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ABSTRACT 

 

Stomata are leaf structures critical for plant survival because they modulate the rate of 

transpiration.  This study will examine a possible mode for regulating stomatal density by 

over-expressing NADP-dependent malic enzyme (NADP-ME), which is thought to 

deplete the counter-anion pool in Arabidopsis thaliana guard cells.  It was hypothesized 

that over-expressing NADP-ME in Arabidopsis will elevate stomatal density.  Scanning 

electron microscopy was employed to determine if any differences exist in numbers of 

stomatal complexes among transgenic lines and wild-type Arabidopsis.  The results 

indicated a significant increase in stomatal numbers among some transgenic plant lines 

relative to the wild-type.  Second, a series of molecular tests were utilized to provide 

NADP-ME activity and transgene expression evidence.  These included western blots, 

tissue assay blots, enzyme activity assays, and RT-PCR reactions.  Altering NADP-ME 

expression levels may present a putative approach for influencing stomatal development. 
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INTRODUCTION 

     With each passing year, global energy and food demands increase at phenomenal 

rates.  Estimates indicate that at current fossil fuel production and consumption rates, 

current oil, natural gas, and coal reserves will last for approximately 41, 64, and 155 

years, respectively (British Petroleum, 2006).  To reduce dependence on fossil fuels, the 

United States and the European Union are directing tremendous resources towards 

producing energy from plant-derived sources such as corn grains, sugar cane, and beets 

(Himmel et al., 2007).          

     Plants supply about 90% of the global human caloric intake (Chawla, 2002) and the 

growing global population will continue to strain agricultural resources.  Both the 

growing energy and food needs are greatly fueling the development of improved 

agricultural techniques and methods.  A plethora of genetically engineered plants, i.e. 

transgenic plants, has been developed with resistance to pathogens and viral infections, 

and to even produce fruit with a longer shelf life (Chawla, 2002).  Yet the greatest 

advancements in plant genetic engineering are still on the horizon.   

      One limiting reagent for greatly increasing agricultural yields is water.  In fact, nearly 

70% of globally available water is used by agriculture (Chaves and Oliveria, 2004), 

making the management of fresh water resources a major challenge.  Previous practices 

to improve agricultural production included improved irrigation techniques and methods, 

but these alone were insufficient.  Researchers are now genetically engineering plants 

from a physiological and molecular basis (Chaves and Oliveria, 2004) in order to develop 

plants with improved drought tolerance, drought avoidance, or water-use efficiency.  

Recently, a novel approach to reducing stomatal conductance and therefore improving 
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water use efficiency has been proposed by manipulating guard cell anion metabolism 

(Laporte et al., 2002).  This approach reduces stomatal aperture and conductance while 

maintaining stomatal responses to environmental stimuli.  When applied, plants may gain 

improved water use efficiency under irrigation and may increase agricultural yields for 

both food and energy production. 

Stomata and Transpiration 

     To limit water loss, land plants developed a waxy layer, called the cuticle, 

impermeable to gas exchange on aerial tissue (Roelfsema and Hedrich, 2005).  However, 

a mechanism to allow for gas exchange between plants and the atmosphere was required, 

which drove the evolution of stomata.  Stomata are present on aerial tissue, predominant 

on leaves, but may also be found on petioles, the stem, and primary roots 

(Christodoulakis et al., 2002) in certain plant species.  Epidermal tissue and a pair of 

guard cells define the stomatal pore’s aperture (Boudolf et al., 2004).   

     Stomatal pores, acting as a “watergate” (Roelfsema and Hedrich, 2005), open to make 

carbon dioxide available for photosynthesis, while forfeiting water.  The plant stoma 

facilitates nearly 95% of a plant’s water loss to the atmosphere by transpiration 

(Schroeder et al., 2001).  As water osmotically enters and increases guard cell volume, 

they swell and bow apart, enlarging the stomatal aperture (Roelfsema and Hendrich, 

2005).  Stomata are critical for plant survival for they orchestrate the exchange of 

intracellular gases required for photosynthesis with the atmosphere, while limiting the 

cost of water loss via transpiration (Blatt, 2000).  
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Stomatal Development   

     A fundamental understanding of stomatal development is key to comprehending the 

regulation of stomatal behavior via plant biotechnology.  The regulation of stomatal 

development may usher in new approaches to supplement and succeed today’s plant 

genetic engineering techniques for agricultural and energy production applications.  

Stomatal development is quite complex because it intertwines both environmental and 

cellular communication signals.  Understanding of stomatal development is still not 

complete, but major advances have been made in deciphering this phenomenon in 

Arabidopsis (Arabidopsis thaliana).  Arabidopsis consists of a simple epidermis made of 

three major cell types: stomatal guard cells, pavement cells, and trichomes (Bergmann, 

2004). 

Stomatal Development Pathway 

      Stomatal development is much more complex in dicots, such as Arabidopsis, than in 

monocots.  In dicots, stomatal development and leaf extension occur simultaneously, 

resulting in a leaf composed of stomata at different developmental stages (Croxdale, 

2000).  

      Nadeau and Sack (2003) report that stomatal positioning requires at least one 

pavement cell in between two stomatal complexes, i.e. a one-cell-spacing rule.  This strict 

distribution optimizes the efficiency of gaseous diffusion shells, evapotranspiration, ion 

exchange required for vacuolar osmolarity, and the ratio between carbon dioxide uptake 

and photosynthetic activity. 

     Several mechanisms exist to maintain normal stomatal development.  Bergmann 

describes three critical developmental features for stomatal complexes.  Stomatal 
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development utilizes symmetrical and asymmetrical divisions of stomatal pre-cursor 

cells.  During development, neighboring epidermal cells release signals to provide a local 

pattern preventing two adjacent stomatal complexes from developing.  Finally, 

environmental cues may influence overall stomatal numbers (Bergmann, 2004).     

     Stomatal development is completely post-embryonic, beginning within a day after 

seed germination (Bergmann, 2004).  During stomatal complex formation, the number 

and orientation of cell divisions are both critical for correct stomatal patterning (von 

Groll et al., 2002).  Nadeau and Sack indicate that during Arabidopsis stomatal 

development, there is an initial stem cell commitment step to the stomatal pathway.  

Meristemoid cells can undergo multiple rounds of asymmetrical cell division because of 

their stem cell-like activity.  Initiation begins with the determination of a meristemoid 

mother cell, which then asymmetrically divides to produce a smaller meristemoid and a 

larger neighbor cell (Nadeau and Sack, 2003; Fig. 1).  A cell adjacent to a stoma or a 

precursor cell is termed a neighbor cell.  Then the meristemoid cell asymmetrically 

divides (Paliwal, 1967) to regenerate a meristemoid cell and an additional neighbor cell, 

thereby following the one-cell-spacing rule.  Nadeau and Sack specify that then the 

neighbor cell asymmetrically divides, serving as a meristemoid mother cell, to produce a 

smaller cell that is termed a satellite meristemoid cell (to emphasize this class of cell 

division producing the one-cell spacing requirement) and another neighbor cell.  Then 

each meristemoid develops into a guard mother cell that symmetrically divides to form a 

stoma.  A second type of terminally differentiated epidermal cell, termed a pavement cell, 

also develops via asymmetrical divisions (Nadeau and Sack, 2003; Fig. 1).  The presence 
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Figure 1.  A proposed pathway for stomatal development in Arabidopsis.  Initiation takes place with 

the selection of a meristemoid mother cell (MMC, yellow), which asymmetrically divides to generate a 

larger neighbor cell or precursor cell (NC) and a smaller meristemoid cell (M, red).  Asymmetrical 

meristemoid cell division regenerates a meristemoid and produces another NC.  This new NC functions 

as a MMC.  Then this MMC asymmetrically divides to produce a NC and the smaller cell is called a 

satellite meristemoid (SM, red) to emphasize this class of cell division producing the one-cell spacing 

requirement.  Then each M becomes a guard mother cell (GMC), which divides symmetrically to 

produce a stoma (S).  Pavement cells (PC), another class of terminally differentiated epidermal cells, 

form via asymmetrical divisions.  From Nadeau and Sack, 2003. 

of pavement cells in between stomatal complexes is critical for ion exchange between 

guard cells and pavement cells (Wang et al., 2006). 

 

 

     A fundamental feature of stomatal patterning is the maintenance of the one-cell-

spacing rule.  Nadeau and Sack specify that the orientation of the asymmetric divisions in 

neighbor cells is responsible for determining the stomatal patterning.  The neighbor cell’s 

plane is orientated in such a way to prevent contact between the preexisting stoma or 

precursor and new satellite meristemoids (Nadeau and Sack, 2003). 

Gene Regulation of Stomatal Development 

     Stomatal development is highly regulated through a series of molecular switches, 

receptors, and proteases (Figure 2).  Analyzing mutations in key stomatal developmental 

genes has greatly advanced the understanding of this phenomenon.  Stomatal patterning 

genes, encoding FOUR LIPS (FLP) and TOO MANY MOUTHS (TMM), were first 

discovered, and mutations in these genes caused stomatal clustering (Nadeau and Sack, 
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2002).  FLP encodes a R2R3 MYB-type transcription factor (Ohashi-Ito and Bergmann, 

2006), which is required for meristemoid to guard cell progression (Lai et al., 2005) and 

acts as a negative regulator later in stomatal development (Nadeau and Sack, 2002, Fig. 

2). 

  

      

     Nadeau and Sack indicate that TMM has been found to control the plane and number 

of NC divisions.  The tmm mutant produces extra meristemoids, which are placed 

adjacent to preexisting stomata or precursors, thereby generating clustered stomata.  

TMM is expressed in meristemoids, guard mother cells, and their recent sister cells.  

Based on subcellular localization of green fluorescent protein, TMM is located in the cell 

membrane (Nadeau and Sack, 2003), thereby functioning as a putative cell surface 

receptor (Chaerle et al., 2005).  A leucine-rich repeat receptor-like protein (LRR-RLP) is 

encoded by TMM, and like other LRR-RLPs, TMM has no cytoplasmic kinase, thereby 

relying on other unknown factors to contribute to the intracellular signaling pathway 

(Nadeau and Sack, 2003; Fig. 2). 

Figure 2.  Proposed gene regulation pathway of stomatal development.  SDD1 (STOMATAL 

DENSITY AND DISTRIBUTION1), TMM (TOO MANY MOUTHS), FLP (FOUR LIPS), YDA 

(Mitogen-Activated Protein Kinase Kinase Kinase), and FAMA gene products control stomatal 

development.  See text for explanation.  Abbreviations: meristemoid mother cell (MMC), meristemoid 

(m), subsidiary sell (sc), guard mother cell (gmc), guard cell (gc).  From Chaerle et al., 2005. 
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     It has been suggested that the SDD1 (STOMATAL DENSITY AND 

DISTRIBUTION1) gene product may interact with TMM (Berger and Altmann, 2000).  

SDD1 encodes a subtilisin-like serine protease and may be involved in stomatal 

developmental signal processing (Coupe et al., 2006).  Nadeau and Sack report that 

SDD1 is similar to proteases found in animal cells and thereby functions in signaling by 

modifying or cleaving a developmental ligand.  Experiments indicate that SDD1 is 

secreted because GFP-SDD1 fusion proteins localize near the cell membrane, even 

though it lacks an appropriate transmembrane region or motif.  The localization of SDD1 

may be due to association with the cell membrane by a protein complex or by a 

membrane-bound substrate.  SDD1 is expressed in meristemoids and guard mother cells 

(Nadeau and Sack, 2003). 

     Phenotypic analysis of the sdd1 and tmm mutants indicate a probable role for each 

gene.  Fig. 3 indicates that both the sdd1 and tmm mutants have more stomata relative to 

the wild-type.  However, sdd1 adheres to the one-cell-spacing rule more closely, as it 

contains far fewer stomatal complex clusters than tmm (Fig. 3C and 3B, respectively).  

  

Figure 3.  Phenotype analysis illustrating the effects of stomatal development gene mutations.  A,  

Wild-type Arabidopsis.  B,  too many mouths (tmm) mutant.  C, stomatal density and distribution1 

(sdd1) mutant.  From Nadeau and Sack, 2003. 
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     As a result, both genes are negative regulators of neighbor cell division, prevent 

asymmetric division in cells not following the one-cell spacing rule, and encourage 

meristemoid division by delaying transition to guard mother cells (Fig. 2).  TMM is 

thought to be more important in stomatal patterning and SDD1 more important for 

limiting density (Nadeau and Sack, 2003).  It is hypothesized that stomatal precursor cells 

may transmit an SDD1 signal, that might transform or interact with an unknown ligand, 

and then the unknown ligand may bind to a receptor complex composed of TMM.  The 

TMM receptor complex may then determine the polarity that directs the plane of 

neighbor cell division or may act to limit the number of neighbor cell divisions, as 

indicated in Fig. 4 (Nadeau and Sack, 2003). 

