
Eastern Michigan University
DigitalCommons@EMU

Master's Theses and Doctoral Dissertations Master's Theses, and Doctoral Dissertations, and
Graduate Capstone Projects

2010

Structure-activity relationships of PAI-1 inhibitors
Karen Sanders

Follow this and additional works at: http://commons.emich.edu/theses

Part of the Chemistry Commons

This Open Access Thesis is brought to you for free and open access by the Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects
at DigitalCommons@EMU. It has been accepted for inclusion in Master's Theses and Doctoral Dissertations by an authorized administrator of
DigitalCommons@EMU. For more information, please contact lib-ir@emich.edu.

Recommended Citation
Sanders, Karen, "Structure-activity relationships of PAI-1 inhibitors" (2010). Master's Theses and Doctoral Dissertations. 370.
http://commons.emich.edu/theses/370

http://commons.emich.edu?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses/370?utm_source=commons.emich.edu%2Ftheses%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@emich.edu


STRUCTURE-ACTIVITY RELATIONSHIPS OF PAI-1 INHIBITORS 
 
by 

Karen Sanders 

 

Thesis 

 

Submitted to the Department of Chemistry 

Eastern Michigan University 

in partial fulfillment of the requirements 

for the degree of 

MASTER OF SCIENCE 

in  

Chemistry 

 

Thesis Committee: 

Cory Emal, PhD, Chair 

Arthur Howard, PhD 

Deborah Heyl-Clegg, PhD 

 

July 12, 2010 

Ypsilanti, Michigan 

 

 

 



 

 

ii

ACKNOWLEDGEMENTS 

 
 

 I would like to take this opportunity to thank my research advisor, Dr. Cory Emal, for 

his guidance, encouragement, understanding, and contagious positive attitude towards research 

that motivated me during my time here at Eastern Michigan University.   

 I would also like to thank the members of my thesis committee for the time they took to 

give me constructive criticism on numerous rough drafts of this work. 

 To those who financially maintained me during the course of my education including 

National Institute of Health, Eastern Michigan University, and my family, I thank you. 

 I also owe an undying debt of gratitude to Dr. Arthur Howard, Dr. Timothy Brewer, and 

Dr. Patrick Koehn for their commitment to teaching, their patience, and most importantly for 

the time they took to help me understand complicated concepts.  Without them I would not 

have been able to achieve this level of education; thank you.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iii 

ABSTRACT 

 
The inhibition of plasminogen activator inhibitor-1 (PAI-1) is anticipated to increase our 

understanding of various human ailments with which high levels of PAI-1 have been associated, 

including diabetes, stroke, and atherosclerosis.  Previous accounts have reported the synthesis of 

inhibitors that bind to PAI-1 with a low affinity, inhibit the serpin plasma protein antithrombin 

III, and/or fail to inhibit PAI-1 when vitronectin, a cofactor of PAI-1 is present.  The synthesis 

of small-molecule inhibitors of PAI-1 that improve upon these properties has been the main 

goal of this research. Research efforts focused on examining changes in inhibitor potency based 

on the manipulation of the inhibitors’ architecture, with particular attention paid to the number 

and positioning of multiple polyphenolic groups. The refinement of these synthesized moieties 

into selective and highly active species has been achieved. 
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Introduction 
 

 
 Fibrinolysis is the process that allows for the breakdown of thrombi, or blood clots, 

within the human body.  The coagulation cascade is activated at the site of a tissue injury and 

results in the formation of thrombi, which are then broken apart by the fibrinolytic process 

(Figure 1). 

 

 

 

Figure 1: Processes Composing the Coagulation Cascade and Fibrinolysis. 

 

Initially the activation of the coagulation cascade prompts the production of fibrinogen 

by the liver.  Next, fibrin is formed from the liver-produced protein fibrinogen.  Fibrin, a fibrous 
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protein, catalyzes tissue-type plasminogen activator and thrombin, which in turn activates Factor 

XIII.1  Then Factor XIII polymerizes fibrin into a cross-linked polymer at a wound and interacts 

with platelets to form a net-like layer of protein that inhibits bleeding.  Two other components 

are incorporated into the cross-linked structure, alpha-2-antiplasmin and thrombin-activatable 

fibrinolysis inhibitor/plasma carboxypeptidase B2.2  Alpha-2-antiplasmin is a serine protease 

inhibitor whose main function involves the inhibition of plasmin.  The end result of plasmin 

inhibition is the inhibition of fibrinolysis.  Thrombin-activatable fibrinolysis inhibitor is a plasma 

zymogen that is converted into carboxypeptidase B2 upon interaction with the thrombin-

thrombomodulin complex; it is this end product that also acts to inhibit fibrinolysis.  The 

trapping of these active components into the mesh temporarily inhibits their behavior, which 

allows for them to become activated during fibrinolysis when the mesh is broken down and they 

are freed.3  Their activation allows for the cessation of the fibrinolytic process.   

While the clotting process plays an important physiological role in wound healing, it also 

can lead to the formation of clots within blood vessels.  These clots inhibit blood flow, and 

hence strokes and heart attacks can result.   Therefore, understanding the process of fibrinolysis 

and developing a means by which to control this process is of interest as a means of preventing 

heart attacks and strokes by manipulating our ability to break down blood clots. One route 

available to achieve this goal involves understanding and developing a method for inhibiting 

either of the two components: alpha-2-antiplasmin and thrombin-activatable fibrinolysis 

inhibitor/plasma carboxypeptidase B2 (whose active forms both inhibit fibrinolysis) or to 

understand and develop a method of inhibiting the necessary precursors of these two 

components.  Our research efforts focused on synthesizing an inhibitor for the inhibition of the 

latter.  
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Plasminogen is the inactive form of plasmin that is produced in the liver.  The serpin 

plasminogen activator inhibitor-1 (PAI-1) inhibits urokinase plasminogen activator (uPA) and 

tissue-type plasminogen activator (tPA),4 which are the serine proteases that typically activate 

plasminogen.  The activation of plasminogen by conversion into its active form, plasmin, is 

necessary to fibrinolysis.4   Figure 2 is a depiction of the complex interactions of the members of 

the fibrinolysis pathway.  High levels of PAI-1 have been associated with diabetes, stroke, and 

atherosclerosis.  The goal of this research is to develop small molecules that inhibit a natural 

inhibitor of fibrinolysis and to better understand the structural requirements for potent and 

selective inhibition of PAI-1.    

   

 

 

 

Figure 2:  Fibrinolysis. 
Green arrows indicate a stimulatory effect, and red arrows indicate an inhibitory effect.   
 
 

 

Attempting to inhibit PAI-1 and return high levels of PAI-1 to normalcy has become a point of 

interest for several researchers.4, 19, 34, 35, 39, 40, 41, 29, 39  A thorough understanding of the protein and 

gene that codes for it is necessary. 
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Serpins are high molecular weight proteins whose name is derived from SERine 

Proteinase INhibtors that belong to the MEROPS inhibitor family I-4 within clade E.5,10 Serpins 

are involved in blood coagulation6, diabetes7, fibrinolysis8, angiogenesis9, and inflammation.10  

These serpins exist in both extra- and intra-cellular forms and are found in all taxonomic groups 

of organisms.12   

PAI-1 is a member of the serpin super family.  Figure 3 illustrates the 3-D structure of 

the protein.   

 

Figure 3:  3-D Structure of Human Plasminogen Activator Inhibitor-1 (PDB). 
Protein Databank (PDB)11 
 

A pool of information has been gathered concerning the gene and protein, PAI-1.  A 

thorough examination of the information contained within various protein databases concerning 

the PAI-1 gene and protein has become relevant to this study because of the possibility of 

finding supporting evidence for the existence of homology between PAI-1 and other proteins.  

If homology exists between proteins for the active sites of PAI-1 and if other inhibitors have 

already been found to be successfully synthesized for these homologous active sites, then this 
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could lead to a breakthrough for the determination of PAI-1 inhibitors.  Putative homologs of 

PAI-1 exist in pan troglodytes, canis lupus familiaris, bos Taurus, mus musculus, rattus norvegicus, danio reno, 

and anopheles gambiae.12  Alternatively spliced transcript variants encoding different isoforms have 

been found for this gene.13 

PAI-1 is a glycoprotein composed of 402 amino acids.22  The gene that encodes for this 

unique 45 kDa protein is located on chromosome 7 in exon 9 and is composed of 1858 base 

pairs.12  The sequencing for the PAI-1 gene [SERPINE1] is considered to be complete.5 The 

gene has been included in the consensus coding sequence (CCDS) project, which consists of an 

international effort to identify common protein-coding gene sets between human genes and 

mouse genes.  This effort has been undertaken due to the quantity of testing that is commonly 

done on mice regarding pre-market medicines.  The CCDS has resulted in databanks that 

contain detailed annotated information regarding the gene and protein of PAI-1.  Each CCDS 

gene has been given an identification number of which PAI-1’s is CCDS5711.14  The location of 

the gene on chromosome 7 is illustrated in Figure 4. 

 

 

Figure 4:  Position of the PAI-1 gene within a Homo sapiens chromosome 7. 

 

The red line in the illustration details the position of the PAI-1 gene within the chromosome 

structure at site q22.1.   

The PAI-1 gene has been implicated in two diseases.  The first is from a defect in the 

gene that leads to PAI-1 deficiency and is characterized by abnormal bleeding.15   Excessive PAI-
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1 inhibition, another form of PAI-1 deficiency, could be a cause for a decreased ability of the 

body to heal wounds.6   Serpinopathies, or diseases characterized by the accumulation of serpins, 

have been noted to result in thrombophilia, which is an autosomal dominant disorder.16 

However, the mechanism by which PAI-1 operates within the body to cause inhibition 

of tPA and uPA does not occur at the genomic level.  It is only the post-translational 

modification of the gene product that allows for the structure to be inactivated by uPA and tPA; 

uPA and tPA each utilize a proteolytic attack mechanism that cleaves the 369-Arg-|-Met-370 

bond of PAI-1.5 To explore this concept further, a look into the shape and nature of the 

metastable protein should be undertaken.     

Serpins are known to be metastable proteins, which indicate that they exist as active-state 

proteins that interact irreversibly with their appropriate substrate via a conformational change.17  

Figure 5-(d) details this change and illustrates the suicide-like mechanism (irreversibility of the 

pathway results in inactivation of the serpin) that is characteristic of the serpin family’s inhibition 

of their targets.18 



 

 

7

 

Figure 5:  Conformational Changes Undergone by PAI-1.24   
(a):  Unattached active PAI-1  (b):  The RCL of PAI-1 bound to protease  (c): Final covalent 
PAI-1 complex (d): Cleaved inactive PAI-1 form and unattached active protease. 
 
 
 

The reactive center loop (RCL) appears in the active configuration of the serpin (Figure 

5-a).  In this state it appears as a more freely moving strand within the entire protein 3-D 

structure.  The RCL is depicted in Figure 5-c/d inserted into the β-sheet A, and it is this 

conformation of the RCL that occurs when the serpin is in its inactive state.19  The catalytic 

serine residue of the protease attacks the RCL and severs the loop at the C-terminal residue, 

covalently linking the N-terminal residue via an ester bond to the protease serine.  It is at this 

point that the serpin undergoes a significant conformational change that results in the newly 

attached protease/N-terminal RCL becoming inserted into the β-sheet A.  This binds the 
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previously freely moving RCL and essentially crushes it within the serpin body, blocking its 

ability to interact with any other copies of protease.20 

Annotations within the database of the pair-wise sequence alignment program BLAST 

include the information that the inactive form of PAI-1 is more stable than the active form by 9 

kcal.21  PAI-1’s active state is unusually unstable in that it has a half-life of approximately 2 

hours, upon which it spontaneously converts to its latent/inactive form (Figure 6).22  Latent state 

conversions have also been observed due to physiological pH and temperature changes.  It was 

also determined that anionic halide ions may play a role in the active-to-latent structural 

transition.22  The cleaved form usually is encountered either free or complexed with its target 

proteinase.12  The RCL is found in the C-terminal portion of these proteins.10  Following 

protelytic cleavage the RCL is incorporated into the 5 A β-sheet as strand 4 A and acts as a 

“pseudosubstrate,” locking the protein into an inactive state and prohibiting the completion of 

its catalytic cycle.23 
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Figure 6:  Differentiation between the Native and Latent PAI-1 Forms. 
The spontaneous conformational change that occurs in the native PAI-1 serpin allows PAI-1 to 
change into the latent form.  The serpin’s interaction with vitronectin locks the protein into its 
active form.24  
 

Within Homo sapiens the PAI-1 protein comprises 2% of the total protein within the organism.10 

Other members of the serpin family within humans include angiotensinogen, corticosteroid-

binding globulin, and thyroxin-binding globulin.10 

 A more complete grasp of the interactions that PAI-1 is capable of can be achieved by 

examining the complexity of the protein structure and evaluating how its interactions differ at its 
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various localizations, as it is found in plasma, blood platelets, endothelial tissue, hepatoma, and 

fibro-sarcoma cells.22   

 In plasma, PAI-1 is commonly observed complexed with vitronectin, a naturally 

occurring protein.25  Figure 7 illustrates the two main domains that comprise the PAI-1 serpin.  

Each domain of the serpin is composed of different numbers and types of secondary structures.  

The domains are architecturally comprised of a roll and a 2-layer sandwich.26 

 

 

 

Figure 7:  The Two Domains that Compose PAI-1.   
Sequence A is the purple part of the 3-D structure on the left; while Sequence B is shown in blue 
on the right.26 
 

 

 

Local inter-residue hydrogen bonding or the lack of this hydrogen bonding is the main 

feature responsible for the unique secondary structure of proteins.  In total the secondary 

structures that comprise the PAI-1 serpin consist of 3 sheets, 1 beta alpha beta unit, 6 beta 

hairpins, 1 psi loop, 6 beta bulges, 16 strands, 12 helixes, 15 helix-helix units, 30 beta turns, and 

30 gamma turns. 27   The percent makeup of the secondary structure can be described as 140 

residues (37%) composing the strands of PAI-1, 104 residues (27.6%) composing the alpha 

helixes, 9 residues (2.4%) composing 3-10 of the remaining helixes, and 124 residues (32.9%) 
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composing other secondary structural features within the serpin.  It is the unique 3-D structure 

of this serpin which is responsible for its different functional attributes within an organism. 

Each of the 402 PAI-1 amino acids have been identified in their role in composing the 

secondary structure of the serpin.  The secondary structure aligned with its sequence is illustrated 

in Figure 8.27 

 

 

 

Figure 8:  PAI-1’s Secondary Structure Aligned with its Sequence.27 
 

 

Several mechanisms have been implicated in increasing the levels of PAI-1 within Homo 

sapiens.  Nox4-produced reactive oxygen species, resulting from the activation of the p38 

MAPK/Smads pathway, have been reported to result in the increased expression of PAI-1 by 

endothelial cells.28  Another route that reportedly results in increased levels of PAI-1 implicates 

the transforming growth factor (TGF)-β.  (TGF)-β is a profibrotic cytokine that up-regulates 
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PAI-1 by binding to the CAGA box of the PAI-1 promoter region of the PAI-1 gene.29  The 

corticosteroid aldosterone works in concert with the above pathway by increasing the levels of 

(TGF)-β, which then consequently leads to increased PAI-1 levels.30  Another style of PAI-1 

promotion works via small molecules.  The antibiotics 13-deoxytedanolide and anisomycin 

promote the expression of the PAI-1 gene at nano-molar concentrations via the ribotoxic stress 

response pathway.31   

To counteract routes of increased PAI-1 expression, multiple methods of inhibition have 

been explored.  Four noteworthy methods have been utilized to inhibit the PAI-1 protein.  

These methods focus on the inhibition of the transcription of the gene,29 the synthesis of a 

protein to substitute for the RLC of PAI-1,19 the destruction of the tPA/PAI-1 complex via a 

neutralization method of inhibition,32 and the inhibition of the protein by antibodies.33 

 

 

 

 

Figure 9: Ascofuranone. 

 

 

Ascofuranone (Figure 9) inhibits PAI-1 by an inhibitory route that focuses on inhibition 

of expression of the PAI-1 gene.29 The molecule inhibits the phosphorylation of epidermal 

growth factor receptor (EGFR) and downstream kinases.  PAI-1 gene expression is suppressed 

along with the suppression of the kinase inhibitors.  Also, ascofuranone has been linked to the 

suppression of metalloproteinase activity, which leads to a suppression of PAI-1 gene 
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transcription.29  While this method focuses on the expression of the PAI-1 gene and therefore is 

suppressing the origin of the PAI-1-in-excess problem, its inability to selectively inhibit PAI-1 

levels leads to complications if suppression of the other factors involved is concluded to be 

undesirable and lead to negative health effects in their own right. 

The second unique inhibition method focuses on the inhibition of PAI-1 by utilizing a 

protein with an amino acid sequence that corresponds to that of the RCL of the serpin.19  The 

peptide is 14 amino acids in length and specifically corresponds to the RCL amino acid positions 

333-346.  The hypothesis behind this inhibition method was that a synthetic, free-flowing RCL 

that could theoretically be made to have an artificially high concentration within the system 

compared to the serpin/RCL 1:1 ratio would be able to inhibit the serpin more effectively by 

insertion of the synthetic RCL into the β-sheet A, thus forcing the protein into its inactive form.  

While the inhibition of PAI-1 was effective in the absence of vitronectin, a marked decrease in 

its inhibitory potency was noticed in the presence of vitronectin.19  The inability of a potential 

inhibitor to inhibit PAI-1 in the presence of vitronectin is a bad omen of the inhibitor’s potential 

effectiveness, because vitronectin is a cell adhesion protein that exists in high effective 

concentrations within the human body and has a high binding affinity to PAI-1.  Thus, the 

effectiveness of the inhibitor in a whole animal system is limited. 

PAI-1 controls the activation of tPA by the initial formation of a sodium dodecyl sulfate-

stable complex.34  Gardell and coworkers focused on neutralizing this interaction by designing an 

inhibitory molecule (PAI-749, Figure 10) whose purpose was to destroy this complex by 

promoting the polymerization of PAI-1.25   
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Figure 10: PAI-749. 

 

The largest drawback to this inhibitory method was noticed when researchers pretreated 

the assay system with vitronectin.  In this instance inhibition by PAI-749 was virtually eliminated 

by the addition of vitronectin. 

Develtare and coworkers reported an approach to PAI-1 inhibition by using a synthetic 

heterodimer body (diabody) that consisted of two connected antibodies composed of the single 

chain variable fragment (scFv), which is a monovalent antibody fragment (Figure 11).35   
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Figure 11:  Schematic Representation of a Heterodimer PAI-1 Inhibitor.35 

The difference in shading represents the different regions of specificity.  The separation of these 
regions by a linker that disallows interaction is what promotes the formation of the bi-specificity 
of the antibody. 
 

 

However, the major drawback with this technique is its lack of inhibitory specificity.  

The diabody inhibits not only PAI-1, but also a zymogen known as thrombin-activatable 

fibrinolysis inhibitor (TAFI).  TAFI operates to decrease the rate of plasmin generation and 

therefore the inhibition of it in concurrence with the inhibition of PAI-1 would effectively result 

in an increase in fibrinolysis.  While the overall effect is the desired effect, it is worthwhile to 

create a specific inhibitor of PAI-1 to eliminate the potential of undesirable and unknown side 

effects.  With this in mind, researchers have developed a series of small-molecule inhibitors of 

PAI-1 with a drive toward specificity of their inhibitory pathway. 

The complex structure that the PAI-1 gene codes for has the potential to possess several 

binding sites for a wide variety of inhibitory molecules.  Several previous research efforts have 
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reported the synthesis of small-molecule inhibitors of PAI-1.4, 40, 41, 29, 40, 39  By examining reported 

progress concerning the synthesis of effective and ineffective PAI-1 inhibitory molecules, the 

information gained can be drawn upon to modify and potentially improve our own attempts and 

the attempts of future synthetic research pathways. 

Research focusing on the synthesis of small-molecule inhibitors for PAI-1 was reported 

by Miyazaki and coworkers.36  A butadiene-imide series of molecules was tested for inhibition 

against the production of PAI-1; an example of a molecule in this series is illustrated in Figure 

12-1.36  This species strongly inhibited anti-thrombin III (ATIII).  ATIII is a serpin plasma 

protein closely related to PAI-1 that inactivates thrombin and plasmin.  Therefore, an inhibitor 

that inhibits ATIII would also lead to an increase in fibrinolysis, but through a separate 

mechanism than the one we are attempting to follow in this research effort.  Therefore, while 

the overall goal of inhibiting an inhibitor of the fibrinolysis pathway would be achieved, the goal 

of developing an inhibitor specific for PAI-1 would not be achieved, as this class of inhibitor has 

an affinity for multiple serpins.  This also leads to higher IC50 measurements of the inhibitor due 

to competitive inhibition effects.36  

In an attempt to synthesize a more selective inhibitor, the Miyazaki group reported the 

synthesis of a set of inhibitors composed of furan-2-one and pyrrolin-2-one derivatives.4  The 

furan-2-one compounds were determined to be biologically unstable due to the α,β-unsaturated 

lactone ring.  Therefore, only the pyrrolin-2-one compounds were evaluated in a rat arterial 

thrombosis model.  The molecule illustrated in Figure 12-2 was highlighted in the paper as 

having good selectivity for PAI-1 because it showed no inhibition of thrombin, plasmin, trypsin, 

antithrombin III, antiplasmin, or antitrypsin at 30 µM.   This inhibitor also was reported as 

having a strong level of inhibition in comparison to their other synthesized inhibitors.  The 

inhibitor activity was reported as an IC50-value of 9.6 µM.4  A molecules’ efficacy in ex vivo 
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plasma establishes a measure of inhibition known as the IC50 value.  The IC50-value is a measure 

of the effectiveness of a compound, at a 50% inhibitory concentration, toward the aim of 

inhibiting a biological or a biochemical function.37  Within this reported series, even their 

strongest inhibitor did not result in the inhibition of PAI-1 below the micro-molar range.   

Miyazaki and coworkers reported in 2010 their results on in vivo studies of synthesized 

inhibitors which were a series of 1,4-diphenylbutadiene derivatives.38  They accomplished the 

synthesis of an orally active inhibitor of PAI-1 production (Figure 12-3). 

The Miyazaki group is continuing its efforts toward more fully evaluating the antithrombic 

effects of their new class of 1,4-diphenylbutadiene inhibitors.  They are also working to develop 

more efficient synthetic techniques for large scale synthesis of their reported inhibitors.  

However, both butadiene series of inhibitors focused on the inhibition of the production of 

PAI-1 versus the direct inhibition of the serpin. 
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Entry Inhibitor Entry Inhibitor 

1 

 

 

5 

 

 

 

2 

 

 

6 

 

 

3 

 

 

 

7 

 

 

4 
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Figure 12:  Various Published Small Molecule Inhibitors of PAI-1. 
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Bin and coworkers focused on synthesizing a series of small molecule inhibitors which 

would directly inhibit PAI-1 exclusively.  They synthesized a series of menthol-based inhibitors 

that had a strong effect on the activity of PAI-1 (IC50 = 0.38 µM).39   However, drawbacks 

associated with this series of molecules include poor solubility and low bioavailability, hence 

limiting their use as potential drugs.39  One of the molecules in this study is illustrated in Figure 

12-4. 

 The same research group reported a series of piperazine-based derivatives, intending to 

mitigate this set of drawbacks (poor solubility of the molecules and low bioavailability).39  An 

example of a molecule from this series is illustrated in Figure 12-5.39  Their efforts resulted in a 

potent inhibitor (IC50 = 0.01 µM) and improved bioavailability, solubility, and selectivity over the 

previous series of inhibitors. 

In 2005 researchers working at Wyeth Research Labs in Collegeville, Pennsylvania, had 

synthesized a series of PAI-1 inhibitors.40  They recognized that several effective PAI-1 

inhibitors (at the micromolar level) from those past synthetic attempts had a structural 

commonality.  These previous PAI-1 inhibitors included naphthyl benzofuran, 3-indole 

oxoacetic acid, and oxadiazolidinedione.40 The structural feature that they all shared was either a 

carboxylic acid group or an acid bioisostere attached to a lipophilic aromatic ring scaffold.  This 

group then focused on that structural feature as a lead to the design of a series of 2-indole 

carboxylic acid-based derivatives (Figure 12-6).  This series was tested for inhibition against PAI-

1; however, their most potent potential synthetic inhibitor did not reach an IC50-value below the 

micromolar level.40 

A series of oxalamide derivatives was tested for inhibition against PAI-1.41  An example 

of a molecule in this series is illustrated in Figure 12-7.  The oxalamide derivatives resulted in 

inhibitors with IC50-values no better than a low micromolar inhibition of PAI-1 (IC50 range = 
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non-detectable  ̶  4.5 µM).  The authors noted that the addition of electron withdrawing groups 

(trifluoromethyl) to the oxalamide derivatives resulted in an increase in inhibitor potency.  It was 

also observed that the introduction of a sulfonamide spacer between two phenyl rings did not 

result in a change in the potency of the inhibitor.41 

A series of 2-aryl-3-acyl-benzofuran derivatives was tested for inhibition against PAI-1.42  

The molecule in Figure 12-8 is unique in that it was synthesized by utilizing a Suzuki coupling 

reaction between benzofuran or benzothiophene boronic acids and dibromo substituted 

napthalenes.42  This series also failed to inhibit PAI-1 below a low micromolar level (IC50 = 5.0 

µM). 

In 2010 El-Ayache, a member of our Eastern Michigan University-based research group, 

synthesized and reported a novel series of arylsulfonimide and bis-arylsulfonamide PAI-1 

inhibitors. 43   

 

 

Figure 13: Arylsulfonimide. 

 

These research efforts resulted in the hypothesis that short linking units between the 

sulfonyl moieties and a 3,4-dihydroxy aryl substitution pattern resulted in the highest degree of 

PAI-1 inhibition within the series and the lowest degree of ATIII inhibition.   The highlighted 

molecule within this report exhibited an inhibition of PAI-1 at an IC50-level of 0.284 µM and a 
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reported ATIII inhibition level which exceeded 300 µM (Figure 13).43  Therefore, these research 

efforts resulted in the first reported non-naturally occurring PAI-1 inhibitor which was highly 

selective for PAI-1. 

Most known natural and synthesized inhibitors of PAI-1 have the negative aspects of 

either binding with a low affinity to PAI-1 or not inactivating PAI-1 in the presence of its 

cofactor, vitronectin.44  Successful attempts to define the binding sites of these previous 

inhibitors to PAI-1 via crystal structures have not been reported to date in the literature.   

PAI-1 has been hypothesized to play a role in cell movement.  Researchers studying this 

concept noted that tiplaxtinin inhibited PAI-1 with a low micromolar potency.9  The structure of 

the tiplaxtinin molecule is illustrated in Figure 14. 

 

 

Figure 14: Tiplaxtinin. 

 

 

However, tiplaxtinin has also been observed to be incapable of inhibiting PAI-1 in the 

presence of vitronectin and even in the absence of vitronectin, tiplaxtinin shows a low affinity 

for PAI-1.44  At the University of Michigan Medical School, Daniel Lawrence, in conjunction 

with the Center for Chemical Genomics (CCG), conducted spectral library screens on the 

MicroSource SPECTRUM compound library, looking for molecules that have a high affinity for 

PAI-1 and could be modified to be possible PAI-1 inhibitors.44  The PAI-1 activity assay was 
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developed to screen for compounds with anti-PAI-1 activity in the library compound collection.  

This collection consists of known drugs, compounds approved for agricultural use, natural 

products, and other bioactive compounds. A chromogenic assay was used with a 2:1 molar ratio 

of PAI-1 to uPA.  uPA was selected because it is considerably more active toward low molecular 

weight substrates than is tPA, allowing for lower concentrations of uPA and PAI-1 in this screen 

(5 nM uPA and 10 nM PAI-1).  The screen was performed in 384-well microtiter plates in the 

CCG lab as follows: recombinant active human PAI-1 (final 10 nM) was incubated for 60 

minutes at room temperature either with or without 10 µM of each compound, uPA was added 

(final 5 nM) to each reaction well, and incubation continued for an additional 30 minutes at 

room temperature.  Residual uPA activity in each reaction mixture was then determined with 

pGlu-Gly-Arg p-nitroanilide chromogenic substrate (Sigma) (final 0.25 mM) measured 

spectrophotometrically at 405 nm after 60 minutes.  

Compounds that inactivated PAI-1 were identified by the restoration of uPA activity. 

The extent of uPA activity restoration was determined by comparing each drug-containing 

sample to wells with untreated PAI-1 (100% PAI-1 activity) and to wells with uPA only (0% 

PAI-1 activity).  The data from this screen were then uploaded to the CCG informatics system, 

and positive hits were identified as any compound that increased uPA activity by more than 3 

standard deviations above control and compound wells on each plate.  Using these selection 

criteria, the primary screen of 32,000 compounds yielded an initial total of 23 compounds 

deemed positive hits.  Each of these hits was then re-assayed (in duplicate by the CCG) by dose 

response testing using the same chromogenic assay with the compounds at the following 

concentrations: 0.1, 0.32, 1, 3.2, 10, 32, and 100 µM.  

In this secondary analysis, 19 of the 23 compounds were deemed positive; however, 3 of 

these compounds were known to have significant toxicity and therefore were not analyzed 
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further.  Samples of the 16 remaining compounds were then obtained from the CCG for further 

analysis in the Lawrence laboratory.  These more detailed analyses first investigated whether 

each compound had intrinsic absorbance at 405 nm that would give false positive absorbance 

readings, or was not completely soluble in the assay buffer system used since insolubility and 

compound precipitation could likewise lead to false positive absorbance readings.  

Each compound was also tested for its ability to directly block PAI-1 complex formation 

with uPA by SDS-PAGE analysis.  For this latter analysis, each compound was incubated at 10 

µM with 1 µg of hPAI-1 for 15 min at 23°C followed by the addition of 1 µg of uPA for an 

additional 5 min at 37°C.  Approximately half of the 16 compounds either had intrinsic 

absorbance at 405 nm or insolubility in the buffer system.  Of the remaining compounds, 5 

directly inhibited PAI-1 activity. 

Tannic acid, a natural polyphenolic compound, was one of the molecules identified as a 

PAI-1 inhibitor.  The structure of tannic acid is illustrated in Figure 15. 
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Figure 15: Tannic Acid.  
Tannic acid is an effective PAI-1 inhibitor with an IC50-value of 5 µM. 
 

 

This initial screening process resulted in other molecules besides tannic acid that proved 

to be inhibitors of PAI-1; several shared a prominent similarity with tannic acid in that they were 

recognized to contain gallate (Figure 16) or digallate (Figure 15) groups.  This recognition 

allowed for the focus of synthetic efforts on the production of various gallate and bisgallate 

(Figure 16) analogs.   
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Figure 16:  Gallate and Bisgallate Molecule. 

 

The research efforts in the laboratory of Prof. Cory Emal focus on the synthesis of 

potential small-molecule inhibitors of PAI-1 and evaluation of their ability to inhibit PAI-1.  The 

IC50 measurement indicates a measure of the degree of inhibition of the interaction between tPA 

and PAI-1; thus these values are truly a measure of residual tPA activity.  Our efforts also 

focused on analyzing the IC50s of our inhibitors within biological systems by observing the 

degree to which PAI-1 activity was blocked in vivo in mice.  

