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Abstract 

Velocardiofacial Syndrome (VCFS) is a genetic disorder characterized by numerous 

physiological and psychological symptoms.  Little is known regarding the neuropsychological 

and hormonal substrates and the social functioning in individuals with VCFS.  There is some 

evidence to suggest that the stress hormone cortisol contributes to social, cognitive, and 

communication deficits in related populations (Corbett, Schupp, Levine, & Mendoza, 2009).  

This study investigated the role that cortisol has on the social and cognitive impairments 

observed in children with VCFS.  To this end, 11 children with confirmed VCFS were assessed 

for baseline cortisol levels and received neuropsychological testing that assessed attention, 

memory, language, and social functioning.  These results were compared with the results from 

11 controls that were matched according to age and sex.  It was hypothesized that children with 

VCFS would have significantly higher baseline cortisol levels relative to control children.  

Additionally, these cortisol levels would be negatively correlated with measures of social 

functioning as measured by CBCL, ABAS-II, and RCMAS-2.  Furthermore, it was hypothesized 

that cortisol levels would be negatively correlated with performance on cognitive tests.  

Specifically, it was hypothesized that cortisol levels in children with VCFS would be negatively 

correlated with tests of attention and memory as measured by the WRAML-2.  Children with 

VCFS had significantly higher cortisol levels than control counterparts; F(1, 20) = 5.436, p < 

.05.  Cortisol levels in VCFS were not related to measures of social functioning or measures of 

cognitive functioning.  That said, a significant negative correlation was observed between the 

General Memory and Attention/Concentration indices of the WRAML-2 and cortisol 

concentrations in the control population:  r(11) = -.78, p <.05; r (11) = -.62, p < .05.  

Additionally, the level of cortisol in control individuals was negatively correlated to the social 
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competency scale of the CBCL; r(11) = -.64, p < .05. These results support the role of 

neurohormonal substrates such as cortisol in social impairment and cognitive functioning in 

neurotypical children.  More generally, these data provide evidence of a possible causal 

mechanism that underlies social impairments in other stress disorders known to involve cortisol 

dysregulation.  Furthermore, these data add to the understanding of the interaction between 

stress, cortisol, and cognition are indicative of possible treatment targets for cognitive and social 

interventions.         
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Introduction 

 Velocardiofacial syndrome (VCFS) is a genetic disorder that has a number of 

physiological and psychological symptoms.  VCFS is one of the most common genetic disorders 

and one of the most common causes of learning disability and mild mental retardation (Eliez et 

al., 2001; Gothelf & Lombroso, 2001).  Though the physiological symptoms associated with 

VCFS have been thoroughly studied, there is much to be understood with regard to the 

psychological features of the disorder.  In particular, the neurochemical substrates underlying 

many of the social impairments expressed in these individuals have yet to be explored.  Further 

examination of the neural substrates of social functioning in this population may provide insight 

into the brain-behavior relationships of social cognition.  A review of the specific impairments 

associated with VCFS with an emphasis on their neuroanatomical and neurochemical substrates 

will be presented along with the role that cortisol plays in social impairment and 

psychopathology in other disorders.  Specifically, this introduction will review the history of 

VCFS, the prevalence of the disorder, and the diagnostic tests used to identify the disorder.  

Furthermore, the physical, psychiatric, cognitive, and social deficits will be described along with 

the neurological, neurochemical, and neurohormonal anomalies associated with these symptoms.  

Finally, an experiment will be described in order to address a significant void in the literature 

regarding the etiology of social and cognitive impairments in this population. 

 History of VCFS Discovery 

Velocardiofacial Syndrome was first described by Kirkpatrick and DiGeorge in 1968 as a 

constellation of immunologic deficiencies.  It was renamed Shprintzen Syndrome following a re-

categorization of the common presenting symptoms (Shprintzen et al., 1978).  Shprintzen (1978) 
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described palate anomalies (“velo”), congenital cardiovascular defects (“cardio”), and mild facial 

dysmorphism (“facial”) as characteristic of individuals with this particular disorder.  Despite the 

consistent reemergence of the aforementioned symptoms, there is a great deal of symptom 

heterogeneity expressed in these individuals, which made it difficult to conclude that these 

individuals actually had the same disorder (Shprintzen et al., 1978).  In order to definitively 

categorize these seemingly independent symptoms as being part of a single disorder, it was 

necessary to link the immunologic deficiencies noted by Kirkpatrick and the symptoms noted by 