 

     

 

Figure 4.  Proposed pathway for SDD1 and TMM signaling pathway.  Precursor stomatal cell (blue) 

may secrete an SDD1 gene product (blue circles) that may alter or interact with an unknown ligand 

(black triangles).  The unknown ligand and the SDD1 gene product then bind to the TMM receptor 

complex (green).  The TMM receptor complex may then determine the polarity that directs the plane of 

neighbor cell division or may act to limit the number of neighbor cell divisions.  From Nadeau and 

Sack, 2003. 
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     YODA (YDA), upstream of SDD1, TMM, and FLP, is designated as a cell-fate 

switch, acting as a key regulator of stomatal development and patterning (Chaerle et al., 

2005, Fig. 2).  YDA is mitogen-activated protein kinase kinase kinase (MAPKKK), 

which integrates environmental responses with stomatal development in order to 

determine the optimal differentiation proportion of stomata versus pavement cells in leaf 

epidermis (Wang et al., 2007).    

     At the critical transitory stage from guard mother cell proliferation to stoma, FAMA 

controls the final proliferation to differentiation switch during stomatal development (Fig. 

2).  Ohashi-Ito and Bergmann report that FAMA encodes a putative basic helix-loop-

helix transcription factor required for arresting cell division and promoting guard cell 

differentiation.  It was shown that when Arabidopsis, with loss-of-function mutations in 

the negative regulators SDD1, TMM, and YODA, were combined with a FAMA 

mutation, guard cells were not produced.  Therefore, FAMA acts as the master regulator 

of stomatal differentiation (Ohashi-Ito and Bergmann, 2006). 

Environmental Signals Regulating Stomatal Development  

     To complement stomatal development understanding, determining how environmental 

factors influence stomatal development is necessary to enhance plant genetic engineering 

techniques.  It has been established that atmospheric CO2 partial pressure and light 

intensity interdependently act as two environmental signals to regulate stomatal numbers 

and subsequently stomatal development (Coupe et al. 2006).  In Arabidopsis, elevated 

CO2 levels decreased stomatal density (Teng et al., 2006).  Previous research 

demonstrated that mature leaves measure CO2 levels by an unknown mechanism and 

broadcast a stomatal developmental signal directing development in young leaves (Lake 
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et al., 2001).  Hence, mature leaves detect environmental signals and transfer this 

information to younger leaves via an unknown signal(s), thereby aligning stomatal 

development with environmental conditions  (Coupe et al. 2006).  By using mature leaves 

to detect environmental signals, versus younger, unfurled leaves developing in a less 

representative environment, a plant optimally measures environmental conditions 

(Larcher, 1995) and fine-tunes stomatal density.   

Biological and Environmental Signals Regulating Stomatal Movements 

     A central goal for increased plant water use efficiency is to decrease stomatal 

conductance by reducing stomatal aperture, and new insights may be gained by studying 

the influence of environmental signals on stomatal behavior.  Guard cells, which form the 

stomatal pore, receive environmental signals, such as light intensity, water deficit, and 

CO2 concentrations, and integrate them with endogenous signals in order to optimize 

stomatal movements (Schroeder et al., 2001).  Light signals for stomatal opening in order 

to increase CO2 uptake for photosynthesis (Roelfsema and Hedrich, 2005).  Stomata 

respond to both red and blue light with great wavelength specificity, making blue light 

more effective than red light in most species (Willmer and Fricker, 1996).  An 

electrogenic guard cell plasma membrane proton pump is activated and initiates stomatal 

opening upon signaling from the blue light photoreceptor. 

     However, light signaling for stomatal opening is not independent but is integrated with 

other inputs, such as water deficit, to act in an antagonistic manner on stomatal aperture 

(Roelfsema and Hedrich, 2005).  During drought conditions, roots release abscisic acid 

(ABA), a plant hormone, which travels via the xylem stream to act on guard cells 

(Schroeder et al., 2001).  This water deficit signal induces stomatal closure or prevents 
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stomatal opening in order to limit water lost via transpiration (Roelfsema and Hedrich, 

2005).    

     Carbon dioxide concentration levels are another environmental signal that acts in 

concert with the others to modulate stomatal movements.  Elevated CO2 levels induce 

CO2-senstive stomata to close, whereas low levels open them (Hedrich et al., 2001).  

Guard cells are believed to sense CO2 levels because they optimize water use efficiency 

by gauging mesophyll CO2 requirements while monitoring water status (Vavasseur and 

Raghavendra, 2005).  Studies of guard cell protoplasts indicated that CO2 sensing is 

inherent to guard cells (Fitzsimons and Weyers, 1986), and it was later observed that 

guard cells respond to intracellular CO2 concentration by monitoring the mesophyll 

assimilation rate (Mott, 1988).  When plants were not under a water deficit, it was 

determined that doubling atmospheric CO2 levels above ambient resulted in a 40% 

reduction in stomatal conductance (Morison, 1987).   

     Hedrich et al. (2001) report that light is not needed for the observed stomatal 

responses to CO2 levels.  This response is maintained in the dark because plants store 

fixed CO2 as malate in vacuoles and when released, it enters leaf apoplasts where it is 

metabolized by malic enzyme to release CO2 and pyruvate.  It was observed, via patch-

clamp studies, that as CO2 levels increased, so did apoplastic malate levels.  This led to 

the development of the somewhat controversial “malate hypothesis,” which proposed that 

heightened CO2 levels signal the release of malate from guard and mesophyll cells.  

Malate then triggers Cl
-
 and malate-permeable anion channels, causing anion release.  

Guard cell cation release follows, eliciting a loss in turgor, and subsequential stomatal 

closure. 
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Guard Cell Control of Stomatal Aperture 

     Guard cell control of stomatal aperture depends upon the concentration of osmotically 

active ions, which determine turgor pressure and volume. During stomatal opening, guard 

cells need to increase their plasma membrane surface by almost 40%, most likely 

accomplished by vesicle fusion with the plasma membrane (Roelfsema and Hedrich, 

2005).  The guard cell volume is determined by the transport of ions into the cell’s 

vacuole with water osmotically following (Heldt, 2005).   

     Guard cells have highly specialized ion transporters because, unlike in different plant 

tissue, ion transport occurs in both directions to allow for stomatal opening and closing 

(Roelfsema and Hedrich, 2005).  To facilitate stomatal opening, blue light activates P-

type ATPase proton pumps, which extrude protons from the cytoplasm of the cell in 

order to generate a proton motive force responsible for driving solute flow (Heldt, 2005).  

Once the membrane is hyperpolarized, voltage-dependent, inward-rectifying K
+
 channels 

open, to allow positive K
+
 ions to passively enter (Roelfsema and Hedrich, 2005).  

Stomatal movement depends heavily upon on the uptake of K
+
 (Fisher, 1968), making it 

the dominant cation accumulated in guard cells during stomatal opening (Schroeder et al., 

1994).  In addition, a proton motive force, coupled to an H
+
-coupled symport system, is 

used to drive the influx of Cl
-
 (MacRobbie, 1987), in order to counter the influx of K

+
, 

and glucose (Heldt, 2005).  Malate 
2-

, another anion of significant importance (Roelfsema 

and Hedrich, 2005) accumulates in high concentrations to counter the influx of K
+
  

(Outlaw and Lowry, 1977; Raschke and Schnabl, 1978).   

     During stomatal opening, there is both a malate influx in guard cells from the apoplast 

(Ritte and Raschke, 2003) and production of malate in large amounts (Raschke et al., 
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1988) by glycolytic degradation of starch stored in guard cell chloroplasts.  Specifically, 

starch is degraded to phosphoenolpyruvate, which is then converted to oxaloacetate by 

phosphoenolpyruvate carboxylase in the cytoplasm.  Then oxaloacetate is reduced to 

malate in the chloroplast and finally accumulates in the vacuoles during stomatal 

opening, as indicated in Fig. 5 (Heldt, 2005). 

     Next, ions are sequestered in guard cell vacuoles, with water osmotically following.  

Protons from the guard cell vacuole are transported into the cell’s vacuole via an H
+
-V-

ATPase (Heldt, 2005) in order to drive the influx of K
+
 into the vacuole by an H

+
-coupled 

antiport system (Roelfsema and Hedrich, 2005).  A vacuole accumulation of potassium 

ions induces a potential difference across the vacuolar membrane (Heldt, 2005), driving 

the influx of organic anions from the cytosol, predominantly malate, and chloride into the 

vacuole (Gotow et al., 1985; Pei et al., 1996).  As the concentration of ions inside the 

vacuole increases, water osmotically enters, causing guard cells to bow apart and enlarge 

as turgor pressure and volume increase, Fig. 5 (Mott et al., 2000). 

 

Figure 5.  Stomatal biochemistry during stomatal opening.  The accumulation of ions occurs in the guard 

cell vacuole, causing water to osmotically enter the vacuole, and subsequent stomatal opening.  Malate, the 

principal counter-anion, is synthesized in the chloroplast.  See text for more details.  After Heldt, 2005. 
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     Stomatal closure can occur more quickly than stomatal opening because it does not 

rely on the active transport of ions but on passive diffusion to drive solute transport down 

its concentration gradient  (Roelfsema and Hedrich, 2005).  Stomatal closure initiates 

when outward rectifying potassium channels transport K
+
 ions out of the vacuole into 

guard cells (MacRobbie, 1997).   

      There are three main types of K
+
- channels found in the plant plasma membrane: 

outward- rectifying channels, inward- rectifying channels, and the less common, voltage-

dependent channels.  Outward- and inward-rectifying channels have the physiological 

roles to extrude and uptake K
+ 

ions during stomatal closure and opening, respectively 

(Roelfsema and Hedrich, 2005).  Genes of the Shaker family encode for inward-

rectifying plant plasma membrane potassium channels, and GORK specifically encodes 

the outward-rectifying channels (Ache et al., 2000).  Any disruption of GORK caused 

complete loss of the outward-rectifying K
+ 

channels (Hosy et al., 2003).  In contrast to 

outward-rectifying channels, inward-rectifying K
+ 

channels are encoded by the properties 

of at least 5 genes (Szyyroki et al., 2001), including KAT1 (Anderson et al., 1992), 

AKT1 (Sentenac et al., 1992), KAT2 (Pilot et al., 2001), AtKC1 (Reintanz et al., 2002), 

and AKT 2/3 (Marten et al., 1999; Lacombe et al., 2000).  While all genes of the Shaker 

family encode for inward-rectifying plant plasma membrane proteins, KAT1 and KST1 

are extensively expressed in guard cells (Muller-Rober et al., 1995; Nakamura et al., 

1995) and KAT2 is also expressed in the guard cell but at lower levels than KAT1 and 

KST1 (Pilot et al., 2001; Szyoki et al., 2001). 

      With outward K
+
-rectifying channels open, the vacuolar membrane becomes 

depolarized, driving the efflux of anions through anion-permeable channels (Roelfsema 
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and Hedrich, 2005).  These anion channels are permeable to malate (Hedrich, et al., 1994; 

Schmidt and Schroeder, 1994) and may extrude malate from guard cells (Van Krik and 

Rashke, 1978), and/or a NADP-malic enzyme (ME) isoform may convert malate to 

pyruvate in guard cells and/or epidermal cells (Outlaw et al., 1981).  With the loss of 

solutes, water osmotically exits the vacuole, causing a loss in turgor pressure and 

subsequent stomatal closure. 

     Several lines of evidence putatively support the hypothesis that during stomatal 

closure, an isoform of ME, localized in guard cells and peripheral tissue, may degrade 

malate (Outlaw et al., 1981).  Wheeler et al. (2005) determined that in Arabidopsis, 

different NADP-ME isoforms have activity that is more specific in leaves relative to 

other plant parts, suggesting a role in stomatal movements.  NADP-ME activity levels 

were found to be higher in Vicia leaflet guard and epidermal cells versus photosynthetic 

parenchyma (Outlaw et al., 1981), again suggesting a role in stomatal movements. 

NADP-Dependent Malic Enzyme 

     Malic enzymes (ME) are extensively found throughout nature, being employed by 

fungi, bacteria, plants, and animals.  There are numerous ME isoforms that are found in 

eukaryotic cytosol, mitochondria, and/or chloroplasts.  MEs are widely utilized in many 

metabolic pathways, depending on the enzymes’ cellular localization because their 

products support numerous biological pathways (Lance and Rustin, 1984).  MEs carry 

out an oxidative decarboxylation reaction, in the presence of a bivalent metal ion, of L-

malate to produce CO2, pyruvate, and NADPH (Chang and Tong, 2003).  

Malate + NADP
+
 ! Pyruvate + NADPH + CO2  [1] 
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MEs are classified according to the necessary cofactors they require, either NAD or 

NADP (Detarsio et al., 2003).  In plants, NADP-dependent MEs (NADP-ME) are located 

in plastids and the cytosol (Edwards and Andreo, 1992; Drincovich et al., 2001) and 

NAD-dependent ME’s main role in mitochondria is to produce pyruvate for utilization in 

the tricarboxylic acid cycle (Artus and Edwards, 1985). 

     The various NADP-ME isoforms are sublocalized in multiple locations throughout 

plants.  They have been found to function in both photosynthetic and non-photosynthetic 

tissue.  Photosynthetic isoforms are localized in some C4 plant bundle sheath chloroplasts 

and in the cytosol of some CAM plants, and non-photosynthetic isoforms are located in 

C3, C4, and CAM plant tissue (Wheeler et al., 2005). 

     Even though NADP-ME has been determined to function in C4 and CAM 

photosynthesis, its biological role is still not fully understood.  Non-photosynthetic 

plastidic isoforms are thought to be apart of the plant defense response (Casati et al., 

1999) and lipid biosynthesis (Smith et al., 1992).  Cytosolic isoforms have been 

determined to contribute to the plant defense response (Schaaf et al., 1995), to lignin 

biosynthesis (Schaaf et al., 1995), and to regulate the cytosolic pH by equilibrating 

malate synthesis and degradation (Martinoia and Rentsch, 1994).  