The enzymatic assay systems utilized in this project, performed in the Lawrence 

laboratories, consisted of recombinant nonglycosylated or glycosylated active human PAI-1 

(PAI-1 and PAI-1glyco, respectively) or recombinant murine PAI-1 (mPAI-1) incubated at 2 nM 

for 15 min at 23°C with increasing concentrations of each compound in an assay buffer (100 

mM NaCl, 40 mM HEPES, pH 7.8, 0.005% Tween-20, 0.1% DMSO), followed by the addition 

of uPA (Molecular Innovations) or tPA (Genentech) to 3 nM and further incubation for 30 min 

at 23 °C.  At each drug concentration, parallel control reactions without PAI-1 were assembled.  

Residual enzymatic activity was determined by addition of an equal volume of 100 µM Z-Gly-

Gly-Arg-AMC (Calbiochem) fluorogenic substrate for uPA or Pefafluor tPA (Centerchem) for 

tPA, and the rate of AMC release monitored at 23°C (Ex 370 nm and Em 440 nm).  The percent 

change in PAI-1 activity was determined according to the equation shown in Figure 17.  
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Percent Change in PAI-1 Activity = [(Ei – Pi) / Ei] / [(E0 – P0) / E0] 

 
Figure 17:  Equation Determining Percent Change in PAI-1 Activity within the Assay 
System.  
Equation utilized to determine the percent change in PAI-1 activity within the assay system. 
Where Ei is the enzyme activity at drug concentration i; Pi is the enzyme in the presence of PAI-
1 at drug concentration i; E0 is the enzyme activity in the absence of drug; and P0 is the enzyme 
activity in the presence of PAI-1 in the absence of drug. 
 

 

 The effect of the compounds on 2 nM ATIII in the presence of 3 U/ml heparin was 

also determined using 3 nM α-thrombin.  The reactions were assembled as above except that 

10% DMSO was included in the assay buffer to ensure compound solubility at the higher 

concentrations used.  Residual α-thrombin activity was measured using an equal volume of 100 

µM benzoyl-Phe-Val-Arg-AMC (Calbiochem). 

Surface Plasmon Resonance (SPR) analysis determined the direct binding of PAI-1 

protein that had been treated with a vehicle or inhibitor to anhydrotrypsin (Molecular 

Innovations) and was monitored using a Biacore 2000 optical biosensor.  Bovine anhydrotrypsin 

was immobilized to CM5 SPR chips at the levels of approximately 2000 response units (RU) in 

10 mM sodium acetate, pH 5.0.  The reference flow cell surface was left blank to serve as a 

control.  Remaining binding sites were blocked by 1 M ethanolamine at pH 8.5.  All binding 

reactions were performed in assay buffer.  Then PAI-1 at 2 nM was incubated with the indicated 

concentrations of inhibitor in running buffer for at least 15 min at 23°C.  Binding of PAI-1 to 

anhydrotrypsin was then monitored at 25°C at a flow rate of 30 µl/min. for 2.5 min. followed by 

2 min. of dissociation.  Chip surfaces were regenerated with a 1 min pulse of 10 mM glycine, pH 

1.5, followed by a 1 min wash of assay buffer.  Injections were performed using Wizard 

Customized Application program in automated mode.  Binding experiments were performed in 

duplicate and were corrected for background and bulk refractive index by subtraction of the 
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reference flow cell, and data analyzed with BIAevaluation 3.1 (Biacore) by linear fitting of the 

initial association phase.  Compound-induced alterations in PAI-1 binding to anhydrotrypsin 

were determined by comparing the initial slopes of the association phases since there is a linear 

relationship between the slope and the concentration of available active PAI-1.  These data were 

then fit to an exponential association equation to determine the apparent affinity between PAI-1 

and compound.   

The SDS-PAGE/Western blotting analysis was determined by utilizing human PAI-1 at 

2 nM, which was then incubated with the indicated concentration of the compound for 15 min 

at 23°C in assay buffer, followed by 30 minutes of incubation with 3 nM uPA or tPA.  Samples 

were analyzed via reducing SDS PAGE with 10% Tris-HCl gels (Bio-Rad) and transferred onto 

PVDF overnight.  PAI-1 was then detected using polyclonal high titer sheep anti-human PAI-1 

antibody (Molecular Innovations), HRP-conjugated donkey anti-sheep IgG (Jackson 

ImmunoResearch Laboratories), and Pierce ECL Western Blotting Substrate (Thermo 

Scientific).   

The inhibition of mPAI-1 in ex vivo plasma was determined by utilizing murine PAI-1.  

Murine PAI-1 was added to PAI-1-depleted murine plasma (Molecular Innovations) at 5000 

pg/ml.  Ten microliters of increasing concentrations of compound in assay buffer containing 

10% DMSO and 10 µl of mPAI 1-reconstituted plasma were incubated for 15 min at 23°C in a 

filter plate (Millipore), followed by the addition of 25 µl of SeroMAP beads (Luminex) coupled 

to uPA (2500 beads/well), and further incubated in the dark on a microtiter plate shaker for 2 h.  

The plate was vacuum washed 3X with wash buffer (PBS, 0.05% Tween-20, pH 7.4), 50 µl of 

PBS, 1% BSA, pH 7.4 and 50 µl of 4 µg/ml biotin-labeled rabbit anti-mPAI-1 (Molecular 

Innovations) were added to each well and the plate incubated at room temperature in the dark 

on a microtiter plate shaker for 1 h.  After vacuum washing 3X, 50 µl of PBS, 1% BSA, pH 7.4 
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and 50 µl of 4 µg/ml streptavidin-Rphycoerythrin conjugate (Molecular Probes) were added to 

each well and incubated with shaking at 23°C for 30 min in the dark. After another 3X wash, 

100 µl of sheath fluid (Luminex) was added to each well, shaken for 5 min in dark at 23°C, and 

read on Luminex100 (Median setting, 50 µl sample size, 100 events/bead).  Mean Fluorescence 

Intensities (MFI) of unknown samples were converted to pg/ml base on a standard curve of 

mPAI-1 in mPAI-1-depleted plasma using a five-parameter regression formula (Masterplex QT 

v4.0, Miraibio).   

The plasma enzymatic assay studies were carried out by utilizing citrated blood that was 

collected from the inferior vena cava (IVC) of C57Bl6J mice that were either PAI-1 null or 

vitronectin/PAI-1 null and plasma prepared by centrifugation (15 min at 1500×g). The plasma 

was treated with 10 µg/ml Aprotinin (Roche) for 15 min at 23°C before reconstituting with 20 

nM PAI-1.  Plasma (10µl, with or without PAI-1) was placed in microtiter wells with 80 µl of 

CDE-066 or PAI-039,45 in assay buffer containing 10% DMSO and incubated for 15 min at 

23°C, followed by addition of 10 µl 25 nM uPA and further incubation for 30 min.  Residual 

enzymatic activity was monitored as above using the fluorgenic uPA substrate, and PAI-1 

activity was determined using the equation in Figure 17.   

The inhibition of PAI-1 in vivo was determined by utilizing transgenic mice that were 

heterozygous for murine PAI-15 overexpression.  These were weighed and then anesthetized 

with isoflurane for the duration of the experiment.  The IVC was isolated, and 50 µl of citrated 

blood was collected as pretreatment samples.  The syringe was replaced with a syringe containing 

vehicle or CDE-066 (see Chapter 2) (in lactated Ringers), and 100 µl was injected for doses of 3, 

10, and 30 mg/kg.  After 1 h, 300 µl of citrated blood was collected via IVC, after which the 

mice were euthanized.  Plasma was isolated by centrifugation at 1500×g for 15 minutes at 23°C.  

All animal experiments were approved by the Institutional Animal Care and Use Committee of 
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Unit for Laboratory Animal Medicine at the University of Michigan.  To determine active 

murine PAI-1 levels in the plasma, 10 µl of plasma, diluted in PAI-1-depleted murine plasma 

(Molecular Innovations), 10 µl buffer (PBS, 1% BSA, pH 7.4) and 25 µl of uPA-coupled 

SeroMAP beads were added to a filter plate and incubated with shaking overnight at 4oC in the 

dark, and the reactions analyzed as above in the in ex vivo plasma assay.  Data were analyzed and 

IC50-values calculated using Grafit 5. Apparent KD values for the binding of compounds to PAI-

1 were determined using GraphPad Prism 4.  Data from in vivo assays were analyzed for 

significance with a student’s t-test using the 0 mg/kg CDE-066 treatment as the control group, 

with p < 0.05 considered significant. 

The preceding analytical techniques were all conducted by researchers in the Lawrence 

laboratory at the University of Michigan Medical School, and while they were essential in 

determining the effectiveness of our synthetic inhibitors, the main focus of this report concerns 

the synthesis of the potential inhibitors and the level of inhibition of PAI-1 by these molecules.  

With that in mind, a focus on the synthetic pathways chosen during this synthetic effort needs to 

be examined. 

There are several key branches to the synthetic directions that our research efforts 

underwent in an attempt to synthesize the optimal PAI-1 inhibitory molecule.  Research efforts 

focused on examining a change in inhibitor potency based on the linker’s properties, the number 

of gallate substituents, the gallate’s substituent pattern, and changes to linker appendages.  Our 

research efforts have led to the refinement of one of these synthesized moieties into a selective 

and highly active inhibitory species of PAI-1. 

While the crystal structures of several other members of the serpin super family have 

been successfully obtained in their bound active state, no such structure of a PAI-1 inhibitor 

complex has yet been reported in the literature.  The characterization of a crystal structure would 
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allow for a more logical approach to drug design by revealing to us the exact style in which the 

synthesized inhibitors are binding to our protein.  This approach has been utilized with several 

other members of the serpin family; one most notably includes the serpin α1-antityripsin.23  

However, a crystal structure has been successfully obtained of PAI-1 bound to one of our 

synthetic inhibitors (CDE-096).  This has allowed us to more fully develop our synthetic 

ideology.  

It has previously been reported that PAI-1 deficiency can lead to increased angiogenesis.9  

Because our main motivation for inhibiting PAI-1 stems from our desire to inhibit the inhibitor 

of fibrinolysis due to the observation that fibrinolysis inhibition can lead to thrombi 

development, which in turn leads to strokes and heart attacks, another means of eliminating 

strokes and heart attacks could involve increasing the rate at which the body develops new 

circulatory pathways, thus giving the blocked blood a different relief-route.   

One way to approach the potential of this idea is through the utilization of various 

software programs.  The VAST software program allows the alignment between two different 

yet structurally related proteins by their 3-D structure.  This allows for new observations 

between the functional properties of two proteins whose primary structure may not have 

suggested that any type of similarity between the two was a possibility.  The PAI-1 file was 

examined within VAST for 3-D structural/functional similarities to other proteins.46   

VAST determined that a high degree of similarity exists between PAI-1 and Pigment 

Epithelium-Derived Factor (PEDF).46  The PEDF protein is widely expressed throughout the 

human body.47  It is known as a potent inhibitor of angiogenesis, the formation of new blood 

vessels.48  
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Figure 18:  VAST Alignment of PEDF and PAI-1. 
Alignment of 1DVM_A with 1IMV; respectively.46 
 

 

PEDF has 349 aligned residues with PAI-1 out of the total existing 402 residues.  PAI-1 

is another serpin, high levels of which have been associated with heart attack and stroke.  The 3-

D alignment of the PEDF protein and PAI-1 is illustrated in Figure 18.  PEDF has been 

observed to bind to heparin, a densely negatively charged molecule already well-known for its 

anti-coagulative properties.49  Figure 19 outlines the structure of heparin. 
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Figure 19: Heparin. 

 

Heparin is already a known activator of anti-thrombin III.23  The development of a PAI-1 

inhibitor which incorporated the PEDF inhibitory properties of heparin and concurrently the 

PEDF activating properties for ATIII would effectively eliminate any inhibitory competition 

between ATIII inhibition and PAI-1 inhibition that has previously been one of concern.  A new 

and future direction for the synthetic efforts towards new inhibitors of PAI-1 focuses on 

synthesizing negatively charged species such as heparin and examining their effect on the 

inhibition of PAI-1. 

 Setting aside these future possibilities for enhancing our ability to synthesize a selective 

and highly active inhibitor of PAI-1, the following chapters will detail the four main branches 

which our research has already explored in an attempt to achieve this goal.  Chapter 1 focuses on 

the effects that the properties of the linkers have on PAI-1 inhibition and how PAI-1 inhibition 

is affected by the differing possible geometric isomerism of the inhibitors.  Chapter 2 examines 

the effects of altering the number of gallates and central sugar on PAI-1 inhibition.  Chapter 3 

focuses on evaluating our research investigating the optimum number and arrangement of 

substituents on the gallate ring.  Chapter 4 highlights our success in obtaining a crystal structure 

of an active PAI-1 serpin bound to an inhibitor and the carbamates which were synthesized and 

used in this achievement.   
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Chapter 1 
 

Effects of Linker Structure on Inhibitor Potency 
 
 
 

BACKGROUND AND OBJECTIVES 

 

The inhibition of plasminogen activator-inhibitor-1 (PAI-1) is anticipated to increase our 

understanding of various human ailments including diabetes, stroke, and atherosclerosis, with 

which high levels of PAI-1 have been associated.  Therefore, the synthesis of small-molecule 

inhibitors of PAI-1 that improve upon these properties has been the main goal of this research.  

In an effort to determine potential inhibitors for PAI-1, a high-throughput screen was 

conducted.  The initial MicroSource SPECTRUM compound library screen conducted by our 

collaborators at the University of Michigan Medical School resulted in the recognition of a wide 

variety of potential inhibitory molecules for PAI-1.44  The primary lead compound tannic acid 

(Figure 20) shared a prominent similarity with the other potential PAI-1 inhibitors in that they 

were all recognized to contain gallate or di-gallate groups (Figure 20).  This recognition allowed 

for the focus of our synthetic efforts on the production of inhibitors containing various analogs 

of gallic acid.   
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Figure 20: Tannic Acid, Gallate, and Digallate Groups. 
 
 
 

Due to the ready commercial availability of gallic acid, inclusion of gallates via 

esterification reactions became a logical direction for our research efforts.   

These esterification efforts involved three main reaction types (Figure 21).  The first step 

involved benzyl protection of the hydroxy groups on the esters of gallic acid or other aromatic 

acids (gallic acid derivatives).  After hydrolysis, two possible synthetic routes were followed: 

Steiglich acylation or nucleophilic acyl substitution coupled the gallate groups together via 

differing linker molecules.  Last, the removal of the protecting groups was carried out by either a 

palladium catalyzed hydrogenation reaction or by a boron tribromide assisted mechanism.  The 
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products were purified by either column chromatography or recrystallization.  Figure 21 depicts 

the general reaction scheme for this set of experiments. 
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Figure 21:  General Reaction Scheme for the Amide and Ester-linked Inhibitors. 

 

The only protecting groups utilized on the starting gallic acid derivatives were benzyl 

groups. The benzyl protecting group was used to prevent the hydroxy groups of the starting 

gallic acid from participating in the Steiglich acylation used in a later step.  The benzyl protection 



 

 

36

was carried out using a standard procedure50 that involved combining methyl-3,4,5-

trihydroxybenzoate (or related derivative),  KI, anhydrous K2CO3, benzyl chloride and acetone.  

The Steiglich acylation technique has been used for decades51 to enhance the yield of 

acylation reactions.  The reaction is catalyzed with 4-(dimethylamino)pyridine (DMAP) and 

assisted by the carbodiimide 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 

(EDC·HCl).  These two reagents are combined with the appropriate alcohol/amine and 

carboxylic acid in a low dielectric solvent under reflux conditions.  DMAP’s catalytic impact on 

this reaction stems from its ability to act as a stronger nucleophile than the alcohol.  The 

EDC·HCl reacts with the carbonyl group creating an “active ester” intermediate.  DMAP, acting 

as an acyl transfer agent, reacts with this intermediate and then the product rapidly reacts with 

the alcohol to give the ester.51 

Last, the removal of the benzyl protecting groups from the coupled gallate entities was 

conducted.  One method involved combining the coupled gallate entities with H2, low-water 

THF, and Pd/C 10% as the reagents, while the other involved the replacement of H2 with 1,4-

cyclohexadiene as the hydrogen source, leaving the other reagents unmodified.  An alternative 

procedure for the removal of the benzyl protecting groups involved combining the coupled 

gallate entities with a 1 M solution of BBr3 in CH2Cl2 under N2 and stirring the reaction 

overnight. 

Our first generation of ester derivatives attempted to address the effect of varying 

geometric isomers on the inhibition of PAI-1.  The bioactive conformation of our inhibitors is 

an important characteristic to determine, as it is the most energetically favorable configuration of 

individual atoms of the inhibitor.52  To address this, two gallates were linked together by the 

diesterification of a linking unit.  Compounds were synthesized with differing linking units, and 

the impact that the different linkers had on the potency of the potential inhibitor was examined.  
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One of the aspects of a potential inhibitor that was examined during the modifications involved 

an attempt to determine if a particular dihedral angle between the two gallates had an effect on 

the inhibitor’s strength.  An examination of the dihedral angle is relevant since it is well-known 

that the biological activity of an inhibitor is often dependent on the placement of the functional 

groups of the inhibitor in a specific 3-D pattern.  

Variations in dihedral angle lead to conformational isomers.  Conformational isomerism 

describes molecules that possess identical structural formulas but have different shapes due to 

their ability to rotate freely about a bond.  Due to the high number of conformational structures 

that a molecule can take (Figure 22) and their ability to constantly and readily interconvert, these 

conformational structures are rarely isolatable.  

 

Number of conformers = (360°/angle increment)(# rotatable bonds) 

 

Figure 22:  Equation to Determine the Number of Possible Conformational Structures. 

 

Substituents on a ring can be present as either cis or trans isomers.  We chose to study 

cis/trans isomers in order to limit the number of conformers available to each inhibitor in an 

attempt to identify the optimal dihedral angle.   

When synthesizing potential drug molecules, it is important to keep in mind that one of 

the main causes of failure is low bioavailability. The diversity of esterases available within 

humans elevates the probability that prodrugs containing esters can be synthesized as drugs with 

a high bioavailability.53  This is the main reason that esters are the most common pro-drug 

synthesized.52   However, this fact is particularly detrimental to our molecules’ inhibitory ability 
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in a whole animal model because our inhibitors must maintain their structure to successfully 

interact with PAI-1 and cause inhibition.  Therefore, although esters have other positive aspects 

as functional groups, such as their ability to be readily synthesized with a wide range of lipophilic 

and hydrophilic properties, their potential degradation by the abundant level of esterases within 

Homo sapiens causes concern for their use within the ultimate goals of this research project.52  

However, we can gain important information in the short-term about interactions between the 

inhibitors and PAI-1 using ester-containing molecules. 

The instability of esters can also be detrimental to a manufacturer’s ability to formulate 

appropriate dosage forms of an ester-containing substance.53 A common manipulation that 

addresses this issue involves replacing the esters with amide groups, which typically leads to an 

increase in the metabolic stability of the molecule.54  Thus, several gallic acid derivatives that 

contain amides in place of the ester linkages were synthesized, and the effect on the potency of 

the inhibitor was measured (Table 1). 

Geometric isomerism was studied in an attempt to arrive at a fuller understanding of our 

inhibitor’s bioactive conformations.  The synthetic route we followed detailed the linking of two 

gallic acid molecules (or their analogues) together via different linker groups that would lead to 

different varieties of conformational isomers. 
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Table 1: Cyclic Linkers 

 

Entry Inhibitor Entry Inhibitor 

CDE-031a 
cis 

 
 

 
 

CDE-034a 
trans 

 

 

CDE-056 a 

 

 

CDE-057 a 
cis 

 

 

CDE-058a 
trans 

 

 

CDE-061a 

trans 

 

 

CDE-062 a 
cis 

 

 

CDE-104 b 

 

 

CDE-111 

 

 

CDE-124 

 

 

CDE-125 c 

 

 

CDE-126 c 

 

 

a
Paul North, 

b
Jennifer Vogel

, c
Nadine El-Ayache 
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First we examined the effect of using a cyclohexanediol unit as a linker between the 

gallates (or their analogues).  The compounds using cis and trans forms of 1,2-cyclohexanediol 

(CDE-031 and CDE-034) as the linkers were synthesized by Paul North.  Next the question was 

raised regarding the effect of the positioning of the gallates around the ring.  Therefore, cis/trans 

forms of the inhibitors containing 1,3 and 1,4-cyclohexanediol linkers (CDE-057/CDE-058 and 

CDE-061/CDE-062) were synthesized by Paul North, and the effect on PAI-1 inhibition was 

compared to the 1,2-cyclohexanediol-based inhibitors.  

Inhibitors that have an increased number of conformational possibilities provided 

another source of uncertainty regarding the effect that the cis/trans forms of the molecules had 

on the inhibitor’s bioactive conformation.  To reduce this uncertainty we synthesized inhibitor 

molecules containing rigid rings as the linker.  These included the 1,2-benzenediol, 1,3-

benzenediol, and the 1,4-benzenediol units (CDE-056, CDE-124, CDE-125). 

Last, our research efforts indicated that a protocatechuate (a 3,4-dihydroxybenzoate) 

might have an equal or greater ability to inhibit PAI-1 than the corresponding 3,4,5-

trihydroxybenzoate.  Therefore, to test for supporting evidence of this hypothesis, a group of 

molecules was synthesized containing protocatechuates and compared to their gallate analogues.  

These included the protocatechuates/bisgallates of the following linkers: 1,2-benzenediol, 1,3-

benzenediol, and 1,4-benzenediol (CDE-104/CDE-056, CDE-111/CDE-124, and CDE-

126/CDE-125, respectively), as illustrated in Table 1. 

To address the issue of stability of ester-containing inhibitors, a series of inhibitors was 

synthesized that contained amide linker units, both cyclic and acyclic, in place of the ester linker 

units (Table 2).   
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Table 2:  Amide Linkers 

 

Entry Inhibitor Entry Inhibitor 

CDE-044 
 

 

 

CDE-055 
 

 

 

CDE-064 
 

 

 

CDE-065 
 

 

 

CDE-070 
 

 

HO

HO

OH

N
H

O

N
H

O

OH

OH

OH  

CDE-071 
 

 

 

 

CDE-044 was intended to model the simplest diester (CDE-008) except for the switch 

from an ester to an amide group.  To compare the effect that a more rigid cyclic linker might 

have on inhibition, CDE-055 and CDE-065 were synthesized.  Low solubilities during syntheses 

of CDE-044 and CDE-055 prompted us to attempt similar syntheses with a slightly modified 

starting gallate.  CDE-044 and CDE-055 utilized benzyl protecting groups on the gallates during 

the reaction which coupled the linker, while CDE-070 and CDE-071 utilized methyl protecting 

groups during this same step.  The methyl-protected starting material was more soluble than the 

benzyl-protected one.  Improving the solubility of the protected gallates during the synthesis of 

CDE-070 and CDE-071 allowed for improved yields over previous synthetic attempts. 

To simplify the synthesis and to probe the importance of having 3 hydroxy groups on 

each aromatic ring, an attempt was made to include a syringate (3,5-dimethoxy-4-
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hydroxybenzoate) in place of the gallates.  This change allowed for a synthesis that consisted of 

only the coupling step, reducing the number of steps by half.  CDE-064 is the syringate analogue 

of CDE-071, while CDE-065 is the syringate analogue of CDE-055. 
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RESULTS 

 

 

The results of the geometric isomerism study indicated that the inhibitors containing the 

trans-1,4-cyclohexanediol linker (CDE-061) and the trans-1,3-cyclohexanediol linker (CDE-058) 

had the strongest inhibition of PAI-1 (IC50 = 0.051 µM and 0.054 µM, respectively).  In 

comparison, the cis-analogues (CDE-062 and CDE-057) had a reduced inhibitor potency (IC50 = 

332 µM and 448 µM, respectively).  This indicated that a trans-position was more desirable for 

inhibition than a cis-position (except in the case of the 1,2-version).  An IC50-value comparison 

also indicated that a more preferential architecture of the inhibitors was one in which an 

increased number of conformational possibilities was favored, such as the cyclohexanediol 

linkers, in contrast to their more rigid benzenediol analogues.  The cis-1,2-cyclohexanediol 

(CDE-031) and trans-1,2-cyclohexanediol (CDE-034) both were more potent (IC50 = 0.293 µM 

and 0.689 µM, respectively) than the 1,2-benzenediol analogue (CDE-056, IC50 = 2.69 µM).   

The trans-1,3-cyclohexanediol (CDE-058) was more potent than the 1,3-benzenediol analogue 

(CDE-124, IC50 = 0.062 µM).   The trans-1,4-cyclohexanediol (CDE-061) was more potent than 

the 1,4-benzenediol analogue (CDE-125, IC50 = 0.061 µM).  Therefore, limiting the number of 

conformational possibilities by utilizing a benzenediol (a planar linker) molecule (CDE-111, 

CDE-124, CDE-125, and CDE-126), resulted in a reduction in inhibition as compared to using 

the trans-1,4-cyclohexanediol linker (CDE-061).  When the linker moieties were in a 1,2-position 

(CDE-031 and CDE-034), a reduction in the inhibitor’s potency occurred (in comparison to the 

inhibitory ability of CDE-061, CDE-058, CDE-125, CDE-124, and CDE-126), implying that the 

bioactive conformer does not occur with this configuration.  To reaffirm this, it is noted that the 

rigid 1,4-benzenediol analogue (CDE-125) showed comparable inhibition to the two top 

configurations (CDE-058 and CDE-061).  This observation provides supporting evidence that 
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the 1,4-configuration is closer to the ideal bioactive conformation.  All of the inhibitors 

examined within this series only had an inhibition of ATIII up to a 10.54 µM value (CDE-104).  

A comparison of the IC50 of these tested species is outlined in Table 3. 

 

 
Table 3:  Biological Assay Results for Cyclic Linkers.  
(R = H or OH) 

 

 

 

 

Compounds Cyclic Linker R 
IC50 vs. PAI-1 

(uM) 
    

CDE-061 1,4-cyclohexanediol (trans) -OH 0.051 

CDE-058 1,3-cyclohexanediol (trans) -OH 0.054 

CDE-125 1,4-benzenediol -OH 0.061 

CDE-124 1,3-benzenediol -OH 0.062 

CDE-126 1,4-benzenediol  -H 0.151 

CDE-031 1,2-cyclohexanediol (cis) -OH 0.293 

CDE-111 1,3-benzenediol -H 0.37 

CDE-034 1,2-cyclohexanediol (trans) -OH 0.689 

CDE-104 1,2-benzenediol -H 1.17 

CDE-056 1,2-benzenediol -OH 2.69 

CDE-062 1,4-cyclohexanediol (cis) -OH 332 

CDE-057 1,3-cyclohexanediol (cis) -OH 448 
 
   

 The observation was made that, within the series overall, the shorter distances between 

the gallates tended to cause a decreased inhibition of PAI-1.  The 1,2-benzenediols and 1,2-

cyclohexanediol-based inhibitors showed (in some cases) a 100-fold decrease in inhibition when 

compared with their 1,3 or 1,4-diol counterparts.   
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Replacement of the ester functionality with amides resulted in across the board decreases 

in potency (Table 4), both as a class of compounds and when compared directly with the 

analogous esters.  For example, the diamide analogous to CDE-008 (CDE-044) resulted in a 

nearly 2,500-fold decrease in potency, and that analogous to CDE-009 (CDE-070) resulted in a 

34-fold decrease in potency.  All of the amide-based inhibitors showed non-detectable levels of 

inhibition against ATIII µM. 

 

 

 

Table 4:  Biological Assay Results for Amide Linkers. 
 

Compounds Linking Unit R R’ IC50 vs. PAI-1 (uM) 
     

CDE-055 1,4-piperazine -OH -OH 26.83 

CDE-065 1,4-piperazine -O-Me -O-Me 424 

CDE-070 NHCH2CH2CH2NH -OH -OH 593 

CDE-044 NHCH2CH2NH -OH -OH 1757 

CDE-064 (Me)NCH2CH2N(Me) -O-Me -O-Me 2204 

CDE-071 (Me)NCH2CH2N(Me) -OH -OH ND 
 

 

Last, the protocatechuate-to-bisgallate comparison led to inconclusive results because 

the change in potency between the two analogues was not substantial.  The 

protocatechuates/bisgallates of the following combinations: 1,2-benzenediol, 1,3-benzenediol, 

and the 1,4-benzenediol linkers (CDE-104/CDE-056, CDE-111/CDE-124, and CDE-

126/CDE-125) had differing relative potencies within a tight range of 0.061-2.69 µM.  More 
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comparisons of these two scaffolds are necessary before a decisive conclusion can be drawn 

regarding any effect in potency. 
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EXPERIMENTAL 

 

Unless otherwise noted, all reactions were performed in non-flame dried glassware with 

magnetic stirring under an atmosphere of dry nitrogen.  Tetrahydrofuran (THF) was purified by 

distillation over sodium benzophenone ketyl or when noted, commercially available low water 

THF (Aldrich) was utilized.  All extraction and chromatography solvents were reagent grade and 

used without purification. 

Analytical thin layer chromatography (TLC) was performed on silica gel-coated glass 

plates (Sorbent Technologies; 250 µm silica gel with UV254) and visualized with UV light.  Flash 

column chromatography was performed using silica gel (Sorbent Technologies Premium Rf; 60 

Å, 40-75 µM) and utilized the indicated solvent.  Infrared spectra (IR) were recorded as thin 

films on NaCl plates using a Nicolet Impact 410 FTIR. 

  All 1H (400 MHz), 13C (100 MHz) and 19F spectra (376 MHz) were recorded on a Jeol 

ECX-400 spectrometer.  Chemical shifts are expressed in δ (parts per million, ppm) and are 

reported relative to the tetramethylsilane (TMS) peak.  Coupling constants (J) are expressed in 

Hertz.  Splitting patterns are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), 

quin (quintet), dd (doublet of doublets), td (triplet of doublets), and m (multiplet).  

Mass spectra were recorded on a VG 70-250-s2 spectrometer manufactured by 

Micromass Corp. (Manchester UK) at the University of Michigan Mass Spectrometry 

Laboratory. 

Proof-of-structure analysis is conducted in detail for one of our more structurally 

interesting compounds, CDE-096 (Chapter 4, Experimental).  This molecule is composed of 

two gallates coupled to an ester-based linking unit which has a handle comprised of a carbamate-

linked trifluoromethyl-substituted aromatic ring.  The method used in the analysis of the mass 
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spectra, infrared spectra, and 1H/19F/13C spectra for CDE-096 is similarly used when 

establishing  the identity of all those compounds submitted for testing and allowed for 

determination of the structure of the compounds.   
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General procedure for synthesis of 3,4,5-tris(benzyloxy)benzoic acid: 
 
 
 

 

 

 

Methyl-3,4,5-trihydroxybenzoate (10.0 g, 54.3 mmol),  KI (4.00 g, 24.0 mmol), anhydrous K2CO3  

(44.0 g, 318 mmol) and acetone (500 ml) were combined and stirred for 20 minutes.  Benzyl 

chloride (20.0 ml, 174 mmol) and acetone (100 ml) were combined and then added to the 

solution. The reaction refluxed for 20 hours under N2. The solid was filtered off and the filtrate 

evaporated. The residue was taken up in 400 ml CH2Cl2.  The suspension was vacuum filtered 

through Celite, and the filtrate was dried in vacuo.  Methyl-3, 4, 5-tribenzyloxybenzoate was 

obtained as a white solid and used without further purification. 

