectrum (b) `1 Reconstructed Spectrum

Figure 5.22: The incomplete and `1 reconstructed spectrums for the first SAR im-
age with 20% of the frequency data removed.

(a) TV Reconstructed Spectrum (b) 2nd Deriv. Reconstructed Spectrum

Figure 5.23: The TV and 2nd derivative reconstructed spectrums for the first SAR
image with 20% of the frequency data removed.
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(a) Incomplete Spectrum (b) `1 Reconstructed Spectrum

Figure 5.24: The incomplete and `1 reconstructed spectrums for the second SAR
image with 20% of the frequency data removed.

(a) TV Reconstructed Spectrum (b) 2nd Deriv. Reconstructed Spectrum

Figure 5.25: The TV and 2nd derivative reconstructed spectrums for the second
SAR image with 20% of the frequency data removed.
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(a) Low-Return Area (b) Estimate Noise Power

Figure 5.26: Outline of the area used to estimate the noise power and the relative
noise power as a function of the amount of missing frequency samples.
The downward spikes in the noise power are cases where the minimizer
hit the iteration limit.

energy is concentrated in relatively few frequency samples. This characteristic of

SAR imagery means that we can expect consistent behavior based not on which

samples are removed but on how many. Also, since we are selecting the samples

at random, we can evaluate the reconstruction error on a sample-by-sample basis

and see, if as supposed in Section 1.4, there is relation between the gain of the fil-

ters and the accuracy of the reconstruction – the conjecture being that the lower

the gain, the less accurate the estimate. In order to gauge the error for each recon-

structed frequency sample individually, we use the same normalized distance as in

(5.1) except that we do it for each individual sample, that is, for all xm ∈ Xm,

xr ∈ Xr, we compute ‖xm − xr‖2/‖xm‖2. We will then group these measurements

according to the combined gain of the filters used in the reconstruction at that par-

ticular frequency. This allows us to then compute the average error as a function

of combined filter gain. We define the combined filter gain in a manner similar to

how the elements of the polyfiltered image are combined to calculate the `1 norm:

it is the 2-norm of the vector formed by the gain of the individual filters at any one

particular frequency. For instance, let g1(m,n), . . . , gL(m,n) be the gains of the L

filters at frequency bin (m,n); then we take the combined gain of the filters to be
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√
g2
1(m,n) + · · ·+ g2

L(m,n).

We begin illustrating the above in Figure 5.27, where we show the incomplete spec-

trums for the cases of 8%, 40%, and 80% of the frequency samples being chosen

from a uniform random distribution. The reconstruction metrics are shown in Fig-

ure 5.27, where the TV implementation again consistently outperforms `1. (We re-

mark here that we were unable to include the 2nd derivative implementation in this

experiment due to both computational and time constraints. 1) To see if the re-

construction behavior is consistent with the contiguous missing frequency case of

the first SAR experiment, we display the incomplete spectrum for the 60% case

along with the original for reference in Figure 5.29. The `1 and TV reconstructed

spectrums are then shown in Figure 5.30. We see again that the TV reconstruc-

tion appears to give a less noisy spectrum than the `1. To see if this is born out in

the image domain, we show the original image again for reference, the incomplete

image, and the `1 and TV reconstructed images in Figures 5.31 and 5.32. There

is a noticeable decrease in the noise level for the TV image as compared to the `1

image. The last topic we look at is the accuracy of the reconstruction as a func-

tion of filter gain. Since the `1 filter is an all-pass filter (which means it passes all

frequency components unchanged), we only look at this for the TV case. In Fig-

ure 5.33 we show both the combined filter gain for TV along with the best-fit line

2 of the average error as a function of gain for the same 60% case as in the other

images. The expected increase in error as the gain of the filters approaches zero is

visibly present.

1The 2nd derivative implementation had to be stopped due to the amount of time it was tak-
ing to find a solution. It is suspected that a better choice of algorithm parameters could fix this,
but in the mean time it had to abandoned in order to allow the `1 and TV implementations to
finish.