     In addition to the proposed metabolic roles of NADP-ME in C3 and C4 plants, it has 

been suggested to also influence the biochemistry of stomatal movements (Outlaw et al., 

1981; Laporte et al., 2002).  Immunolocalization evidence indicates that a cytosolic 

NADP-ME isoform is present in wheat (a C3 plant) guard cells (Maurino et al., 1997), 

suggesting that this guard cell cytosolic ME converts malate to pyruvate during stomatal 

closure (Outlaw et al., 1981). 
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     It has been shown that over-expressing NADP-ME in tobacco via a mannopine 

synthase promoter, which is present in guard cells and other cells, caused decreased 

stomatal conductance relative to wild-type tobacco.  It is hypothesized that malate 

metabolism, caused by over-expressing NADP-ME, depletes the counter-anion pool and 

alters the chemiosmotic equilibrium in the vacuole, inducing subsequent stomatal closure 

(Laporte et al., 2002).  Over-expressing NADP-ME in transgenic plants suggested an 

attractive mechanism for improved water-use-efficiency because the plants were still 

susceptible to environmental stimuli, experienced less stomatal conductance during 

simulated hot and dry conditions, and used water more efficiently without compromising 

plant growth when compared to wild-type plants (Laporte et al., 2002). 

  Present Study 

     This present research will expand malic enzyme’s important application for 

genetically engineering plants with improved water use efficiency, by modulating 

stomatal movements, to also include a novel role in influencing stomatal development.  

This study will utilize previously generated transgenic Arabidopsis plants with elevated 

guard cell specific NADP-ME or elevated whole plant NADP-ME expression.  Studying 

guard cell biased metabolism of malate is critical to determine malate’s role in stomatal 

movements.  Arabidopsis is a model organism for plant biology because its genome has 

been completely sequenced, it is quickly grown, and it is easily transformed.  

     This research will continue to analyze transgenic Arabidopsis plants with targeted 

NADP-ME expression in guard cells.  The C4 NADP-ME from maize leaves, which has 

been extensively studied, was used (Drincovich et al., 2001).  Specifically, a KAT2 

promoter was cloned and used to direct maize NADP-ME expression in Arabidopsis 



  18 

guard cells.  In addition, it was determined that the enzyme remained active at the guard 

cell pH 7.35, relative to its native chloroplast pH 8.0 (Thakur, 2006).   

     The KAT2 promoter has been previously well-characterized and found to drive 

expression in guard cells of all plant aerial organs.  Like KAT1, KAT2 also encodes 

inward-rectifying K
+ 

channels but at lower levels, making it a weaker promoter.  

However, KAT2 was chosen over KAT1 because in mature leaves, KAT2 activity was 

primarily detected in guard cells, minor veins, and never in roots (Pilot et al., 2001).  

     Scanning electron microscopy (SEM) was employed to determine if over-expressing 

NADP-ME in Arabidopsis guard cells had any affect on either stomatal morphology or 

density.  It has been shown that elevated NADP-ME activity may adversely affect the 

development of bundle sheath chloroplasts in C4 plants and increased maize NADP-ME 

expression levels in transgenic rice also indicated an abnormal structure (Takeuchi et al., 

2000). 

     A preliminary investigation was conducted on KAT2 transgenic Arabidopsis to assess 

both morphology and stomatal density relative to the wild-type.  The results indicated no 

morphological differences between wild-type and transgenic Arabidopsis, but stomatal 

density was greatly elevated in the KAT2 transgenic lines relative to wild-type 

Arabidopsis.  These data suggested that a more thorough stomatal density investigation of 

the KAT2 transgenic plants was required. 

     The stomatal count investigation expanded to include leaves at different 

developmental stages and the analysis of a second category of transgenic Arabidopsis 

plants.  This second category of transgenic plants analyzed utilized a 35S promoter to 

direct maize NADP-ME expression constitutively in Arabidopsis.  The 35S promoter is 
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derived from a common plant virus, cauliflower mosaic virus (CaMV), and is the most 

often utilized promoter to induce transgene expression in plants (Sunilkumar, 2002).  The 

35S promoter is commonly believed to be a constitutive promoter (Odell et al., 1985); 

however, some studies indicate that it may not express in all plant cell and tissue types 

(Benfey and Chua, 1989; Yang and Christou, 1990; Terada and Shimamoto, 1990; 

Williamson et al., 1989).  In addition, its expression profile is not fully characterized in 

all possible cell and tissue type expressions, and expression characteristics during early 

developmental stages are still lacking (Sunilkumar, 2002).  A recent study on the 

expression profile of the 35S promoter in cotton indicated that its activities were 

regulated during embryogenesis and beyond that, it was expressed at various levels in 

most cell and tissue types (Sunilkumar, 2002). 

     In addition to the SEM investigation, providing enzyme activity and transgene 

expression evidence was another objective of this study.  A spectrophotometric assay was 

utilized to detect the production of NADPH by indicating an increase in absorbance at 

340 nm (Laporte et al., 2002) in order to confirm that NADP-ME is active in the 

transgenic Arabidopsis.  In addition, a tissue blot assay was utilized to detect the presence 

and activity of NADP-ME in crude protein extracts (Wheeler et al., 2005).  Using anti-his 

antibodies, western blots were preformed, to detect the histidine-tagged maize ME in 

crude protein extracts.    

 Hypothesis 

     This study will continue to analyze and elucidate the effects of over-expressing 

NADP-ME in transgenic Arabidopsis with either a KAT2 promoter directing expression 

in guard cells or a 35S promoter driving constitutive expression.  This study was built on 
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previous research indicating altered stomatal function in transgenic tobacco with an 

engineered constitutive expression of maize NADP-ME (Laporte et al., 2002).  Observing 

the effects of different NADP-ME expression levels and patterns allow for a better 

determination of the impact of NADP-ME on stomatal behavior.  Based on preliminary 

SEM data, it was hypothesized that elevated, KAT2-directed expression of maize NADP-

ME activity will not affect stomatal morphology but may elevate stomatal density by 

altering stomatal biochemistry.  Neither malate nor NADP-ME has been shown to 

influence stomatal density and may present a novel approach for influencing stomatal 

development.  To expand the KAT2 transgenic plant analysis, transgenic 35S plants were 

also studied to determine if different expression levels and patterns affect stomatal 

density.  It was hypothesized that constitutive expression of NADP-ME would elevate 

stomatal density.  These hypotheses were addressed by using scanning electron 

microscopy.  A second critical aspect of this study was to provide transgene expression 

and enzyme activity evidence via western blots, tissue blot assays, and 

spectrophotometric assays.  In addition, these data may be correlated to the phenotype 

data in order to better understand the effects of altering guard cell content of malate on 

stomata.   
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MATERIALS AND METHODS  

Vector Construct 

      This research investigated Arabidopsis plants with guard cell specific NADP-ME 

expression via the KAT2 promoter (Pilot et al., 2001) or constitutive expression via the 

35S promoter (Odell et al., 1985).  Pooja Thakur cloned the KAT2 promoter to insert into 

the pMP535 vector and generate transgenic plants with guard cell specific NADP-ME 

expression (Thakur, 2006).  Christine Notis utilized a pEG100 vector with a 35S 

promoter to generate transgenic Arabidopsis plants with constitutive NADP-ME 

expression.  Both vectors contained the maize Me1 gene, 1733bp (Rothermel and Nelson, 

1989), with a C-terminal penta-histidine (his) residue tag, and the portion of the gene 

encoding the chloroplast transit peptide was removed (Thakur, 2006).  The maize ME 

gene was chosen because of its previously-observed effects on stomatal phenotype when 

constitutively expressed in tobacco (Laporte et al., 2002).  The enzyme was his-tagged to 

allow for detection via western blot.  The KAT2 promoter, 2258bp, and the maize ME 

gene were ligated into the pMP535 mini-binary vector (provided by Michael Prigge at the 

University of Michigan), 5405bp, which is based on the pCB302 vector (Xiang et al., 

1999; Fig. 6).  The maize ME gene was spliced into the pEG100 vector, which contained 

the 35S promoter, 9846bp (Earley et al., 2006), by a topoisomerase reaction (Fig. 7).  
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Figure 6.  pMP535 vector construct with a KAT2 promoter and the maize ME gene (9377bp).  The 

KAT2 promoter directs maize ME expression in Arabidopsis guard cells.  The his tag allows for 

enzyme detection. 

Figure 7.  pEG100 vector construct with a 35S promoter and the maize ME gene (11579bp).  The 35S 

promoter directs constitutive NADP-ME expression in Arabidopsis plants.  The his tag allows for 

enzyme detection. 
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Plant Lines and Growth Conditions 

     The vector constructs were introduced into Agrobacterium by the freeze thaw 

technique (Hofgen and Willmitzer, 1988).  The competent Agrobacterium were then used 

to transform healthy Arabidopsis (Arabidopsis thaliana) plants using the floral dip 

method (Clough and Bent, 1998).  Successful transformants were screened for 

homozygous individuals, which were then utilized (Thakur, 2006).  Unique transgenic 

lines resulted because NADP-ME inserted in different locations within the Arabidopsis 

genome during each transformation event.  Empty-vector lines were also generated as a 

control against the transformation process.  These plants were taken through the 

transformation process; however, the vector did not contain the maize ME gene. 

     Transgenic and wild-type Arabidopsis plants were grown in Conviron growth 

chambers (Winnipeg, Canada) between 48 to 70 d.  The seeds were sown in a standard 

potting mix, watered daily, and fertilized once a week.  The environmental parameters 

included 8-h-light at 20°C with an average PAR (photosynthetic active radiation) of 417 

µE m
-2

 sec
-1

 and 16-h-dark at 15°C with a relative humidity of 60%.  The light source 

included four banks each of incandescent and fluorescent light bulbs.     

Preliminary KAT2 Arabidopsis Morphological & Stomatal Count Analysis 

     SEM was employed to determine if the over-expression of NADP-ME has an effect on 

stomatal morphology and/or stomatal density.  KAT2 plant lines were compared to wild-

type Arabidopsis.  Specimens were harvested 56-d after sowing from the first whorl of 

leaves (Fig. 8) and before the Arabidopsis bolting stage.  
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Samples included wild-type and transgenic lines KAT2-1, KAT2-5, and KAT2-6, with n 

= 3 for each line.  Samples were selected from consistently sized, mature, fully expanded 

leaves and were cut 1 cm in from the tip of the leaf.  The specimens were fixed in 1.6% 

paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) 

at 4°C overnight.  Next, the specimens were washed thrice for 5 min each in 0.1 M 

sodium cacodylate buffer, before post-fixation in 0.5 to 1% osmium tetroxide for 30 min.  

Two washes in distilled water were followed by a 10-min wash in 50% ethanol, then a 

10-min wash in an ascending, graded-ethanol series to three 5-min washes in 100% 

ethanol.  The specimens were exposed to two 5-min washes in HMDS, and degassed 

overnight in the hood.  The samples were then placed in a vacuum desiccator for 

approximately 2 hr and then stored at room temperature.  Using colloidal graphite, the 

leaves were then mounted with the abaxial surface up on the stubs, sputter-coated with 

gold, and examined with a scanning electron microscope (Amray 1820I, KLA Tencor, 

San Jose, CA, USA) at an accelerating voltage of 5 kV.  Specimens were examined under 

various magnifications with a working distance of 13 mm.   

Figure 8.  KAT2-transgenic line 1 Arabidopsis plant.  Specimens were selected from the first whorl of 

leaves, as indicated by the perimeter of the circle.  
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KAT2 and 35S Arabidopsis Stomatal Count Analysis  

     To determine if over-expressing NADP-ME elevates stomatal density among KAT2 

and 35S plants relative to wild-type Arabidopsis, several SEM analyses were performed.  

A stomatal count analysis of fully expanded, older leaves was done.  Specimens were 

harvested 62-d after sowing from the second whorl of leaves (Fig. 9) and before the 

bolting stage. 

  

 

Samples included wild-type, KAT2, and 35S plants.  For the KAT2 plants, transgenic 

lines KAT2-1, KAT2-2, KAT2-3, KAT2-5, and KAT2-6 and empty vector lines KAT2-A 

and KAT2-D were harvested, with n = 5 for each line.  For the 35S plants, 35S-1, 35S-2, 

35S-3, 35S-4 and empty vector lines 35S-A, 35S-B were analyzed, with n = 5 for each 

line.  Samples were selected from consistently sized, mature, fully expanded leaves and 

were cut under preservative with a 0.5 cm leaf punch from either side of the central vein.  

The specimens were fixed in 2.5% paraformaldehyde and 5% glutaraldehyde in 0.05 M 

phosphate buffer (pH 7.0) at 4°C overnight on an orbital shaker.  Next, the specimens 

were washed thrice for 5 min each in 0.05 M phosphate buffer, followed by a 30 min 

Figure 9.  35S-transgenic line 3 Arabidopsis plant.  Specimens were selected from the second whorl of 

leaves, as indicated by the perimeter of the circle.  
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wash in 50%, and then one 30 min wash at each concentration, in an ascending, graded-

ethanol series to three 30 min washes in 100% ethanol.  The specimens were exposed to 

two washes of 5 min each in HMDS and degassed overnight in the hood.  The specimens 

were prepared for SEM viewing according to the above directions.  Specimens were 

examined under various magnifications at an accelerating voltage of 5 kV and with a 

working distance of 18 mm.  The number of stomata was determined within a 400 x 250 

µm box at 300X.  Stomata that were on the top and left boundaries were included, while 

stomata on the right and bottom boundaries were excluded from the counts.  Micrographs 

were taken at random locations on the leaf. 