Crude methyl-3, 4, 5-tribenzyloxybenzoate, 95% ethanol (800 mL), and NaOH (3.54 g, 88.5 

mmol) were refluxed under N2 for 2 hours. The hot solution was poured into 525 ml of a 0.6 M 

HCl solution and stirred for 10 min.  The solid was filtered off. The crude product was washed 

successively with a 1:1 solution of 95% ethanol: H2O (100 mL), water (100 ml), methanol (100 

ml), and tert-butyl methyl ether (100 ml). The solid was dried in vacuo to obtain a white solid 

(21.2 g, 94%).   1H NMR (CDCl3, 400 MHz) δ 7.42-7.25 (m, 17H, aromatic), 5.14 (s, 4H, 

benzylic), 5.13 (s, 2H, benzylic). 
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General procedure for synthesis of 3,4,5-tris(benzyloxy)benzoyl chloride: 
 
 

 

 

 

3,4,5-Tris(benzyloxy)benzoic acid (5.79 g, 13.13 mmol) was dissolved in toluene (60 mL, 563 

mmol) in a 500 mL flame-dried round-bottomed flask.   Anhydrous N,N-dimethylformamide 

(DMF) (0.10 mL, 94.4 mmol) was syringed into the flask while stirring.  A solution of oxalyl 

chloride (1.72 mL, 19.7 mmol) and toluene (8.5 mL) were added over a period of 10 min under 

N2.  The mixture was stirred for 20 min. at room temperature and then at 50°C for 1 hour.  

Solvent was removed in vacuo.  Residue was taken up in toluene (25 mL) and the solution was 

stirred at 70°C until dissolution was achieved.  Cyclohexane (27.5 mL) was added and stirred.  

The white powder that formed was filtered, washed with cyclohexane, and dried in vacuo to 

obtain a white solid (4.37 g, 72%).   1H NMR (DMSO-d6, 400 MHz) δ 7.21-7.44 (m, 17H, 

aromatic), 5.15 (s, 4H, benzylic), 5.00 (s, 2H, benzylic). 
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N,N’-(ethane-1,2-diyl)bis(3,4,5-tris(benzyloxy)benzamide)  
(905.061 g/mol)  C58H52N2O8 

 

 

 

 

 

 

 

3,4,5-Tris(enzyloxy)benzoyl chloride (0.30 g, 0.65 mmol), ethylenediamine (20.0 µL, 0.32 mmol), 

K2CO3 (0.11 g, 0.79 mmol), H2O (5.00 mL), and EtOAc (5.00 mL) were combined and stirred 

for 24 hours under N2.  The reaction solution was then filtered and washed with EtOAc and 

H2O (2x each) to obtain a white solid (192 mg, 65%).  1H NMR (DMSO-d6, 400 MHz)  δ 8.61 (s, 

1H, -NH), 7.43-7.19 (m, 17H, aromatic), 5.10 (s, 4H, meta benzylic), 4.93 (s, 2H, para benzylic), 

3.40 (s, 2H, -N-CH2-); 
13C NMR (DMSO-d6 + D2O, 100 MHz) δ 166.32, 152.47, 140.01, 137.97, 

137.34, 130.24, 128.98, 128.69, 128.59, 128.47, 128.39, 128.20, 106.95, 74.73, 70.85, 40.24. 
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CDE-044  
N,N’-(ethane-1,2-diyl)bis(3,4,5-trihydroxybenzamide) 
(364.316 g/mol)  C16H16N2O8 

 

 

 

 

 

 

 

 

 

CH2Cl2 (5.00 mL) and KLS-I-27 (0.17 g, 0.19 mmol) were combined under N2.  A 1 molar 

solution of BBr3 in CH2Cl2 (4.71 mL, 4.71 mmol) was added over a period of five minutes in a 

drop-wise fashion using a syringe.  The solution was left stirring overnight.  The solution 

changed to a violet color and TLC (95% CH2Cl2/CH3OH) showed the disappearance of starting 

material.  The remaining BBr3 was quenched by the addition of approximately 5 g of ice over 5 

minutes.  The solution was then filtered and the solid was washed with H2O and CH2Cl2 (2x 

each) to obtain a quantitative yield of a violet solid.  1H NMR (DMSO-d6 and D2O, 400 MHz) 

6.76 (s, 4H, aromatic); 13C NMR (DMSO-d6 + D2O, 100 MHz) δ 167.19, 145.89, 136.72, 125.28, 

107.21; HRMS, ES calcd. for C16O8N2H16Na [M+Na]+ 387.0804, found: 387.0802. 
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Piperazine-1, 4-diylbis((3,4,5-tris(benzyloxy)phenyl)methanone) 
(931.08 g/mol)  C60 H54N2O8 

 

 

 

 

 

 

 

3,4,5-Tris(benzyloxy)benzoyl chloride (0.30 g, 0.65 mmol), piperazine (28.2 mg, 0.32 mmol), 

K2CO3 (54.2 mg, 0.39 mmol), H2O (5.00 mL), and EtOAc (5.00 mL) were combined and stirred 

for 48 hours, under N2.  The solid was filtered off and washed with EtOAc (2x) to obtain a 

white solid (304 mg, 78%).  1H NMR (DMSO-d6, 400 MHz) δ 7.45-7.22 (m, 34H, aromatic), 5.13 

(s, 8H, meta benzylic), 4.96 (s, 4H, para benzylic); (CDCl3, 400 MHz) δ 3.33 (bs, 8H, O=C-N-

(CH2)2-N-(CH2)2-); 
13C NMR (CDCl3, 100 MHz) δ 170.23, 152.82, 140.05, 137.50, 136.69, 

130.08, 128.71, 128.35, 128.17, 127.70, 127.43, 107.41, 75.34, 71.37. 
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CDE-055 
Piperazine-1, 4-diylbis(3,4,5-trihydroxyphenyl)methanone 
(390.33 g/mol)  C18H18N2O8 

 

 

 

 

 

 

 

 

 

KLS-II-35 (0.20 g, 0.22 mmol), CH2Cl2 (6.85 mL) were combined under N2.  A 1 molar solution 

of BBr3 in CH2Cl2 (6.45 mL, 6.45 mmol) was added over a period of five minutes in a drop-wise 

fashion using a syringe.  The reaction was left stirring overnight.  Approximately, 5.00 g of ice 

was added to the reaction to quench the BBr3.  The organic layer was extracted from the filtrant 

with EtOAc (2x), dried with MgSO4, filtered, and the solvent was evaporated in vacuo to obtain a 

solid (83.9 mg, 27%).  1H NMR (DMSO-d6, 400 MHz) δ 9.10 (bs, 6H, -OH), 6.34 (s, 4H, 

aromatic), 3.45 (s, 8H, -N-(CH2-CH2)2-N-); 13C NMR (DMSO- d6, 100 MHz) δ 149.66, 128.63, 

127.27, 126.98, 63.30; HRMS, ES calcd. for C18H18N2O8Na [M+Na]+  413.0961, found:  

413.0946. 
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CDE-064 
N,N’-(ethane-1, 2-diyl)bis(4-hydroxy-3, 5-dimethoxy-N-methylbenzamide.    (448.457 
g/mol) C22H28N2O8 

 

 

 

 

 

 

 

Syringic acid (0.50 g, 2.52 mmol), N,N’-dimethylethylenediamine (108 µL, 1.01 mmol), 

EDC.HCl (0.48 g, 2.52 mmol), HOBT (0.34 g, 2.52 mmol), triethylamine (0.35 mL, 2.52 mmol), 

and CH2Cl2 (2.00 mL) were combined and stirred under N2 overnight.  A TLC (100% EtOAc) 

indicated complete disappearance of the starting material.  The reaction solution was washed 

with 1 N HCl, 1 N NaHCO3, and a brine solution.  It was dried with MgSO4, filtered, and 

evaporated in vacuo to obtain a solid (78%).  1H NMR (CDCl3, 400 MHz) δ 6.64 (s, 4H, 

aromatic), 5.59 (s, 2H, -OH), 3.96 (s, 12H, -OCH3), 3.93 (s, 4H, -N-CH2-), 3.11 (s, 6H, -N-CH3); 

13C NMR (CDCl3, 400 MHz) δ 171.81, 146.65, 135.87, 127.06, 104.51, 56.34, 44.61, 38.28; 

HRMS, ES calcd. for C22H28O8N2Na [M+Na]+  471.1743, found:  471.1749. 
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CDE-065 
Piperazine-1, 4-diyl)bis(4-hydroxy-3, 5-dimethoxyphenyl)methanone).  (446.441 g/mol)  
C22H26N2O8 

 

 

 

 

 

 

 

Obtained in 82% overall yield from syringic acid and piperazine by the sequence described 

above for preparation of CDE-064; except the TLC (80% EtOAc/hexane) indicated complete 

disappearance of starting material.  1H NMR (DMSO-d6, 400 MHz) δ 8.77 (s, 2H, -OH), 6.64 (s, 

4H, aromatic), 3.73 (s, 12H, -OCH3), 3.52 (s, 8H, -N-(CH2-CH2)2-N-); 13C NMR (DMSO-d6, 100 

MHz) δ 169.96, 148.06, 137.57, 125.62, 105.61, 56.57, 40.79. 
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N,N'-(propane-1, 3-diyl)bis(3, 4,5-trimethoxybenzamide) 
(462.48 g/mol)  C23H30N2O8 

 

 

 

 

 

 

 

3,4,5-Trimethoxybenzoyl chloride (1.50 g, 6.52 mmol), 1,3-diaminopropane (0.27 mL, 3.25 

mmol) and dry THF (9.91 mL) were combined and stirred under N2.  Pyridine (0.53 mL, 6.50 

mmol) was syringed into the flask.  It was stirred overnight at room temperature.  The solid that 

formed was filtered, washed with low water THF, HCl 1 N, and then triturated 2x with EtOAc 

to obtain a solid (883 mg, 29%).  1H NMR (DMSO-d6, 400 MHz) δ 8.50 (t, J = 5.50 Hz, 1H, -

NH), 7.16 (s, 2H, aromatic), 3.78 (s, 6H, -OCH3), 3.66 (s, 3H, -OCH3), 3.28 (q, J = 6.41 Hz, 2H, 

-N-CH2-CH2-CH2-N-), 2.83 (q, J = 6.41 Hz, 2H, -N-CH2-CH2-CH2-N-), 1.85-1.71 (m, 2H, -N-
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CH2-CH2-CH2-N-); 13C NMR (DMSO-d6, 100 MHz) δ 166.10, 153.06, 140.29, 130.25, 105.17, 

60.58, 56.48, 39.61, 29.94. 

 

 

 

 

CDE-070 
N, N’-(propane-1,3-diyl) bis (3,4,5-trihydroxybenzamide) 
(378.33 g/mol)  C17H18N2O8 

 

 

 

 

 

 

 

 

KLS-6-91 (0.75 g, 0.86 mmol) and CH2Cl2 (25.7 mL) were combined under N2.  A 1 molar 

solution of BBr3 in CH2Cl2 (27.2 mL, 1 molar solution) was added over a period of five minutes 

in a drop-wise fashion using a syringe.  The reaction was left stirring overnight.  TLC (70% 

CH2Cl2/MeOH) showed the disappearance of starting material.  A white solid was filtered off 

and washed with H2O and CH2Cl2.  The solid was then triturated with EtOAc and a yellow 

liquid separated from the solid.  This was filtered off from the solid to obtain a yellow solid (317 

mg, 99%).  1H NMR (DMSO-d6 + D2O, 400 MHz) δ 6.76 (s, 4H, aromatic), 3.16 (t, J = 6.87 Hz, 

4H, -N-CH2-CH2-CH2-N-), and 1.61 (quin, J = 6.87 Hz, 2H, -N-CH2-CH2-CH2-N-); 13C NMR 

(DMSO-d6 + D2O, 100 MHz) δ 167.20, 145.68, 136.49, 125.25, 106.99, 38.50, 30.00; HRMS, ES 

calcd. for C17H18O8N2Na [M+Na]+  401.0961, found:  401.0958. 
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N,N’-(ethane-1,2-diyl)bis(3,4,5-trimethoxy-N-methylbenzamide) 
(476.511 g/mol) C24H32N2O8 

 

 

 

 

 

 

 

 

3,4,5-Trimethoxybenzoyl chloride (1.50 g, 6.52 mmol) and dry THF (10.0 mL) were combined 

under N2.  Pyridine (0.52 mL, 6.50 mmol) and N,N-dimethylethylenediamine were syringed into 

the flask.  Immediately after the amine was added, the solution changed to a bright yellow color.  

It was stirred for 24 hours under N2.  The pale yellow powder which formed was filtered, 

washed with low water THF, and triturated with EtOAc to obtain a yellow solid (286 mg, 9%).  

1H NMR (DMSO-d6, 400 MHz) δ 6.59 (s, 2H, aromatic), 3.74 (s, 3H, -OCH3), 3.62 (s, 3H, -
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OCH3), 3.61 (s, 3H, -OCH3), 3.58 (s, 3H, -NCH3), 2.95 (s, 2H, -N-CH2-); 
13C NMR (DMSO-d6, 

100 MHz) δ 170.55, 153.21, 153.01, 138.52, 132.36, 104.97, 104.22, 60.57, 56.24, 40.44, 38.00. 

 
 
 
CDE-071 
N, N’-(ethane-1,2-diyl) bis (3,4,5-trihydroxy-N-methylbenzamide) 
(392.35 g/mol)  C18H20N2O8 

 

 
 

 

 

 

 

 

 

KLS-4-61 (0.20 g, 0.42 mmol) and a 1 molar solution of BBr3 in CH2Cl2 (12.6 mL) were 

combined under N2 and stirred overnight.  TLC (100% EtOAc) showed disappearance of 

starting material.  The remaining BBr3 was quenched by the addition of approximately 5 g of ice 

over 5 minutes.  The grayish powder that formed was filtered off, triturated with acetone, and 

discarded.  The pink filtrant was evaporated in vacuo to obtain a solid (159 mg, 96%).  1H NMR 

(CD3OH, 400 MHz) δ 7.03 (s, 2H, aromatic), 3.33 (s, 2H, -N-CH2-), and 2.13 (s, 3H, -NCH3); 

13C NMR (CD3OH, 100 MHz) δ 165.55, 158.20, 145.05, 141.68, 108.94, 50.00, 22.85; HRMS, ES 

calcd. for C18H20O8N2Na [M+Na]+  415.1117, found:  415.1113. 
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1,3-Phenylene bis(3,4-bis(benzyloxy)benzoate) 
(742.81 g/mol)  C48H38O8 

 

 

 

 

 

 

 

 

Resorcinol (0.30 g, 2.72 mmol), 3,4-bis(benzloxy)benzoic acid (2.73 g, 8.18 mmol), EDC·HCl 

(4.77 g, 24.9 mmol), DMAP (2.80 g, 22.9 mmol), and CH2Cl2 (172 mL); were combined and 

refluxed over the weekend, while stirring, under N2.  TLC (80% hexanes/EtOAc), indicated that 

the majority of the starting material had been consumed.  The solvent volume was reduced in 

vacuo and the residue was purified by column chromatography (65% hexanes/EtOAc), to 

produce a white solid (296 mg, 29%).  1H NMR (CDCl3, 400 MHz) δ 7.78 (td, J = 1.83, 8.24 Hz, 

4H, ortho aromatic and meta aromatic), 7.51-7.28 (m, 21H, aromatic and –O-C-CH-CH-CH-C-
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O-), 7.12-7.08 (m, 3H, –O-C-CH-CH-CH-C-O- and –O-C-CH-C-O-), 6.99 (d, J = 8.24 Hz, 2H, 

ortho aromatic), and 5.26 (s, 4H, benzylic) 5.19 (s, 4H, benzylic); 13C NMR (CDCl3, 100 MHz) δ 

164.55, 153.65, 151.61, 148.52, 136.78, 136.47, 130.00, 128.73, 128.66, 128.16, 128.09, 127.52, 

127.21, 124.93, 122.03, 119.25, 116.00, 115.93, 113.32, 71.33, 70.92. 

 

 

CDE-111 
1,3-Phenylene bis(3,4-dihydroxybenzoate)  
(382.32 g/mol)  C20H14O8 

 

 

 

 

 

 

 

1,3-Phenylene bis(3,4-bis(benzyloxy)benzoate) (0.30 g, 0.40 mmol) was dissolved in low-water 

THF (3.70 mL).  Then Pd/C 10% (0.02 g, 0.20 mmol) and 1,4-cyclohexadiene (0.36 mL, 3.98 

mmol) were added.  The reaction was stirred for 24 hours, under N2, at 40ºC.  A TLC (95% 

CH2Cl2/MeOH) indicated the starting material had been consumed.  The reaction solution was 

syringed through a PTFE 0.2 µM syringe prepared with MeOH to remove the Pd/C catalyst. 

The solvent was then removed in vacuo to obtain a solid (90 mg, 59%).  1H NMR (acetone-d6, 400 

MHz) δ 8.64 (bs, 4H, -OH), 7.64-7.59 (m, 4H, two ortho and two meta aromatic), 7.50 (t, J = 

8.24 Hz, 1H, -O-C-CH-CH-CH-C-O-), 7.20-7.14 (m, 3H, -O-C-CH-CH-CH-C-O- and O-C-

CH-C-O-), and 7.00 (d, J = 8.24 Hz, 2H, ortho aromatic); 13C NMR (CDCl3, 100 MHz) δ 

164.22, 152.00, 150.84, 145.04, 129.67, 123.43, 120.93, 119.26, 116.84, 116.26, 115.25; HRMS, 

ES calcd. for C20H14O8Na [M+Na]+  405.0586, found:  405.0585. 

 



 

 

63

 

 

 

 

 

 

 

 

1,3-Phenylene bis(3,4,5-tris(benzyloxy)benzoate) 
(742.81 g/mol)  C48H38O8 

 

 

 

 

 

 

 

Resorcinol (0.30 g, 2.72), 3,4,5-tris(benzloxy)benzoic acid (3.60 g, 8.18 mmol), EDC·HCl (4.77 g, 

24.9 mmol), DMAP (2.80 g, 22.9 mmol), and CH2Cl2 (228 mL); were combined and refluxed 

over the weekend, while stirring, under N2.  TLC (65% hexanes/EtOAc), indicated that the 

majority of the starting material had been consumed.  The solvent was reduced in vacuo and the 

residue was purified by column chromatography (65% hexanes/EtOAc), to produce a white 

powder (190 mg, 8.4%).  1H NMR (CDCl3, 400 MHz) δ 7.52 (s, 4H, aromatic), 7.49-7.30 (m, 
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30H, aromatic), 7.33 (s, 1H, -O-CH-O-), 7.27-7.28 (m, 2H, -O-C-CH-CH-CH-C-O-), 7.13-7.11 

(m, 1H, -O-C-CH-CH-CH-C-O-), 5.16 (s, 4H, benzylic) and 5.15 (s, 8H, benzylic). 

 
 
 
CDE-124 
1,3-Phenylene bis(3,4,5-trihydroxybenzoate)  
(414.32 g/mol)  C20H14O10 

 

 

 
 

 

 

1,3-Phenylene bis(3,4,5-tris(benzyloxy)benzoate) (0.20 g, 0.21 mmol) was dissolved in low-water 

THF (2.00 mL).  Then Pd/C 10% (0.01 g, 0.10 mmol) was added.  The reaction was stirred for 

24 hours, under H2, at 40ºC.  TLC (95% CH2Cl2/MeOH) indicated the starting material had 

been consumed.  The reaction was syringed through a PTFE 0.2 µM syringe prepared with 

MeOH to remove the Pd/C catalyst. The solvent was then removed in vacuo to obtain thick 

orange-brown product (560 mg, 65%).  1H NMR (acetone-d6, 400 MHz) δ 7.49 (t, J = 8.24 Hz, 

1H, -O-C-CH-CH-CH-C-O-), 7.25 (s, 4H, aromatic), 7.14-7.19 (m, 3H, -O-C-CH-CH-CH-C-O- 

and –O-C-CH-C-O-),); 13C NMR (acetone-d6, 100 MHz) δ 164.39, 152.01, 145.42, 138.82, 

129.68, 119.79, 119.23, 116.21, and 109.63; HRMS, ES calcd. for C20H14O10Na [M+Na]+  

437.0485, found: 437.0482. 
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Chapter 2 
 

Effects of the Central Sugar and Number of Gallates on 
Inhibitor Potency 

 
 
 

BACKGROUND AND OBJECTIVES 

 
 

 In 2001 Christopher Lipinski published a set of guidelines for synthesizing drug-like 

molecules known as Lipinski’s Rule of Five. 55  These rules stand as a tentative guide for drug-

development by the medicinal chemist.  He proposed that if the rules composing his hypothesis 

were followed, then the molecules synthesized would have an increased likelihood of having 

acceptable bioavailability, thus increasing the oral absorption and distribution properties of the 

synthetic species.55  These rules focused on the optimization of certain key characteristics of the 

molecules, including a molecular weight of less than 500 g/mol, a log P-value of less than 5, 

fewer than 5 hydrogen-bond donor capable species (including hydroxy and amine groups) and 

fewer than 10 hydrogen bond acceptor species (including nitrogen and oxygen atoms).55 

 It should be noted, however, that these rules are not absolute, and several important 

exceptions to the rules exist.  These include drugs that are substrates for absorptive transporters 

such as cephalosporins (a class of β-lactam antibiotics) and several natural plant compounds that 

have been isolated and utilized as drugs without significant modification to their high molecular 

weight.56  Also, while pharmaceutical companies tend to synthesize lead compounds according 

to the Lipinski guidelines, it is common that their final compounds do not adhere to all four of 

the rules.  Most often it is the rule involving the log P-value of less than 5 (lipophilicity of the 

compound) that falls outside the recommended range. 56 
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 Our collaborator’s initial screens of the MicroSource SPECTRUM compound library 

looked for molecules that might be high affinity PAI-1 inhibitors.44  One of the molecules 

identified was a natural polyphenolic compound, tannic acid.  Our analysis of the high-

throughput screen resulted in the hypothesis that tannic acid would act as a strong inhibitor of 

PAI-1.  An attempt was then made to modify this species to comply with Lipinski’s Rule of Five.   

 One of the first attempts that was made was to reduce the molecular weight of our lead 

compound, tannic acid (approximately 1700 g/mol).  We approached this problem by 

synthesizing a series of inhibitors that resembled tannic acid but had fewer gallate groups.  This 

series included an α/β-galactose-centered molecule with five gallate groups attached in which all 

hydroxy positions were benzyl-protected (CDE-006), an α/β-galactose-centered molecule with 

five gallate groups (unprotected) (CDE-066), an α/β-arabinose-centered molecule with four 

protocatechuate groups (CDE-112), a gallate-coupled glycerol (CDE-082), and a gallate-coupled 

ethylene glycol (CDE-008) (Table 5). 
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Table 5: Gallotannin Variants 

 
Entry 

(central 
sugar/linker) 
and Molecular 

Weight 

Inhibitor 

Entry 
(central 

sugar/linker) 
and Molecular 

Weight 

Inhibitor 

CDE-006
a
 

(α/β-galactose) 
MW = 2292 g/mol 

 

 

 

O
O

O

O

O

OO
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O

O

O
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O

O

O

O

O
O

OO

O

O
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O

O

 

CDE-008
a
 

(ethylene glycol) 
MW = 366 g/mol 

 

 

 

 

 

CDE-066 
(α/β-galactose) 

MW = 940 g/mol 
 
 

 

 

CDE-082 
(glycerol) 

MW = 548 g/mol 
 

 

 

 

 

 

CDE-112 
(α/β-arabinose) 
MW = 694 g/mol 

 

 

 

O
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OHHO

HO
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a = Originally synthesized by Maria Pascua
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We then compared the inhibitors’ potency and selectivity against PAI-1 with the aim of 

determining the inhibitor that would have the fewest number of gallates and yet would still give 

acceptable activity. 

 The next point of comparison studied the optimization of the central sugar.  This work 

was based on the previously discussed concept that the biological activity of a potential inhibitor 

is often dependent on the placement of the functional groups of the inhibitor in a specific three-

dimensional pattern.  Each sugar center arranges the gallates in a unique 3-D arrangement with 

the ability to readily interconvert amongst their large variety of conformational isomers 

(Equation 2, Chapter 1).  Several similar species were synthesized with differing sugar centers, 

including β-mannose, α/β-galactose, α/β-glucose, α/β-2-deoxy-D-galactose, and α/β-arabinose.  

It was hypothesized that one particular arrangement might have an optimal effect upon the 

inhibitory ability of the molecule.   

The synthetic sequences contained within Chapter 2 involved the same reaction steps 

described in detail in Chapter 1: the benzyl protection of the hydroxy groups, the Steiglich 

esterification, and the removal of the benzyl protecting groups.  Last, the products were purified 

by either column chromatography or recrystallization.  The main difference between the 

reactions described below and the ones described in Chapter 1 is that the removal of the 

protecting groups solely utilized the H2 source and palladium-catalyzed method.  

The first step in this process involved an attempt to more fully understand exactly how 

many gallate attachments were necessary to ensure that the molecule still possessed sufficient 

inhibitory properties while reducing the overall size of the lead molecule, tannic acid.  This led to 

the synthesis of the molecules in Table 5. 

Tannic acid is composed of a glucose center coupled to five gallate derivatives that are in 

turn coupled to one gallate each, for a total of ten (Figure 23).  CDE-006 was synthesized by 
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coupling α/β-galactose via the Steiglich esterification to benzyl-protected gallic acid.  Galactose 

was chosen because it tends to form the pyranose form allowing for a straightforward 

synthesis.50 
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Figure 23: Tannic Acid. 

 

While this molecule was larger than tannic acid, it was also our desire to determine if the 

elimination of the free hydroxys from the inhibitor would have an effect on its ability to inhibit 

PAI-1.  CDE-066 was synthesized from the precursor CDE-006 to determine the importance of 

the hydroxy substituents.  CDE-112, which contained an α/β-arabinose-center and therefore 

only had four available esterification sites,  CDE-082, which utilized a glycerol molecule and 

therefore contained only three attachment sites for the gallates, and CDE-008 contained an 
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ethylene glycol linker, limiting the number of gallate attachments to two were all synthesized.  

The synthetic inhibitors in this series are illustrated in Table 6. 
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Table 6: Different Sugar-Centered Molecules. 
 

 
Entry 

(central 
sugar/linker) 

Inhibitor 
Entry 

(central 
sugar/linker) 

Inhibitor 

CDE-002
a
 

(β-mannose) 

 

 

 

 

CDE-066 
(α/β-galactose) 
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CDE-073 
(α/β-glucose) 
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CDE-112 
(α/β-arabinose) 

 

 

 

 

CDE-114 
(α/β-2-deoxy-
D-galactose) 
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 Inhibitors containing different sugar centers coupled to either four or five esterified 

gallates were synthesized and their respective inhibitory potencies against PAI-1 were compared.  

These inhibitors included molecules containing the following sugar centers: β-mannose (CDE-

002), α/β-galactose (CDE-066), α/β-glucose (CDE-073), 2-deoxy-D-galactose (CDE-114), and 

arabinose (CDE-112).   Altering the identity of the sugar centers allows for the gallate 

attachments to arrange in either cis or trans geometry.  The potency of the inhibitors was 

examined to determine if a particular sugar-centered inhibitor allowed for an optimum bioactive 

form.  
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RESULTS 

 
 

One of our early objectives was to simplify the structure of the inhibitors significantly 

from the expansive structure of tannic acid (molecular weight ~1700 g/mol) to determine the 

minimum number of gallate moieties required for significant inhibitory activity.  We synthesized 

a series of inhibitors containing from one to five gallate esters (Table 4).  The sugar-centered 

penta-gallyl compounds were the most potent inhibitors, but the differences between the 

inhibitors that contained three, four, and five gallates were small.  When attempting to use these 

data as a guide for further modifying our lead molecule, we noted the relationship between two 

important factors: our desire to inhibit PAI-1 was countered by our desire not to inhibit PAI-1’s 

closely related analogue, ATIII.  Consequently, while the structure containing five gallates led to 

the strongest inhibitory effect against PAI-1, it also had a strong inhibitory effect against PAI-1’s 

target, tissue-type plasminogen activator (tPA), although it showed only a low level of inhibition 

for ATIII.   

Inhibition of tPA results in the inhibition of fibrinolysis; therefore, a potential PAI-1 

inhibitor that also inhibits tPA should be modified to eliminate this extra activity.  This is 

because tPA acts in a stimulatory manner for the production of plasminogen, which stimulates 

plasmin production, which in turn is the direct stimulatory precursor for the process of 

fibrinolysis.  In contrast, ATIII is a serpin plasma protein that inactivates thrombin and plasmin.  

Therefore, an inhibitor that inhibits ATIII would also lead to an increase in fibrinolysis but 

through a separate mechanism than the one we are attempting to follow in this research effort.  

This leads to the potential inhibitor being deemed a non-specific inhibitor in regards to our 

target of inhibition, PAI-1.  Therefore, an inhibitor having only a small level of inhibition of 

ATIII compared to that of PAI-1 designates it as a specific inhibitor of PAI-1. 
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CDE-112, which contains four gallates, resulted in strong nonspecific inhibition of  

PAI-1 (0.012 µM) and ATIII (0.804 µM).  CDE-006, which contains zero unprotected gallates, 

showed non-detectable inhibition levels of PAI-1 and ATIII.  Gallic acid showed PAI-1 

inhibition at the relatively low level of only 6.60 µM (Table 7). 

 

Table 7:  Biological Assay Results: Modifying the Number of Gallates. 
 

Entry # of Gallates IC50 vs. PAI-1 (uM) ATIII (uM) 
    

CDE-066 5 0.013 2435 
CDE-112 4 0.012 0.804 
CDE-082 3 0.025 14.2 
CDE-008 2 0.558 ND 
Gallic Acid 1 6.60 n/a 
CDE-006 0 ND ND 

 

 

Examining the remaining possibilities reveals that the inhibitors containing either two 

(CDE-008) or three gallates (CDE-082) have conflicting advantages/disadvantages.  The tri-

gallate molecule (CDE-082) has a similar inhibition of PAI-1 as compared to the tetra or penta-

gallate (CDE-112 and CDE-066)) and a similar level of ATIII inhibition (Table 6).  The 

bisgallate (CDE-008) has a non-detectable level of ATIII inhibition while still displaying a decent 

level of PAI-1 inhibition.  Therefore, the bisgallate (CDE-008) among this set of inhibitors 

contained the optimum number of gallates for specific inhibition of PAI-1.   

Our observation that the sugar-centered compounds all displayed strong inhibition of 

PAI-1 led us to examine the possibility that optimizing the central sugar could lead to increased 

inhibition of PAI-1 and reduced inhibition of ATIII.  The data are displayed in Table 8. 
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Table 8:  Biological Assay Results: Modifying the Sugar Center. 
 