Shprintzen with a common etiology.  It was discovered that all of the individuals expressing 

some combination of the symptoms described by Kirkpatrick and Shprintzen had a microdeletion 

in the long arm of chromosome 22 at band 22q11.2 (Kelly et al., 1993).  This finding allowed 

researchers to definitively conclude that the multitude of symptoms were part of the same 

syndrome.  As research has progressed, the number of diagnostic symptoms has increased.  At 

present, there are over 180 phenotypic characteristics of VCFS including congenital 

abnormalities, learning disabilities, and psychiatric disturbances (Gothelf, 2007).  This has 

prompted researchers to begin using the title 22q11.2 deletion syndrome as opposed to VCFS, 

though the terms are still used interchangeably.   

Prevalence and Diagnostic Tests 

 Despite consistent agreement among practitioners regarding the constellation of 

symptoms associated with VCFS, the exact prevalence of VCFS is difficult to ascertain.  

However, the best estimate to date is 1 in 5900 (Botto et al., 2003).  The actual prevalence is in 

all likelihood much higher than this figure (Gothelf, 2007).  Gothelf identifies several reasons for 

the inability to get an accurate prevalence rate.  First, only “at-risk” infants are screened for the 

disorder.  Second, the phenotypic and cognitive symptoms can be quite mild, resulting in a lack 
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of diagnosis or delayed diagnosis.  Third, the heterogeneous symptom presentation often leads 

clinicians to make erroneous diagnoses.  

Despite these barriers to gauging prevalence accurately, recent advances in genetic 

screening have enabled clinicians to determine with great accuracy whether a cluster of 

symptoms found in an individual is due to VCFS.  Using Florescence In Situ Hybridization 

(FISH), clinicians can determine whether a micro-deletion exists on chromosome 22 (Driscoll et 

al., 1993).  As a result, FISH has become the “gold standard” diagnostic test for VCFS.  Though 

the diagnosis of VCFS can be made accurately and reliably, the cost of testing (approximately 

$1000 per test) is a major barrier to expansive infant screening.  Future variants of the FISH test 

are likely to be more cost-effective, which would make widespread infant screening for the 

disorder feasible.  Researchers will then be able to determine with greater accuracy the 

prevalence of the disorder.  Despite difficulties accurately assessing prevalence, the physical 

symptoms associated with VCFS have been extensively examined.   The following section will 

describe the physical anomalies associated with VCFS. 

Common Physical Symptoms Associated with VCFS 

 There are a wide range of physical symptoms associated with VCFS.  These symptoms 

can be grouped into 5 categories.  The first symptom category is congenital cardiac anomalies.  

These anomalies occur in nearly 75% of all individuals with VCFS and include tetralogy of 

fallot, ventricular septal defects, and truncus arteriosus (Digilio et al., 2005).  The second 

symptom category is abnormal faces (Gothelf, 2007).  These facial anomalies are common in 

individuals with VCFS and include hypoplastic alae nasi, a prominent nasal root, elongation of 

the face with cheek flattening, narrow-set eyes, a small mouth, and a retruded chin.  Many times 

these are the most prominent diagnostic features of VCFS.  The third symptom category is 
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palatal abnormalities, which occur in approximately 75% of individuals with VCFS (Kirscher, 

2005).  Specifically, these anomalies include a defective palate and hypernasal speech.  The 

fourth symptom category includes T-cell immunodeficiency (Gothelf, 2007).  According to 

Kirkpatrick and DiGeorge (1968), this deficiency results from a hypoplastic parathyroid and 

thymus.  The fifth symptom category consists of a heterogeneous set of other physical symptoms 

that covary with the disorder such as growth retardation, juvenile rheumatoid arthritis, and 

urinary tract abnormalities (Gothelf, 2005).   