KAT2 and 35S Arabidopsis Stomatal Count Using an Alternative Preservative 

     A second stomatal count analysis of fully expanded, older leaves was performed under 

different preservative conditions.  Specimens were harvested 48-d after sowing from the 

second whorl of leaves (Fig. 9) and before the Arabidopsis bolting stage.  Samples 

included wild-type, KAT2, and 35S plants.  For the KAT2 plants, transgenic lines KAT2-

1, KAT2-2, KAT2-3, KAT2-5, and KAT2-6 and empty vector lines KAT2-A and KAT2-

D, with n = 6 for wild-type and n = 4 for transgenic line samples were analyzed.  For the 

35S plants, 35S-1, 35S-2, 35S-3, 35S-4 and empty vector lines 35S-A, 35S-B, were 

analyzed, with n = 4 for each line.  Samples were selected from consistently sized, 

mature, fully expanded leaves and were removed using a 0.5 cm diameter leaf punch, 

while submerged in 70% ethanol.  The specimens were fixed in 70% ethanol.  Next, the 

specimens were washed once for 5 min in 70% ethanol, followed by two 5 min washes in 

100% ethanol.  Then the specimens were exposed to one 5 min wash in HMDS and were 

degassed overnight in the hood.  The samples were then placed in a vacuum desiccator 
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for approximately 2 hours and then stored at room temperature.  The specimens were 

prepared for SEM and viewed according to the above directions.  

KAT2 and 35S Arabidopsis Developmental Series Stomatal Count of Older Leaves 

     A third stomatal count analysis of fully expanded, younger leaves was performed to 

determine if an exaggerated effect exists among transgenic lines relative to wild-type 

Arabidopsis.  In addition, to improve leaf-choice constancy, a developmental series was 

generated for each individual plant analyzed (Fig. 10).  The developmental series 

included removing the plant from soil, submerging it in water to remove excess debris 

and to retard leaf desiccation, and cutting off and numbering each leaf in series, starting 

from the oldest to the youngest (Fig. 10).  Samples were selected from the second whorl 

from the top, because leaves were relatively young and large enough for analysis (Fig. 

11).  Samples were selected within a leaf range, numbered 22-43, by choosing 

consistently sized, fully expanded leaves.  Specimens were harvested 53-d after sowing 

and before the Arabidopsis bolting stage.  Samples included wild-type, KAT2, and 35S 

plants.  For the KAT2 plants, transgenic lines KAT2-1, KAT2-2, KAT2-3, KAT2-5, and 

KAT2-6 and empty vector line KAT2-A were analyzed, with n = 6 for wild-type and n = 

4 for transgenic line samples.  For the 35S plants, 35S-1, 35S-2, 35S-3, 35S-4 and empty 

vector line 35S-A were analyzed, with n = 4 for each line.  Specimens were removed 

using a 0.5 cm diameter leaf punch, while submerged in 70% ethanol.  The specimens 

were fixed in 70% ethanol.  Next, the specimens were washed once for 5 min in 70% 

ethanol, followed by one 5 min wash in 100% ethanol.  Then the specimens were 

exposed to one 5 min wash in HMDS and were degassed overnight in the hood.  The 

specimens were prepared for SEM and viewed according to the above directions.  
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Figure 10.  Leaf developmental series from 35S-transgenic line 1 Arabidopsis.  Leaves were removed 

and numbered from the oldest to the youngest.  

Figure 11.  KAT2-transgenic line 6 Arabidopsis plant.  Specimens were selected from the second whorl 

from the top, as indicated by the perimeter of the circle.  Leaves were chosen within a leaf range of 22-

43.  
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Statistical Analysis 

     A computer statistical software package, Systat 11 & 12, was employed to perform a 

statistical analysis of the stomatal count data.  Since more than two independent 

populations were considered, ANOVA was used to determine if a statistically significant 

difference exists among transgenic and wild-type lines.  If ANOVA detected a 

statistically significant difference, Dunnett’s test was employed to perform a pair-wise 

comparison of each population’s mean to wild-type in order to detect statistical 

significance.  With this test, each transgenic line is compared to the control, the wild-

type, thereby reducing the number of comparisons and increasing statistical power.  All 

assumptions, including a normally distributed population and equal variance among 

populations, were confirmed for the ANOVA test. 

     The null hypothesis tested was Ho: Transgenic line stomatal count = Wild-type 

stomatal count, while the Ha: Transgenic line stomatal count > Wild-type stomatal count.  

A one-tail alternative hypothesis was posed because preliminary data indicated that over-

expression of NADP-ME increased stomatal density.  By looking only in one direction, 

statistical power was increased.  

Detection of NADP-ME Transcript by RT-PCR  

     A Qiagen RNase easy plant minikit was used to detect the NADP-ME transcript via 

RT-PCR according to Thakur, 2006.  KAT2 transgenic plant RT-PCR reactions were set 

up using 12.5 µL of 2X Access Quick RT-PCR master mix, 0.5 µL of 10pm/µL maize 

ME forward primer starting at 909bp (5'-TGACCCATCAGTTTGCTTGC- 3’), 0.5 µL of 

10pm/µl maize ME reverse primer starting at 1603bp (5’-

AATGCGAGGTTGGGTTTGAC-3’), 20 ng extracted RNA, and 0.2 µL AMV reverse 
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transcriptase.  Autoclaved distilled water was added to bring the total volume to 25 µL.  

Amplification conditions were as follows: 48°C for 45 min, denaturation at 95°C for 2 

min; 30 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, followed by 72°C for 5 

min for the final extension.  PCR products were resolved on a 1% agarose gel to confirm 

the presence of the cDNA band.  

     35S transgenic plant RT-PCR reactions were set up by Christine Notis using 10 µL of 

2X Access Quick RT-PCR master mix, 0.5 µL of 10pm/µL maize ME forward primer 

starting at 909bp (5'-TGACCCATCAGTTTGCTTGC-3’), 0.5 µL of 10pm/µl maize ME 

reverse primer starting at 1603bp (5’-AATGCGAGGTTGGGTTTGAC-3’), 10 ng 

extracted RNA, 0.2 µL AMV reverse transcriptase and 10.3 µL autoclaved distilled 

water.  For the control reactions, which lacked reverse transcriptase, the above 

parameters were followed, but no AMV reverse transcriptase was added.  Amplification 

conditions were as follows: 48°C for 45 min, denaturation at 94°C for 2 min; 32 cycles at 

94°C for 15 s, 54°C for 1 min, and 72°C for 45 s, followed by 68°C for 7 min for the 

final extension.  PCR products were resolved on a 1% agarose gel to confirm the 

presence of the cDNA band (Thakur, 2006).  

Detection of NADP-ME by Immunoblotting Overview 

     A primary antibody directed against the his-tagged NADP-ME allowed for protein 

detection between transgenic KAT2 and 35S plants.  Both whole leaf and guard cell 

protoplasts (GCPs) were homogenized to liberate NADP-ME.  GCPs are plant cells 

lacking a cell wall and were isolated to confirm that the KAT2 promoter directs NADP-

ME expression in guard cells.  Extracted protein was quantified before analyzed via SDS-

PAGE and western blot. 
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Guard Cell Protoplast Isolation  

As described by Thakur 2006:  

Protoplast isolation was carried out using twenty fully expanded leaves 

from soil grown Arabidopsis transformants and wild type plants.  The 

leaves were placed in approximately 100 mL of cold tap water after 

excision of the mid vein, and blended twice for 30 s in a Waring blender.  

The mixture was poured through a 200 µm Spectrum® nylon filter in an 

apparatus attached to an aspirator to remove broken mesophyll and 

epidermal cells.  Any large green specks of mesophyll tissue were 

removed from the filter with forceps.  All remaining peels were 

thoroughly rinsed with deionized water to remove the foam produced by 

the blending.  All peels were scraped from the mesh into a flask containing 

15ml of enzyme solution 1, which consists of 0.7% cellulysin cellulase, 

Trichoderma viride, 0.1% (w/v) PVP-40, 0.25% (w/v) bovine serum 

albumin, 0.5mM L-ascorbic acid, 0.1% cordycepin, and 0.0033% 

actinomycin D, all dissolved in 55% (v/v) basic solution and 45% (v/v) 

distilled water.  This mixture of the peel in enzyme solution 1 was left in a 

shaking incubator at 27
o 
C with 140 rpm, for 40 min in dark.  After 40 

min, 37.5 mL of basic solution consisting of 5 mM MES hydrate, 0.5 mM 

CaCl2, 0.5 mM MgCl2, 10 µM KH2PO4, 0.5 mM L-ascorbic acid, 0.01% 

cordycepin, 0.0033% actinomycin D were added, and the osmolarity was 

adjusted to 550 mmol/kg by addition of D-sorbitol, pH 5.5 (using Tris 
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base) to a total volume of 300 mL.  The mixture was then shaken under 

the same conditions for five minutes to provide an intermediate osmolarity 

between enzyme solutions 1 and 2 and prevent sudden plasmolysis of 

fragile guard cells.  The digested peels were again poured through a fresh 

200 µm Spectrum® nylon filter in the same apparatus as before, and rinsed 

with 10 to 15 mL of basic solution.  The peels were scraped from the mesh 

with a spatula into a flask containing 15 mL of enzyme solution 2 

composed of 1.3% (w/v) Onozuka RS cellulase, 0.0075% (w/v) Pectolyase 

Y-23, 0.25% (w/v) bovine serum albumin, 0.5 mM L-ascorbic acid, 0.1% 

cordycepin, and 0.0033% actinomycin D, pH 5.5.  The flask was shaken at 

20
o 
C, 60 rpm, for 40 min in the dark and again at 20

o 
C, 40 rpm, for 55 

min in dark.  The flask was swirled by hand for several seconds upon 

completion of the final digestion step in order to increase the liberation of 

guard cell protoplasts (GCPs) from the peels.  The contents of the flask 

were poured through a 20 µm Spectrum® nylon filter in the same apparatus 

as before.  The peels that remained on the filter were rinsed with 150 mL 

of basic solution as a final attempt to release GCPs.  It is at this time that 

the GCPs in the filtrate are most readily viewed under a microscope.  

When a microscopic view reveals excessive debris or mesophyll presence, 

further filtration may be desired using a 10 µm Spectrum® nylon filter.  

The filtrate was collected in four 50-mL centrifuge tubes, and centrifuged 

for five minutes at 1000 x g.  All but 1 to 1.5 mL of supernatant was 

removed using a pipette, as the pellet tends to be quite fragile.  The pellet 
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in each tube was resuspended in 20 to 25 mL of basic solution followed by 

an identical centrifugation step.  Again all but 1-1.5 mL of supernatant 

was removed.  The 4-8 mL of the supernatant and pellet that remained in 

the five tubes was then combined and evenly distributed between 1.5 mL 

Eppendorf microcentrifuge tubes and centrifuged again for five minutes at 

1000 x g.  All but about 0.5 mL of supernatant was removed and the pellet 

was once again resuspended in basic solution so that it fits into one 1.5 mL 

Eppendorf microcentrifuge tube.  This tube was centrifuged for five 

minutes at 1000 x g, all supernatant was removed, and the pellet was 

collected. (Thakur, 2006) 

Crude Leaf and GCP Protein Extraction for SDS-PAGE and Western Blot 

     To enable NADP-ME quantification and detection, approximately 200 mg of whole 

leaf tissue and the yield of one GCP isolation (see above) were homogenized on ice in 1.5 

mL and 150 µL extraction buffers (50 mM Hepes, 5 mM MgCl2, and 1% PVPP), 

respectively.  A protease inhibitor cocktail (Calbiochem) was added fresh to the 

extraction buffer in a 1:200 dilution.  After liberating the protein, the supernatant was 

clarified by refrigerated centrifugation at 12,000 RPM for 2 min.  The supernatant was 

stored at -20°C.  

Protein Quantification  

     Once the protein was extracted, it was critical to determine the quantity of protein in 

the whole leaf and GCP extract for each sample to be used in SDS-PAGE.  Bio-Rad 

protein assay dye reagent was used to determine the quantity of protein in each crude 

sample and Coomaise Brilliant Blue G-250, in 1:5 dilutions, was used to determine the 
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dilution factor required to bring each sample within range of the BSA (0.1mg/mL) 

standard curve.  The protein samples were then measured at 570nm, and the readings 

were used to generate a BSA standard curve. 

SDS-PAGE 

     Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

characterize and separate by molecular size whole leaf and GCP protein extractions.  The 

advantage of a protein denaturing system includes separation of proteins based solely on 

size rather than other factors such as charge.  Protein association with SDS beads induces 

it to unfold and results in a negatively charged primary protein structure.   

Electrophoresis separates SDS and protein complexes based on molecular size as they 

migrate towards the cathode. 