Entry Sugar Identity 
IC50 vs. PAI-1 

(uM) ATIII (uM) 
    

CDE-002 β-Mannose 0.012 ND 
CDE-112 α/β-Arabinose 0.012 0.804 
CDE-066 α/β-Galactose 0.013 2435 

CDE-073 α/β-Glucose 0.014 ND 
CDE-114 α/β-2-deoxy-D-galactose 0.028 ND 

 
 

By changing the central sugar, the arrangements of the esterified gallate attachments will 

differ in their 3-D arrangements.  To examine the effect that these different 3-D arrangements 

of the inhibitors may have on the IC50-values, several species with differing central sugars were 

synthesized.  These inhibitors contain the following sugars: β-mannose (CDE-002), α/β-

galactose (CDE-066), α/β-glucose (CDE-073), α/β-2-deoxy-D-galactose (CDE-114), and α/β-

arabinose (CDE-112).  All IC50-values were within a narrow range (0.012-0.028 uM), displaying a 

pattern of strong PAI-1 inhibition (Table 7) while displaying low or non-detectable levels of 

ATIII inhibition, with the exception of CDE-112.  Therefore, the conclusion was drawn that the 

particular sugar used as the core does not affect the potency of the inhibitor by a large degree, 

suggesting that the precise location of each of the gallates is not important when a large number 

of gallates are present.  This discovery also encouraged us to drastically reduce the molecular 

weight of our inhibitor scaffold, bringing it more in-line with the weight of oral drugs while still 

leaving us room to add additional structures to hone the selectivity and potency of our molecule 

further.   

The synthetic efforts to determine the optimum number of gallate substituents indicated 

that a molecule containing two gallate moieties was ideal, as it provided for inhibition of PAI-1 
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with limited inhibition of ATIII.  The second most desirable alternative was a molecule 

containing three gallates as it provided for increased inhibition of PAI-1; however, this gain was 

offset by increased inhibition of ATIII. 
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EXPERIMENTAL 

 

 
 
CDE-008 
Ethane-1,2-diyl bis(3,4,5-trihydroxybenzoate)  
(366.06 g/mol)  C16H14O10 

 

 

 

 

 

 

 

Ethylene glycol (124 mg, 2.00 mmol), 3,4,5-tris(benzyloxy)benzoic acid (2.60 g, 6.00 mmol), 

EDC·HCl (1.43 g, 10.7 mmol), DMAP (0.84 g, 6.90 mmol), and CH2Cl2 (120 ml) were 

combined and refluxed for 48 hours under N2.  The organic layer was washed with 10% citric 

acid (3 X 50 ml), saturated NaHCO3 (2 X 50 ml), and brine (2 X 30 ml). The organic phase was 

dried over anhydrous Na2SO4, filtered, and evaporated in vacuo. The crude compound was 

purified by flash column chromatography (90% ethyl acetate/hexane), to obtain a white solid. 

(258 mg, 14%).   

di-O-(3,4,5-Tribenzyloxybenzoyl)ethylene glycol (0.26 g, 0.28 mmol) was dissolved in 25 

ml THF. A catalytic amount (0.025 g, 0.23 mmol) of 10 wt% palladium on carbon was 

suspended in the mixture and stirred for 18 hrs. at room temperature under H2 and then filtered 

through Celite, and the filtrate was dried in vacuo to obtain a white solid (quantitative yield). 1H 

NMR (acetone-d6, 400 MHz)  8.19 (s, 4H, meta -OH), 8.03 (s, 2H, para -OH), 7.12 (s, 4H, 
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aromatic), 4.52 (s, 4H, -O-CH2-).  HRMS, ES calcd. for C16H14O10Na [M+Na]+  389.0485, found:  

389.0476. 

 

 

 

 

 

 

 

 

 

 

 

D-Galactopyranose pentakis[3,4,5-tris(benzyloxy)-benzoate] 
(2290.96 g/mol)  C146H122O26 
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3,4,5-Tris(benzyloxy)benzoic acid (18.8 g, 42.6 mmol), α-D-galactose (1.05 g, 5.82 mmol), 

EDC.HCl (10.2 g, 53.1 mmol), DMAP (5.98 g, 49.0 mmol), and CH2Cl2 (500mL) were combined 

and refluxed for 48 hours while stirring under N2.  The reaction mixture changed to a dark 

brown color.  The reaction was allowed to cool while stirring.  A TLC (65% hexane/EtOAc) 

indicated complete conversion of the starting material.  The CH2Cl2 was evaporated in vacuo.  It 

was taken up in EtOAc and washed in 1 N HCl (2 x), 1 N saturated aqueous sodium 

bicarbonate (2 x), and a brine solution (2 x), dried with MgSO4, filtered, and evaporated in vacuo.  

The residue was purified by column chromatography (65% hexane/EtOAc) to obtain a brown 

solid (4.84 g, 37%). 

Literature values agree with the experimentally determined 1H NMR spectral data.50 

 
 
 
 
CDE-066 
(2R,3R,4R,5S,6R)-6-((3,4,5-Trihydroxybenzoyloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-
tetrayltetrakis(3,4,5-trihydroxybenzoate).   
(940.68 g/mol)  C41H32O26 
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D-Galactopyranose pentakis[3,4,5-tris(benzyloxy)-benzoate] (2.40 g, 1.06 mmol) was dissolved 

in dry THF (150 mL).  10% Pd/C (1.60 g, 15.0 mmol) was added.  The reaction was left stirring 

overnight at 40°C under H2.  A TLC (70% hexane/EtOAc) indicated complete conversion of the 

starting material.  The reaction solution was filtered through Celite to remove the Pd/C.  The 

residue was purified by column chromatography (100% acetone) to obtain a solid (0.89 g, 88%).  

HRMS, ES calcd. for C41H32O26Na [M+Na]+  963.1080, found:  963.1082. 

Literature values agree with the experimentally determined 1H NMR spectral data.50 

 
 
 
 
α/β-D-glucosopyranose pentakis[3,4,5-tris(benzyloxy)-benzoate]  
(2292.31 g/mol)  C146H122O26 

 

 

 

 

 

 

 

D-Glucose (1.05 g, 5.82 mmol), 3,4,5-tris(benzyloxy)benzoic acid (18.8 g, 42.9 mmol), EDC·HCl 

(10.2 g, 53.1 mmol), and CH2Cl2 (500 mL) were combined in a flame-dried flask and refluxed 
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overnight.  A TLC (65% hexanes/EtOAc) indicated the reaction had reached completion.  The 

reaction was washed with 1 N HCl (2 x), saturated aqueous NaHCO3 (2 x), and a brine solution 

(2 x).  The residue was purified by column chromatography (35% EtOAc/hexanes) to obtain a 

solid (10.34 g, 78%). 

Literature values agree with the experimentally determined 1H NMR spectral data.50 

 

 
 
 
CDE-073 
(2R, 3R, 4S, 5R, 6R)-6-((3,4,5-Trihydroxybenzoyloxy)methyl)tetrahydro-2H-pyran-
2,3,4,5-tetrayl tetrakis (3,4,5-trihydroxybenzoate). 
(940.68 g/mol)  C41H32O26 

 

 

 

 

 

 

 

 

α/β-D-Glucosopyranose pentakis[3,4,5-tris(benzyloxy)-benzoate] (6.50 g, 2.87 mmol) and Pd/C 

10% (4.27 g, 40.7 mmol) were combined.  Dry THF (40.6 mL) was syringed into the flask.  This 

was stirred at 40°C under H2 overnight.  The reaction was filtered through Celite and rinsed with 
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acetone.  The residue was recrystallized from EtOAc to obtain a white crystalline solid (2.49 g, 

91.3%). 

HRMS, ES calcd. for C41H32O26Na [M+Na]+  963.1080, found:  963.1082. 

Literature values agree with the experimentally determined 1H NMR spectral data.50 

 

 
 
 
α/β-L-Arabinose tetrakis[3,4-bis(benzyloxy)-benzoate] 
(1415.53 g/mol)  C89H74O17 

 

 

 

 

 

 

α/β-L-Arabinose (0.28 g, 2.18 mmol), 3,4-bis(benzloxy)benzoic acid (5.33 g, 15.9 mmol), 

EDC·HCl (3.81 g, 19.9 mmol), DMAP (2.24 g, 18.3 mmol), and CH2Cl2 (140 mL); were 

combined and refluxed overnight, while stirring, under N2.  A TLC (65% hexanes/EtOAc), 

indicated that the majority of the starting material was still present.  Therefore, another 

equivalency of DMAP was added, and the reaction was left stirring over the weekend.  A second 

TLC indicated that the majority of the starting material had been consumed.  The solvent was 

evaporated in vacuo.  The residue was purified by column chromatography (75% 
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hexanes/EtOAc, 65% hexanes/EtOAc, 55% hexanes/EtOAc), to obtain a white solid (623 mg, 

16%). 

 

 

 
CDE-112 
(3R,4S,5S)-Tetrahydro-2H-pyran-2,3,4,5-tetrayl tetrakis(3,4-dihydroxybenzoate) 
(694.12 g/mol)  C33H26O17 

 

 

 

 

 

 

 

 

α/β -L-Arabinose tetrakis[3,4-bis(benzyloxy)-benzoate] (550 mg, 0.31 mmol) was dissolved in 

Ethanol (2.10 mL).  Pd/C 10% (0.02 g, 0.2 mmol) and 1,4-cyclohexadiene (0.6 mL, 6.24 mmol) 

were added.  Hexanes (1.00 mL) was added as a cosolvent.  The reaction was stirred under N2, at 

40ºC overnight.  A TLC (95% CH2Cl2/MeOH) indicated the starting material had been 

consumed.  The reaction was syringed through a PTFE 0.2 µM syringe prepared with MeOH to 

remove the Pd/C catalyst. The solvent was then removed in vacuo.  The material was then 

recrystallized from H2O.  The material was then dried in a vacuum oven for 48 hours to remove 

the excess water, obtaining a solid (202 mg, 93%). 
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HRMS, ES calcd. for C33H26O17Na [M+Na]+ 717.1068, found: 717.1068. 

 

 

 

 

α/β-2-Deoxy-D-galactose tetrakis[3,4-bis(benzyloxy)-benzoate]  
(1429.56 g/mol)  C90H76O17 

 

 

 

 

 

 

α/β-2-Deoxy-D-galactose (0.3 g, 1.82 mmol), 3,4-bis(benzloxy)benzoic acid (4.47 g, 13.3 mmol), 

EDC·HCl (3.20 g, 16.7 mmol), DMAP (1.88 g, 15.4 mmol), and CH2Cl2 (116 mL); were 

combined and refluxed overnight, while stirring, under N2.  A TLC (65% hexanes/EtOAc) 

indicated that the majority of the starting material had been consumed.  The majority of the 

solvent was removed in vacuo.  The residue was purified by column chromatography (75% 

hexanes/EtOAc, 65% hexanes /EtOAc, and 55% hexanes/EtOAc) to obtain a white solid (147 

mg, 6.0%). 
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CDE-114 
(4R,5R,6R)-6-((3,4-Dihydroxybenzoyloxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl tris(3,4-
dihydroxybenzoate) 
(708.58 g/mol)  C34H28O17 
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a/B-2-deoxy-D-galactose tetrakis[3,4-
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OH

a/B-2-deoxy-D-galactose
Centered Inhibitor

 

 

 

 

α/β -2-Deoxy-D-galactose tetrakis[3,4-bis(benzyloxy)-benzoate] (140 mg, 0.10 mmol) was 

dissolved in Ethanol (0.66 mL).  Low-water THF (0.5 mL) was added as a co-solvent.  Pd/C 

10% (0.01 g, 0.05 mmol) and 1,4-cyclohexadiene (0.10 mL, 0.99 mmol) were added.  The 

reaction was stirred for 24 hours, under N2, at room temperature.  A TLC (95% CH2Cl2/MeOH) 

indicated the starting material had been consumed.  The reaction was syringed through a PTFE 

0.2 µM syringe prepared with MeOH to remove the Pd/C catalyst. The solvent was then 

removed in vacuo.  The material was then dried in a vacuum oven for 48 hours, triturated with 

acetone, filtered, and the filtrant was evaporated in vacuo to obtain a brown solid (45.0 mg, 66%).   
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Propane-1,2,3-triyl tris(3,4,5-tris(benzyloxy)benzoate)  
(1359.52 g/mol)  C87H74O15 

 

 

 

 

 

 

 

3,4,5-Tris(benzyloxy)benzoic acid (2.58 g, 5.85 mmol), DMAP (61 mg, 0.50 mmol), glycerol 

(0.15 g, 1.67 mmol), and CH2Cl2 (6.35 mL, 100.20 mmol) were combined and stirred under N2.  

In a separate flask the EDC·HCl (1.21 g, 5.85 mmol) and CH2Cl2 (3.17 mL) were mixed and 

then this solution was syringed drop-wise into the reaction.  This reaction was left refluxing for 

36 hours.  A TLC (70% hexanes/EtOAc) indicated the conversion of the majority of the 

starting material.  The organic layer was washed with 1 N HCl (2 x), saturated aqueous sodium 

bicarbonate (2 x), and brine (1 x), dried over MgSO4, filtered, and concentrated in vacuo.  The 

residue was purified by column chromatography (70% hexanes/EtOAc) to obtain a solid (266 

mg, 12%).  1H NMR (CDCl3, 400 MHz) δ 7.36-7.25 (m, 51H, aromatic), 5.73 (quin, J = 4.58 Hz, 

1H, -CH2-CH-CH2-), 5.12-4.96 (m, 18H, benzylic), 4.73-4.69 (m, 2H, -OCH2-), and 4.53-4.49 

(m, 2H, -O-CH2-); 
13C NMR (DMSO-d6, 100 MHz) δ 165.65, 165.34, 152.68, 142.09, 142.91, 

137.47, 136.59, 136.48, 128.62, 128.14, 127.64, 124.48, 109.44, 109.29, 75.20, 71.27, 70.03, 62.96. 
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CDE-082 
Propane-1,2,3-triyl tris(3,4,5-trihydroxybenzoate) 
(548.407 g/mol)  C24H20O15 

 

 

 

 

 

 

 

Propane-1,2,3-triyl tris(3,4,5-tris(benzyloxy)benzoate) (200 mg, 0.15 mmol), dry THF (2.09 mL), 

and Pd/C 10% (0.22 g, 2.08 mmol) were combined and stirred for 6 hours at 40°C under H2.  A 

TLC (95% CH2Cl2/MeOH) confirmed the consumption of the starting material.  The reaction 

was gravity filtered through filter paper, Celite, and a PTFE 0.2 µM syringe to remove the Pd/C 

catalyst. The solvent was then removed in vacuo to obtain a solid (67.1 mg, 83%).  1H NMR 

(DMSO-d6, 400 MHz) δ 9.27 (s, 6H, -OH), 8.99 (s, 3H, -OH), 6.90 (s, 6H, aromatic), 5.51-5.48 

(m, 1H, -O-CH-), 4.50 (dd, J = 3.66, 11.45 Hz, 2H, -O-CH2-), 4.46 (dd, J = 6.41, 11.91 Hz, 2H, -

O-CH2-); 
13C NMR (acetone-d6, 100 MHz) δ 165.65, 165.37, 145.30, 145.27, 138.31, 138.26, 

120.49, 120.43, 109.33, 109.20, 69.86, 62.74; HRMS, ES calcd. for C24H20O15Na [M+Na]+  

571.0700, found:  571.0701. 
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Chapter 3 
 

Effects of Gallate Ring Substitution Pattern on Inhibitor 
Potency 

 
 
 

BACKGROUND AND OBJECTIVES 

 
 

The following facts regarding PAI-1 inhibitor potency have thus far been established: 1) 

inhibitors containing ester-linker groups were more effective at inhibiting PAI-1 than those 

containing amides; 2) the geometric isomerism study indicated that in most cases the cyclic 

linkers that allowed for a trans-positioning of the gallates led to higher inhibition as compared to 

those with a cis-positioning; 3) a molecule containing a cyclic linker molecule that allowed for an 

increased number of conformations and consequently greater motion of the gallates such as the 

cyclohexanediol linker (in contrast to the benzenediol linker) was a stronger inhibitor of PAI-1;  

4) the negligible activity of the α/β-galactose-centered-molecule with five gallate groups attached 

in which all hydroxy positions were benzyl-protected (CDE-006) suggests that the hydroxy 

functional groups on the gallates were a necessary aspect for the success of the inhibitor or that 

other electronically similar species were necessary;  5) the identity of the sugar at the center of 

the penta-gallate inhibitors was an unimportant factor regarding PAI-1 inhibitor potency;  and 6)  

an inhibitor containing as few as two gallate attachments (CDE-088, 366 g/mol) was established 

to be a potent inhibitor while adhering to the Lipinski molecular weight guideline. 

Even with all of the above determinations, it was still desirable to hone the inhibitor 

scaffold further because an inhibitor had not yet been synthesized which inhibited PAI-1 at the 

nanomolar range and did not also inhibit ATIII.  The next aspect that we examined as a means 
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of improving our potential inhibitor was examining the importance of the number and 

placement of the hydroxy attachments on the aromatic ring of the gallate or gallate derivatives.  

With that aim, a series of similar compounds was synthesized with the central structural features 

unchanged.  Instead the number and positioning of the hydroxy attachments on the aromatic 

ring of the gallate or gallate derivatives were manipulated.  The positioning of the hydroxys was 

manipulated in order to determine if the electronic properties of the aromatic rings would have a 

significant effect on inhibitor potency. 

The number of hydroxy substituents on the aromatic ring was manipulated with the aim 

of synthesizing an inhibitor that more closely follows one of the Lipinski guidelines.  The 

particular guideline states: “Effective drugs are consistent with molecules that contain fewer than 

5 hydrogen-bond donor capable species (including hydroxy and amine groups) and less than 10 

hydrogen bond acceptor species (including nitrogen and oxygen atoms).”55  Therefore, a series 

of inhibitors was synthesized in an attempt to ascertain how many hydroxys could be eliminated 

without a significant decrease in the potency and selectivity of the inhibitor.  Due to the unique 

properties of a benzene ring and the effects that substituents can have on the electronic 

properties of the ring, a brief overview of these seems necessary. 

The effect that newly attached species can have on the electron density of a benzene ring 

is divided into two main categories: species that either donate to or withdraw electron density 

from the ring.  Both of these can occur through two different pathways, either inductive effects 

or resonance effects. 

Substituents that are electronegative (commonly species that are more electronegative 

than carbon57) cause an inductive effect on the aromatic ring that results in an overall reduction 

in the ring’s electron density.  Substituents that contain lone pairs or π-bonds require extra 

resonance structures of the aromatic ring; when this new resonance structure is composed of a 
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benzene species with a positive charge on one of its carbons, then the overall resonance effect is 

an electron-withdrawing effect.57  This occurs when the resonance structure’s substituent is 

composed of an atom possessing a partial positive charge resulting in the transfer of the positive 

charge onto an aromatic carbon.   

The net effect of both the inductive and resonance effects that substituents can induce 

on an aromatic ring must be considered when determining the overall effect that a substituent 

has on a benzene ring’s electron density.  This is easily accomplished when examining groups 

that only contribute one effect, such as alkyl groups.  Alkyl groups display no resonance effect 

and are more electron rich than a benzene ring and thus always donate electron density.57  If a 

neutral species containing oxygen or nitrogen is directly attached to benzene, then the 

substituent has an overall electron donating effect via the resonance structure it forms.57  If a 

halogen is directly bonded to benzene, then the net effect is one of electron withdrawal as the 

inductive effect predominates.57  Carbonyl groups withdraw electron density from benzene 

through both resonance and inductive effects.57 

The substituents examined in this chapter include only hydroxy groups and carbonyl 

groups.  Hydroxys donate electron density to the benzene ring, and carbonyl groups withdraw 

electron density from the benzene ring.  However, our inhibitors focused only on the 

modification of the hydroxy substituents, leaving the carbonyls unaltered.  Our modification of 

the number of hydroxy substituents resulted in a manipulation of the electronic character of the 

bisgallate analogues. 

The positioning of substituents on the aromatic ring can also have an effect on how the 

inhibitor will interact with the functional groups within the binding site on the protein target.  

Different arrangements may provide for a 3-D structure that could allow the inhibitor to more 

strongly interact with PAI-1’s binding site. 
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Hydrogen-bonding is the interaction of hydrogen with a more electronegative atom such 

as sulfur,58 fluorine,59 oxygen,60 or nitrogen.60  Experimental and theoretical studies have been 

conducted to ascertain the characteristics of hydrogen bonding, yet the physical nature of 

hydrogen bonding remains a topic of much debate within the scientific community.61  Even so, 

hydrogen-bonding is an important quality for a drug molecule to possess as it increases the 

solubility of the drug in a biological system and quite often allows for them to form the 

necessary interactions with their targets.60  The various molecular conformations which 

intramolecular hydrogen-bonding allows have been investigated utilizing computational software 

programs and experimental methods.62  Intramolecular hydrogen-bonding can often occur 

between hydroxy substituents on the ortho-position of benzoic acids and the carbonyl’s oxygen 

atom.  This intramolecular hydrogen-bonding possibility is hypothesized to play a unique role in 

the potency of our inhibitors.   

The examination of the optimal number and positioning of the hydroxy substituents on 

the bisgallate analogues will allow us to further our research efforts by analyzing the effects 

(change in IC50-values) the modifications have on the inhibitors’ potency and selectivity. 

There were two different starting points followed regarding the synthesis of these 

inhibitors.  Illustrations of the reaction steps of each are outlined in Figure 24. 
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Figure 24:  General Reaction Scheme for the Ethylene Glycol-linked Bisgallate 
Derivatives.   
 
 
 
The main point of differentiation is in regard to the first step.  When the starting gallate 

derivative could be purchased as the methyl/ethyl ester, then benzyl-protection and formation 

of the acid was the first step.  When it could only be purchased as the carboxylic acid, then it 

was necessary to first protect the carboxylic acid (utilizing thionyl chloride and methanol) as the 

ester prior to benzyl protection of the remaining hydroxy substituents on the aromatic ring.  

Steiglich esterification formed the ethylene glycol-linked bisgallates, and the protecting groups 

were removed in THF with a catalytic amount of 10 wt% palladium on carbon and H2 or 1,4-

cyclohexadiene as the hydrogen source.   

When determining the optimal substitution pattern on the aromatic rings, it was 

imperative to obtain results that could be used to indicate that a single modification on the 

inhibitor resulted in a change in potency.  Therefore a series of compounds containing the same 
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linker but differing in the number and positioning of the hydroxy attachments on the aromatic 

rings was synthesized.    

The series of molecules was synthesized (Table 9) with the aim of determining the 

number of hydrogen-bond donor capable species (hydroxys) that could be removed from the 

aromatic ring of the inhibitor without significantly impacting the potency and selectivity of the 

inhibitor. 
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Table 9:  Ethylene Glycol-Linked Polyphenols 
 

 
Entry Inhibitor Entry Inhibitor 

CDE-008
c
 

 

 

 

CDE-051
b
 

 

 

 
 

 

CDE-081
a
 

 

 

 

 

CDE-084
b
 

 

 

CDE-090 
 

 

 
 

CDE-094 
 

 

 

CDE-098 
 

 

 

CDE-101 
 

 

 
 

CDE-106
d
 

 

 

CDE-123 
 

 

  
 

CDE-151 
 

 

 

 

Synthesized by: 
a = Melinda Myers 
b = Kristi Henricks 
c = Maria Puscau 
d = Nadine El-Ayache 
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The same series of inhibitors (Table 9) was examined, focusing on the positioning of the 

hydroxys and whether differing positions affected the inhibitor’s potency. The electron-donating 

character of the hydroxy substituents allows for us to determine if a higher degree of electron 

density of the aromatic ring leads to increased potency of the inhibitor or vice versa.  This was 

accomplished by modifying the number of hydroxy substituents and thus the electronic 

character of the bisgallate analogues. 

The positioning of attachments on the aromatic ring can also have an effect on how the 

inhibitor will interact with the functional groups within the binding site on the protein target.  It 

is our hypothesis that a preferential 3-D arrangement of the substituents on the aromatic ring 

will allow for an increased potency of the inhibitor as it will enable it to interact with the serpin 

more readily. 
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RESULTS 

 
 

The Lipinski guideline detailing the optimal number of hydrogen-bond donor capable 

species led us to examine how many hydroxys we could effectively remove from the aromatic 

ring and still maintain inhibitor potency.  The inhibitors that contain only one hydroxy per 

aromatic ring (CDE-81, CDE-106, CDE-123), ranged in potency from a non-detectable IC50-

value to a value of 565 µM (Table 10).  The inhibitors that contain only two hydroxys per 

aromatic ring (CDE-051, CDE-084, CDE-090, CDE-094, CDE-101, CDE-151) ranged in 

potency from a non-detectable IC50-value to a value of 0.33 µM.   The inhibitors that contain 

three hydroxys per aromatic ring (CDE-008, CDE-098) ranged in potency from IC50-values of 

680.6-0.558 µM.  It is apparent from the IC50-values that more than one hydroxy group is 

necessary for any significant level of inhibition.  All three single hydroxy molecules, including the 

2-hydroxy, 3-hydroxy, and 4-hydroxy moieties showed correspondingly poor or non-existent 

levels of PAI-1 inhibition (Table 10).  
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Table 10:  Biological Assay Results: Modifying the Number/Position of Hydroxy 
Substituents 

Compounds Aromatic Substitution IC50 vs. PAI-1 (uM) 

   
CDE-090 3,4-OH 0.33 
CDE-008 3,4,5-OH 0.558 
CDE-101 2,6-OH 7.86 
CDE-051 2,4-OH 33.37 
CDE-151 2,5-OH 136 
CDE-084 3,5-OH 175 
CDE-106 3-OH 565 
CDE-098 2,3,4-OH 680.6 
CDE-123 2-OH ND 
CDE-081 4-OH 1400 
CDE-094 2,3-OH ND 

 

 

Comparable low IC50-values were found between an analogue containing two hydroxy 

substituents per aromatic ring (CDE-090) and an analogue containing three hydroxy substituents 

per aromatic ring (CDE-008) (0.33 µM and 0.558 µM, respectively).  Therefore, it was 

determined that optimal potency could still be maintained with two fewer hydroxy groups than 

our original bisgallate (CDE-008).  This determination successfully brought our inhibitor in line 

with Lipinski’s guidelines which recommended fewer than 5 hydrogen-bond donor capable 

species. 

The 3,4-dihydroxy molecule (CDE-090) showed the highest inhibition, 0.33 µM and a 

non-detectable level of ATIII inhibition.  The second highest inhibition was displayed by the 

3,4,5-trihydroxy substituted gallate (CDE-008) with an IC50-value of 0.558 µM and a non-

detectable level of ATIII inhibition. 

Inhibitors lacking the hydroxy group at either the 3- or 4-position suffered a significant 

decrease in potency.  However, it is not apparent if one of these positions is more important 
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than the other.  The compound with a single hydroxy group present at the 3-position (CDE-

106) with an IC50-value of 565 µM proves more potent than the one with a single hydroxy at the 

4-position (CDE-081) with an IC50-value of 1400 µM, while the compound with a 2,4-

dihydroxylated ring  (CDE-051) with an IC50-value of 33.37 µM is more potent than a 2,3-

dihydroxyated version (CDE-094) with a non-detectable level of inhibition. 

There is an interesting aspect to the inhibitors that contain ortho-substituted hydroxy 

groups.  The reversible intramolecular hydrogen bonding between the hydroxy groups and the 

carbonyl oxygen encourages the inhibitor to take on a different conformation (Figure 25).  This 

conformation differs in stability when comparing inhibitors with only one ortho-hydroxy or with 

two ortho-hydroxy substituents.  The inhibitor containing only one ortho-hydroxy substituent 

(CDE-123) has non-detectable levels of PAI-1 inhibition, while the 2,6-dihydroxy-substituted 

inhibitor (CDE-101) shows a substantial increase in potency with an IC50-value of 7.86 µM.   

 

OH

O

O

Hydrogen Bonding
Between Carbonyl
Oxygen and the

Hydroxy Hydrogen

O R

O

OH  

 

Figure 25:  Intramolecular Hydrogen Bonding on An Inhibitor. 
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The lower IC50-value for the 2,6-disubstituted molecule (CDE-101) could be accounted for by 

examining this interaction.  Due to the reversibility of the intramolecular hydrogen-bond, the 

inhibitor contains both a hydrogen-bonded substituent and a free hydroxy functional group 

(Figure 25).  It has previously been proposed that small-molecule inhibitors of PAI-1 bind in 

pocket sites on the serpin.63  It is hypothesized that the hydrogen-bonded inhibitor’s 3-D shape 

allows it to position itself more tightly within the binding site of PAI-1.  Then due to its ability 

to exist correspondingly as the free hydroxy, it could conform and bind to PAI-1, inhibiting it. 64  

This accounts for the 2,6-dihydroxy substituted inhibitor’s (CDE-101) low IC50-value (7.86 µM) 

in comparison to the mono-ortho-hydroxy substituted, inhibitor (CDE-123) which has non-

detectable levels of PAI-1 inhibition. 

The remaining moieties, including the 2,4-dihydroxy (CDE-051, IC50 = 33.37 µM), 2,5-

dihydroxy (CDE-151, IC50 = 136 µM), and the 2,3-dihydroxy (CDE-094, non-detectable 

inhibition), have poorer inhibition effects than the 2,6-dihydroxy substituted analogue (CDE-

101, IC50 = 7.86 µM).  Again this can be understood by the intramolecular hydrogen bonding of 

the hydroxy group on the ortho-position.  The 2,4-dihydroxy (CDE-051, IC50 = 33.37 µM) and 

the 2,5-dihydroxy (CDE-151, IC50 = 136 µM) have free hydroxys (at the 4th and 5th position) 

available to interact with the inhibitory site of PAI-1 before the molecule has reached its 

optimum inhibitory conformation within the pocket of the serpin’s binding site.  This 

interaction hinders it from reaching this position regardless of the 2-hydroxy intramolecular 

hydrogen bonding configuration.  Also, because the ortho-hydroxy substituent is hydrogen 

bonded to the carbonyl, it is not free to interact at this optimal position, therefore only allowing 

for the interaction of one hydroxy group which has already been established to result in poor 

inhibition of the protein (CDE-106 with IC50 = 565 µM, CDE-123 with non-detectable 

inhibition levels, CDE-081 with IC50 = 1400 µM).   
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A counter to this argument is the inhibition level of the 2,3,4-trihydroxy inhibitor (CDE-

098 with IC50 = 680.6 µM).  The 3,4-dihydroxy inhibitor (CDE-090) showed the highest 

inhibition, 0.33 µM and therefore, with the 2-hydroxy position being hydrogen bonded to the 

carbonyl and the 3,4-dihydroxys being free to act on the inhibitory site of the molecule, it would 

seem that the inhibition levels would be comparable between CDE-090 and CDE-098.  

However, the new conformation of the intramolecularly hydrogen bonded 2,3,4-trihydroxy 

inhibitor results in the meta-hydroxy being shifted from its usual position, thus making it less 

able to interact than it was in its previous non-hydrogen bonded conformation.64  It is a note of 

interest that the 2,3,4-trihydroxy moiety is the only one of this series that inhibits ATIII (IC50 = 

502 µM). 