2The line parameterization used in the fit is a0 + a1e
−a2g, where g is the gain and the ai are

chosen to minimize the l2 error of the line fit.
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(a) 8% Missing (b) 40% Missing (c) 80% Missing

Figure 5.27: Incomplete spectrums of the first SAR image with various amounts
frequency samples removed.

(a) Reconstruction Error (b) Correlation Coefficient

Figure 5.28: The reconstruction metrics of the first SAR image for the second SAR
experiment.

(a) Original Spectrum (b) 60% Missing

Figure 5.29: The original spectrum and the incomplete version of the 60% case for
the second SAR experiment.
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(a) `1 Reconstructed Spectrum (b) TV Reconstructed Spec-
trum

Figure 5.30: The `1 and the TV reconstructed spectrums of the 60% case. for the
second SAR experiment.

(a) Original Image (b) Incomplete Image

Figure 5.31: The original image and the incomplete image of the 60% case for the
second SAR experiment.

(a) `1 Image (b) TV Image

Figure 5.32: The `1 and TV reconstructed images of the 60% case for the second
SAR experiment.
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(a) Combined TV Filter Re-
sponse

(b) Error Vs. Gain

Figure 5.33: The combined filter gain for TV along with the estimated average er-
ror as a function of gain.
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CHAPTER VI

Conclusion And Future Work

6.1 Conclusion

The main conclusion of the preceding work is that the interpretation of TV mini-

mization as a filtering operation and its generalization to allow for arbitrary filters

allows the problem to be developed more robustly from a signal processing point

of view. Treatments of TV minimization such as [14] develop the problem from a

functional analysis standpoint which leads to proofs that are both prolonged and

unfamiliar to many. Moreover, the sole focus is on the first-order difference oper-

ation and this leads to other rigid considerations such as the divergence of an im-

age. To stay with this last example, in the PV development, where the operator is

a general convolution, what is defined as the divergence in [14] is no more than the

adjoint of the filtering operation. Moreover, given the implementation of polyfil-

tering as a single linear transform, this is available simply as PH, regardless of the

underlying filter.

As important as the preceding point about the generality of the theory, is that the

PV development lets one use the same software for a whole class of problems. Soft-

ware packages such as [7] have separate solvers for both `1 and TV, where here we

have used the same solver for the `1, TV, Prewitt, Soebel, 2nd derivative, and even

two specialty implementations. We will allow that specific problems sometimes re-
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quire specific software, however, for general purpose and research-oriented software,

the end user should not be limited to a fixed either/or choice.

Experimental conclusions include that the expected result that Soebel and Prewitt

filters can improve performance with optical imagery with noise beyond a certain

level. We also saw that TV performed better than both of these alternatives for

both rural and urban, the former being unexpected.

The most surprising experimental conclusion is that both TV and the 2nd derivative

implementations outperform `1 with SAR imagery. This may prove to be a signif-

icant improvement and is something, to the best of our knowledge, that has not

been looked at before.

6.2 Future Work

One of the immediate possibilities for future work is to extend the PV implementa-

tion to the denoising case,

min
x

PV(x) s.t. ‖Ax− b‖2 ≤ σ, (6.1)

and see if the preceding results among the various implementations hold. For in-

stance, the denoising problem lets us add noise directly to the frequency measure-

ments. This is in contrast to what was done here, where the noise was added to the

image prior to the frequency sampling. It is expected that the Soebel and Prewitt

filters would still give better performance but at this point that is conjecture. Also,

if that is the case, it would be interesting to see if the amount of improvement is

consistent.

With respect to the reconstruction of SAR images, we saw that TV gives estimates

with significantly less noise, so it would be interesting to see if the denoising formu-

lation could give even better results. Also, the noise level is only one measure of the

48



quality of SAR images. To give a complete comparison of how `1 and TV compare,

one would need to examine calibration targets and compare things such as the Peak

Sidelobe Ratio (PSLR) and the Integrated Sidelobe Ratio (ISLR) among others

[15]. There are also outstanding questions as to why TV outperforms `1 in regards

to the SAR imagery and, moreover, if there are other filters that may yield even

better results (though the answer to the former would presumably suggest answers

to the latter).
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