      Extracted protein from GCP and whole leaf samples were diluted in extraction buffer 

(5 mM MgCl2, 50 mM Hepes, with 1% PVPP) to yield a final protein concentration of 10 

!g/1 mL.  The samples were then diluted 1:1 in Tris glycine SDS sample buffer (2X) 

containing 63 mM Tris-HCL, 10% Glycerol, 2% SDS, and 0.0025% bromophenol blue, 

pH 6.8 with 5% !-mercaptoethanol.  To facilitate complete protein denaturation, the 

samples were incubated at 99°C for 15 min.  Next, the heat-treated protein samples were 

loaded on a precast Novex 10%, 10-well Tris-glycine gel.  The gel was loaded into an 

XCell Surelock gel box from Invitrogen.  Separation took place using BioRad SDS 

trisglycine 10X buffer, with a working concentration of 1X running buffer at 95V for 1 

hr.  The positive control for the anti-his antibody included a purified malic enzyme with a 

his tag at both termini.  The purified ME was diluted with extraction buffer to yield a 

final protein concentration of 2.26 mg/mL before diluting in sample buffer and heat-
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treated as described above.  Approximately 40 !L of protein was loaded.  Proteins were 

visualized with Molecular Probes Coomassie Fluor Orange protein gel stain (Invitrogen) 

overnight on a rotary shaker. 

Western Blot 

     SDS-PAGE, as described above, separated proteins based on their size and then 

NADP-ME was visualized by using a primary antibody directed against the his-tag.  The 

proteins from the SDS-PAGE gel were electro-blotted to a nitrocellulose membrane using 

semi-dry transfer buffer (25 mM Tris, 150 mM glycine, and 10% methanol) at 

125mAmps and 10V for 130 min.  All subsequent steps were done while on an orbital 

shaker, unless otherwise noted.  The membrane was then washed twice, 10 min each, in 

30 mL 1X TBS buffer (10 mM Tris-Cl pH 7.5 and 150 mM NaCl).  Then the membrane 

was washed in 30 mL blocking buffer (3% (w/v) BSA in TBS) for 1 hr to prevent non-

specific primary antibody binding.  The blot was then incubated in a TBS Tween/Triton 

solution (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 0.05% (v/v) Tween 20, 0.2% (v/v) 

TritonX 100) twice for 10 min each wash, followed by a wash in 1X TBS for 10 min to 

remove remaining blocking buffer.  Next, the membrane was incubated overnight with an 

"-His antibody (12.5 µL Anti-Penta-His Antibody, Qiagen, in 25 mL blocking buffer).  

The blot was washed twice, 10 min each wash, in TBS Tween/Triton and once in 1X 

TBS for 10 min.  The blot was incubated with a secondary antibody (Goat " Mouse IgG 

Alkaline Phosphate Conjugate, Clontech) for 1 hr at room temperature.  The membrane 

was washed 4 times, 10 min each, in TBS Tween/Triton to remove excess secondary 

antibody.  The membrane was transferred into a 1-Step NBT/BCIP substrate solution and 
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exposed for 5 min, without shaking, to visualize the NADP-ME protein via a 

chemiluminescence reaction.  

Determination of the SDS-PAGE and Western Blot Limit of Detection 

    Eric Rowley determined the limit of detection of the immunoblotting procedure by 

separating various concentrations of the purified NADP-ME control via SDS-PAGE (see 

above), followed by a western blot (see above). 

NADP-ME Detection by Tissue Blot Assay 

     According to Wheeler et al., NADP-ME was extracted by homogenizing whole leaf 

samples (50-d-old) into extraction buffer containing 100 mM Tris-HCl, pH 7.5, 5 mM 

MgCl2, 2 mM EDTA, 10% (v/v) glycerol, and 10 mM 2-mercaptoethanol.  These 

reagents served to stabilize and maintain the enzyme’s structure because the assay detects 

the reduction of NADP to NADPH (see Equation 1).  Then samples were blotted onto a 

nitrocellulose membrane.  Approximately 2 µL (2.1mg/mL) of the positive control (a 

purified malic enzyme with a his tag at both termini), 10 µL of the negative control (heat-

treated wild-type protein extract), 10 µL of wild-type protein extract, and 10 µL of 

transgenic line protein extract were blotted onto the membrane.  The nitrocellulose 

membrane was incubated in the tissue blot assay buffer (50 mM Tris-HCl, pH 7.5, 10 

mM L-malate, 10 mM MgCl2, 0.5 mM NADP
+
, 35 mg/mL nitroblue tetrazolium (NBT), 

and 0.85 mg/mL phenazine methosulfate (PMS)) for 2 hr at room temperature.  When 

NADP-ME is present and active, it catalyzes the reduction of NADP to NADPH 

(Equation 1).  PMS serves as an electron acceptor, causing NADPH to be oxidized to 

NADP.  While PMS is reduced, it is converted from a yellow compound to a colorless 

one.  Oxidized PMS is regenerated when it is reduced by NBT, which is converted from a 
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yellow compound to a blue precipitate (Fig. 12).  Hence, the formation of the blue 

precipitate indicates active NADP-ME (Wheeler et al., 2005). 

 

 

 

NADP-ME Specific Activity Measurement 

     A spectrophotometric analysis was utilized to measure the formation of NADPH by 

NADP-ME extracted from both transgenic KAT2 and 35S plants and wild-type 

Arabidopsis by providing the substrates, malate and NADP
+
.  Protein was extracted from 

500 mg healthy transgenic and wild-type Arabidopsis plants.  The enzyme was liberated 

in 1492.5 !L cold extraction buffer containing 50 mM Hepes (pH 8.0), 2.5 mM EDTA, 5 

mM MgCl2, 1% PVPP, 7.5 !L 1mM DTT, and 15 !L protease inhibitor Cocktail set III 

from Cal Biochem (1:1000 dilution) by using a glass homogenizer.  The extract was 

Figure 12.  Chemical reactions catalyzed by the tissue blot assay buffer.  NADP-ME’s catalytic activity 

causes the reduction of NADP to NADPH.  NADP is regenerated when PMS (phenozine methosulfate) 

acts as an electron acceptor and is reduced to a colorless substance.  PMS is oxidized when it reduces 

NBT (nitroblue tetrazolium), causing the formation of a blue precipitant. 
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clarified by centrifugation and the supernatant was collected.  An NADP assay cocktail 

was formulated to contain 895 !L assay buffer (50 mM Hepes (pH 8.0), 2.5 mM EDTA, 

and 4 mM malate with 40 !L 10 mM NADP and 5 !L DTT.  This assay cocktail was 

utilized as a blank with the volume brought to 1 mL using the assay buffer versus the 

protein extract.  The reaction was measured for 15 min once 20 !L of protein extract was 

added to the assay mix.  This was necessary to limit background once the reaction was 

initiated with MgCl2.  The reaction was then measured at 340 nm because one product of 

the reaction catalyzed by NADP-ME is NADPH, which absorbs light maximally at 340 

nm.  The increased absorbance reading correlates with increased enzyme activity.  After 

15 min, the reaction was initiated with 40 !L 500 mM MgCl2, with a final concentration 

of 20 mM in each 1 mL assay, and was measured at 340 nm for 15 min (Thakur, 2006).  

To determine specific activity, the extracted protein was quantified (see above) and the 

BSA calibration curve was used to determine the specific activity.   

     Statistical analysis was conducted using Systat 11 and 12.  The null hypothesis tested 

was Ho: Transgenic line enzyme activity = Wild-type enzyme activity, while the Ha: 

Transgenic line enzyme activity > Wild-type enzyme activity.  A one-tail alternative 

hypothesis was posed because it was expected that the activity of the enzyme would be 

elevated in the transgenic plants relative to wild-type.  By looking in only one direction, 

statistical power was increased. 
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RESULTS 

Preliminary KAT2 Arabidopsis Morphology & Stomatal Count Analysis 

     Comparison between wild-type and KAT2 transgenic Arabidopsis indicated no 

substantial morphological differences, although artifacts from the preservative process 

were evident.  Fig. 13 indicates a pair of guard cells and a stomatal pore from wild-type 

Arabidopsis.  

 

 

Direct comparisons between stomata from both the experimental and wild-type groups 

indicated no structural differences (Figs. 14, 15, 16), but the transgenic lines appeared to 

have preserved differently with respect to wild-type and each other.  The transgenic lines 

indicated a gradient effect with respect to the intensity of preservative artifacts relative to 

wild-type.  Preservative artifacts included tissue collapse and puckering, most likely due 

to differences in osmolarity between the tissue and the buffer.  The micrographs indicated 

that KAT2-transgenic line 1 (Fig. 14) had the highest level of tissue stress around 

Figure 13.  SEM micrograph of a wild-type Arabidopsis stomatal complex.  Working Distance 13 mm.  

[A] indicates the pair of guard cells, and [B] open stomatal pore.  

[A] 

[B] 
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stomatal complexes, followed by KAT2-transgenic line 6 (Fig. 15), and KAT2-transgenic 

line 5 (Fig. 16) appeared to have minimal evidence for preservative artifact. 

 

 

 

Figure 14.  SEM micrograph of Arabidopsis stomatal complexes used for morphology analysis.  Left 

Panel: KAT2-Transgenic Line 1.  Right Panel: Wild-Type.  Working Distance 13mm. 

Figure 15.  SEM micrograph of Arabidopsis stomatal complexes used for morphology analysis.  Left 

Panel: KAT2-Transgenic Line 6.  Right Panel: Wild-Type.  Working Distance 13mm. 
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     A preliminary stomatal count investigation indicated an elevated stomatal density in 

KAT2 transgenic lines relative to wild-type Arabidopsis (Fig. 17).  These data suggested 

that a more thorough stomatal density investigation of the KAT2 transgenic plants was 

required. 

 

 

Figure 16.  SEM micrograph of Arabidopsis stomatal complexes used for morphology analysis.  Left 

Panel: KAT2-Transgenic Line 5.  Right Panel: Wild-Type.  Working Distance 13mm. 
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KAT2 and 35S Arabidopsis Stomatal Count Analysis 

     The combination of 2.5% paraformaldehyde and 5% glutaraldehyde in the 0.05 M 

phosphate buffer (pH 7.0) preservative appeared to have been ineffective in maintaining 

the plant tissue (Fig. 18).  For an accurate stomatal count, it was imperative to have 

minimal preservative artifacts and a relatively planar surface.  None of these specimens 

could be included in the stomatal count analysis.  

Figure 17.  Preliminary scanning electron microscopy stomatal counts data on fully expanded wild-type 

and KAT2 transgenic Arabidopsis.  These data indicate elevated stomatal densities in the transgenic 

lines (PT) relative to wild-type (WT), prompting further investigation.  Plants were 56-d old, with all 

groups n = 1. 
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KAT2 and 35S Arabidopsis Stomatal Count of Older Leaves Using an Alternative 

Preservative & Statistical Analysis 

      A stomatal count analysis of fully expanded, older leaves was performed to determine 

if an exaggerated effect exists between transgenic KAT2 (Fig. 19) and 35S (Fig. 20) plant 

lines relative to wild-type Arabidopsis (Fig. 21).  It was hypothesized that over-

expressing NADP-ME in Arabidopsis guard cells would elevate stomatal density.  For 

the KAT2 transgenic plants, empty vector KAT2-lines A and C and KAT2-transgenic 

line 2 indicated little difference in stomatal density relative to the wild-type (Fig. 22).  

However, transgenic lines KAT2-1, KAT2-3, KAT2-5, and KAT2-6 indicated elevated 

stomatal densities relative to the wild-type (Fig. 22).  To assess whether statistical 

differences existed among the transgenic lines and wild-type, ANOVA was performed 

and its assumptions were confirmed.    

Figure 18.  SEM micrograph of wild-type Arabidopsis stomatal complexes.  This combination of 

preservative did not maintain the integrity well enough for stomatal counts.  Working Distance 18 mm. 
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Figure 19.  Stomatal count SEM micrograph of KAT2-transgenic line 1 Arabidopsis.  The number of 

stomata were determined within a 400 x 250 µm box at 300X. Working Distance 18 mm. 

 

Figure 20.  Stomatal count SEM micrograph of 35S-transgenic line 3 Arabidopsis.  The number of 

stomata were determined within a 400 x 250 µm box at 300X. Working Distance 18 mm. 
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A scatter plot of the data indicated a consistent and a reasonable distribution of the data 

(Fig. 23).  To meet the first assumption, random samples within the defined  

 

Figure 22.  Number of stomata per 10
5
 µm

2
 for older, KAT2-transgenic lines (PT) and wild-type 

Arabidopsis leaves.  This indicates PT 1 & 6 were statistically significant relative to wild-type.  

Specimens were approximately 50-d-old.  All groups n=4, except for wild-type n=6 and PTA  n = 3.  

PTA and PTC are empty vector lines.  Standard error is reported.  

* 
* 

Figure 21.  Stomatal count SEM micrograph of wild-type Arabidopsis.  The number of stomata were 

determined within a 400 x 250 µm box at 300X. Working Distance 18 mm. 
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parameters were harvested.  The populations indicated a reasonably normal distribution, 

therefore meeting the second assumption for ANOVA (Fig. 24).  The populations 

indicated relatively equal variances, hence meeting the third assumption for ANOVA 

(Fig. 24). 