The remaining two inhibitors CDE-151 and CDE-106 showed PAI-1 inhibition levels of 

136 and 565 µM, respectively, and both showed non-detectable levels of ATIII inhibition. This 

indicates that these species were selective in their PAI-1 inhibition and that further modifications 

will be necessary to increase their affinity for PAI-1. 

While the results from Chapter 1 regarding the potency change between inhibitors that 

were 3,4-dihydroxy substituted in comparison to their bisgallate analogues were inconclusive, 

our attempt to bring our inhibitors in line with the Lipinski guideline regarding the suggested 

limitation on hydrogen-bond donor capable species supports the use of the 3,4-dihydroxy 

substitution, as it allows for the synthesis of an inhibitor which has fewer than five hydroxyl 

groups.   
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EXPERIMENTAL 

 
 
 
CDE-051 
Ethane-1,2-diyl bis(2,4-dihydroxybenzoate)  
(334.28 g/mol)  C16H14O8 
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BnCl, KI, K2CO3
(CH3)2CO reflux

NaOH,C2H5OH

reflux: 18 hr.

methyl 2,4-
dihydroxybenzoate

OH
OH

OH

 

 

 

 

Step #3 Step #2’s product (111 mg, 0.16 mmol) was dissolved in CH2Cl2 (0.80 mL).  1,4-

cyclohexadiene (0.30 mL, 3.20 mmol) and a catalytic amount of Pd/C 10% (1.70 mg, 3.2%) was 

added.  The reaction was stirred at room temperature for 48 hours.  A TLC (95%: 

CH2Cl2/MeOH) indicated the consumption of the starting material.  The reaction was purified 

by prep-TLC (95%: CH2Cl2/MeOH).  

1H NMR (acetone-d6, 400 MHz) δ 10.78 (s, 2H, para -OH), 9.37 (s, 2H, ortho -OH), 7.07 (d, J = 

9.16 Hz, 2H, ortho aromatic), 6.40 (dd, J = 2.29, 8.70 Hz, 2 H, meta aromatic between hydroxy-

substituted carbons), 6.35 (d, J = 2.29 Hz, 2H, meta aromatic), 4.69 (s, 4H, -O-CH2); HRMS, EI 

calcd. for C16H14O8 [M+]+ 334.0688, found:  334.0690. 
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CDE-123 
Ethane-1,2-diyl bis(2-hydroxybenzoate) 
(302.08 g/mol)  C16H14O6 

 

 

 

 

 

 

 

 

Step #1:  Benzyl bromide (4.70 mL, 39.4 mmol) and acetone (200 ml) were combined.  Methyl 

2-hydroxybenzoate (4.26 mL, 32.9 mmol) and anhydrous K2CO3 (18.0 g, 130 mmol) were added.  
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Solution was refluxed under N2 overnight.   K2CO3 was filtered off and the filtrant was 

evaporated.  The solid was taken up in MeOH (180 mL) and 1 N NaOH (1.43 g, 35.8 mmol) 

was added.  Solution was stirred overnight at room temperature under N2.  A TLC (100% 

hexanes) indicated that the starting material was consumed.  Then 1 N HCl (350 mL) was added.  

A bright yellow oily liquid formed and settled to the bottom of the flask and was pipetted away 

from the solution.  The bright yellow oily liquid was dried in vacuo to obtain a yellow solid (4.03 

g, 54%). 

Literature values agree with the experimentally determined NMR spectral data.65 

 

Step #2:  Ethylene glycol (390 µL, 7.00 mmol), 2-(benzyloxy)benzoic acid (4.00 g, 17.5 mmol), 

EDC·HCl (3.61 g, 17.5 mmol), DMAP (0.214 g, 1.75 mmol), and CH2Cl2 (222 ml) were 

combined and refluxed for 120 hours under N2.  A TLC (85% hexanes/EtOAc) indicated that 

the starting material was consumed.  The crude compound was purified by flash column 

chromatography (85% hexanes/EtOAc), to obtain a yellow oil. 

1H NMR (CDCl3-d6, 400 MHz) δ 7.83 (dd, J = 1.84, 7.76 Hz, 2H, ortho aromatic), 7.22-7.50 (m, 

12H, para aromatic), 6.92-6.98 (m, 4H, meta aromatic), 5.14 (s, 4H, benzylic), 4.60 (s, 4H, -O-

CH2-). 

 

Step #3:  The benzyl-protected ethylene glycol linked bisgallate derivative (1.40 g, 2.90 mmol) 

was dissolved in 35 ml THF.  10 wt% Pd/C (3.08 g, 29.0 mmol) and 1,4-cyclohexadiene (2.70 

mL, 29.0 mmol) were added and the reaction was stirred under H2 for 18 h at room temperature.  

A TLC (95% CH2Cl2/MeOH) indicated that the starting material was consumed.  The reaction 

mixture was filtered through Celite and the filtrate was evaporated.  Solid that formed was 

recrystallized from hexanes and the white solid crystals which formed were dried in vacuo (0.56 g, 
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64%). 

1H NMR (acetone-d6, 400 MHz) δ 10.59 (s, 2H, -OH), 7.88 (dd, J = 1.84, 7.80 Hz, 2H, ortho 

aromatic), 7.54-7.49 (m, 2H, para aromatic), 6.97-6.89 (m, 4H, meta aromatic), 4.79 (s, 4H, -O-

CH2-); 
13C NMR (acetone -d6, 100 MHz) δ 169.90, 161.74, 136.13, 130.08, 119.40, 117.45, 

112.25, 63.19; HRMS, EI calcd. for C16H14O6 [M+]+  302.0790, found:  302.0792. 
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CDE-151 
Ethane-1,2-diyl bis(2,5-dihydroxybenzoate) 
(334.28 g/mol)  C16H14O8 

 

 

 

 

 

 

 

 

Step #1:  Benzyl chloride (3.65 mL, 31.7 mmol) and acetone (126 ml) were combined.  Methyl 

2,5-dihydroxybenzoate (2.50 mL, 14.9 mmol), anhydrous K2CO3  (8.22 g, 59.5 mmol), and KI 

(0.74 g, 4.46 mmol) were added.  Solution was refluxed under N2 overnight.  A TLC (80% 

hexanes/EtOAc) indicated that the starting material was consumed.  Solution was filtered and 

the filtrant was evaporated.  The solid was taken up in CH2Cl2 (22 mL), filtered through Celite, 

and the filtrate was dried in vacuo.   

The methyl-protected gallate derivative, 95% ethanol (133 mL), and NaOH (0.96 g, 24.2 mmol) 

were refluxed under N2 for 2 hours. The hot solution was poured into 8.75 ml of a 0.6 M HCl 

solution and stirred for 10 min.  The yellow solid was filtered off. The crude product was 

washed successively with a 1:1 solution of 95% Ethanol: H2O (100 mL), water (100 ml), 
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methanol (100 ml) and tert-butyl methyl ether (100 ml). The solid was dried in vacuo to obtain a 

yellow solid (0.67 g, 14%). 

1H NMR (CDCl3-d6, 400 MHz) δ 11.06 (bs, 1H, -OH), 7.80 (d, J = 3.20 Hz, 1H, ortho aromatic), 

7.45-7.30 (m, 10H, aromatic), 7.17-7.14 (m, 1H, meta aromatic), 7.08-7.04 (m, 1H, para 

aromatic), 5.23 (s, 2H, benzylic), 5.06 (s, 2H, benzylic); 13C NMR (CDCl3-d6, 100 MHz) δ 165.21, 

153.79, 151.82, 136.49, 134.55, 129.27, 129.23, 128.74, 128.26, 128.08, 127.68, 122.84, 118.83, 

117.72, 115.01, 73.05, 70.76.  

 

Step #2:  Ethylene glycol (44.8 µL, 803 µmol), 2,5-bis(benzyloxy)benzoic acid (672 mg, 2.00 

mmol), EDC·HCl (415 mg, 2.00 mmol), DMAP (24.5 mg, 0.20 mmol), and CH2Cl2 (25.0 ml) 

were combined and refluxed for 120 hours under N2.  A TLC (80% hexanes/EtOAc) indicated 

that the starting material was consumed.  The crude compound was purified by flash column 

chromatography (80% hexanes/EtOAc), to obtain a white powder (12%). 

1H NMR (CDCl3-d6, 400 MHz) δ 7.80 (d, J = 3.21 Hz, 1 H, ortho aromatic), 7.46 (d, J = 2.75 

Hz, 1H, ortho aromatic), 7.44-7.20 (m, 20H, aromatic), 7.15 (dd, J = 3.21, 9.16 Hz, 1H, para 

aromatic), 7.06 (d, J = 9.16 Hz, 1H, meta aromatic), 7.01 (dd, J = 3.21, 9.16 Hz, 1H, para 

aromatic), 6.88 (d, J = 9.16 Hz, 1H, meta aromatic), 5.24 (s, 2H, meta benzylic), 5.07 (s, 2H, 

ortho benzylic), 5.05 (s, 2H, meta benzylic), 4.92 (s, 2H, ortho benzylic), 4.59 (s, 4H, -O-CH2-). 

 

Step #3:  The glycol-linked benzyl-protected bisgallate (64.9 mg, 0.09 mmol) was dissolved in 

1.14 ml THF.  10 wt% palladium on carbon (99 mg, 0.93 mmol) was added and the reaction was 

stirred under H2 for 18 h at room temperature.  A TLC (95% CH2Cl2/MeOH) indicated that the 

starting material was consumed.  The reaction mixture was filtered through a MeOH-prepped 

PTFE syringe.  The filtrate was evaporated, triturated with diethyl ether, and dried in vacuo (18.9 
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mg, 61%). 

1H NMR (acetone-d6, 400 MHz) δ 10.07 (bs, 2H, meta -OH), 8.10 (bs, 2H, ortho -OH), 7.31 (d, 

J = 2.72, Hz, 2H, ortho aromatic), 7.05 (dd, J = 2.76, 8.68 Hz, 2H, para aromatic), 6.81 (d, J = 

8.70 Hz, 2H, meta aromatic), 4.75 (s, 4H, -O-CH2-); 
13C NMR (acetone -d6, 100 MHz) δ 169.73, 

169.67, 155.12, 154.95, 149.70, 124.46, 118.21, 118.13, 114.31, 111.90, 63.17. 
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CDE-090 
Ethane-1,2-diyl bis(3,4-dihydroxybenzoate) 
(334.28 g/mol)  C16H14O8 

 

 

 

 

 

 

 

Step #1:  Thionyl chloride (3.93 mL, 53.9 mmol) was added drop-wise to MeOH (40 mL) while 

held at 0°C and while stirring under N2.  This solution was stirred for an additional 10 minutes, 

and 3,4-dihydroxybenzoic acid (5.00 g, 32.4 mmol) was added to the flask.  This mixture was 

then stirred at room temperature 24 hrs.  A TLC (45% EtOAc/hexanes) indicated that the 

majority of the starting material had been consumed.  The SOCl2 was evaporated in vacuo.  

CH2Cl2 (10 mL) was added and filtered to obtain a white solid (3.10 g, 57%).  1H NMR (DMSO-

d6, 400 MHz) δ 9.76 (bs, 1H, para -OH), 9.34 (bs, 1H, meta -OH), 7.31 (d, J = 1.83 Hz, 1H, 

ortho aromatic), 7.27 (dd, J = 2.29, 8.24 Hz, meta aromatic), 6.76 (d, J = 8.24 Hz, 1H, ortho 

aromatic), 3.71 (s, 3H, -OCH3); 
13C NMR (DMSO -d6, 100 MHz) δ 166.68, 150.93, 145.59, 

122.28, 120.99, 116.76, 115.84, and 51.00. 
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Step #2:  Methyl 3,4-dihydroxybenzoate (2.80 g, 16.7 mmol), KI (0.83 g, 5.0 mmol), K2CO3 

(9.20 g, 66.6 mmol), and acetone (142 mL) were combined and stirred under N2 for 20 minutes.  

In a 50 mL Erlenmeyer flask benzyl chloride (4.09 mL, 35.5 mmol) and acetone (28.4 mL) were 

mixed and then syringed into the first reaction.  The reaction was refluxed overnight.  A TLC 

(80% hexanes/EtOAc) indicated that the starting material was consumed.  The reaction was 

filtered and dried in vacuo to obtain a solid.  CH2Cl2 (81.73 mL) was added and then this mixture 

was filtered through Celite.  The CH2Cl2 was evaporated in vacuo, and then the remaining solid 

material was dried for 1 hour in vacuo.  95% Ethanol (333 mL) and NaOH (0.73 g, 18.2 mmol) 

were added and the solution refluxed for 2 hours.  The hot reaction was then poured into an 

Erlenmeyer flask containing a 0.6 M HCl solution (350 mL).  A white voluminous solid formed.  

The reaction was filtered and the solid was washed with a 1:1 mix of 95% ethanol:H2O, 100% 

H2O, 95% ethanol, MeOH, and tert-butyl methyl ether (100 mL each), then dried in vacuo in a 

desiccator to obtain a white solid (4.11 g, 74%).  1H NMR (DMSO-d6, 400 MHz) δ 7.52 (s, 1H, 

ortho aromatic), 7.50 (d, J = 1.83 Hz, 1H, ortho aromatic), 7.45-7.25 (m, 10H, aromatic), 7.12 (d, 

J = 9.16 Hz, 1H, meta aromatic), and 5.18 (s, 2H, para benzylic), 5.14 (s, 2H, meta benzylic);  13C 

(DMSO-d6, 100 MHz) δ 167.50, 152.58, 148.13, 128.99, 128.95, 128.10, 127.98, 123.99, 123.77, 

115.02, 113.60, 70.47, 70.36. 

 

Step #3:  Ethylene glycol (0.15 g, 2.39 mmol), 3,4-bis(benzyloxy)benzoic acid (2.00 g, 5.98 

mmol), DMAP (0.07 g, 0.60 mmol), and CH2Cl2 (5.00 mL) were combined and stirred under N2.  

In a separate flask, EDC·HCl (1.23 g, 5.98 mmol) and CH2Cl2 (10.0 mL) were combined and 

held at 0°C.  Then this mixture was syringed into the first reaction in a drop-wise fashion.  This 

was stirred at room temperature for 36 hrs.  A TLC (50% hexanes/EtOAc) indicated that the 

majority of the starting material had been converted to product.  The reaction was purified by 
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column chromatography (50% hexanes/EtOAc) to obtain a solid (1.56 g, 94%).  1H NMR 

(DMSO-d6, 400 MHz) δ 7.85-7.10 (m, 26H, aromatic), 5.11 (s, 4H, para benzylic), 5.03 (s, 4H, 

meta benzylic), and 4.51 (s, 4H, -O-CH2-); 
13C NMR (DMSO-d6, 100 MHz) δ 165.78, 153.09, 

148.25, 137.31, 137.08, 128.99, 127.96, 124.14, 124.03, 122.47, 115.01, 114.89, 113.77, 113.58, 

70.86, 70.19, 63.04. 

 

Step #4:  Ethane-1,2-diyl bis(3,4-bis(benzyloxy)benzoate) (1.50 g, 2.16 mmol) dry THF (30.5 

mL), and Pd/C 10% (3.26 g, 30.6 mmol) were combined and stirred overnight at 40°C under H2.  

A TLC (90% CH2Cl2/MeOH) confirmed the consumption of the starting material.  The reaction 

was syringed through a PTFE 0.2 µM syringe to remove the Pd/C catalyst. The solvent was then 

removed in vacuo to obtain a solid which was triturated with toluene (0.67 g, 93%).  1H NMR 

(DMSO-d6, 400 MHz) δ 9.57 (bs, 4H, -OH), 7.33 (d, J = 2.29 Hz, 2H, ortho aromatic), 7.29 (dd, 

J = 2.29, 8.24 Hz, 2H, meta aromatic), 6.75 (d, J = 8.24 Hz, 2H, ortho aromatic), and 4.45 (s, 

4H, -O-CH2-); 
13C NMR (DMSO-d6, 100 MHz) δ 166.10, 151.12, 145.61, 120.80, 122.55, 122.35, 

116.91, 116.73, 115.93, 115.81, 67.54, 62.88,  25.65; HRMS, ES calcd. for C16H14O8Na [M+Na]+  

357.0586, found:  357.0593. 
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CDE-101 

Ethane-1,2-diyl bis(2,6-dihydroxybenzoate)  
(334.28 g/mol)  C16H14O8 

 

 

 

 

 
 
 
 

Step #1:  Thionyl chloride (3.93 mL, 53.9 mmol) was added drop-wise to MeOH (40.0 mL) 

while held at 0°C and while stirring under N2.  This solution was stirred for an additional 10 

minutes.  2,6-Dihydroxybenzoic acid (5.00 g, 32.4 mmol) was added to the flask and this mixture 

stirred at room temperature for 36 hours.  A TLC (50% EtOAc/hexanes) provided supporting 

evidence that the majority of the starting material was still present.  The reaction was, therefore, 

gently heated at 40°C overnight.  Another TLC (50% EtOAc/hexanes) indicated the 

disappearance of the majority of the starting material.  The organic layer was washed with 1 N 

HCl (2 x), saturated aqueous sodium bicarbonate (2 x), and brine (1 x), dried over MgSO4, 
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filtered, and concentrated in vacuo to obtain a solid (2.60 g, 48%).  1H NMR (CDCl3, 400 MHz) δ 

9.65 (bs, 2H, -OH), 7.30 (t, J = 8.24 Hz, 1H, para aromatic), 6.48 (d, J = 8.24 Hz, 2H, meta 

aromatic), and 4.07 (s, 3H, -OCH3); 
13C NMR (CDCl3, 100 MHz) δ 170.07, 160.91, 136.84, 

136.72, 108.38, 108.31, 100.05, 53.05, 52.91. 

-Note:  Intramolecular hydrogen-bonding is proposed to play a significant role here, in that it 

causes a deformation to the shape of the molecule.  This allowed the carbonyl carbon and 

methyl group to exist in two different electronic environments, allowing for 2 peaks of each to 

appear in the 13C spectra and allowing for five of the aromatic carbons to have their own unique 

peaks (the para-aromatic carbon remains unaffected). 

 

Step #2:  Methyl 2,6-dihydroxybenzoate (2.54 g, 15.1 mmol), K2CO3 (8.34 g, 60.4 mmol), NaI 

(158 mg, 1.06 mmol), and DMF (130 mL) were combined and mixed under N2.  In a separate 

flask, benzyl bromide (3.82 mL, 32.1 mmol) and DMF (24.0 mL) were mixed together, and then 

this mixture was syringed into the first reaction.  It was refluxed overnight.  A TLC (80% 

hexanes/EtOAc) revealed that the majority of the starting material had been consumed.  The 

reaction was filtered and the filtrant was diluted with diethyl ether and then washed with 2% 

NaOH.  The organic layer was dried with MgSO4 and filtered, and then the solvent was 

evaporated in vacuo to obtain a powder.  The powder was dissolved into 50 mL of a 1:1 mixture 

of THF:H2O.  To this, butanol (25.0 mL) and 6 N KOH (1.68 g, 5.00 mL) were added.  Then 

the reaction was refluxed for 48 hours under N2.  1 N HCl was added drop-wise to the reaction 

until it was acidified.  A white solid formed and was filtered off.  The filtrate was then 

evaporated in vacuo.  The residue was purified by column chromatography (80% 

EtOAc/hexanes) to obtain a solid (2.08 g, 41%).  1H NMR (CDCl3, 400 MHz) δ 10.80 (bs, 1 H, 

-OH), 7.41 (d, J = 7.33 Hz, 4H, para aromatic on main ring and three ortho aromatic on 
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protecting groups’ rings), 7.33 (t, J = 7.33 Hz, 4H, meta aromatic on protecting groups’ rings), 

7.25 (m, 3H, 1 ortho aromatic and two para aromatic hydrogen on protecting groups’ ring), 6.61 

(d, J = 8.24 Hz, 2H, meta aromatic), and 5.15 (s, 4H, benzylic);  

 

Step #3:  Ethylene glycol (148 mg, 2.39 mmol), 2,6-bis(benzyloxy)benzoic acid (2.00 g, 5.98 

mmol), DMAP (73.0 mg, 0.60 mmol), and CH2Cl2 (2.29 mL, 36.1 mmol) were combined and 

stirred under N2.  In a separate flask EDC·HCl (1.24 g, 5.98 mmol) and CH2Cl2 (2.00 mL) were 

combined.  Then this mixture was syringed into the first reaction in a drop-wise fashion.  This 

was refluxed for 48 hours.  A TLC (70% hexanes/EtOAc) showed that the majority of the 

starting material had been consumed.  The solvent was reduced in vacuo, and the residue was then 

purified by column chromatography (70% hexanes/EtOAc) to obtain a solid (35.1 mg, 2.1%).  

1H NMR (CDCl3, 400 MHz) δ 7.33 (s, 2H, meta aromatic), 7.31 (s, 2H, meta aromatic), 7.26-7.12 

(m, 10H, aromatic), 6.51 (s, 1H, para aromatic), 6.49 (s, 1H, para aromatic), 5.00 (s, 4H, 

benzylic), and 4.53 (s, 4H, -O-CH2-); 
13C NMR (CDCl3, 100 MHz) δ 166.27, 156.64, 136.75, 

131.09, 128.57, 127.84, 126.96, 114.09, 105.80, 70.47, 63.03. 

 

Step #4:  Ethane-1,2-diyl bis(2,6-bis(benzyloxy)benzoate) (35.0 mg, 0.05 mmol), CHCl3 (0.61 

mL), and Pd/C 10% (0.05 g, 0.5 mmol) were combined and stirred for 48 hours at 40°C under 

H2.  A TLC (95% CH2Cl2/MeOH) confirmed the consumption of the starting material.  The 

reaction was syringed through a PTFE 0.2 µM syringe (prepped with MeOH) to remove the 

Pd/C catalyst. The solvent was then removed in vacuo and triturated with hexanes to obtain a 

green solid (10.9 mg, 65%).  1H NMR (acetone-d6, 400 MHz) δ 9.82 (s, 4H, -OH), 7.32 (t, J = 

8.24 Hz, 2H, para aromatic), 6.41 (d, J = 8.24 Hz, 4H, meta aromatic), and 5.02 (s, 4H, -O-CH2-
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); 13C NMR (acetone-d6, 100 MHz) δ 170.24, 161.28, 136.56, 107.98, 107.89, 100.51, 64.13; 

HRMS, EI calcd. for C16H14O8 [M+]+  334.0689, found:  334.0692. 
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CDE-094 
Ethane-1,2-diyl bis(2,3-dihydroxybenzoate) 
(334.07 g/mol)  C16H14O8 

 

 

 

 

 

SOCl2

2,3-dihydroxybenzoic acid

MeOH
0°C for 10 min
RT 36 hours

23%

1.)

CDE-094

HO
OH

EDC·HCl, DMAP
CH2Cl2

18 hrs. 13%

3.)

10% Pd/C

THF
40°C, 48 hrs.

31%

2.)
BnCl, KI, K2CO3

(CH3)2CO reflux 48 hrs.

2% NaOH,diethyl ether
THF:H2O

6 N KOH, RT 2 hrs
reflux: 48 hr. 77%

4.)

OH

HO
OH

O OH

HO
O

O

O

O

HO

OH

 

 

 

 

 

Step #1:  Thionyl chloride (3.93 mL, 53.9 mmol) was added drop-wise to MeOH (40.0 mL) 

while held at 0°C and while stirring under N2.  This solution was stirred for an additional 10 

minutes.  2,3-Dihydroxybenzoic acid (5.00 g, 32.4 mmol) was added to the flask and stirred at 

room temperature for 36 hours.  A TLC (50% EtOAc/hexanes) indicated that the majority of 

the starting material had been consumed.  The SOCl2 was evaporated in vacuo.  Then CH2Cl2 (10 

mL) was added and evaporated in vacuo (3x) in an attempt to remove any remaining traces of 

thionyl chloride. The mixture was then dissolved in EtOAc.  The organic layer was washed with 

saturated aqueous sodium bicarbonate (6 x), dried over MgSO4, filtered, and concentrated in 

vacuo to obtain a solid (1.25 g, 23%).  1H NMR (CDCl3, 400 MHz) δ 10.89 (s, 1H, ortho -OH), 
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7.35 (dd, J = 1.37, 8.24 Hz, 1H, ortho aromatic), 7.11 (dd, J = 1.37, 8.24 Hz, 1H, para aromatic), 

6.79 (t, J = 7.79 Hz, 1H, meta aromatic), 5.70 (s, 1H, meta -OH), and 3.94 (s, 3H, -OCH3); 
13C 

NMR (CDCl3, 100 MHz) δ 170.85, 148.91, 145.11, 120.70, 120.59, 119.98, 119.85, 119.35, 

119.28, 112.47, 52.60, 52.45. 

 

Step #2:  Methyl 2,3-dihydroxybenzoate (0.82 g, 4.88 mmol), K2CO3 (2.70 g, 19.5 mmol), KI 

(0.24 g, 1.46 mmol), and acetone (41.0 mL) were combined and mixed under N2.  In a separate 

flask; benzyl chloride (1.19 mL, 10.4 mmol) and acetone (8.31 mL) were mixed together and 

then this mixture was syringed into the first reaction flask.  It was refluxed for 48 hours.  A TLC 

(80% hexanes/EtOAc) revealed that the majority of the starting material had been consumed.  

The reaction was filtered and the filtrant was diluted with diethyl ether and then washed with 2% 

NaOH.  The organic layer was then dried with MgSO4, filtered, and the solvent was evaporated 

in vacuo to obtain a powder which was taken up in 50 mL of a 1:1 mixture of THF:H2O.  To this 

6 N KOH (1.68 g, 5.00 mL) was added and the reaction was stirred for 2 hours at room 

temperature under N2.  1 N HCl was added drop-wise to the reaction until it was acidified.  The 

organic layer was washed with 1 N HCl (2 x) and brine (1 x), dried over MgSO4, filtered, and 

concentrated in vacuo to obtain a solid (1.26 g, 77%).  1H NMR (CDCl3, 400 MHz) δ 7.71 (dd, J = 

1.83, 7.79 Hz, 1H, ortho aromatic), 7.48 (dd, J = 1.83, 7.79 Hz, 2H, para aromatic), 7.46-7.24 (m, 

10H, aromatic), 7.17 (t, J = 8.24 Hz, 1H, meta aromatic), 6.25 (bs, 1H, -OH), 5.25 (s, 2H, 

benzylic), and 5.19 (s, 2H, benzylic); 13C NMR (CDCl3, 100 MHz) δ 165.91, 151.55, 147.33, 

129.40, 129.32, 136.01, 134.96, 128.92, 128.63, 127.91, 125.10, 124.41, 123.28, 119.08, 71.59.  

 

Step #3:  Ethylene glycol (0.07 g, 0.07 mmol), 2,3-bis(benzyloxy)benzoic acid (1.00 g, 2.99 

mmol), DMAP (37.0 mg, 0.03 mmol), and CH2Cl2 (15.0 mL, 18.1 mmol) were combined and 
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stirred under N2.  In a separate flask EDC·HCl (1.14 g, 3.00 mmol) and CH2Cl2 (12.5 mL, 36.1) 

were combined.  Then this mixture was syringed into the first reaction in a drop-wise fashion.  

This was stirred at room temperature overnight.  A TLC (50% hexanes/EtOAc) showed that the 

majority of the starting material had been converted to product.  The solvent was reduced in 

vacuo and the residue was purified by column chromatography (50% hexanes/EtOAc) to obtain 

a solid (109 mg, 13%).  1H NMR (CDCl3, 400 MHz) δ 7.42-7.33 (m, 6H, aromatic), 7.27-7.23 (m, 

20H, aromatic), 5.11 (s, 2H, benzylic), 5.05 (s, 2H, benzylic), and 4.50 (s, 4H, -O-CH2-). 

 

Step #4:  Ethane-1,2-diyl bis(2,3-bis(benzyloxy)benzoate) (0.11 g, 0.16 mmol), THF (2.00 mL), 

and Pd/C 10% (0.17 g, 1.57 mmol) were combined and stirred for 48 hours at 40°C under H2.  

A TLC (95% CH2Cl2/MeOH) confirmed the consumption of the starting material.  The reaction 

was syringed through a PTFE 0.2 µM syringe to remove the Pd/C catalyst. The solvent was then 

removed in vacuo and triturated with hexanes to obtain a solid (15.9 mg, 31%).  1H NMR 

(DMSO-d6, 400 MHz) δ 10.00 (bs, 4H, -OH), 7.19 (dd, J = 1.37, 7.79 Hz, 2H, ortho aromatic), 

6.97 (dd, J = 1.37, 7.33 Hz, 2H, para aromatic), 6.69 (t, J = 8.24 Hz, 2H, meta aromatic), and 

4.61 (s, 4H, -O-CH2-); 
13C NMR (DMSO-d6, 100 MHz) δ 169.59, 150.01, 146.70, 121.29, 120.15, 

119.48, 113.58, 63.47; HRMS, EI calcd. for C16H14O8 [M+]  334.0689, found:  334.0685. 
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CDE-098 
Ethane-1,2-diyl bis(2,3,4-trihydroxybenzoate)  
(366.28 g/mol)  C16H14O10 

 

 

 

 

 

 

 

 

Step #1:  Thionyl chloride (3.56 mL, 48.8 mmol) was added drop-wise to MeOH (36.0 mL) 

while held at 0°C and while stirring under N2.  This solution was stirred for an additional 10 

minutes.  2,3,4-Trihydroxybenzoic acid (5.00 g, 29.39 mmol) was added to the flask and this 

mixture stirred at room temperature for 36 hours.  A TLC (50% EtOAc/hexanes) showed that 

the majority of the starting material was still present.  The reaction was, therefore, gently heated 

at 40°C overnight.  Another TLC (50% EtOAc/hexanes) indicated the disappearance of the 

majority of the starting material.  The organic layer was washed with 1 N HCl (2 x), saturated 

aqueous sodium bicarbonate (6 x), and brine (1 x), dried over MgSO4, filtered, and concentrated 

in vacuo to obtain a solid (1.68 g, 31%).  1H NMR (CDCl3, 400 MHz) δ 10.97 (s, 1H, ortho -OH), 

7.36 (d, J = 8.70 Hz, 1H, ortho aromatic), 6.51 (d, J = 8.70 Hz, 1H, meta aromatic), 5.75 (s, 1H, 
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meta -OH), 5.41 (s, 1H, para -OH), and 3.91 (s, 3H, –OCH3).  
13C NMR (CDCl3, 100 MHz) δ 

170.65, 149.50, 149.19, 131.03, 122.12, 122.00, 107.48, 107.44, 105.72, 52.32. 

 

Step #2:  Methyl 2,3,4-trihydroxybenzoate (1.55 g, 8.42 mmol), KI (0.42 g, 2.53 mmol), K2CO3 

(4.65 g, 33.7 mmol), and acetone (70.5 mL) were combined and mixed under N2 for 20 minutes.  