 Etiological analysis of these symptoms has occurred on multiple levels.  At the 

embryonic level, most of the symptoms observed appear to result from impaired migration of the 

neural crest cells (Prescott et al., 2005).  These cells are the prelude to the formation of the 

mesenchyme of the third and fourth pharyngeal arches.  From these arches emerge the face, cleft, 

thymus, parathyroid gland, and cardiovascular system.  Thus, interference with the migration of 

the crest cells can result in a deleterious cascade in which numerous biological systems are 

impacted.  Furthermore, this embryonic explanation accounts for the symptom heterogeneity 

observed in individuals with VCFS.  That is, the level of impairment in the neural crest cell 

migration dictates the range of biological systems affected and the severity with which the 

pathology presents.  

 Another level of etiological analysis is genetic (Gothelf, 2007).  One theory regarding the 

genetic etiology of VCFS is haploinsufficiency.  Haploinsufficiency occurs when only a single 

functional copy of an essential gene is produced, resulting in insufficient gene product.  Funke, 

Pandita, and Morrow (2001) noted that haploinsufficiency of one or more of a combination of 

genes may account for a multitude of the physical and psychiatric symptoms associated with 

VCFS (Funke, Pandita, & Morrow, 2001).  In support of this, McDermid and Morrow (2002) 
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performed a knockout mutation for the TBX1 gene (McDermid & Morrow, 2002).   TBX1 codes 

for a protein that is expressed in great quantity throughout numerous brain regions (Paylor et al., 

2006).  Compared to control mice, TBX1 “knockout” mice experienced numerous 

developmental abnormalities.  Many of these abnormalities were correlates of the pathologies 

associated with VCFS.  The deficits included cardiac abnormalities, abnormal facial structures, 

deformed vertebrae, and cleft palate.  Thus, it is conceivable that VCFS might be related to 

genetic abnormalities of the TBX1 gene. Furthermore, the variable expression of the TBX1 

protein explains the wide range of symptom heterogeneity in VCFS.  

 To conclude, there are two prominent theories regarding the etiology of impairment in 

this population.  The first is the embryonic theory, which incorporates the concept of neural crest 

migration.  The second theory is genetic, which suggests that limited protein expression from 

TBX1 mediates the symptomatology of VCFS.  Both of these etiological theories account for the 

numerous symptoms associated with VCFS and the heterogeneity of symptom expression.  

However, more research is needed to determine how these two causal factors interact.       

Psychiatric Symptoms of VCFS throughout the Lifespan 

In addition to many physical disorders that are observed in individuals with VCFS, there are 

numerous comorbid psychiatric disorders (Arnold, Siegel-Bartelt, Cytrynbaum, Teshima, & 

Schachar, 2001; Feinstein, Eliez, Blasey, & Reiss, 2002; Fine et al., 2005; Gothelf et al., 2003; 

Gothelf et al., 2004; Lachman et al., 1996; Shprintzen, 2000).  These psychiatric disturbances 

emerge at different times throughout the lifespan.  For example, during childhood, one 

psychiatric disturbance in individuals with VCFS is ADHD (Arnold et al., 2001; Feinstein et al., 

2002; Lajiness-O'Neill et al., 2006).  This is one of the most common psychiatric correlates, with 

a prevalence rate of about 35% to 46% in individuals with VCFS.  In addition to ADHD, a 
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significant proportion of children with VCFS present with non-verbal learning disorders 

(Lajiness-O'Neill et al., 2006).  Anxiety disorders are also commonly diagnosed in children with 

VCFS (Gothelf et al., 2003; Prinzie et al., 2002).  Specifically, VCFS children present with 

generalized anxiety disorder, separation anxiety disorder, obsessive compulsive disorder, and 

specific phobias.  Affective disorders are also often comorbid with VCFS (Arnold et al., 2001; 

Feinstein et al., 2002).  Arnold et al. (2001) noted high rates of depression among childhood 

samples of VCFS individuals.  Furthermore, bipolar disorder was found in 66% of children with 

VCFS who demonstrated affective symptomatology (Papolos, Faedda, Veit, et al., 1996).  Last, 

children with VCFS have a high prevalence rate of pervasive developmental disorders.  For 

example, approximately 14%-45% of children who have VCFS also meet criteria for Autism 

Spectrum Disorder (ASD; Antshel et al., 2007; Fine et al., 2005; Niklasson, Rasmussen, 

Oskarsdottir, & Gillberg, 2001; Vorstman et al., 2006).   