 

 

 

 

 

Figure 23. KAT2 Arabidopsis scatter plot of stomatal count data for older, KAT2 leafs.  WT = Wild-

type, TL = Transgenic line. 

Figure 24.  Confirmation for ANOVA assumptions of older, KAT2 leaf stomatal counts.  A,  

Probability plot of the stomatal count data form all KAT2-transgenic lines and wild-type Arabidopsis 

populations.  This indicated a relatively normal population distribution.  B,  Plot assessed variance 

among KAT2 transgenic lines and wild-type Arabidopsis populations.  This indicated that the 

populations had relatively equal variances. 
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With the assumptions confirmed, the ANOVA output was considered robust, with n = 33.  

Figure 25 presents the results of ANOVA, which indicated that the calculated p < " = 

0.05, therefore the Ho is rejected (p <  0.001).  ANOVA indicated that there was a 

statistical difference among the groups, but a pair-wise comparison was necessary to 

determine which lines had a statistically significant difference relative to wild-type.  

 

      

     Dunnett’s pair-wise comparison test indicated which lines exhibit a statistically 

significant difference relative to the wild-type (Fig. 26).  The wild-type was set as the 

control and significance was detected in one direction, i.e. greater than 22.33 stomata / 

100,000 µm
2
.  The stomatal counts for transgenic line 1 (p < 0.001) and transgenic line 6 

(p < 0.01) were statistically significant relative to the wild-type.  As a result, the 

alternative hypothesis (Ha: Transgenic stomatal count > Wild-type stomatal count) was 

not rejected for lines KAT2-1 and KAT2-6.  The null hypothesis (Ho: Transgenic 

stomatal count = Wild-type stomatal count) was not rejected for all other lines.  Older, 

fully expanded KAT2 leaves indicated an elevated stomatal density relative to wild-type 

Arabidopsis.  

 

Figure 25.  ANOVA output for KAT2-transgenic and wild-type older leaf stomatal counts. The Ho was 

rejected (p <  0.001), indicating that the stomatal density elevation is statistically significant. 
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     Stomatal counts also included the 35S plants, which constitutively overexpress 

NADP-ME, in order to determine the effect on stomatal density.  For the 35S transgenic 

plants, empty vector lines A and C and transgenic line 4 indicated little difference in 

stomatal density relative to the wild-type (Fig. 27).  However, transgenic lines 35S-1, 

35S-2, and 35S-3 indicated elevated stomatal densities relative to the wild-type (Fig. 27).  

To assess whether statistical differences existed among the transgenic lines and wild-

type, ANOVA was performed and its assumptions were confirmed.  A scatter plot of the 

data indicated a consistent and a reasonable distribution of the data (Fig. 28).  To meet 

the first assumption, random samples within the defined parameters were harvested.  The 

populations indicated a reasonably normal distribution, therefore meeting the second 

assumption for ANOVA (Fig. 29).  The populations indicated relatively equal variances, 

hence meeting the third assumption for ANOVA (Fig. 29). 

Figure 26.  Dunnett’s pair wise comparison test results for older, KAT2-transgenic and wild-type 

Arabidopsis leaves. Stomatal counts for KAT2-transgenic line 1 (p < 0.001) and KAT2-transgenic line 

6 (p < 0.01) were significantly different relative to wild-type.  
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Figure 27.  Number of stomata per 10
5
 µm

2
 for older, 35S-transgenic lines (CN) and wild-type 

Arabidopsis leaves.  This indicates that none of the transgenic lines were statistically significant relative 

to wild-type.  Specimens were approximately 50-d-old.  All groups n=4, except for wild-type, n=6.  CN 

A and CNC are empty vector lines.  Standard error is reported.  

Figure 28.  35S Arabidopsis scatter plot of stomatal count data for older leaves.  WT = Wild-type, CN 

= Transgenic line. 
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With the assumptions confirmed, the ANOVA output was considered robust, with n = 30.  

Figure 30 presents the results of ANOVA, which indicated that the calculated p > " = 

0.05; therefore, the Ho was not rejected.  ANOVA indicated that there was not a statistical 

difference among the groups.  A pair-wise comparison was not necessary to determine 

which lines had a statistically significant difference relative to wild-type.  Therefore, the 

null hypothesis (Ho: Transgenic stomatal count = Wild-type stomatal count) was not 

rejected for all lines.  Older, fully expanded 35S leaves did not indicate an elevated 

stomatal density relative to wild-type Arabidopsis.  

 

 

 

 

Figure 29.  Confirmation for ANOVA assumptions of older, 35S leaf stomatal counts.  A,  Probability 

plot of the stomatal count data form all 35S-transgenic lines and wild-type Arabidopsis populations.  

This indicated a relatively normal population distribution.  B,  Plot assessed variance among 35S-

transgenic lines and wild-type Arabidopsis populations.  This indicated that the populations had 

relatively equal variances. 
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KAT2 and 35S Arabidopsis Developmental Series Stomatal Count of Younger 

Leaves & Statistical Analysis 

     A stomatal count analysis of fully expanded, younger leaves was performed to 

determine if an exaggerated effect exists between transgenic KAT2 and 35S plant lines 

relative to wild-type Arabidopsis.  It was hypothesized that over-expressing NADP-ME 

in Arabidopsis guard cells would elevate stomatal density.  For the KAT2 transgenic 

plants, all transgenic and empty vector lines indicated little difference in stomatal density 

relative to the wild-type (Fig. 31).  To assess whether statistical differences existed 

among the transgenic lines and wild-type, ANOVA was performed and its assumptions 

were confirmed.  A scatter plot of the data indicated a consistent and reasonable 

distribution of the data (Fig. 32).  To meet the first assumption, random samples within 

the defined parameters were harvested.  The populations indicated a reasonably normal 

distribution, therefore meeting the second assumption for ANOVA (Fig. 33).  The 

populations indicated relatively equal variances, hence meeting the third assumption for 

ANOVA (Fig. 33). 

 

 

Source 
Sum-of-
Squares 

df 
Mean-
Square 

F-ratio P 

LINE$ 
121.333 6 20.222 0.636 0.700 

Error 
731.333 23 31.797 

  

Figure 30.  ANOVA output for 35S transgenic and wild-type, older leaf stomatal counts.  The Ho was 

not rejected (p > 0.05), indicating that stomatal density differences were not statistically significant. 
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Figure 31.  Number of stomata per 10
5
 µm

2
 for younger, KAT2-transgenic lines (PT) and wild-type 

Arabidopsis leaves.  This indicates none of the transgenic lines were statistically significant relative to 

wild-type.  Specimens were approximately 53-d-old.  All groups n=4, except for wild-type n=6, PT1 

n=3, PT5 n=3, PT6 n=2, and PTA n=3.  PTA is an empty vector lines.  Standard error is reported.  

.  CN A and CNC are empty vector lines.  Standard error is reported.  

Figure 32.  KAT2 Arabidopsis scatter plot of younger leaf, stomatal count data.  WT = Wild-type, PT = 

Transgenic line. 
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With the assumptions confirmed, the ANOVA output was considered robust, with n = 25.  

Figure 34 presents the results of ANOVA, which indicated that the calculated p > " = 

0.05; therefore, the Ho is not rejected.  ANOVA indicated that there was not a statistical 

difference among the groups.  A pair-wise comparison was not necessary to determine 

which lines had a statistically significant difference relative to wild-type.  Therefore, the 

null hypothesis (Ho: Transgenic stomatal count = Wild-type stomatal count) was not 

rejected for all lines.  Old, fully expanded KAT2 leaves did not indicate an elevated 

stomatal density relative to wild-type Arabidopsis. 

 

 

 

 

Figure 33.  Confirmation for ANOVA assumptions for younger, KAT2 leaf stomatal counts.  A,  

Probability plot of the stomatal count data form all KAT2-transgenic lines and wild-type Arabidopsis 

populations.  This indicated a relatively normal population distribution.  B,  Plot assessed variance 

among KAT2-transgenic lines and wild-type Arabidopsis populations.  This indicated that the 

populations had relatively equal variances. 
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Source 
Sum-of-
Squares 

df Mean-Square F-ratio P 

LINE$ 
 

396.917 6 
 

66.153 0.895 
 

0.520 

Error 
 

1331.083 18 
 

73.949 
  

 

     Stomatal counts also included the 35S plants, which constitutively over-express 

NADP-ME, in order to determine the effect on stomatal density under such a condition.  

For the 35S transgenic plants, empty vector line A and transgenic lines 35S-1 and 35S-2 

indicated little difference in stomatal density relative to the wild-type (Fig. 35).  

However, transgenic lines 35S-3 and 35S-4 indicated elevated stomatal densities relative 

to the wild-type (Fig. 35).  To assess whether statistical differences existed among the 

transgenic lines and wild-type, ANOVA was performed and its assumptions were 

confirmed.  A scatter plot of the data indicated a consistent and reasonable distribution of 

the data (Fig. 36).  To meet the first assumption, random samples within the defined 

parameters were harvested.  The populations indicated a reasonably normal distribution, 

therefore meeting the second assumption for ANOVA (Fig. 37).  The populations 

indicated relatively equal variances, hence meeting the third assumption for ANOVA 

(Fig. 37). 

Figure 34.  ANOVA output for KAT2-transgenic and wild-type, younger leaf stomatal counts. The Ho was 

not rejected (p > 0.05), indicating that stomatal density differences were not statistically significant. 
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Figure 35.  Number of stomata per 10
5
 µm

2
 for younger, 35S-transgenic lines (CN) and wild-type 

Arabidopsis leaves.  This indicates none of the transgenic lines were statistically significant relative to 

wild-type.  Specimens were approximately 53-d-old.  All groups n=4, except for wild-type, n=6.  CN A 

is an empty vector lines.  Standard error is reported.  

Figure 36.  35S Arabidopsis scatter plot of younger leaves, stomatal count data.  WT = Wild-type, CN 

= Transgenic line. 
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With the assumptions confirmed, the ANOVA output was considered robust, with n = 26.  

Figure 38 presents the results of ANOVA, which indicated that the calculated p > " = 

0.05; therefore, the Ho was not rejected.  ANOVA indicated that there was not a statistical 

difference among the groups.  A pair-wise comparison was not necessary to determine 

which lines had a statistically significant difference relative to wild-type.  Therefore, the 

null hypothesis (Ho: Transgenic stomatal count = Wild-type stomatal count) was not 

rejected for all lines.  Young, fully expanded 35S leaves did not indicate an elevated 

stomatal density relative to wild-type Arabidopsis.  

 

 

Figure 37.  Confirmation for ANOVA assumptions of younger, 35S leaf stomatal counts.  A,  

Probability plot of the stomatal count data form all 35S-transgenic lines and wild-type Arabidopsis 

populations.  This indicated a relatively normal population distribution.  B,  Plot assessed variance 

among 35S-transgenic lines and wild-type Arabidopsis populations.  This indicated that the populations 

had relatively equal variances. 
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Sourc
e 

Sum-of-
Squares 

df Mean-Square F-ratio P 

LINE$ 
551.865 5 110.373 1.134 0.375 

Error 
1946.750 20 97.338 

  

 

Detection of NADP-ME Transcript by RT-PCR 

     RNA was extracted from wild-type, KAT2 and 35S transgenic Arabidopsis and 

subjected to a RT-PCR in order to detect the NADP-ME gene transcript.  Analysis of 

KAT2 Arabidopsis whole leaf RNA extractions indicated that the gene, specifically a 

700bp portion, was successfully transcribed in transgenic lines KAT2-1, KAT2-2, KAT2-

3, and KAT2-6 (Fig. 39, Lanes 2 to 5).  However, the gene transcript was not present in 

the wild-type (negative control) RNA extraction (Fig. 39, Lane 1).   

 

Figure 38.  ANOVA output for 35S-transgenic and wild-type, younger leaves stomatal counts. The Ho was 

not rejected (p > 0.05), indicating that stomatal density differences were not statistically significant. 

Figure 39.  RT-PCR of KAT2 transgenic and wild-type Arabidopsis RNA extractions.  The NADP-ME 

gene transcript was detected in all transgenic whole leaf samples at approximately 700 bp (Lanes 2 to 

5).  The transcript was not detected in the negative control, wild-type Arabidopsis (Lane 1).  Lane 1, 

wild-type (negative control).  Lane 2, transgenic line 1.  Lane 3, transgenic line 2.  Lane 4, transgenic 

line 3.  Lane 5, transgenic line 6.  
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     Analysis of 35S Arabidopsis whole leaf RNA extractions indicated that the gene was 

successfully transcribed in transgenic lines 35S-1, 35S-3, and 35S-4 (Fig. 40A, Lanes 2 

to 4).  However, the gene transcript was not present in the wild-type (negative control) 

RNA extraction (Fig. 40A, Lane 1).  An additional negative control, to control for DNA 

contamination, with no reverse transcriptase was included, which indicated a lack of 

genomic DNA contamination of the RNA preparation (Fig. 40B, Lanes 1 to 4). 

 

Figure 40.  RT-PCR of 35S transgenic and wild-type Arabidopsis RNA extractions.  A,  The NADP-

ME gene transcript was detected in all transgenic whole leaf samples at approximately 700 bp (Lanes 2 

to 4).  The transcript was not detected in the negative control, wild-type Arabidopsis (Lane 1).  Lane 1, 

wild-type (negative control).  Lane 2, transgenic line 1.  Lane 3, transgenic line 3.  Lane 4, transgenic 

line 4.  B,  No reverse transcriptase control.  The transcript was not detected in either wild-type or 

transgenic Arabidopsis RNA extractions (Lanes 1 to 4).  Lane 1, wild-type.  Lane 2, transgenic line 1.  