In a separate flask, benzyl chloride (2.06 mL, 17.9 mmol) and acetone (14.3 mL) were mixed 

together, and then this mixture was syringed into the first reaction flask.  It was refluxed for 36 

hours.  A TLC (80% hexanes/EtOAc) revealed that the majority of the starting material had 

been consumed.  The reaction was filtered and the filtrate was diluted with diethyl ether and 

then washed with 2% NaOH.  The organic layer was dried with MgSO4 and filtered, and then 

the solvent was evaporated in vacuo to obtain a powder.  The powder was dissolved into 50 mL 

of a 1:1 mixture of THF:H2O.  6 N KOH (1.68 g, 5.00 mL) was added.  Then the reaction was 

refluxed overnight under N2.  1 N HCl was added drop-wise to the reaction until it was acidified.  

A white solid formed and was filtered off.  The solid was triturated with ethanol; however, this 

didn’t purify the product.  The residue was purified by column chromatography (80% 

EtOAc/hexanes) to obtain a solid (282 mg, 8.0%).  1H NMR (CDCl3, 400 MHz) δ 10.94 (s, 1H, 

-OH), 7.89 (d, J = 9.16 Hz, 1H, ortho aromatic), 7.34-7.25 (m, 15H, aromatic), 6.90 (d, J = 8.70 

Hz, 1H, meta aromatic), 5.29 (s, 2H, benzylic), 5.19 (s, 2H, benzylic), and 5.07 (s, 2H, benzylic); 

13C NMR (CDCl3,100 MHz) δ 165.43, 157.56, 152.08, 140.83, 136.71, 135.79, 134.77, 129.43, 

129.00, 128.89, 128.85, 128.64, 128.58, 128.43, 128.34, 127.70, 127.57, 115.47, 109.68, 77.91, 

75.98, 71.16. 

 

Step #3:  Ethylene glycol (0.07 g, 1.18 mmol), 2,3,4-tris(benzyloxy)benzoic acid (1.30 g, 2.95 

mmol), DMAP (36.0 mg, 0.30 mmol), and CH2Cl2 (2.24 mL) were combined and stirred under 
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N2.  In a separate flask EDC·HCl (0.61 g, 2.95 mmol) and CH2Cl2 (5.00 mL) were combined.  

Then this mixture was syringed into the first reaction in a drop-wise fashion.  This was stirred at 

room temperature for 48 hours.  A TLC (70% hexanes:EtOAc) showed that the majority of the 

starting material had been converted to product.  The residue was purified by column 

chromatography (70% hexanes:EtOAc) and dried in vacuo to obtain a yellow oil (0.66 g, 62%).  

1H NMR (CDCl3, 400 MHz) δ 7.62 (dd, J = 2.75, 8.70 Hz, 1H, aromatic), 7.46-7.20 (m, 30H, 

aromatic), 6.71 (dd, J = 2.29, 8.70 Hz, 1H, aromatic), 5.10 (s, 4H, benzylic), 4.99 (s, 2H, 

benzylic), and 4.53 (s, 2H, -O-CH2-); 
13C NMR (CDCl3, 100 MHz) δ 165.08, 156.78, 154.08, 

142.67, 137.37, 137.29, 136.24, 128.84, 128.76, 128.72, 128.41, 128.37, 128.29, 128.15, 128.07, 

127.55, 127.39, 118.40, 108.76, 76.34, 75.67, 70.91, 62.66. 

 

Step #4:  Ethane-1,2-diyl bis(2,3,4-tris(benzyloxy)benzoate) (0.66 g, 1.51 mmol), THF (18.00 

mL), and Pd/C 10% (1.61 g, 15.1 mmol) were combined and stirred for 48 hours at 40°C under 

H2.  A TLC (95% CH2Cl2/MeOH) confirmed the consumption of the starting material.  The 

reaction was syringed through a PTFE 0.2 µM syringe to remove the Pd/C catalyst. The solvent 

was then removed in vacuo and triturated with hexanes to obtain a solid (233 mg, 42%).  1H NMR 

(DMSO-d6, 400 MHz) δ 10.47 (s, 2H, -OH), 9.92 (s, 2H, -OH), 8.59 (s, 2H, -OH), 7.14 (d, J = 

8.70 Hz, 2H, ortho aromatic), 6.35 (d, J = 8.70 Hz, 2H, meta aromatic), and 4.56 (s, 4H, -O-

CH2-); 
13C NMR (DMSO-d6, 100 MHz) δ 169.92, 152.52, 151.46, 133.12, 121.30, 108.46, 104.76, 

63.14; HRMS, EI calcd. for C16H14O10 [M+]  366.0587, found:  366.0577. 
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CDE-106   
Ethane-1,2-diyl bis(3-hydroxybenzoate)  
(302.28 g/mol)  C16H14O6 
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Step #1:  Methyl 3-(benzyloxy)benzoate (0.25 g, 1.03 mmol) was dissolved in 1.5 mL THF and 

1.5 mL H2O.  LiOH (0.05 g, 1.14 mmol) was added and the reaction was refluxed overnight.  

TLC (50% hexanes:EtOAc) indicated the consumption of the starting material.  The organic 

phase was extracted with a mixture of EtOAc:3 N HCl, washed over brine, dried with MgSO4, 

and dried in vacuo yielding a solid (0.24 g, 57%). 

 

Step #2:  The product from Step #1 (0.13 g, 0.569 mmol), ethylene glycol (0.0128 mL, 0.228 

mmol), EDC·HCl (0.164 g, 0.798 mmol), and DMAP (8.30 mg, 68.4 µmol) were dissolved in 

CH2Cl2 (5 mL) and refluxed overnight.  A TLC (65% EtOAc:hexanes) indicated the 

consumption of the starting material.   The organic layer was washed with 1 N HCl, saturated 

NaHCO3, brine (2x each), dried with MgSO4, and dried in vacuo to produce a solid (0.12 g, 72%). 

 

Step #3:  The product from Step #2 (86.2 mg, 179 µmol) was dissolved in THF (2.6 mL).  

Pd/C 10% (114 mg, 1.07 mmol) was added and the reaction was stirred at room temperature, 

overnight, under H2.  A TLC (50% hexanes:EtOAc) revealed the consumption of starting 

material.  The residue was purified by column chromatography (50% hexanes:EtOAc) and dried 

in vacuo to obtain a solid (67.0 mg, 80%). 

1H NMR (DMSO-d6, 400 MHz) δ 7.30-7.26 (m, 6H, aromatic), 6.98-6.77 (m, 2H, ortho 

aromatic), 4.54 (s, 4H, -O-CH2-); 
13C NMR (DMSO-d6, 100 MHz) δ 166.18, 158.11, 131.19, 

130.38, 121.03, 120.35, 116.18, 63.26; HRMS, EI calcd. for C16H14O6 [M+]+  302.0790, found:  

302.0802. 
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Chapter 4 
 

Introduction of Carbamates into PAI-1 Inhibitors 
 
 
 

BACKGROUND AND OBJECTIVES 

 
  
 A variation of the Schotten-Baumann reaction provides one method for the formation 

of carbamates.66  Carbamates are readily synthesized through the reaction of chloroformates with 

either 1° or 2° amines and a base required to absorb the formed acidic proton. Carbamates have 

been utilized in anticancer,67 antimicrobial,68 and antimalarial69 agents and to aid in the treatment 

of central nervous system and cardiovascular system disorders.70  However, carbamate-

containing insecticides have also been linked to numerous health hazards.71  Carbamate 

insecticides reversibly inhibit acetylcholinesterase by carbamylation.71  In a unique drug trial in 

1966, urethane (a carbamate ester) was used in a controlled trial in human patients to treat 

multiple myeloma yet was deemed more toxic than the placebo and dropped from further 

trials.72  Due to these toxic effects, research was conducted in order to determine the level of 

urethane found in fermented foods; consequently, legislation was passed in the U.S. and the 

European Union to limit the levels of urethane in these products.73 

 However, the simplicity of the synthesis of carbamates and the non-toxic by-products 

formed encourages their use in early-stage drug discovery.  A wide variety of substituents 

incorporated in potential inhibitors increases the odds that a particular chemical property can be 

shown to be favored over another; therefore, it is to our advantage to utilize a synthetic 

technique that is simple, relatively quick, and produces nontoxic by-products.  
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 Sulfonamides are commonly synthesized by the reaction of a sulfonyl chloride with an 

amine, producing HCl as the by-product.  Prontosil, the first marketed antibiotic, contains a 

single sulfonamide group and was discovered (1927) by Gerhard Domagk while working for 

Bayer Pharmaceuticals (Figure 26).74  

 

  

 

Figure 26:  Prontosil. 

 

Since then, hundreds of drugs serving a variety of functions containing the sulfonamide 

functional group,75 such as non-steroidal anti-inflammatory drugs (NSAIDS), have been 

synthesized.76  However, some sulfonamide containing antibiotics have been linked to Stevens-

Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), also known as Lyell Syndrome: 

these are different forms of a life-threatening skin disease caused by an allergic reaction to some 

sulfonamide-containing antibiotics.77 

 In spite of these known negative aspects, sulfonamide-containing antibiotics, are still 

widely marketed.  While a link has been established between some sulfonamide-containing 

antibiotics and SJS, the pathogenesis of the syndrome is still unclear78 and the incident rate of 

the syndrome is very low ranging from 0.4-1.2 (SJS) and 1.2-6 (TEN) per million persons per 

year.79  Approximately 120 sulfonamide-containing drugs were being marketed as recently as 
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2008.  Due to the ease with which esters are broken down in the body, sulfonamides (a biostere 

for the ester functional group) were suggested as new linker unit for our inhibitory molecules. 

An important aspect to consider when designing an inhibitor involves the study of how a 

drug binds to its receptor.  One of the methods employed to determine this binding involves the 

examination of a crystal structure of an inhibitor bound to its target.  Materials studied using X-

ray crystallography that do not occur in a natural crystal form are grown into crystals in a 

solution utilizing vapor diffusion over a period of several weeks to months.  Diffraction patterns 

of the grown crystals are then captured using X-ray radiation.  Mathematical software programs 

then analyze the patterns and propose 3-D structures of the atoms.  Crystals are defined as 

having a regular repeating internal unit of structure in a 3-D space; therefore, when examining 

the results one can determine the degree to which the inhibitor’s different atoms bind to 

different contact points on the protein by analyzing the degree of symmetry throughout the 

crystal unit. 

In our pursuit of a selective and potent inhibitor of PAI-1, understanding how our 

inhibitor forms contacts with PAI-1 would enhance our ability to modify the inhibitor 

effectively.  Currently there are no published reports of a crystal structure in which active PAI-1 

is bound to an inhibitor.  In 2008 a study published by the American Heart Association focused 

on determining effective inhibitors for PAI-1 by using the Pymol software program (DeLano 

Scientific LLC) to model a 3-D structure of the serpin bound to these inhibitors (Figure 27).80  

Pymol software allows for the 3-D visualization of several biological units, including serpins.   
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Figure 27:  Pymol 3-D Model of PAI-1 with 4 Bound Inhibitory Molecules. 
TM5001 in yellow.  TM5007 in blue.  Tiplaxtinin in red.  ZK4044 in green.80 
 

 

The first serpin crystal structure obtained was the cleaved form of α1-antitrypsin
81.  Since 

that time several other intact serpin crystal structures have also been obtained including α1-

antichymotrypsin,82 antithrombin,83 and α1-antitrypsin.
84  The crystal structure of an active 

mutant form of PAI-1 was reported in 1999; however, no structures of wild-type active forms of 

PAI-1 have been reported.85  It has previously been proposed that small-molecule inhibitors of 

PAI-1 bind in pockets on the serpin.86  Mutagenesis studies have been conducted to show the 

binding between PAI-1 and uPA,87 the monoclonal antibody 33B8,88 the monoclonal antibodies 

MA-8H9D4 and MA-56A7C10 and their single-chain variable fragments,89 vitronectin,90 and a 

low-molecular-weight inhibitor AR-H029953XX.86 
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The various detrimental effects that elevated PAI-1 levels have been associated with have 

been the driving force behind our research efforts to synthesize and determine effective 

inhibitors of PAI-1.  Effective PAI-1 inhibition would be an aid to more fully understanding 

these detrimental conditions on human health and a pathway to the design of a drug that would 

function to counteract elevated PAI-1 levels.  Our research efforts have allowed us to establish 

several new experimentally supported hypotheses regarding the optimum scaffold for an 

inhibitor. 

The results from Chapter 2 indicated that the bisgallate CDE-008 contains the optimum 

number of gallates for specific inhibition of PAI-1 (IC50 = 0.558 µM and ATIII = ND).  The tri-

gallate molecule (CDE-082) was a more potent PAI-1 inhibitor (IC50 = 0.025 µM), yet acted less 

specifically (ATIII = 14.2 µM).  Therefore, our research efforts turned to optimization of the tri-

gallate inhibitor in an effort to retain the 20-fold increased inhibition of PAI-1 that this molecule 

displayed, while reducing its inhibition of ATIII. 

Considering that the only difference between the bisgallate and tri-gallate inhibitor 

involved a single extra gallate unit, it was hypothesized that the manipulation of this extra unit 

might enhance the potency of the inhibitor while decreasing the inhibitor’s potency against 

ATIII.  A series of inhibitors were synthesized that shared a similar scaffold except the third 

gallate unit was replaced with various moieties (Table 11).  The third gallate position will be 

referred to henceforth as “the handle” of the inhibitor.  The attachments chosen were highly 

varied in the hopes that the chemical properties of one of the handles would prove to be an ideal 

match for inhibitor/serpin binding and consequently for inhibitor potency.  
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Table 11:  Carbamate-Based Inhibitors. 

 

Entry Inhibitor Entry Inhibitor 

CDE-075 

 

 

CDE-077 

 

CDE-083 

 

 
 

CDE-089 

 

CDE-095 

 

CDE-096 

 

 

CDE-107 

O
O

O

O

OH
HO

OH

HO HN

O O
OH

OH

 

CDE-108 

 

O
O

O

O

HO

OH

HO HN

O O

OH

 

CDE-110 

 

CDE-115 
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CDE-116 

 

CDE-117 

 

 
 

 

 A general synthetic scheme for these carbamates is illustrated in Figure 28.  The first and 

second steps closely matched the procedures detailed in Chapter 1.  The linker contained a Boc-

protecting group and the removal of this group to produce the amine, composed the third step 

of the synthesis.  This step was easily accomplished by the addition of trifluoroacetic acid (TFA) 

in CH2Cl2 for 10 minutes at room temperature, producing the corresponding trifluoroacetate 

salt.  The fourth synthetic step installed the carbamate functionality.  Finally, removal of the 

benzyl-protecting groups followed the same procedure outlined in Chapter 1.   
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Figure 28:  General Reaction Scheme for the Carbamates. 
 
 

Our research efforts thus far had suggested that the ester linker units were highly favored 

over amide linker units (Chapter 1).  However, due to the ease with which esterases break down 

ester-based pharmaceuticals, it was still desirable to replace this functional group with a more 

stable one.  The sulfonamide group was utilized in this capacity.  A series of inhibitors that 

contain sulfonamide and sulfonimide functional groups in place of the ester linkers were 

synthesized by Nadine El-Ayache and tested for their PAI-1 inhibition capacity (Table 12).43, 91 
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Table 12:  Sulfonamide/Sulfonimide-Based Inhibitors. 

Entry Inhibitor Entry Inhibitor 

CDE-021 

 

 

CDE-102 

 

 

CDE-119 

 

 

CDE-143 

 

 

CDE-133 

 

 

CDE-146 

 

 

CDE-157 

 

 

CDE-158 

 

 

 

  

In concert with our attempt to determine if the sulfonimide linker could replace our 

ester linker unit, the variability in the synthesized sulfonimide series was also chosen with the 

aim of attempting to discern an optimum length for the handle on sulfonimides.  Therefore the 

scaffold remained constant except in regard to the length of the handle unit. 

 The sulfonimide inhibitors were tested in the same biological assay system as was used 

for the previous inhibitors, and the IC50-values obtained were graphed against the number of 

methylene units on the handle in an attempt to ascertain if an optimal handle length existed. 91  
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Ester and sulfonamide analogues were then compared in an attempt to ascertain the effect of the 

sulfonamide linker substitution. 

In an effort to more fully understand the variability in the IC50-values of our inhibitors 

and to postulate future inhibitory species, our focus turned to that of determining the inhibitor’s 

binding site on PAI-1.  Collaborators at the University of Michigan successfully obtained a 

crystal structure of active PAI-1 bound to the 3-(trifluoromethyl)phenyl-carbamate derivative 

(CDE-096).  The Pymol software package was utilized to model a 3-D structure of the captured 

species which was then examined to establish the contact points being made between the 

inhibitor and the serpin.  The chemical properties of these contact points were also examined, 

and new inhibitors were proposed based on these findings. 
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RESULTS 

 
 
The biological assay results for the carbamate inhibitors are illustrated in Table 13.  Eight 

of the carbamate inhibitors displayed IC50-values in the range of 11-62 nM (CDE-075, CDE-

095, CDE-096, CDE-107, CDE-108, CDE-110, CDE-116, CDE-117) with non-detectable 

levels of ATIII inhibition (no data were available for CDE-095 ATIII inhibition potency).  In 

comparison CDE-082 (tri-gallate) was a comparable inhibitor (IC50 = 0.025 µM) and yet 

inhibited ATIII (14.2 µM).  Two of the inhibitors showed inhibition of PAI-1 in a range of 100-

160 nM (CDE-077, CDE-089).  For these two no data were available for their inhibition of 

ATIII.  The remaining two inhibitors (CDE-083, CDE-115) showed inhibition of PAI-1 in the 

range of 4-5 µM with CDE-115 showing inhibition of ATIII = 470 µM. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 137

Table 13:  Biological Assay Results: Carbamate-Based (and Related) Inhibitors. 
(ND = not detected) 

 

Entry R X IC50 vs. PAI-1 (uM) ATIII (uM) 
     
CDE-075 tert-butyl  OH 0.062 ND 
CDE-077 trifluoroacetate salt OH 0.104 --- 

CDE-089 ethyl  OH 0.159 --- 
CDE-095 tert-butyl  H 0.048 --- 
CDE-096 3-(trifluoromethyl)phenyl  OH 0.059 ND 
CDE-107 octyl  OH 0.0108 ND 

CDE-108 octyl  H 0.02 100 
CDE-110 2-chlorophenyl  H 0.027 ND 
CDE-116 neopentyl  H 0.029 ND 
CDE-117 phenyl  H 0.022 ND 

     
     

Entry Inhibitor X IC50 vs. PAI-1 (uM) ATIII (uM) 

     

CDE-082 

 

OH 0.025 14.2 

CDE-083 

 

OH 4.75 --- 

CDE-115 

 

OH 4.69 470 
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Three of the four inhibitors showing the lowest degree of inhibition (CDE-077, CDE-

083, CDE-089) all share the common characteristic of possessing a handle that is much smaller 

than any of the other inhibitors in this series.  This suggests that the handle size is indeed 

important to inhibitor potency.  The low inhibition of PAI-1 by CDE-115 may possibly be 

explained by the observation that it is the only inhibitor in the series containing three methylene 

linker units, in contrast to the other inhibitors which utilize a two-methylene linker unit.  Earlier 

results suggest that linker length impacts inhibitor potency substantially.   

The carbamate inhibitors’ range in inhibitor potency (illustrated by the IC50-values) 

indicated that the handle length was an important factor in inhibitor potency.  The biological 

assay results for the published sulfonamide-based inhibitors are illustrated in Table 13.  The 

sulfonimide series of inhibitors included handle lengths ranging from two methylene units 

through eleven methylene units.  This series of inhibitors showed a range in IC50-values from 

0.086-2.67 µM.91 

 
 
Table 14:  Biological Assay Results: Sulfonamide-Based Inhibitors. 
 (ND = not detected) 
 

Entry Inhibitor IC50 vs. PAI-1 (uM) ATIII (uM) 
    

CDE-021 

 

547 7500 

CDE-119 

 

 
 

ND ND 
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Based on these results, it appears that sulfonimide inhibitors with a handle approximately 

a length of 6.5 methylene units would yield the largest degree of PAI-1 inhibition.  This number 

of methylene units correlates to a chain length of approximately 780-1000 pm.  These results 

support the idea that inhibitor potency is highly dependent on the length of the handle, 

presuming that both classes of inhibitors interact with PAI-1 in the same fashion. 

In order to examine the IC50-values from the perspective of their ability to influence 

inhibitor potency based on the linker’s composition, the sulfonimide inhibitor with eleven 

methylene units (CDE-158) can be compared with its ester-linked analogue (CDE-108, Table 

13).  These two were chosen for comparison because they both contain hydroxy substituents in 

the 3,4-positions of the aromatic rings and they share a similar total length in their handle 

attachments: approximately 1420-1928 pm for CDE-108 and approximately 1440-1848 pm for 

CDE-158.  One important point to note regarding this comparison is the nature of the linker of 

the sulfonimide inhibitor.  Previous results have found supporting evidence that the optimum 

linker length is two methylene units; therefore, this is one factor (among others) that affects 

potency that is not identical between the sulfonimide-linked inhibitor and the ester-linked 

inhibitor and therefore influences the validity of the comparison.  However, without a better 

comparison available within the series of ester-carbamates, these two were chosen in an attempt 

to determine the effect that the sulfonimide linker alone has on inhibitor potency.  CDE-108 

was found to be a more potent (IC50 = 0.02 µM) and specific (non-detectable levels of ATIII 

inhibition) PAI-1 inhibitor than CDE-158 (IC50 = 2.60 µM,  ATIII = 547 µM).  

Another valid comparison can be made between the ethylene glycol-linked 

protocatechuate (CDE-090, Table 9) and ethane-1,2-diamine-linked sulfonamide (CDE-021).  In 

this instance the linker length is approximately the same, and the number of hydroxys on each 

ring is also consistent.  Both of these lack a handle unit and, therefore, a more direct comparison 
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can be made regarding the impact of changing the linker unit from an ester linker to a 

sulfonamide linker.  When comparing the ethylene glycol-linked protocatechuate (CDE-090, 

Table 9) and ethane-1,2-diamine-linked sulfonamide (CDE-021, Table 14), CDE-090 has a 

higher potency (IC50 = 0.33 µM) than the sulfonamide analogue (IC50 = 547 µM).  CDE-090 also 

has a non-detectable level of ATIII inhibition as compared to the sulfonamide analogue’s 7500 

µM inhibition of ATIII. 

Last, a comparison between the piperazine-linked inhibitors can be examined to 

determine the impact of modifying the linker unit from an amide (CDE-055) to a sulfonamide 

(CDE-119).  It is important to point out that for this comparison to be valid, the unproven 

assumption is made that the sulfonamide/sulfonimide inhibitors are binding to PAI-1 in the 

same orientation.  However, since a crystal structure detailing the binding between an inhibitor 

and PAI-1 has only been successfully accomplished for the CDE-096 inhibitor, this comparison 

may be shown to be invalid in the future.   

The piperazine-linked inhibitor (CDE-055 (Table 4)) from the amide series has a 

heightened PAI-1 potency (IC50 = 26.83 µM) and non-detectible ATIII potency, when compared 

with its piperazine-sulfonamide analogue (CDE-119) that reported non-detectable levels of PAI-

1 and ATIII inhibition.   

A 100-fold drop in PAI-1 potency (CDE-108 vs. CDE-158) and a 1650-fold drop in 

PAI-1 potency (CDE-090 vs. CDE-021) occur when a switch is made from an ester-linked 

inhibitor to a sulfonamide-linked inhibitor.  Also a drop in PAI-1 potency occurs from 

micromolar inhibition levels to non-detectable inhibition levels (CDE-055 vs. CDE-119) when a 

switch is made from an amide-linked inhibitor to a sulfonamide-linked inhibitor. Therefore, the 

results show higher PAI-1 inhibition and lower ATIII inhibition for the ester and amide-linked 

inhibitors than for the sulfonamide-linked inhibitors.   



 

 141

The crystal structure introduced a new source of supporting evidence for several of our 

previous hypotheses concerning modification of our inhibitors.  Pymol software effectively 

produced 3-D images of the crystal structure of active PAI-1 contacting one of our inhibitors, 

the 3-(trifluoromethyl)phenyl-carbamate derivative (CDE-096).  The information gathered from 

the crystal structure does support the earlier hypothesis that small-molecule inhibitors of PAI-1 

bind in pockets on the serpin.86   

The geometric isomerism study results from Chapter 1 and the inhibitor potency results 

in Chapter 4 (comparison of sulfonamide/sulfonimide, ester, and amide linker potencies) can be 

understood now in terms of the shape of the serpin’s binding site as indicated by the crystal 

structure.  The barrier to rotation of the carbon-nitrogen bond in amides (Ea = 65-92 kJ/mol)92 

and the sulfur-nitrogen bond in sulfonamide/sulfonimides (Ea = 62-71 kJ/mol)93 is greater than 

the barrier to rotation of the oxygen-carbon bond (Ea = 50 +/-3 kJ/mol)92 in the esters.  This 

discrepancy between the ease of rotation of these bonds may account for the ester-linked 

molecules’ improved inhibition of PAI-1 when compared to their amide and 

sulfonamide/sulfonimide analogues, because the higher activation energy may be preventing 

these inhibitors from adopting the most biologically active conformation that would allow the 

inhibitor to enter the pocket site on the serpin. 

The results from the geometric isomerism study (Chapter 1) detailing our comparison of 

cyclic linkers can also now be rationalized through our new knowledge obtained from the crystal 

structure.  The improved inhibition of the trans-positioning of the gallates as compared to a cis-

positioning of the gallates and the improved inhibition of the cyclic linker molecule that allows 

for an increased number of conformational possibilities for the gallates such as the 

cyclohexanediol linker (in contrast to the benzenediol linker) can now be accounted for more 

fully through our observation that the binding site on the serpin is a pocket.  The trans-position 
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would more easily allow for part of the molecule to conform to the bent shape necessary to 

interact with the pocket, as would inhibitors that have an increased number of conformational 

possibilities, such as the cyclohexanediol linkers, in contrast to their more rigid benzenediol 

analogues.   

Our results from Chapter 2 that examined the effects on PAI-1 inhibition of the 

alteration of the number of gallates and the central sugar can also be understood more fully from 

our newly acquired knowledge that the serpin’s binding site is a pocket.  The specific central 

sugar was unimportant to the inhibitor’s potency because all of the sugars allowed for at least 

two of the gallates to be arranged in a trans-position and it would be those two that interacted 

with the serpin’s binding site (one entering the pocket site and the other binding outside the 

pocket).  The bisgallate (CDE-008) contained the optimum number of gallates for specific 

inhibition of PAI-1 (IC50 = 0.558 µM) because it had non-detectable levels of ATIII inhibition 

versus the tri-gallate molecule (CDE-082) that was a more potent PAI-1 inhibitor (IC50 = 0.025 

µM) yet inhibited less specifically (ATIII IC50 = 14.2 µM).  These findings are also supported by 

the observation that the binding site on PAI-1 interacts with the inhibitor by the binding of one 

gallate in the pocket and one gallate outside the pocket.  The additional gallates have an 

unknown advantageous role in binding and might inhibit binding via steric hindrances. 

Other potentially important points of contact between the serpin and the inhibitor 

(CDE-096) include a carbonyl oxygen interacting with an electropositive region on the serpin, 

the 3,4-dihydroxy oxygens on one of the gallates interacting with an electropositive region on 

the serpin, and the handle unit buried deep within a largely hydrophobic pocket. 

Our finding that only one of the gallates’ hydroxys binds strongly to the serpin in the 

crystal structure and that only two of the hydroxys (3,4-dihydroxy arrangement) are strongly 

involved in the binding also provides supporting evidence for our conclusions drawn in Chapter 
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3 that determined the optimum number of gallates (two/three) and arrangement of substituents 

(3,4-dihydroxy arrangement) on the aromatic ring.   

The crystal structure’s confirmation of the binding site on the serpin as a pocket also 

provides for supporting evidence regarding our observation in Chapter 4 that improved potency 

of the inhibitors occurred in molecules that had a handle unit capable of interacting with a 

pocket on the serpin.  The two gallate moieties of the inhibitor are located outside of the pocket, 

while the handle of the inhibitor is buried within the pocket of the serpin.   

An electropositive region within a larger electroneutral region on the serpin’s binding site 

indicates that handles composed of electroneutral and electronegative atoms could produce 

stronger binding to PAI-1 in this region.  This observation would account for the enhanced 

potency of the inhibitors whose handles were composed of phenyl rings or variously lengthed 

and arranged methylene handles (CDE-075, CDE-082, CDE-096, CDE-107, CDE-108, CDE-

110, CDE-116, CDE-117).  This observation also supports our results from Chapter 2 that 

displayed a lack of inhibitor potency of the galactose-centered molecule with five gallate groups 

attached in which all hydroxy positions were benzyl-protected (CDE-006).  This observation led 

us to propose the hypothesis that the hydroxy functional groups on the gallates were a necessary 

aspect for inhibitor potency or that other electronically similar species were necessary. 

The above findings account for observed changes in inhibitor specificity in the 

carbamate derivatives. The electrostatic repulsion between the positive nitrogen atom of the 

ammonium group in CDE-077 and the electropositive region can now be seen as a possible 

reason for this molecule’s lowered inhibitor potency.  Similarly, the shortened length of the 

dimethyl and ethyl handle species (CDE-083, CDE-089) result in a decrease in inhibitor potency 

because the handle region is not long enough to interact with the pocket on the serpin. 
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 The consistently improved inhibitor potencies of our carbamate derivatives indicated 

that a handle unit was an essential piece to our scaffold.  The sulfonimide inhibitor series 

allowed for us to hypothesize that a handle unit composed of 6.5 methylene units (approx. 780-

1000 pm) in chain length would allow for the optimum interaction of the handle unit with the 

serpin’s pocket.  

In summary, this chapter highlights our success at obtaining a crystal structure of an 

active PAI-1 serpin bound to an inhibitor and the carbamates that were synthesized and used in 

this achievement.  The main focus of our research efforts turned to the optimization of the tri-

gallate inhibitor in an effort to retain the 20-fold increased inhibition of PAI-1 that this molecule 

displayed, while reducing its inhibition of ATIII.  This goal was achieved and is illustrated by the 

high potency against PAI-1 and non-detectable inhibition of ATIII shown by a number of the 

carbamate inhibitors, including CDE-075 (tert-butyl handle, IC50 = 0.062 µM), CDE-096 (3-

(trifluoromethyl)phenyl, IC50 = 0.059 µM), CDE-107 (octyl handle, IC50 = 0.01 µM), CDE-110 

(2-chlorophenyl handle, IC50 = 0.027 µM), CDE-116 (neopentyl handle, IC50 = 0.029 µM), and 

CDE-117 (phenyl handle, IC50 = 0.022 µM); these molecules are highly active and specific 

inhibitors of PAI-1.  The selectivity of the inhibitors was further optimized by CDE-096 (3-

(trifluoromethyl)phenyl handle), which inhibited PAI-1 at nanomolar IC50 level even in the 

presence of vitronectin, while showing non-detectable levels of ATIII inhibition.   