 During late adolescence and throughout adulthood, a different pattern of psychiatric 

symptomatology emerges (Gothelf, 2007).  For example, VCFS adults have much more severe, 

persistent anxiety than that observed in children with VCFS (Gothelf, Feinstein, et al., 2007).  In 

addition, 32% of individuals with VCFS will develop schizophrenia or other psychotic disorders 

during late adolescence or early adulthood.  Having 22q11.2 deletion syndrome is the single 

greatest genetic predictor of the development of schizophrenia (Murphy et al., 1999).  These 

individuals are 25 times more likely to develop schizophrenia than the general population 

(Turner, 1989).  Murphy (2002) noted that the prevalence rate of schizophrenia in individuals 

with VCFS is higher than in children with a schizophrenic parent (Murphy, 2002).  This 

increased risk of schizophrenia and other psychiatric illness has led researchers to conceptualize 

VCFS as a significant genetic diathesis for the development of these disorders.  
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Cognitive Deficits and their Neurological Correlates in Patients with VCFS 

 In addition to the numerous psychiatric illnesses associated with VCFS, there are 

multiple cognitive impairments of note.  For example, individuals with VCFS frequently have a 

Borderline IQ (Swillen et al., 1997).  According to Swillen et al., approximately 25% to 40% 

have an IQ below 70 and meet criteria for Mild Mental Retardation.   

Furthermore, deficits in attention, cognitive flexibility, and working memory are common 

(Gothelf, Furfaro, Penniman, Glover, & Reiss, 2005).  Many of these deficits have been 

associated with impaired executive network efficiency (Sobin et al., 2004).  The specific 

attention deficits can be ascribed to malformations of the head of the caudate nucleus (Sugama et 

al., 2000).  Sugama (2000) noted that patients with VCFS had a larger right head of the caudate 

relative to the left head, whereas controls demonstrated the reverse trend.  Interestingly, this 

same trend has been consistently identified in individuals with ADHD (Castellanos et al., 1994; 

Castellanos et al., 1996; Hynd et al., 1993).  Taken together, these data suggest that this 

particular neuroanatomical anomaly mediates attention and other cognitive deficits in individuals 

with VCFS.   

In addition to malformations of the caudate, it has been hypothesized that because people 

with VCFS have such large volumetric and activation differences in brain structures implicated 

in working memory compared to typically developing people, people with VCFS recruit a novel 

network of brain structures during performance of working memory tasks.  Additionally, studies 

have demonstrated poor performance of tasks of verbal and visuo-spatial working memory by 

individuals with VCFS (Kates et al., 2006; Lajiness-O'Neill et al., 2005).  Kates et al. (2007) 

sought to investigate this aberrant memory performance.  They scanned the brains of 17 children 

and youth with VCFS, 10 of their siblings without the disorder and 10 healthy controls from the 
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wider community using fMRI.  Their experimental design was similar to the commonly used 

Go/NoGo design.  These researchers found no significant differences in reaction time or d-prime, 

a statistic based on a combination of the hit rate and false alarm rate.  However, they found that 

controls activated the right middle and inferior frontal gyri, left and right inferior and superior 

parietal lobules, and left and right occipital lobes to a significantly greater degree than VCFS, 

whereas participants with VCFS activated the left orbitofrontal cortex, right cingulate, and the 

right cuneus and occipital cortex more.  This lends credence to the hypothesis that people with 

VCFS activate a different neural network during working memory tasks than people without the 

disorder.   

Another interesting study examining working memory function in people with VCFS 

used a directed forgetting paradigm (Debbané et al., 2008).  In this method, a series of items are 

presented (e.g., words, pictures), some labeled “to be remembered” and some labeled “to be 

forgotten.”  This selective encoding strategy usually encourages greater encoding efficiency for 

the “to be remembered” items and leads to a directed forgetting effect (DF effect) for the “to be 

forgotten”’ items.  The researchers employed this paradigm and hypothesized that people with 

VCFS would show decreased DF effects, similar to previously obtained results of people with 

schizophrenia.  The experimental groups were 33 individuals with VCFS aged 10-36 years old, 

and a control group of typically developing individuals in the same age range, matched on sex to 

the VCFS group.  Repeated-measures analysis of variance (ANOVA) demonstrated a main effect 

for directed forgetting across groups, as would be expected.  In other words, more “to be 

remembered” items were correctly identified than “to be forgotten items.”  However, there was 

no between-group effect, indicating the participants with VCFS were not significantly less likely 

to correctly identify the “to be remembered” items.  This contradicts their hypothesis and 
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supports a view that people with VCFS are able to selectively process stimuli during encoding at 

a level similar to typically developing individuals, implying that working memory systems are 

not necessarily involved in memory impairments observed in VCFS. 