Lane 3, transgenic line 3.  Lane 4, transgenic line 4. 
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Protein Quantification 

     After extracting protein from wild-type and transgenic 35S and KAT2 Arabidopsis, 

the total protein concentration was determined by using a BSA standard curve with a 

serial dilution of 0.1to 2.5 mg/mL BSA (Figure 41).  This was used to determine the 

quantity of protein loaded for SDS-PAGE. 

      

 

SDS-PAGE 

     A primary antibody directed against the his-tagged NADP-ME was utilized to provide 

transgene expression evidence.  SDS-PAGE was first used to characterize whole leaf and 

GCP protein extractions based on molecular size.  The positive control was a purified 72 

kDa NADP-ME with a C-terminal his tag and an N-terminal his- thioredoxin tag (109 

amino acids, Novagen, Madison, WI).  The negative controls included both whole leaf 

and GCP extractions from wild-type Arabidopsis.  SDS-PAGE separated GCP protein 

extractions from KAT2 transgenic lines 3 and 6 and empty vector line A and whole leaf 

Figure 41.  BSA standard curve generated by a serial dilution of 0.1 to 2.5 mg/mL BSA.  The y-axis 

represents the absorbance at 450nm, while the x-axis indicates the protein concentration. 
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protein extractions from KAT2-transgenic line 3 and 35S-transgenic line 1 (Fig. 42).  

NADP-ME is approximately 62 kDa (Edward et al., 1992).  The positive control was 

detected at approximately 72 kDa (Fig. Z).  Lanes 2 (negative control: wild-type 

Arabidopsis GCP), 3 (KAT2 transgenic line 3 GCP), 4 (KAT2 empty vector line A 

GCP), and 5 (KAT2 transgenic line 6 GCP) indicated no protein within the expected size 

for NADP-ME(Fig. Z).  The whole leaf extracts indicated, in lanes 6 (negative control: 

wild-type Arabidopsis whole leaf), 7 (KAT2 transgenic line 3 whole leaf) and 8 (35S 

transgenic line 1 whole leaf), the presence of a high concentration of protein at 

approximately 55 kDa.  It was not NADP-ME because bands appeared in the negative 

control, lane 6, and the transgenic lines, lanes 7 to 8 (Fig. 42).  Instead, that distinctive 

band was the smaller subunit of RuBisCo, with a molecular weight of 55 kDa.  RuBisCo 

saturated the whole leaf samples, while the GCP samples did not have RuBisCo. 
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Immunoblotting/Western Blot 

     After separating the proteins by SDS-PAGE, they were electro-blotted onto a 

nitrocellulose membrane, which was then exposed to the anti-his primary antibody.  The 

positive control was a purified 72 kDa, NADP-ME with a C-terminal his tag and a N-

terminal his-trx tag.  The negative controls included both whole leaf and GCP extractions 

from wild-type Arabidopsis.  Samples analyzed included GCP protein extractions from 

KAT2 transgenic lines 3 and 6 and empty vector line A and whole leaf protein 

extractions from KAT2 transgenic line 3 and 35S transgenic line 1 (Fig. 43).  NADP-ME 

is approximately 62 kDa.  The positive control was detected at approximately 72 kDa 

Figure 42.  Transgenic KAT2 and 35S whole leaf and GCP protein extractions analyzed by a 

Coomassie Fluor Orange stained SDS-PAGE protein gel.  m, Protein marker.  Lane 1, 2.25 !g positive 

control: 72 kDA purified NADP-ME with a C-terminal his tag and a N-terminal his-trx tag.  Lane 2, 10 

!g negative control: wild-type Arabidopsis GCP.  Lane 3, 10 !g KAT2 transgenic line 3 GCP.  Lane 4, 

10 !g KAT2 empty vector line A GCP.  Lane 5, 10 !g KAT2 transgenic line 6 GCP.  Lane 6, 10 !g 

negative control: wild-type Arabidopsis whole leaf.  Lane 7, 10 !g KAT2 transgenic line 3 whole leaf.  

Lane 8, 10 !g 35S transgenic line 1 whole leaf.  NADP-ME is approximately 62 kDa. 
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(Fig. 43).  Lanes 2 to 5 (Fig. 43) indicated no protein within the expected size for NADP-

ME.  The primary antibody detected a protein at approximately 55 kDa for the whole leaf 

protein extracts, lanes 6 to 8 (Fig. 43).  This band, however, did not represent NADP-ME 

since this band also appeared in the negative control, lane 6 (Fig. 43).  Instead, this 

distinctive band may be the smaller subunit of RuBisCo, which has a molecular weight of 

55 kDa.  Thus, the primary antibody appeared to cross-react with RuBisCo (Fig. 43, 

Lanes 6 to 8).    

 

 

 

 

Figure 43.  Western blot of KAT2 and 35S extracted proteins.  Transgenic KAT2 and 35S whole leaf 
(from 34-d-old plants) and GCP (from 70-d-old plants) protein extractions analyzed by a western blot.  

Lane 1, positive control: 72 kDA purified NADP-ME with a C-terminal his tag and a N-terminal his-trx 

tag.  Lane 2, negative control: wild-type Arabidopsis GCP.  Lane 3, KAT2 transgenic line 3 GCP.  Lane 

4, KAT2 empty vector line A GCP.  Lane 5, KAT2 transgenic line 6 GCP.  Lane 6, positive control: 

wild-type Arabidopsis whole leaf.  Lane 7, KAT2 transgenic line 3 whole leaf.  Lane 8, 35S transgenic 

line 1 whole leaf. m, his-tagged protein marker.  NADP-ME is approximately 62 kDa.  The primary 

antibody cross-reacted with the smaller subunit of RuBisCo, which is 55 kDa, lanes 6, 7, and 8.    
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Determination of the SDS-PAGE and Western Blot Limit of Detection 

      The limit of detection of the immunoblotting procedure was determined to be less 

than 250 ng of the purified NADP-ME control, since this quantity was not visible on the 

stained SDS-PAGE gel, whereas it was visible on the stained western blot (Fig. 44). 

 

 

NADP-ME Detection by Tissue Blot Assay 

     The NADP-ME tissue blot assay revealed the presence of active NADP-ME in 

transgenic and wild-type Arabidopsis whole leaf protein extractions.  The positive 

control, purified NADP-ME, (Fig. 45, b) indicated active enzyme because it catalyzed the 

formation of blue precipitate (reduced NBT).  The wild-type contained NADP-ME 

activity, as expected, because this enzyme is extensively found throughout nature (Fig. 

45, a).  The transgenic lines also indicated enzymatic activity (Fig. 45, c to e).  The 

negative control, boiled wild-type, had no visualization (not shown). 

Figure 44.  Limit of detection for the immunobloting procedure.  Western blot (top) and stained SDS-

PAGE gel (bottom) indicating a concentration gradient of purified His-tagged NADP-ME control to 

determine limit of detection.  Limit of detection of the system was determined to be less than 250 ng, 

although this quantity was not visible on the gel, it was on the blot. 
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NADP-ME Specific Activity Measurement 

     The specific activity of NADP-ME extracted from KAT2 and 35S transgenic plants 

were measured against their BSA standard curves, Fig. 46 and Fig. 47, respectively, after 

determining the total protein concentration in the extracts. 

 

Figure 45.  NADP-ME tissue assay blot of wild-type and transgenic Arabidopsis whole leaf protein 

extractions.  a to e, whole leaf wild-type, purified NADP-ME (positive control), whole leaf 35S 

transgenic line 3, whole leaf KAT2 transgenic line 1, and whole leaf KAT2 transgenic line 6.  Not 

shown: negative control, boiled WT protein extraction with no NADP-ME activity.  All blotted samples 

indicated active NADP-ME, shown by the formation of blue precipitant (reduced NBT).  Wild-type 

indicated NADP-ME activity, as expected because this enzyme is ubiquitous (Fig. 1, a).   

Figure 46.  BSA standard curve for KAT2 transgenic plant extracted protein for spectrophotometric 

assay.  The curve was generated by a serial dilution of 0.1 to 2.5 mg/mL BSA.  The y-axis represents 

the absorbance at 450nm, while the x-axis indicates the protein amount. 
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The equations from the BSA standard curves were used to determine the total protein in 

the extract.  The specific activity of ME was calculated by utilizing the following 

equation: 

(("A 340
ME

/min)- ("A340 
bckgnd

/min)) * (1mol NADPH/6270 OD.1.cm) * (1 cm/1) * (1*10 

-3
 L/1) * (1mL/x mg protein) * (1/0.02 mL) * (10

6
 !mol/1 mol) 

where the 1*10 
-3

 L/1 is the assay volume 1 mL and the 1/0.02 mL is the 20 !L sample 

used in the assay mix.   

     For the KAT2 transgenic plants, all transgenic and empty vector lines indicated little 

difference in enzyme activity relative to wild-type (Fig. 48).  To assess whether statistical 

differences existed among the transgenic lines and wild-type, ANOVA was performed 

and its assumptions were confirmed.  A scatter plot of the data indicated a consistent and 

reasonable distribution of the data (Fig. 49).  To meet the first assumption, random 

samples were harvested.  The populations indicated a reasonably normal distribution, 

therefore meeting the second assumption for ANOVA (Fig. 50).  The populations 

Figure 47.  BSA standard curve for 35S transgenic plant extracted protein for spectrophotometric 

assay.  The curve was generated by a serial dilution of 0.1-2.5 mg/mL BSA.  The y-axis represents the 

absorbance at 450nm, while the x-axis indicates the protein amount. 
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indicated relatively equal variances, hence meeting the third assumption for ANOVA 

(Fig. 50). 
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Figure 49.  KAT2-transgenic Arabidopsis scatter plot of NADP-ME activity measurement data.  Y-axis 

indicates enzyme specific activity x 1000.  WT = Wild-type, L1-L6 = KAT2-Transgenic line, LA-LD = 

KAT2-Empty Vector Line.  

Figure 48.  Enzyme activity in 16-d-old KAT2-transgenic and wild-type Arabidopsis.  There was not a 

statistically significant difference in enzyme activity between transgenic and wild-type plants.  Wild-

type (WT), PT1-PT6 (KAT2-transgenic lines 1-6), PTA-PTD (KAT2-empty-vector lines A-D). ).  

Standard error is reported and n=3 for each line except wild-type, n=2. 
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With the assumptions confirmed, the ANOVA output was considered robust, with n = 26.  

Figure 51 presents the results of ANOVA, which indicated that the calculated p > " = 

0.05; therefore, the Ho was not rejected.  ANOVA indicated that there was not a statistical 

difference among the groups.  A pair-wise comparison was not necessary to determine 

which lines had a statistically significant difference relative to wild-type.  Therefore, the 

null hypothesis (Ho: Transgenic enzyme activity = Wild-type enzyme activity) was not 

rejected for all lines.  KAT2 transgenic plants did not indicate a statistically significant 

elevation in NADP-ME activity relative to wild-type Arabidopsis. 

 

 

 

 

Figure 50.   Confirmation of ANOVA assumptions for KAT2 enzyme activity.  A,  Probability plot of 

the enzyme activity data form all KAT2-transgenic lines and wild-type Arabidopsis populations.  This 

indicated a relatively normal population distribution.  B,  Plot assessed variance among KAT2-

transgenic lines and wild-type Arabidopsis populations.  This indicated that the populations had 

relatively equal variances. 
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Source 
Sum-of-
Squares 

df Mean-Square F-ratio P 

LINE$ 
13.818 8 1.727 1.174 0.369 

Error 
25.019 17 1.472 

  

 

      For the 35S transgenic plants, all transgenic and empty vector lines indicated elevated 

enzyme activity relative to wild-type (Fig.52).  To assess whether statistical differences 

existed among the transgenic lines and wild-type, ANOVA was performed and its 

assumptions were confirmed.  A scatter plot of the data indicated a consistent and 

reasonable distribution of the data (Fig. 53).  To meet the first assumption, random 

samples were harvested.  The populations indicated a reasonably normal distribution, 

therefore meeting the second assumption for ANOVA (Fig. 54).  The populations 

indicated relatively equal variances, hence meeting the third assumption for ANOVA 

(Fig. 54). 

 

 

Figure 51.  ANOVA output for the KAT2-transgenic and wild-type enzyme activity measurements. 

The Ho was not rejected (p > 0.05), indicating that enzyme activity differences were not statistically 

significant. 
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Figure 53.  35S-transgenic Arabidopsis scatter plot of NADP-ME activity measurement data.  Y-axis 

indicates enzyme specific activity x 1000.  WT = Wild-type, L1-L4 = 35S-Transgenic line, LA-LC = 

35S-Empty Vector Line.  

Figure 52.  Enzyme activity in 29-d-old 35S-transgenic and wild-type Arabidopsis.  There was a 

statistically significant difference among transgenic lines 1 and 3 relative to wild-type enzyme activity.  

Wild-type (WT), CN1-CN4 (35S-transgenic lines 1-4), CN A- CNC (35S-empty-vector lines A-C).  

Standard error is reported and n=2 for each line and wild-type. 
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With the assumptions confirmed, the ANOVA output was considered robust, with n = 16.  