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 145

EXPERIMENTAL 
 
 
 
CDE-075 
3-(Tert-butoxycarbonylamino)propane-1,2-diyl bis(3,4,5-trihydroxybenzoate) 
(495.43 g/mol)  C22H25NO12 

 

 

 

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3, 

4,5-tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Tert-butyl N-(2,3-dihydroxypropyl) carbamate (1.00 g, 5.23 mmol), 3,4,5-

tribenzylgallate (5.77 g, 13.1 mmol), DMAP (0.16 g, 1.31 mmol), and CH2Cl2 (5.00 mL) were 

combined and stirred under N2.  In a separate flask, EDC·HCl (2.70 g, 13.1 mmol) and CH2Cl2 

(10 mL, 157 mmol) were mixed at 0°C.  This mixture was then syringed into the reaction in a 

drop-wise manner.  The reaction stirred at room temperature overnight under N2.  The organic 

layer was washed with 1 N HCl (2 x), saturated aqueous sodium bicarbonate (2 x), and brine (1 

x), dried over MgSO4, filtered, and concentrated in vacuo.  A TLC (60% hexanes/EtOAc) 

indicated impurities.  The residue was purified by column chromatography (60% 
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hexanes/EtOAc) to obtain a solid (4.12 g, 76%).  1H NMR (CDCl3, 400 MHz) δ 7.41-7.20 (m, 

34H, aromatic), 5.42 (quin, J = 4.58 Hz, 1H, -O-CH2-CH-O-), 5.07 (s, 4H, benzylic), 5.05 (s, 8H, 

benzylic), 4.81 (t, J = 5.95 Hz, 1H,-HN-), 4.58 (dd, J = 4.12, 11.91 Hz, 2H, -O-CH2-CH-O-), 

3.57-3.48 (m, 2H, -N-CH2-), and 1.43 (s, 9H, (CH3)3); 
13C NMR (CDCl3, 100 MHz) δ 165.82, 

165.63, 155.91, 152.64, 142.89, 142.70, 137.48, 137.43, 136.62, 128.62, 128.58, 128.30, 128.28, 

128.17, 128.13, 128.08, 128.04, 127.67, 124.65, 109.44, 109.19, 79.99, 75.19, 71.93, 71.33, 71.21, 

63.53, 60.52, 41.12, 28.45. 

 

Step #3:  3-(Tert-butoxycarbonylamino) propane-1,2-diyl bis (3,4,5-tris(benzyloxy)benzoate) 

(0.50 g, 0.48 mmol), dry THF (6.83 mL), and Pd/C 10% (0.73 g, 6.84 mmol) were combined and 

stirred overnight at 40°C under H2.  A TLC (70% hexanes/EtOAc) confirmed the consumption 

of the starting material.  The reaction was filtered through Celite to remove the Pd/C catalyst.  

The solvent was then removed in vacuo to obtain a solid (210 mg, 88%).  1H NMR (DMSO-d6, 

400 MHz) δ 9.11 (bs, 4H, -OH), 6.91 (s, 2H, aromatic), 6.88 (s, 2H, aromatic), 7.11 (t, J = 5.95 

Hz, 1H, -HN-), 5.17 (quin, J = 3.66 Hz, 1H, -O-CH2-CH-O-), 4.39-4.35 (m, 1H, -O-CH2-CH-

O-), 4.21-4.26 (m, 1 H, -O-CH2-CH-O-), 3.58-3.22 (m, 2H, -N-CH2-), and 1.31 (s, 9H, (CH3)3); 

13C NMR (DMSO-d6, 100 MHz) δ 166.13, 165.92, 156.32, 146.05, 145.97, 139.21, 139.10, 119.78, 

119.52, 109.42, 109.20,78.54, 71.20, 67.53, 63.90, 28.66, 28.44; HRMS, ES calcd. for 

C22H25NO12Na [M+Na]+  518.1274, found:  518.1268. 
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CDE-077 
2,3-Bis(3,4,5-trihydroxybenzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate  
(509.34 g/mol)  C19H18NF3O12 

 

 

 

 

CDE-077

NHBocHO

OH

EDC·HCl, DMAP,
CH2Cl2
76%

#1)

#2)

BnCl, KI, K2CO3

(CH3)2CO reflux

NaOH,C2H5OH

reflux: 18 hr.

H2

10% Pd/C

THF
40°C
94%

#4)

#3)
TFA, CH2Cl2

10 min

72%

HO
O

O

HO

OH

methyl 3,4,5-
trihydroxybenzoate

HO
O

O

HO

OH

O

O

OH

OH

OH

H3N

O

O

F

F

F
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Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis. 

 

Step #3:  3-(Tert-butoxycarbonylamino) propane-1,2-diyl bis (3,4,5-tris(benzyloxy)benzoate) 

(150 mg, 0.15 mmol) and CH2Cl2 (0.50 mL) were combined and held at 0°C under N2.  TFA 

(0.50 mL, 6.73 mmol) was syringed into the flask in a drop-wise fashion.  The reaction was 

stirred for 10 minutes.  A TLC (50% hexanes/EtOAc) indicated the consumption of starting 

material.  The solvent was then evaporated in vacuo.  EtOAc (5.00 mL) was added and 

evaporated three times successively to obtain a white solid (97.9 mg, 72%).  1H NMR (CDCl3, 

400 MHz) δ 8.31 (bs, 1H, -HN-), 7.30-7.25 (m, 34H, aromatic), 5.48 (s, 1H, -O-CH-), 5.06-4.90 

(m, 12H, benzylic), 4.70-4.58 (m, 1H, -O-CH2-), 4.52-4.41 (m, 1H, -O-CH2-), and 3.46-3.20 (m, 

2H, -CH2-N-); 13C NMR (CDCl3 , 100 MHz) δ 166.25, 165.88, 152.64, 143.33, 143.02, 137.39, 

136.47, 128.76, 128.37, 128.10, 127.87, 127.80, 127.55, 127.47, 123.84, 123.31, 109.50, 109.15, 

75.16, 71.53, 71.12, 69.76, 63.36, 40.78. 

 

Step #4:  2,3-Bis(3,4,5-tris(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (200 

mg, 0.19 mmol), dry THF (2.69 mL, 33.1 mmol), and Pd/C 10% (0.29 g, 2.69 mmol) were 

combined and stirred overnight at 40°C under H2.  A TLC (95% CH2Cl2/MeOH) confirmed the 

consumption of the starting material.  The reaction was filtered through Celite to remove the 

Pd/C catalyst.  Then gravity filtered through filter paper.  The solvent was then removed in vacuo 

to obtain a solid (70.6 mg, 94%).  1H NMR (DMSO-d6, 400 MHz) δ 9.26 (s, 4H, -OH), 9.06 (s, 

2H, -OH), 8.00 (s, 3H, -NH3), 6.97 (s, 2H, aromatic), 6.88 (s, 2H, aromatic), 5.38 (s, 1H, -O-CH-
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), 4.47-4.44 (m, 1H, -O-CH2-), 4.33-4.29 (m, 1H, -O-CH2-), and 3.12 (s, 2H, -N-CH2-); 
13C NMR 

(DMSO-d6, 100 MHz) δ 165.94, 165.86, 146.11, 145.99, 139.42, 139.33, 119.30, 119.20, 109.69, 

109.21, 69.17, 63.43, 50.00; HRMS, ES calcd. for C17H18NO10 [M+]+  396.0931, found:  

396.0920. 
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CDE-083 
3-(Dimethylamino)propane-1,2-diyl bis(3,4,5-trihydroxybenzoate) (423.37 g/mol)  
C19H21NO10 

 

 

 

 

CDE-083

NHBocHO
OH

EDC·HCl, DMAP,
CH2Cl2
76%

#1)

#2)

BnCl, KI, K2CO3

(CH3)2CO reflux

NaOH,C2H5OH
reflux: 18 hr.

H2

10% Pd/C

THF
40°C
42%

#5)

#3) TFA, CH2Cl2
10 min
72%

#4)
NaCNBH3,

glacial acetic acid
MeOH, K2CO3

42%

HO

HO

OH

O

O

HO

HO

OH

O

O

O

OH

OH

OH

O
N

methyl 3,4,5-
trihydroxybenzoate

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis. 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis(3,4,5-tris(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (200 

mg, 0.19 mmol), glacial acetic acid (29.0 µL, 0.51 mmol), MeOH (1.00 mL) and NaCNBH3 (22 

mg, 0.34 mmol) were combined and stirred under N2 for 3 hours upon which a solid formed.  A 

TLC (95% CH2Cl2/MeOH) indicated that the starting material had been consumed.  A saturated 

aqueous solution of K2CO3 was pipetted into the reaction mixture until pH paper indicated that 

the reaction was basic, upon which the solution turned cloudy.  The solvent was evaporated in 

vacuo.  The residue was extracted with EtOAc, dried with MgSO4, filtered, and evaporated in 

vacuo.  The residue was purified by column chromatography (95% CH2Cl2/MeOH) to obtain a 

solid (78.4 mg, 42%).  1H NMR (CDCl3, 400 MHz) δ 7.35-7.25 (m, 34H, aromatic), 5.88 (m, 1H, 

-O-CH-), 5.10-4.93 (m, 12H, benzylic), 4.63-4.70 (m, 1H, -O-CH2-), 4.37-4.47 (m, 1H, -O-CH2-), 

3.90-4.05 (m, 2H, -N-CH2-), and 2.31 (s, 6H, N(CH3)2); 
13C NMR (DMSO-d6, 100 MHz) δ 

165.89, 165.67, 152.64, 152.60, 146.05, 137.51, 136.63, 136.23, 128.84, 128.65, 128.49, 128.00, 

127.78, 127.57, 125.15, 124.95, 120.84, 120.72, 109.46, 108.97, 71.56, 70.61, 60.50, 46.33.   

 

Step #5:  3-(Dimethylamino)propane-1,2-diyl bis(3,4,5-tris(benzyloxy)benzoate) (70.0 mg, 0.07 

mmol), dry THF (1.04 mL), and Pd/C 10% (0.11 g, 1.03 mmol) were combined and stirred for 3 

hours at 40°C under H2.  A TLC (95% CH2Cl2/MeOH) confirmed the consumption of the 

starting material.  The reaction was syringed through a PTFE 0.2 µM syringe to remove the 

Pd/C catalyst. The solvent was then removed in vacuo to obtain a solid (13.1 mg, 42%).  1H NMR 

(DMSO-d6, 400 MHz) δ 9.25 (s, 4H, meta -OH), 8.96 (s, 2H, para -OH), 7.21-6.87 (m, 4H, 

aromatic), 5.49-5.32 (m, 1H, -O-CH-), 4.44-4.25 (m, 2H, -O-CH2-), 3.91-3.83 (m, 2H, -N-CH2-), 

2.20 (s, 6H, -N(CH3)2); HRMS, ES calcd. for C19H21NO10 [M+]+  424.1244, found:  424.1242. 
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CDE-089 
3-(Ethoxycarbonylamino)propane-1,2-diyl bis(3,4,5-trihydroxybenzoate)  
(467.38 g/mol)  C20H21NO12 

 

 

 

 

 

CDE-089

NHBocHO

OH

EDC·HCl, DMAP,

CH2Cl2
76%

#1)

#2)

BnCl, KI, K2CO3

(CH3)2CO reflux

NaOH,C2H5OH

reflux: 18 hr.

H2

10% Pd/C

THF
40°C
74%

#5)

#3) TFA, CH2Cl2
10 min

72%

#4)
Distilled benzene,
ethyl chloroformate,
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OH

O

O

HO

HO

OH

O

O

O

O
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OH

OH
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O O

methyl 3,4,5-
trihydroxybenzoate

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis. 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis(3,4,5-tris(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (200 

mg, 0.19 mmol) was dissolved in distilled benzene (0.50 mL, 5.32 mmol).  Ethyl chloroformate 

(18.2 µL, 0.19 mmol) and zinc (12.4 mg, 0.19 mmol) was stirred separately for 10 min.  Then the 

first solution was slowly syringed into the second solution and the reaction was stirred overnight 

at room temperature under N2.  A TLC (60% hexanes/EtOAc) confirmed the consumption of 

the starting material.  The residue was purified by column chromatography (60% 

hexanes/EtOAc) to obtain a solid (63.4 mg, 33%).94   

 

Step #5:  3-(Ethoxycarbonylamino)propane-1,2-diyl bis(3,4,5-tris(benzyloxy)benzoate) (50.0 mg, 

0.05 mmol), distilled THF (1.00 mL), and Pd/C 10% (75.0 mg, 0.71 mmol) were combined and 

stirred for 24 hours at 40°C under H2.  A TLC (95% CH2Cl2/MeOH) confirmed the 

consumption of the starting material.  The reaction was syringed through a PTFE 0.2 µM 

syringe to remove the Pd/C catalyst. The solvent was then removed in vacuo to obtain a solid, 

which was then triturated with hexanes (17.4 mg, 74%).  1H NMR (DMSO-d6, 400 MHz) δ 9.22-

9.25 (m, 4H, meta -OH), 8.95-8.97 (m, 2H, para -OH), 7.36-7.39 (m, 1H, NH), 6.91 (s, 2H, 

aromatic), 6.87 (s, 2H, aromatic), 5.19-5.17 (m, 1H, -O-CH), 4.21-4.41 (m, 2H, -O-CH2), [in 

acetone 4.00 (q, J = 6.87 Hz, 2H, CH2-O], 3.95-3.90 (m, 2H, -N-CH2), and 1.08 (t, J = 6.87 Hz, 

3H, CH3); 
13C NMR (DMSO-d6, 100 MHz) δ 165.65, 165.45, 145.24, 145.17, 138.09, 138.07, 

128.49, 120.80, 120.62, 109.33, 109.15, 71.06, 63.33, 60.08, 41.14, 14.16. 
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CDE-092 
3-(Neopentyloxycarbonylamino)propane-1,2-diyl bis(3,4,5-trihydroxybenzoate) 
(509.46 g/mol)  C23H27NO12 

 

 

 

 

 

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis. 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  Step #4:  2,3-Bis(3,4,5-tris(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-

trifluoroacetate (0.85 g, 0.81 mmol), pyridine (2.00 mL), and neopentyl chloroformate (0.15 mL, 

0.97 mmol) were combined and stirred at room temperature for 24 hours.  Then a TLC (50% 

hexanes/EtOAc) revealed the consumption of the majority of the starting material.  The 

reaction was diluted with EtOAc and the organic layer was washed with 1 N HCl (2 x), saturated 

aqueous sodium bicarbonate (2 x), and brine (1 x), dried over MgSO4, filtered, and concentrated 

in vacuo.  The residue was purified by column chromatography (50% hexanes/EtOAc) to obtain 

a brown crystalline solid (501 mg, 59%). 

 

Step #5:  3-(Neopentyloxycarbonylamino)propane-1,2-diyl bis(3,4,5-tris(benzyloxy)benzoate) 

THF (5.80 mL), and Pd/C 10% (0.10 g, 4.76 mmol) were combined and stirred for 24 hours at 

40°C under H2.  A TLC (90% CH2Cl2/MeOH) confirmed the consumption of the starting 

material.  The reaction was syringed through a PTFE 0.2 µM syringe prepared with MeOH to 

remove the Pd/C catalyst. The solvent was then removed in vacuo and triturated with hexanes to 

obtain a solid (239 mg, 98%). 

13C NMR (acetone-d6, 100 MHz) δ 165.73, 165.53, 157.17, 145.31, 145.23, 138.22, 136.80, 

120.76, 120.58, 109.61, 109.44, 109.18, 109.00, 73.52, 71.14, 66.22, 41.22, 31.30, 25.88. 
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CDE-095 
3-(Tert-Butoxycarbonylamino)propane-1,2-diyl bis(3,4-dihydroxybenzoate)  
(463.43 g/mol)  C22H25NO10 
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Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4-

dibenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  3,4-Bis(benzyloxy)benzoic acid (1.00 g, 2.99 mmol), DMAP (0.05 g, 0.36 mmol), tert-

Butyl N-(2,3-dihydroxypropyl) carbamate (0.23 g, 1.20 mmol), and DMF (4.55 mL) were 

combined and stirred under N2.  In a separate flask EDC·HCl (0.86 g, 4.19 mmol) and DMF 

(9.10 mL) were mixed together and then syringed into the first reaction mixture.  The reaction 

was stirred overnight at room temperature under N2.  It was then heated to 40°C and stirred 

under N2 overnight.  A TLC (65% hexanes/EtOAc) determined that the majority of the starting 

material had been consumed.  The solvent was reduced in vacuo and the residue was taken up in a 

4:1 mixture of EtOAc:hexanes and filtered.  The filtrate was washed with 1 N HCl (2 x), 

saturated aqueous sodium bicarbonate (2 x), and brine (1 x), dried over MgSO4, filtered, and 

concentrated in vacuo and triturated with hexanes.  The residue was purified by column 

chromatography (65% hexanes/EtOAc) to obtain a solid (464 mg, 57%).  1H NMR (CDCl3, 400 

MHz) δ 7.62-7.56 (m, 4H, ortho and meta aromatic), 7.41-7.25 (m, 20H, aromatic), 6.89 (d, J = 

9.16 Hz, 2H, meta aromatic), 5.38 (quin, J = 5.04 Hz, 1H, -O-CH-), 5.18 (s, 4H, meta benzylic), 

5.13 (s, 2H, para benzylic), 5.11 (s, 2H, para benzylic), 4.83-4.81 (m, 1H, -NH-), 4.55-4.51 (m, 

1H, -OCH2-), 4.47-4.45 (m, 1H, -OCH2-), 3.53-3.47 (m, 2H, -NCH2-), and 1.40 (s, 9H, -(CH3)3); 

13C NMR (CDCl3, 100 MHz) δ 165.90, 165.66, 153.29, 153.18, 148.43, 136.85, 136.53, 128.68, 

128.60, 128.08, 128.02, 127.51, 127.16, 124.39, 124.25, 122.53, 115.77, 115.50, 113.28, 79.84, 

70.87, 63.38, 41.20, 28.41. 

 

Step #3:  3-(Tert-butoxycarbonylamino)propane-1,2-diyl bis(3,4-bis(benzyloxy)benzoate) (0.4 g, 

0.58 mmol), THF (8.00 mL), and Pd/C 10% (0.63 g, 5.88 mmol) were combined and stirred for 



 

 160

36 hours at 40°C under H2.  A TLC (95% CH2Cl2/MeOH) confirmed the consumption of the 

starting material.  The reaction was syringed through a PTFE 0.2 µM syringe prepared with 

MeOH to remove the Pd/C catalyst. The solvent was then removed in vacuo and triturated with 

hexanes to obtain a yellow solid (250 mg, 92%).  1H NMR (DMSO-d6,400 MHz) δ 9.57 (bs, 4H, 

-OH), 7.31-7.27 (m, 4H, aromatic), 6.75-6.73 (m, 2H, aromatic), 7.10 (t, J = 5.95 Hz, 1H, -NH), 

5.27-5.19 (m, 1H, -OCH-), 4.40 (m, 1H, -OCH2), 4.21-4.38 (m, 1H, -OCH2-), and 1.30 (s, 9H, -

OC(CH3)3); 
13C NMR (DMSO-d6, 100 MHz) δ 178.34, 175.10, 165.91, 165.74, 156.29, 151.13, 

145.59, 145.49, 122.84, 122.61, 122.51, 122.26, 121.02, 120.75, 117.25, 116.57, 115.93, 115.49, 

78.43, 71.01, 63.77, 40.80, 29.55; HRMS, ES calcd. for C22H25NO10Na [M+Na]+  486.1376, 

found:  486.1378. 
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CDE-096 
3-((3-(Trifluoromethyl)phenoxy)carbonylamino)propane-1,2-diyl bis(3,4,5-
trihydroxybenzoate)  
(583.09 g/mol)  C25H20F3NO12 

 

 

 

 

 

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis. 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis(3,4,5-tris(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (0.20 

g, 0.19 mmol), pyridine (0.50 mL), and 3-(trifluoromethyl)phenyl chloroformate (0.36 µL, 0.23 

mmol) were combined and stirred at room temperature for 24 hours.  Then a TLC (50% 

hexanes/EtOAc) revealed the consumption of the majority of the starting material.  The 

reaction was diluted with EtOAc and the organic layer was washed with 1 N HCl (2 x), saturated 

aqueous sodium bicarbonate (2 x), and brine (1 x), dried over MgSO4, filtered, and concentrated 

in vacuo.  The residue was purified by column chromatography (50% hexanes/EtOAc) to obtain 

a brown crystalline solid (135 mg, 63%).  1H NMR (CDCl3, 400 MHz) δ 7.36-7.25 (m, 38H, 

aromatic), 5.47 (t, J = 5.95 Hz, 1H, -NH), 5.07-5.02 (m, 12H, meta or para benzylic),  4.66-4.63 

(m, 1H, -OCH-), 4.52-4.50 (m, 1H, -OCH2-), 3.94 (m, 1H, -O-CH2-), 3.73 (m, 1H, -NCH2-), 3.65 

(m, 1H, -NCH2-); 
13C NMR (CDCl3, 100 MHz) δ 165.85, 152.70, 146.12, 136.57, 128.74, 128.59, 

128.26, 128.12, 127.90, 127.62, 118.85, 109.53, 71.34, 29.77. 

 

Step #5:  3-((3-(Trifluoromethyl)phenoxy)carbonylamino)propane-1,2-diyl bis(3,4,5-

tris(benzyloxy)benzoate) (134 mg, 0.12 mmol), THF (2.00 mL), and Pd/C 10% (0.13 g, 1.19 

mmol) were combined and stirred for 36 hours at 40°C under H2.  A TLC (95% 

CH2Cl2/MeOH) confirmed the consumption of the starting material.  The reaction was syringed 

through a PTFE 0.2 µM syringe prepared with MeOH to remove the Pd/C catalyst. The solvent 

was then removed in vacuo and triturated with hexanes to obtain a solid (59.1 mg, 85%).  1H 

NMR (DMSO-d6, 400 MHz) δ 9.09 (bs, 6H, -OH), 8.22 (t, J = 5.95 Hz, 1H, -NH), 7.57-7.32 (m, 

3H, aromatic), 7.70-6.97 (m, 2H, aromatic), 6.95 (s, 1H, aromatic), 6.87-6.90 (m, 2H, aromatic), 

5.34-5.24 (m, 2H, -OCH2), 4.46-4.43 (m, 1H, -OCH-), 3.58-3.55 (m, 2H, -NCH2); 
13C NMR 

(acetone-d6, 100 MHz) δ 165.77, 165.64, 154.50, 151.89, 145.34, 145.30, 138.31, 138.28, 130.33, 

125.84, 121.70, 121.66, 121.61, 120.50, 118.75, 118.71, 109.42, 109.22, 70.70, 63.23, 41.58.  19F 
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NMR (DMSO- d6, 376 MHz) δ -60.9681(singlet representing the three fluorines on the 

molecule),  -61.1524(singlet representing the fluorine signal from the rotamer of the molecule), -

74.2434 (singlet confirmed to be the TFA anion by taking an 19F NMR of TFA + pyridine in 

DMSO- d6); HRMS, ES calcd. for C25H20F3NO12Na[M+Na]+  606.0835, found:  606.0821. 

 

 

 

118.71/118.75

5.34-5.24, 63.23

4.66, 70.70

165.77-165.64

120.50

7.57-6.87, 109.22/109.42

138.31/138.28

145.34/145.30

3.58-3.55, 41.58
154.50

151.89

130.33

121.66/121.61

130.32

125.84

121.70

O
OHO

HO

OH

O

O

OH

OH

OH

HN

O O

F

F
F

9.09
8.22

 

 

 

 

 

 

 

 

 

 



 

 164

Proof-of-Structure Analysis 
 
 
1H NMR:  The broad singlet at δ 9.09 integrated for 6H and is representative of the expected 6H 

for the hydroxyls on the rings.  The triplet at δ 8.22 correlates to the amide hydrogen that is 

coupled with an adjacent -CH2 group.  A complex spectra worth a total of 8H is expected in the 

aromatic region, and this is found from δ 7.56-6.89.  A peak integrating to 2H was expected for 

the –O-CH2- group and found as a multiplet at δ 5.34-5.24.  A peak integrating to 1H was 

expected for the –OCH- group and was found as a multiplet at δ 4.46-4.43.  A peak integrating 

for 2H was expected for the –N-CH2- group and was found as a multiplet at δ 3.58-3.55. 

 

13C NMR:  Two peaks were expected for the ester carbonyl carbons (δ 160-180), and two were 

found at δ 165.77 and 165.64.  The third carbonyl carbon was found farther upfield δ 154.50 and 

represents the more shielded carbamate carbonyl carbon on the handle.  Fourteen signals were 

expected for the aromatic ring hydrogens within the aromatic region (δ 160-100), and these were 

found.  The CF3 signal should also appear in the aromatic region, and this was found at δ 130.33.  

Two peaks were expected in the δ 60-80 region for the linker carbons, and two peaks were 

found at δ 70.70 and 63.23.  The slow rotation of the carbamate C-N bond is known to affect 

chemical shifts of nearby carbons by anisotropic shielding by the carbamate carbonyl group 

shielding these atoms and producing signals further upfield.95  Therefore, the –NCH2- shift was 

expected upfield, and a signal was found in this region at δ 41.58. 

 
19F NMR:  The CF3 group has previously been reported

96 to give a single peak at approximately -

62.08 ppm.  A verification of our compound containing this group was a singlet at δ -60.9681 

and the singlet at δ -61.1524 (rotamer).  A third unexpected singlet peak was observed in the 

spectra at δ -74.2434, and to verify its identity, a control 19F NMR was conducted consisting of 
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TFA + pyridine in DMSO- d6.  This experiment confirmed the identity of the third peak as that 

of trifluoroacetic acid anion.  

 
The composition of the molecule was verified by obtaining the exact mass using a  VG 

70-250-s2 spectrometer manufactured by Micromass Corp. (Manchester UK) at the University 

of Michigan Mass Spectrometry Laboratory.  The measured mass of 606.0821 g/mol was in 

agreement with the calculated value of 606.0835 g/mol. 
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CDE-107 
3-(((Octyloxy)carbonyl)amino)propane-1,2-diyl bis(3,4,5-trihydroxybenzoate)  
(551.54 g/mol)  C26H33NO12 
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Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis. 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 

 

Step #4:  2,3-Bis(3,4,5-tris(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (1.0 

g, 0.95 mmol), pyridine (2.33 mL), and octyl chloroformate (0.22 mL, 1.13 mmol) were 
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combined and stirred at room temperature for 24 hours.  A TLC (50% hexanes/EtOAc) 

revealed the consumption of the majority of the starting material.  The solvent was evaporated in 

vacuo.  The residue was purified by column chromatography (50% hexanes/EtOAc) to obtain a 

solid (759 mg, 74%).  1H NMR (CDCl3, 400 MHz) δ 7.39-7.25 (m, 34H, aromatic), 5.98-5.93 (m, 

1H, -NH), 5.42-5.41 (m, 1H, -OCH), 5.06 (s, 4H, benzylic), 5.08 (s, 8H, benzylic), 4.61-4.59 (m, 

1H, -OCH2), 4.50-4.40 (m, 1H, -OCH2), 4.08-4.04 (t, J = 6.41 Hz, 2H, -O-CH2-CH2-), 3.67-3.47 

(bm, 2H, - OCH2-NH), 1.70-1.50 (m, 2H, -O-CH2-CH2-), 1.27-1.26 (m, 10H, tail), and 0.95-0.85 

(t, J = 5.95 Hz, 3H, -CH3); 
13C NMR (CDCl3, 100 MHz) δ 165.81, 165.65, 156.91, 152.67, 

146.07, 136.64, 136.23, 128.62, 127.66, 124.60, 109.47, 109.01, 75.21, 71.63, 71.06, 69.42, 68.15, 

65.59, 63.43, 41.54, 31.89, 29.34, 29.10, 25.93, 25.65, 22.74, 14.20. 

 

Step #5:  3-(((Octyloxy)carbonyl)amino)propane-1,2-diyl bis(3,4,5-tris(benzyloxy)benzoate)  (0.5 

g, 0.46 mmol) was dissolved in low water THF (65.5 mL).  Pd/C 10% (0.68 g, 6.40 mmol) was 

added and stirred overnight at 40°C under N2.  A TLC (95% CH2Cl2/MeOH) confirmed the 

consumption of the starting material.  The reaction was syringed through a PTFE 0.2 µM 

syringe prepared with MeOH to remove the Pd/C catalyst. The solvent was then removed in 

vacuo and triturated with hexanes to obtain a solid (252 mg, 68%).  1H NMR (DMSO-d6, 400 

MHz) δ 9.22 (m, 4H, meta -OH), 8.93 (s, 2H, para -OH), 7.36 (t, J = 5.95 Hz, 1H, -HN-), 7.05 

(m, 4H, aromatic), 5.15-5.24 (m, 1H, -O-CH-), 4.42-4.05 (m, 4H, -O-CH2-CH-O- and -O-CH2-

(CH2)6-CH3), 4.02-3.81 (m, 4H, -NCH2- and  -O-CH2-(CH2)2-(CH2)4-CH3), 1.20 (s, 8H, -(CH2)4-), 

and 0.82 (s, 3H, -CH3); 
13C NMR (DMSO-d6, 400 MHz) δ 166.11, 165.88, 157.18, 146.05, 145.99, 

139.18, 139.13, 119.74, 119.53, 109.42, 109.21, 71.06, 67.83, 64.45, 31.73, 29.17, 29.11, 28.64, 

25.88, 25.70, 22.60, 14.43. 
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CDE-108 
3-(Heptyloxycarbonylamino)propane-1,2-diyl bis(3,4-dihydroxybenzoate)  
(519.54 g/mol)  C26H33NO10 

 

 

 

 

 

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4-

dibenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis, except 3,4-

dibenzyloxybenzoic acid was used in place of 3,4,5-tribenzyloxybenzoic acid. 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis((3,4-bis(benzyloxy)benzoyl)oxy)propan-1-aminium 2,2,2-trifluoroacetate 

 (1.0 g, 1.19 mmol), pyridine (3.0 mL), and octyl chloroformate (0.28 mL, 1.43 mmol) were 

combined and stirred at room temperature overnight.  Then a TLC (50% hexanes/EtOAc) 

revealed the consumption of the majority of the starting material.  The majority of the solvent 

was removed in vacuo.  The residue was purified by column chromatography (65% 

hexanes/EtOAc) to obtain a solid (0.91 g, 86%).  1H NMR (CDCl3, 400 MHz) δ 7.62-7.59 (m, 

4H, ortho and meta aromatic), 7.44-7.27 (m, 20H, benzylic), 6.90 (dd, J = 1.37, 9.16 Hz, 2H, 

ortho aromatic), 5.40 (quin, J = 4.58 Hz, 1H, -O-CH-), 5.18 (s, 4H, meta benzylic), 5.13 (s, 2H, 

para benzylic), 5.11 (s, 2H, para benzylic), 4.56-4.47 (m, 2H, -O-CH2-), 4.01 (t, J = 6.89 Hz, 2H, - 

O-CH2-CH2-), 3.63-3.53 (m, 2H, -N-CH2-), 1.58-1.53 (m, 2H, -O-CH2-CH2-), 1.26-1.25 (bm, 

10H, - O-CH2-CH2-(CH2)5-CH3) and 0.87 (t, J = 7.33 Hz, 3H, -CH3); 
13C NMR (CDCl3, 100 

MHz) δ 165.89, 153.33, 157.00, 148.43, 136.84, 136.56, 136.84, 136.56, 128.69, 128.60, 128.09, 

127.52, 127.16, 124.36, 124.26, 122.43, 115.71, 115.49, 113.26, 71.28, 71.17, 70.87, 63.25, 63.18, 

32.90, 31.90, 29.49, 29.07, 25.91, 25.84, 22.73, 14.19. 

 

Step #5:  3-(Heptyloxycarbonylamino)propane-1,2-diyl bis(3,4-bis(benzyloxy)benzoate) (0.91 g, 

1.03 mmol) was dissolved in low water THF (9.62 mL).  Pd/C 10% (0.06 g, 0.52 mmol) and 1,4-

cyclohexadiene (1.00 mL, 10.3 mmol) were added and stirred overnight at 40°C under N2.  A 

TLC (95% CH2Cl2/MeOH) confirmed the consumption of the starting material.  The reaction 

was syringed through a PTFE 0.2 µM syringe prepared with MeOH to remove the Pd/C 

catalyst. The solvent was then removed in vacuo and triturated with hexanes to obtain a solid (272 

mg, 51%).  1H NMR (acetone-d6, 400 MHz)  δ 8.46 (bs, 2H, -OH), 8.32 (bs, 2H, -OH), 7.49-7.47 

(m, 4H, ortho and meta aromatic), 6.86 (dd, J = 1.37, 8.24 Hz, 2H, meta aromatic), 6.56 (t, J = 

5.95 Hz, 1H, -NH), 5.40 (q, J = 5.95 Hz, 1H, -OCH), 4.52-4.50 (m, 1H, -OCH2-), 4.45-4.40 (m, 
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1H, -OCH2-), 3.96 (t, J = 6.87 Hz, 2H, -O-CH2-), 3.62-3.57 (m, 2H, -N-CH2-), 1.54-1.49 (m, 2H, 

-O-CH2-CH2-), 1.24 (bs, 10H, -O-CH2-CH2-(CH2)5-CH3), and 0.85 (t, J = 7.17 Hz, 3H, -CH3); 

13C NMR (acetone-d6, 400 MHz) δ 165.63, 165.45, 157.11, 150.19, 150.16, 144.82, 144.76, 

122.94, 122.78, 121.86, 121.68, 116.70, 116.51, 114.99, 114.89, 71.11, 64.52, 63.34, 41.26, 31.70, 

29.18, 29.16, 29.13, 25.76, 22.47, 13.57; HRMS, ES calcd. for C26H33NO10Na [M+ Na]+ 

542.2002, found: 542.2017. 
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CDE-110 
3-((2-Chlorophenoxy)carbonylamino)propane-1,2-diyl bis(3,4-dihydroxybenzoate) 
(517.87 g/mol)  C24H20ClNO10 
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Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4-

dibenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis, except 3,4-

dibenzyloxybenzoate was used in place of 3,4,5-tribenzyloxybenzoate 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis((3,4-bis(benzyloxy)benzoyl)oxy)propan-1-aminium 2,2,2-trifluoroacetate 

 (1.00 g, 1.19 mmol) was dissolved in pyridine (3 mL).  Then 2-chlorophenyl chloroformate (0.20 

mL, 1.43 mmol) was added.  The reaction was stirred under N2 overnight.  A TLC (65% 

hexanes/EtOAc) confirmed the consumption of starting material.  The residue was purified by 

column chromatography (65% hexanes/EtOAc) to obtain a solid (333 mg, 27%).  1H NMR 

(CDCl3, 400 MHz) δ 7.65-7.60 (m, 4H, ortho and meta aromatic), 7.44-7.29 (m, 20H, benzylic), 

7.23-7.12 (m, 4H, Cl-containing ring), 6.92-6.88 (m, 2H, ortho aromatic), 5.57 (t, J = 5.95 Hz, 

1H, -NH), 5.46 (t, J = 5.04 Hz, 1H, -O-CH-), 5.19 (s, 2H, benzylic), 5.18 (s, 2H, benzylic), 5.14 

(s, 2H, benzylic), 5.07 (s, 2H, benzylic), 4.63-4.50 (m, 2H, -O-CH2), and 3.85-3.64 (m, 2H, -N-

CH2); 
13C NMR (CDCl3, 100 MHz) δ 165.93, 165.76, 153.90, 153.39, 153.29, 148.47, 147.10, 

136.86, 136.56, 130.29, 128.70, 128.59, 128.11, 128.05, 127.74, 127.55, 127.52, 127.19, 126.86, 

124.48, 124.32, 124.13, 122.39, 122.33, 115.76, 115.52, 113.33, 71.25, 70.89, 63.08, 42.02, 29.80. 

 

Step #5:  3-((2-Chlorophenoxy)carbonylamino)propane-1,2-diyl bis(3,4-bis(benzyloxy)benzoate)  

(0.30 g, 0.342 mmol) was dissolved in ethanol (2.30 mL).  Low-water THF (1.00 mL) was added 

as a co-solvent.  Pd/C 10% (0.02 g, 0.17 mmol) and 1,4-cyclohexadiene (0.64 mL, 6.84 mmol) 

were added.  The reaction was stirred for 48 hours, under N2, at 40ºC. 

A TLC (95% CH2Cl2/MeOH) indicated the starting material had been consumed.  The reaction 

was syringed through a PTFE 0.2 µM syringe prepared with MeOH to remove the Pd/C 

catalyst. The solvent was removed in vacuo to obtain a solid (110 mg, 62%).  1H NMR (acetone-

d6, 400 MHz) δ 8.80-8.30 (bs, 4H, -OH), 7.61-7.41 (m, 5H, ortho-H + H adjacent to the Cl), 

7.32-7.25 (m, 1H, para-H to Cl), 7.22-7.10 (m, 2H, meta-H to Cl), 6.88 (dd, J = 2.29, 8.24 Hz, 

2H, meta aromatic), 5.52 (q, J = 5.50 Hz, 1H, -O-CH), 4.45-4.63 (m, 2H, -O-CH2) and 3.81-3.89 

(m, 2H, -N-CH2); 
13C NMR (CDCl3, 100 MHz) δ 165.94, 165.77, 155.30, 154.26, 147.47, 145.65, 
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145.57, 130.43, 130.34, 127.42, 127.08, 125.50, 125.03, 122.74, 122.18, 117.20, 116.94, 115.89, 

115.78, 70.91, 63.58, 41.50; HRMS, ES calcd. for C24H20ClNO10Na [M+Na]+  540.0673, found:  

540.0683. 
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CDE-115 
2-((Tert-butoxycarbonyl)amino)propane-1,3-diyl bis(3,4,5-trihydroxybenzoate) 
(495.43 g/mol)  C22H25NO12 

 

 

 

 

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4,5-

tribenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Tert-butyl (1,3-dihydroxypropan-2-yl)carbamate (0.36 g, 1.88 mmol) and 3,4,5-

tribenzyloxybenzoate (2.16 g, 4.70 mmol) were dissolved in a flame-dried flask and stirred under 

N2.  Next the triethylamine (1.00 mL, 5.63 mmol) and dry CH2Cl2 (10.0 mL) were syringed into 

the flask.  The reaction was stirred for 96 hours.  A TLC (65% hexanes/EtOAc) provided 

supporting evidence that product had formed.  The organic layer was washed with 1 N HCl (2 

x), saturated aqueous sodium bicarbonate (2 x), and brine (1 x), dried over MgSO4, filtered, and 

concentrated in vacuo to obtain a solid (1.70 g, 89%).  1H NMR (benzene-d6, 400 MHz) δ 7.50-

6.90 (m, 34H, aromatic), 5.14 (s, 4H, para benzylic), 4.75 (s, 8H, meta benzylic), 4.61 (s, 1H, -

NH), 4.36 (bs, 1H, -N-CH), 4.21-4.13 (m, 4H, -O(CH2)2), and 1.34 (s, 9H, -OC(CH3)3); 
13C 



 

 176

NMR (benzene-d6, 100 MHz) δ 165.65, 155.14, 152.85, 143.18, 138.03, 136.98, 124.88, 109.52, 

79.29, 75.01, 70.91, 64.05, 49.24, 28.13. 

 

Step #3:  2-(Tert-butoxycarbonylamine)propane-1,3-diyl bis (3,4,5-tris(benzyloxy)benzoate) 

(0.30 g, 0.30 mmol) was dissolved in low water THF (2.70 mL).  Then Pd/C 10% (0.2 g, 0.14 

mmol) and 1,4-cyclohexadiene (0.26 mL, 2.90 mmol) were added and stirred overnight at 40°C 

under N2.  A TLC (95% CH2Cl2/MeOH) confirmed the consumption of the starting material.  

The reaction was syringed through a PTFE 0.2 µM syringe prepared with MeOH to remove the 

Pd/C catalyst. The solvent was then removed in vacuo and triturated with hexanes to obtain a 

solid (121 mg, 85%).  1H NMR (DMSO-d6, 400 MHz) δ 9.00 (bs, 6H, -OH), 7.13 (d, 1H, -NH), 

6.94 (s, 4H, aromatic), 4.21-4.12 (m, 5H, -OCH2-CH-CH2), and 1.33 (s, 9H, ((CH3)3)); 
13C NMR 

(DMSO-d6, 100 MHz) δ 166.30, 166.23, 155.89, 146.11, 146.07, 139.20, 119.67, 119.61, 109.32, 

109.22, 78.70, 63.73, 49.60, 49.14, 28.64; HRMS, ESI calcd. for C22H25NO12Na [M+Na]+  

518.1274, found:  518.1284. 
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CDE-116 
3-(Neopentyloxycarbonylamino)propane-1,2-diyl bis(3,4-dihydroxybenzoate)  
(477.46 g/mol)  C23H27NO10  

 

 

 

 

 

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4-

dibenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis, except 3,4-

dibenzyloxybenzoate was used in place of 3,4,5-tribenzyloxybenzoate 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis(3,4-bis(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (1.00 g, 

1.19 mmol) was dissolved in pyridine (2.88 mL).  Neopentyl chloroformate (0.21 mL, 1.43 

mmol) was added.  The reaction was stirred for 20 minutes, at room temperature, under N2.  A 

TLC (50% hexanes/EtOAc) provided supporting evidence that the majority of the starting 

material had been consumed.  The residue was purified by column chromatography (75% 

hexanes/EtOAc) to obtain a white solid (348 mg, 35%).  1H NMR (CDCl3, 400 MHz) δ 7.63-

7.59 (m, 4H, ortho aromatic), 7.44-7.26 (m, 20H, aromatic), 6.90 (dd, J = 1.83, 9.16 Hz, 2H, 

meta aromatic), 5.41 (q, J = 4.58 Hz, 1H, -O-CH), 5.18 (s, 4H, meta benzylic), 5.13 (s, 2H, para 

benzylic), 5.11 (s, 2H, para benzylic), 4.57-4.47 (m, 2H, -O-CH2), 3.76 (s, 2H, -CH2-((CH3)3)), 

3.62-3.53 (m, 2H, -N-CH2), 0.89 (s, 9H, -((CH3)3)); 
13C NMR (CDCl3, 100 MHz) δ 165.91, 

165.70, 157.05, 153.33, 153.23, 148.45, 136.86, 136.57, 136.54, 128.70, 128.62, 128.10, 128.04, 

127.54, 127.18, 124.38, 124.27, 122.48, 115.76, 115.52, 113.30, 74.60, 71.41, 71.18, 70.88, 63.30, 

41.67, 31.58, 26.48. 

 

Step #5:  3-(Neopentyloxycarbonylamino)propane-1,2-diyl bis(3,4-bis(benzyloxy)benzoate) 

(0.30 g, 0.358 mmol) was dissolved in low water THF (3.31 mL).  Pd/C 10% (0.02 g, 0.18 mmol) 

and 1,4-cyclohexadiene (0.335 mL, 3.58 mmol) were added.  The reaction was stirred for 48 

hours, under N2, at 40ºC. 

A TLC (95% CH2Cl2/MeOH) indicated the starting material had been consumed.  The reaction 

was syringed through a PTFE 0.2 µM syringe prepared with MeOH to remove the Pd/C 

catalyst. The solvent was removed in vacuo to obtain a solid (48.6 mg, 28%).  1H NMR (acetone-

d6, 400 MHz) δ 7.40-7.51 (m, 4H, ortho and meta aromatic), 6.86 (dd,  J = 1.37, 8.24, Hz, 2H, 

ortho aromatic), 6.63 (bs, 1H, NH), 5.41 (quin, J = 4.12 Hz, 1H, -O-CH-), 4.55 (dd, J = 4.12, 

11.91 Hz, 1H, -OCH2), 4.39-4.47 (m, 1H, -O-CH2), 3.69 (s, 1H, CH2(CH3)3) 3.62-3.56 (m, 2H, -
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NCH2) and 0.85 (s, 9H, (CH3)3); 
13C NMR (acetone-d6, 100 MHz) δ 165.58, 165.41, 157.17, 

150.19, 150.16, 144.82, 144.75, 122.92, 122.75, 121.87, 121.68, 116.68, 116.50, 114.99, 114.89, 

73.50, 71.11, 63.60, 41.26, 31.29, 25.81; HRMS, ESI calcd. for C23H27NO10Na [M+Na]+  

500.1533, found:  500.1519. 
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CDE-117 
3-(Phenoxycarbonylamino)propane-1,2-diyl bis(3,4-dihydroxybenzoate) 
(483.42 g/mol)  C24H21NO10  

 

 

 

 

CDE-117

NHBocHO

OH

EDC·HCl, DMAP,
CH2Cl2
93%

#1)

#2)

BnCl, KI, K2CO3

(CH3)2CO reflux

NaOH,C2H5OH

reflux: 18 hr.

1,4-cyclohexadiene

H2

10% Pd/C

THF
40°C
64%

#5)

#3) TFA, CH2Cl2
10 min
96%

#4)
phenyl

chloroformate
Pyridine

20 min. RT
28%

HO

HO

O

O

ethyl 3,4-dihydroxybenzoate

HO

HO

O

O

O

O

O O

OH

OH

 

 

 

 

Step #1:  Was conducted without modification of the “General procedure for synthesis of 3,4-

dibenzyloxybenzoate” (Chapter 1, Experimental). 

 

Step #2:  Followed the same procedure as Step #2 for CDE-075 synthesis, except 3,4-

dibenzyloxybenzoate was used in place of 3,4,5-tribenzyloxybenzoate 

 

Step #3:  Followed the same procedure as Step #2 for CDE-077 synthesis. 
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Step #4:  2,3-Bis(3,4-bis(benzyloxy)benzoyloxy)propan-1-aminium 2,2,2-trifluoroacetate (1.00 g, 

1.19 mmol) was dissolved in pyridine (2.95 mL).  Phenyl chloroformate (0.18 mL, 1.43 mmol) 

was added.  The reaction was stirred for 20 minutes, at room temperature, under N2.  A TLC 

(65% hexanes/EtOAc) provided supporting evidence that the majority of the starting material 

had been consumed.  The residue was purified by column chromatography (65% 

hexanes/EtOAc); to obtain a white solid (275 mg, 28%).  1H NMR (CDCl3, 400 MHz) δ 7.65-

7.61 (m, 4H, ortho aromatic), 7.42-7.22 (m, 22H, aromatic + ortho-phenyl), 7.16 (t, J = 7.33 Hz, 

1H, para phenyl), 7.07-7.05 (d, J = 8.24 Hz, 2H, meta aromatic), 6.92-6.88 (q, J = 4.58 Hz, 2H, 

meta phenyl), 5.46-5.44 (m, 2H, -NH + O-CH), 5.19 (s, 2H, meta benzylic), 5.18 (s, 2H, meta 

benzylic), 5.11 (s, 4H, para benzylic), 4.61-4.49 (m, 2H, -O-CH2), 3.70-3.62 (m, 2H, -N-CH2); 
13C 

NMR (CDCl3, 100 MHz) δ 166.00, 165.85, 155.02, 153.50, 153.30, 151.12, 151.05, 148.51, 

148.48, 136.87, 136.56, 129.72, 129.65, 129.41, 128.92, 128.63, 128.16, 128.09, 127.61, 127.57, 

127.24, 125.54, 124.48, 124.35, 122.42, 122.37, 121.86, 121.68, 121.05, 115.72, 115.51, 113.32, 

71.26, 70.88, 63.25, 41.91, 29.84. 

 

Step #5:  3-(Phenoxycarbonylamino)propane-1,2-diyl bis(3,4-bis(benzyloxy)benzoate) (0.20 g, 

0.237 mmol) was dissolved in low-water THF (2.20 mL).  Pd/C 10% (0.01 g, 0.119 mmol) and 

1,4-cyclohexadiene (0.22 mL, 2.37 mmol) were added.  The reaction was stirred for 48 hours, 

under N2, at 40ºC. 

A TLC (95% CH2Cl2/MeOH) indicated the starting material had been consumed.  The reaction 

was syringed through a PTFE 0.2 µM syringe prepared with MeOH to remove the Pd/C 

catalyst. The solvent was removed in vacuo to obtain a solid (74.1 mg, 64%).  1H NMR (acetone-

d6, 400 MHz) δ 8.57 (bs, 1H, -NH), 7.40-7.54 (m, 4H, meta-phenyl + ortho H+ on proto), 7.31 (t, 
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J = 7.79 Hz, 2H, ortho phenyl), 7.11-7.14 (m, 1H, para phenyl), 7.04 (d, J = 8.24 Hz, 2H, other 

set of H+ ortho on proto), 6.85 (dd, J = 2.75, 8.24 Hz, 2H, meta H+ on proto), 5.45-5.54 (m, 1H, 

-O-CH-), 4.45-4.65 (m, 2H, -O-CH2-) and 3.60-3.83 (m, 2H, -N-CH2-); 
13C NMR (acetone-d6, 

100 MHz) δ 165.64, 165.51, 155.09, 151.63, 150.24, 150.23, 144.85, 129.67, 129.14, 124.98, 

123.03, 122.94, 122.81, 121.82, 121.72, 121.66, 121.18, 116.74, 116.51, 115.03, 114.96, 71.91, 

63.28, 41.51, 25.34. HRMS, ESI calcd. for C24H21NO10Na [M+Na]+  506.1063, found:506.1056. 
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CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

The main goal of the preceding research efforts has been to synthesize small-molecule 

inhibitors of PAI-1 that, when compared to previous examples, have improved potency and a 

decreased potency for PAI-1’s cofactor, ATIII.  The inhibition of PAI-1 is anticipated to 

increase our understanding of various human ailments for which high levels of PAI-1 have been 

associated, including diabetes, stroke, and atherosclerosis.  Research efforts focused on 

examining a change in inhibitor potency based on the linker’s properties, the number of gallates 

substituted, the gallate’s substitution pattern, and linker appendages.  A crystal structure was 

obtained of PAI-1 bound to a synthetic inhibitor (CDE-096), which allowed us to more fully 

develop our synthetic ideology.  The refinement of one of these synthesized moieties into a 

selective and highly active species has been achieved.    

Our primary lead compound (tannic acid) was identified by high-throughput screening 

conducted by our collaborators at the University of Michigan Medical School utilizing the 

MicroSource SPECTRUM compound library.44  With the aim of synthesizing inhibitors that 

adhere to Lipinski’s Rule of Five guidelines, we synthesized an inhibitor that was reduced from 

the lead compound’s size of approximately 1700 g/mol to a molecule of 366 g/mol containing 

two gallate attachments (CDE-008) without a severe reduction in the potency of the inhibitory.   

Chapter 1 focused on the effects that the properties of the linkers had on PAI-1 

inhibition and how PAI-1 inhibition is affected by the differing possible geometric isomers of 

the inhibitors.  From this work, it is observed that inhibitors containing ester linker groups were 

more effective at inhibiting PAI-1 than those containing amides.  This work also indicated that 

in most cases the cyclic linkers that allowed for a trans-positioning of the gallates led to greater 

inhibition than those with a cis-positioning and that a molecule containing a cyclic linker that 
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allowed for an increased number of conformations and consequently motion of the gallates such 

as the cyclohexanediol linker (in contrast to the benzenediol linker) was a stronger inhibitor of 

PAI-1.   

Chapter 2 examined the effects of altering the number of gallates and/or the central 

sugar on PAI-1 inhibition.  One conclusion regarding effective PAI-1 inhibition is that the 

identity of the central sugar is a relatively unimportant factor in terms of potency of the 

inhibitor.  Also it was noted that the hydroxy functional groups on the gallate, or other 

electronically similar groups, are necessary for PAI-1 inhibition and that the most potent 

inhibitor had three gallates (with ATIII inhibition) and the second most potent inhibitor had two 

gallates (with non-detectable levels of ATIII inhibition). 

Chapter 3 focused on the determination of the optimum number and arrangement of 

substituents on the aromatic ring.  This research again utilized Lipinski’s guidelines and 

attempted to bring our inhibitors into agreement with the guideline that the optimal number of 

hydrogen-bond donor capable species should be no more than five.  The results of this research 

showed that the number of hydroxy groups could be reduced to two per aromatic ring and that 

the most potent inhibition was found for the 3,4-dihydroxy isomer.  It was also concluded that 

more than one hydroxy group is necessary for any significant level of PAI-1 inhibition and that 

intramolecular hydrogen bonding may play a significant role in the reduction of the potency of 

inhibitors that possess an ortho hydroxy group. 

Chapter 4 highlights our success in obtaining a crystal structure of an active PAI-1 serpin 

bound to an inhibitor (CDE-096).  The information gathered from the crystal structure does 

support the earlier hypothesis that small-molecule inhibitors of PAI-1 bind in pocket sites on the 

serpin.86  This observation possibly explains the improved potency of the inhibitors that had a 

handle unit capable of interacting with a pocket on the serpin.  Points of contact include the 
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carbonyl oxygen interacting with an electropositive region on the serpin, the hydroxy oxygens on 

one of the gallates contacting with an electropositive region on the serpin, and hydrophobic 

interactions between the handle unit and an adjacent pocket. 

 The electropositive region on the serpin’s binding site indicates that handles composed 

of electroneutral and electronegative atoms could produce stronger binding to PAI-1 in this 

region.  This observation supports our findings of enhanced inhibitor potency of inhibitors 

whose handles were composed of aromatic rings or methylene handles of various lengths and 

arrangements (CDE-075, CDE-082, CDE-096, CDE-107, CDE-108, CDE-110, CDE-116, 

CDE-117).   

The electropositive region within the pocket could also cause electrostatic repulsion 

between the positive ammonium moiety in CDE-077 and the serpin and is a possible reason for 

this molecule’s lowered inhibitor potency.  Similarly, the shortened length of the dimethyl and 

ethyl handle in species (CDE-083, CDE-089) results in a decrease in inhibitor potency because 

the handle region may not be long enough to interact sufficiently with the pocket on the serpin. 

Chapter 4 also details the carbamate and sulfonimide/sulfonamide inhibitor series 

synthesized with the aim of determining the optimum handle length and composition.  The 

results of the sulfonimide inhibitor series allowed for us to hypothesize that a handle unit 

composed of 6.5 methylene units or sequentially one that is approximately 780-1000 pm in chain 

length would allow for the optimum interaction of the handle unit with the serpin’s pocket. The 

consistently improved inhibitor potencies of our carbamate derivatives indicated that a handle 

unit was an essential piece of our scaffold.     

Future possibilities for synthesizing more selective and highly active inhibitors of PAI-1 

can be hypothesized through the use of three methods:  software programs such as VAST, the 



 

 186

introduction of new linker groups, and the examination of the results of the crystal structure and 

new inhibitors that focus on abandoning the symmetry of the inhibitors. 

The use of software programs such as VAST was outlined in the introductory chapter of 

this work.  VAST was utilized to determine the 3-D architectural similarity between PAI-1 and 

the protein PEDF.  The high degree of similarity between these two proteins (PEDF has 349 

residues aligned with PAI-1’s 402) along with the observation that PEDF is inhibited by highly 

negatively charged species (heparin) that also functions to promote ATIII, led to the hypothesis 

that integrating more negatively charged species into our inhibitors could work to inhibit both 

PAI-1 and PEDF while simultaneously not affecting or promoting ATIII.  The benefit from this 

would result in the removal of the inhibitory effect that PEDF plays in new blood vessel 

formation while simultaneously inhibiting the inhibitor of fibrinolysis (PAI-1), thus allowing for 

a two-pronged approach when attempting to reduce/counter the cause of heart attack and 

stroke.  This also may lead to the reduction in competitive inhibition between PAI-1 and ATIII 

that has thus far been a consideration when designing PAI-1 inhibitors.     

Our current lack of success in designing more effective PAI-1 inhibitors than those 

containing ester-linkages, and the ester-linked inhibitors being unsuitable for bioactive 

pharmaceuticals (Chapter 1), should encourage us to look to the incorporation of a different 

functional group in place of the amide, sulfonamide/sulfonimide, or ester linking units.  One 

possibility that can be examined to understand why the sulfonamide/sulfonimide and amide 

linker groups yielded poorer PAI-1 inhibitory species than the ester-linkers, involves a brief 

review of the effects that these groups have on the electronic properties of the molecule along 

with the ease of rotation that these bonds possess.   

Stabilization of both the S-N (sulfonamide/sulfonimide) and C-N (amide) bond occurs 

through the nitrogen atom’s willingness to donate its lone pair of electrons to the C-N (amide) 
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or S-N (sulfonamide/sulfonimide) bond, thus giving it an increased π-bond character.  Also to a 

lesser degree the σ-withdrawal of electron density by the nitrogen from the adjacent polarized 

atom (the carbonyl carbon or the sulfur) results in a stabilization of this bond.97  These lead to a 

significant barrier to S-N (sulfonamide/sulfonimide)97 and C-N (amide) rotation.  However, in 

the case of the ester functional group, the O-C single bond shares the electron density more 

evenly and therefore has less π-bond character and therefore a lower barrier to rotation.92  As 

discussed in Chapter 4, higher activation energies of rotation for the amide and sulfonamide 

functional groups when compared with the esters may be preventing the inhibitor from 

achieving its most biologically active 3-D structure.   

Silicon’s drug development potential is beginning to be exploited by pharmaceutical 

companies and researchers.98, 99, 100, 101  Paradigm Therapeutics from Cambridge, Science Park in 

Cambridge, UK, and Amedis Pharmaceuticals are two pharmaceutical companies that are 

focusing on developing silicon-based pharmaceuticals that they believe have been underutilized 

in drug development.102  Robert West, a known leader in silicon-based drug research from the 

University of Wisconsin-Madison, recently synthesized a series of cox-2 inhibitor molecules with 

silicon in place of carbon and found enhanced effectiveness and lower toxicity.103  In 2002, 

Mutahi, a researcher from Temple University in Philadelphia, synthesized silanediol tripeptide 

mimics that effectively inhibited the metalloprotease angiotensin-converting enzyme (ACE) at a 

nanomolar level.104 

The lowered electronegativity of the silicon atom in comparison to the high 

electronegativity of nitrogen, oxygen, or sulfur atoms may allow for freer rotation around the C-

Si bond, allowing the inhibitor to achieve its most biologically active 3-D formation more readily 

(Figure 29-A, C, D).  The lowering of the electronegativity of the atom in place of the carbonyl 

carbon, may lead to increased electron density on the carbonyl oxygen species (Figure 29-B).   
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A different route of enhancement could shift to an attempt at increasing the distance 

between the linker and the carbonyl oxygen so that it is farther away from the main body of the 

inhibitor.  This might provide it with more flexibility in movement and less steric hindrance to 

interact with potential contact points on the serpin.  One method to achieve this could utilize 

attaching the carbonyl to a silicon atom in the linker (Figure 29-D). 

 

A.)       B.)   

 

C)     D)   

 

Figure 29:  Possible Silicon-Based Inhibitors. 
A.) Silyl Ketone species.105, 106  B.) Silanone species.107  C.) Silyl Ketone species.104   
D.)  Silenolate species.108 
 

For years the silanone species proved difficult to isolate due to its high reactivity as a 

consequence of the polarized Siδ+=O δ- bond which tended to result in a dimerized cyclosiloxane 

(R2Si=O)2 moiety.109  In 2001, theoretical work conducted by researchers at Tokyo Metropolitan 

University determined that the stability of the silanone species can be achieved via the 

attachment of bulkier groups.110  Since then, researchers have been able to isolate several 

varieties of silanones, including silanone derivatives in which the oxygen is replaced with S, Se, 

and Te atoms.111  The positive implications that this might have on the potency of our inhibitors 

can be better understood by considering the crystal structure. The silicon substitution might 

improve the strength of the contact point between the carbonyl’s oxygen and the electropositive 
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region (observed in the crystal structure) by increasing the electron density on the oxygen atom 

as a result of its lowered electronegativity as compared to the oxygen, nitrogen, or sulfur species.  

The lowering of the rotational barrier by this substitution also might allow the inhibitor to adopt 

a more favorable bioactive form that, from the crystal structure, is now hypothesized to be one 

that would allow the handle to delve into the pocket on the serpin.  However, silicon’s longer 

bonds and larger size in comparison to the first row elements will impact the shape of the 

molecule, and this will have an unknown impact on inhibitor potency. 

Last, the crystal structure allows for a new direction in our future synthetic series by 

allowing for the examination of the main contact points found between the inhibitor and the 

serpin.  These main contact points include the carbonyl oxygen interacting with an 

electropositive region on the serpin, the hydroxy oxygens on one of the gallates contacting an 

electropositive region on the serpin, and the handle unit forming hydrophobic contacts within a 

corresponding pocket.  An electropositive region proximal to the binding site indicates that 

handles composed of electroneutral and electronegative atoms could produce stronger binding 

to PAI-1 in this region.   

Because only the hydroxy oxygens on one of the gallates are associated with strong 

contacts, improved binding might result from substituting the other gallate’s hydroxy 

substituents for other groups.  A hydrophobic region exists directly below the gallate not 

involved in strong contacts with the serpin.  Therefore, a possible alteration to this gallate could 

involve either electroneutral substituents on the gallate (in place of the hydroxys) or entire 

replacement by an electroneutral substituent and hence a new synthetic path for our inhibitors 

could be one that focuses on exploring non-symmetric inhibitors.   

The main goal of this work was to synthesize potent and selective PAI-1 inhibitors.  This 

goal was accomplished and is illustrated by the high potency against PAI-1 and non-detectable 
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inhibition of ATIII shown by a number of the carbamate inhibitors, including CDE-075 (tert-

butyl handle, IC50 = 0.062 µM), CDE-096 (3-(trifluoromethyl)phenyl handle, IC50 = 0.059 µM), 

CDE-107 (octyl handle, IC50 = 0.01 µM), CDE-110 (2-chlorophenyl handle, IC50 = 0.027 µM), 

CDE-116 (neopentyl handle, IC50 = 0.029 µM), and CDE-117 (phenyl handle, IC50 = 0.022 µM).  

The selectivity of the inhibitors was further optimized by CDE-096 (3-(trifluoromethyl)phenyl 

handle), which inhibited PAI-1 at nanomolar IC50 level even in the presence of vitronectin, while 

showing non-detectable levels of ATIII inhibition.  Obtaining a crystal structure of an active 

PAI-1 attached to an inhibitor allows us to more effectively plan future inhibitor scaffolds.  Our 

research efforts have allowed us to establish several new experimentally supported hypotheses 

regarding the optimum scaffold for a PAI-1 inhibitor.   
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