Figure 55 presents the results of ANOVA, which indicated that the calculated p < " = 

0.05; therefore, the Ho is rejected (p <  0.001).  ANOVA indicated that there was a 

statistical difference among the groups, but a pair-wise comparison was necessary to 

determine which lines had a statistically significant difference relative to wild-type.  

Sourc
e 

Sum-of-
Squares 

df 
Mean-

Square 
F-ratio P 

LINE$ 
 

1627.48887 7 
 

232.49841 
 

10.54274 
 

0.00175 

Error 
 

176.42348 8 
 

22.05294 
  

 

 

Figure 54.  Confirmation of ANOVA assumptions for 35S enzyme activity.  A,  Probability plot of the 

enzyme activity data form all 35S-transgenic lines and wild-type Arabidopsis populations.  This 

indicated a relatively normal population distribution.  B,  Plot assessed variance among 35S-transgenic 

lines and wild-type Arabidopsis populations.  This indicated that the populations had relatively equal 

variances. 

  

Figure 55.  ANOVA output for the 35S-transgenic and wild-type enzyme activity measurements. The 

Ho was rejected (p < 0.001), indicating that there were statistically significant enzyme activity 

differences among transgenic line relative to wild-type. 
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     Dunnett’s pair-wise comparison test indicated which lines exhibit a statistically 

significant difference relative to the wild-type (Fig. 56).  The wild-type was set as the 

control and significance was detected in one direction, i.e. enzyme activity greater than 

WT.  Enzyme activity measurements for 35S-transgenic line 1 (p < 0.01) and 35S-

transgenic line 3 (p < 0.01) were statistically significant relative to the wild-type (Fig. 

56).  As a result, the alternative hypothesis (Ha: Transgenic enzyme activity > Wild-type 

enzyme activity) was not rejected for 35S-transgenic lines 1 and 3.  The null hypothesis 

(Ho: Transgenic enzyme activity = Wild-type enzyme activity) was not rejected for all 

other lines.  35S transgenic plants did indicate a statistically significant elevation in 

NADP-ME activity relative to wild-type Arabidopsis. 

Dunnett one- sided test. 
  
Matrix of pairwise comparison probabilities: 
 

Transgenic Line       P-value 

 
L1 

 0.0036 

 
L2 

 0.5000 

 
L3 

 0.0020 

 
L4 

 0.1354 

 
LA 

 0.5000 

 
LB 

 0.5000 

 
LC 

 0.4999 

 
WT 

 1.0000 

 

 

  

Figure 56.  Dunnett’s pair wise comparison test results for 35S-transgenic and wild-type Arabidopsis. 

Enzyme activity measurements for 35S-transgenic line 1 (p < 0.01) and 35S-transgenic line 3 (p < 0.01) 

were significantly different relative to wild-type.  
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   DISCUSSION 

     The overall goal for this study was to analyze the effects of over-expressing maize 

NADP-ME in transgenic Arabidopsis with either a KAT2 promoter directing expression 

in guard cells or a 35S promoter driving constitutive expression.  This study was built on 

previous research indicating altered stomatal function in transgenic tobacco with an 

engineered constitutive expression of maize NADP-ME (Laporte et al., 2002).  A main 

objective was to observe the effects of different NADP-ME expression levels and 

patterns caused by employing two different promoter-driven constructs.  Based on 

preliminary SEM data, it was hypothesized that elevated, KAT2 directed expression of 

maize NADP-ME activity would not affect stomatal morphology but may elevate 

stomatal density by altering stomatal biochemistry.  The control of stomatal density by 

malate or NADP-ME may represent a putative approach for influencing stomatal 

development.  To expand the KAT2 transgenic plant analysis, transgenic 35S plants were 

also studied to determine how different expression levels and patterns affect stomatal 

density.  A second critical aspect of this study was to provide transgene expression and 

enzyme activity evidence via western blots, tissue blot assays, and spectrophotometric 

assays.  Ultimately, the observed phenotype data may be correlated to the biochemical 

data to indicate malate as the biological marker influencing stomatal movements and 

development. 

     The SEM investigation indicated that over-expressing NADP-ME did not affect 

stomatal morphology in either 35S or KAT2 transgenic Arabidopsis.  However, analysis 

of fully expanded, older KAT2 leaves indicated that there was a statistically significant 

stomatal density elevation relative to wild-type Arabidopsis (Fig. 22).  These data 
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indicated that elevated NADP-ME expression in guard cells might influence stomatal 

density.  The mechanism is unknown, but considering the elevated activity of NADP-ME 

or the reduced malate concentration, either may act as a biological signal in the vast 

stomatal development pathway.  Guard cells are believed to sense CO2 levels because 

they optimize water use efficiency by gauging mesophyll CO2 requirements while 

monitoring water status (Vavasseur and Raghavendra, 2005).  Previous research indicated 

that CO2 levels influence both stomatal movements and stomatal development.  Malate, 

coupled with CO2, has been suggested to influence stomatal movements, as described by 

the “malate hypothesis,” which proposed that heightened CO2 levels signal the release of 

malate from guard and mesophyll cells.  Malate then triggers Cl
-
 and malate-permeable 

anion channels, causing anion release.  Guard cell cation release follows, eliciting a loss 

in turgor, and subsequent stomatal closure (Hedrich et al., 2001).  In addition, elevated 

CO2 levels in Arabidopsis decreased stomatal density (Teng et al., 2006). Two of the 

possible explanations for my observations are that increased NADP-ME activity in the 

transgenic plants may have caused an internal CO2 level surge overloading CO2 sensors, 

inducing increased stomatal density, or may have reduced the internal malate 

concentration, inducing increased stomatal density.  Either proposed mechanism may 

suggest malate as a biological signal for CO2 sensing and stomatal development or the 

activities of NADP-ME may influence stomatal development.  Further studies that 

measure malate and/or internal CO2 concentrations in transgenic plants and compare 

those concentrations to stomatal densities may indicate a biological correlation. 

    However, analysis of fully expanded, younger KAT2 leaves indicated that there was 

not a statistically significant stomatal density difference relative to wild-type Arabidopsis 
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(Fig. 31).  These data seem to contradict the above data, but the leaves produced early in 

plant development may have experienced a surge in internal CO2 concentrations due to 

elevated NADP-ME activity and may have signaled for reduced stomatal density in 

developing leaves.  Previous research demonstrated that mature leaves measure CO2 

levels by an unknown mechanism and broadcast a stomatal developmental signal 

directing development in young leaves (Lake et al., 2001).  In addition, elevated CO2 

levels in Arabidopsis decreased stomatal density (Teng et al., 2006).    

     These results may be also due to different plant physiology during late-plant 

development versus early-plant development or the reduced activity of the KAT2 

promoter during late-plant development.  Pilot et al. (2001) previously detected KAT2 

activity predominant in guard cells and minor veins in mature leaves.  However, in 

developing leaves, KAT2 activity was detected in all cells, and in hypocotyls, activity 

was detected only in guard cells (Pilot et al., 2001).  Perhaps the leaves utilized were not 

truly mature but still developing, and the localized guard cell NADP-ME expression was 

a prerequisite for the observed stomatal density elevation.  

     In addition, stomatal counts on fully expanded 35S transgenic younger and older 

leaves indicated that there was not a statistically significant stomatal density difference 

relative to wild-type Arabidopsis (Fig. 27 and Fig. 35).  This may indicate a gradient 

effect in regards to NADP-ME expression patterns.  Possibly guard-cell localized and 

elevated NADP-ME expression may influence stomatal development.  Future 

experiments may include the analysis of more individuals to increase the sample size and 

NADP-ME knockout transgenic plants to determine the affect on stomatal density. 
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     A recent, preliminary study created and studied phosphoenol pyruvate carboxylase 

(PEPC) deficient transgenic Amaranthus edulis.  PEPC utilizes bicarbonate to catalyze 

the beta-carboxylation of phosphoenolpyruvate (PEP) to oxaloacetate, which is 

enzymatically converted to malate.  Their results indicated that transgenic plants with 

severed PEPC activity and thus a low malate concentration resulted in elevated stomatal 

density.  These results are consistent with the present study’s results; both indicate 

increased stomatal density when malate concentration is reduced (Susanne von 

Caemmerer, personal communication). 

     The choice of preservative indicated that fixing specimens in 70% ethanol worked 

best.  The 2.5% paraformaldehyde and 5% glutaraldehyde in 0.05 M phosphate buffer 

(pH 7.0) preservative did not fix the tissue well, presumably because the buffer 

osmolarity did not match the specimen’s osmolarity.  It appears that ethanol fixed the 

tissue much better than conventional methods. As a result, this method also greatly 

improved the speed and efficiency of preserving Arabidopsis specimens while limiting 

preservative artifacts. 

     The RT-PCR confirmed the presence of the maize ME gene transcript in both KAT2 

and 35S whole leaf plant samples (Fig. 39 and 40).  The NADP-ME enzyme assays, 

measuring the formation of NADPH, indicated increased enzyme activity in 2 35S-

transgenic lines relative to wild-type when the absorbance was measured at 340 nm.  

Analysis of the KAT2 plants indicated an elevation in enzyme activity relative to wild-

type; however, the difference was not statistically significant (Fig. 48).  Enzyme activity 

may be difficult to detect because guard cells make up a very small percentage of the 

total leaf volume.  As a result, additional assays must be conducted on a larger sample 
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size. The enzyme assays on the 35S plants indicated a statistically significant (p < 0.05) 

increase in enzyme activity relative to wild-type in two transgenic lines (Fig. 52).  Since 

the 35S promoter drives constitutive expression, the activity is much more easily 

detected.  Future studies may include determining if there is a correlation between 

NADP-ME activity/malate concentration and stomatal density.  These preliminary data, 

coupled with the RT-PCR data, possibly indicate that the transcribed ME gene is active in 

the transgenic plants, particularly in the 35S transgenic plants.  

     The western blot investigation failed to detect the presence of the enzyme in both 35S 

and KAT2 protein extractions (Fig. 43). There may be a problem with the accessibility of 

the tag to the primary antibody when it folds in the plant.  In addition, the primary 

antibody did not detect NADP-ME in protein extracted from GCP samples.  The limit of 

detection (Fig. 44) was determined to be less than 250 ng, making the system quite 

sensitive.  Future work includes addressing this methodological issue by removing 

RuBisCo from the extracted protein since it cross-reacted with the primary antibody or 

utilizing a different anti-penta-histidine antibody.  This methodological issue fails to 

provide robust evidence to support the hypothesis that NADP-ME may influence 

stomatal density.  A crucial requirement to support the hypothesis that NADP-ME/malate 

may influence stomatal development is to provide robust enzyme localization evidence 

for the transgenic plants indicating elevated, guard cell specific NADP-ME expression. 

     The results from the tissue blot assay (Fig. 45) indicated NADP-ME activity in protein 

extracted from 35S and KAT2 transgenic plants and wild-type Arabidopsis.  Detection of 

activity in wild-type is expected because the enzyme is ubiquitous throughout nature.  

This approach may be ineffective in this situation because it lacks high specificity to the 
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maize ME.  To circumvent this, GCPs may be utilized from both wild-type and KAT2 

transgenic samples because of the localized expression to provide transgene expression 

evidence. 

     Future work includes a detailed phenotype analysis of the transgenic plants.  A 

detailed gas exchange analysis is required in order to assess the hypothesis regarding 

over-expression of NADP-ME and its effects upon stomatal conductance and stomatal 

development.  It is important to determine how stomatal conductance is affected as 

stomatal density increases.  Stomatal conductance measurements were previously done 

on NADP-ME transformed tobacco plants (Laporte et al., 2002), and the same protocol 

was followed for the transgenic Arabidopsis plants.  In brief, stomatal conductance was 

measured with a LiCor 6400 Photosynthesis System (LiCor Corp., Lincoln, Nebraska), 

equipped with a CO2 mixer and integrated LED light.  This instrument measures absolute 

concentrations of both CO2 and H20 in the Arabidopsis chamber by infrared gas analyzer 

sensors.  Preliminary data from this ongoing experiment indicated that there is no 

difference in stomatal conductance relative to wild-type for the KAT2 and 35S transgenic 

plants.  Even when the stomatal density was elevated, as in the KAT2 plants, there was 

no detected change in stomatal conductance relative to wild-type.  Considering the small 

sample size, further analysis is required (Christine Notis, personal communication).   

     The main objective of this study was to continue to analyze and determine the effects 

of over-expressing maize NADP-ME either in guard cells or constitutively.  This study 

suggests additional analyses to determine whether over-expressing NADP-ME in guard 

cells influences stomatal development.  Preliminary enzyme transgene expression and 

enzyme activity evidence was presented, indicating that the maize ME gene was 
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transcribed and is active in 2 transgenic 35S plant lines.  Suggested future studies include 

additional stomatal counts, the effect of NADP-ME inhibition, measuring malate 

concentrations and determining if they correlate with stomatal density, the need for more 

robust enzyme localization evidence, and further phenotype analysis. 

    The results of this research may be used to improve water use efficiency of crop plants 

in order to increase agricultural yields.  This may be accomplished by manipulating 

stomatal biochemistry and/or stomatal development.  Altering NADP-ME expression 

levels may usher in new plant biotechnologies to solve the world’s growing energy and 

food needs. 
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