In conjunction with deficits in attention and working memory, individuals with VCFS 

also display impairments in response inhibition.  This response inhibition has been associated 

with abnormal activation of the parietal cortex (Eliez et al., 2001).  Gothelf et al. (2007) noted 

that individuals with VCFS performed comparably to controls on the Go/No Go response 

inhibition task (Gothelf, Hoeft, et al., 2007).  However, VCFS individuals showed additional 

activation in superior and inferior parietal regions in conjunction with frontal-striatal processes, 

suggesting that more neurocognitive resources were necessary in order to inhibit particular 

responding.  These results, taken together with the observed attentional impairments, may 

account for the high rate of ADHD in individuals with VCFS.   

In addition to response inhibition difficulties, individuals with VCFS also show 

impairment in visuospatial and numerical abilities.  These impairments have been associated 

with structural deficits of the parietal lobe (Eliez et al., 2001; Kates et al., 2004).  Eliez et al. 

(2001) observed increased activation of the left supramarginal gyrus (LSMG) as a function of 

computational difficulty in individuals with VCFS.  No such trend was observed in age-matched 

controls.  The authors concluded that the increased LSMG activation occurred as a result of 

parietal deficits and may contribute to limitations in numerical, mathematical, and spatial 

reasoning abilities in this population and account for the commonly observed NLD profile 

identified by Lajiness-O’Neill et al. (2005).  Moreover, Lajiness-O’Neill et al. (2005) observed 

deficits in visual learning and facial memory in children with VCFS and their sibling controls 

and concluded that this specific cognitive profile may be the result of a disruption in the ventral-
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temporal pathway that occurs independent of the microdeletion itself.  Specific structures 

implicated by Lajiness-O’Neill (2005) that may be impacting memory performance were the 

fusiform gyrus and the parahippocampal/hippocamapal regions.  Given that it is not the presence 

of VCFS alone mediating these specific cognitive deficits in this population, it is possible that 

other factors may contribute to this broader phenotype observed in the siblings of children with 

VCFS.  Additionally, as will be discussed in the section on social processing, deficits in facial 

memory are associated with poor social competence and social skills deficits (Ennis & Whelton, 

1994).  Thus, the pervasive nonverbal memory deficits observed in this population may also 

contribute to the significant social impairment observed in this population.   

In addition to the aforementioned nonverbal memory deficits observed in individuals 

with VCFS, this population also exhibits some verbal working memory deficits (Lajiness-

O'Neill, 2005).  On tests of verbal working memory, children with VCFS performed significantly 

worse than their sibling counterparts.  These data suggest that the verbal working memory 

deficits observed in this population or more closely associated with the unique features of the 

microdeletion as opposed to a broader mechanism.       

To summarize, individuals with VCFS have a number of cognitive deficits.  These 

deficits include attention, working memory, memory, cognitive flexibility, response inhibition, 

visuospatial abilities, numerical processing, and language processing.  Many of these deficits 

have neuroanatomical correlates that may account for poor performance on related tasks.  

Indeed, it is possible that many of these cognitive deficits and their neurological etiology 

contribute directly or indirectly to the many social deficits observed in individuals with VCFS.  

Specifically, it is likely that working memory deficits, language impairment, and verbal and 
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nonverbal learning deficits contribute significantly to social impairment.  These social deficits 

will be the primary focus of the remainder of this introduction. 

Social Impairments Observed in Individuals with VCFS 

 Though the physical symptomatology and genetic features of the disorder have been 

widely studied, there has been little advancement in the understanding of social phenotypes in 

VCFS and other genetic neurodevelopmental disorders (GNDD’s; Gothelf, Feinstein, et al., 

2007).  One reason for this lack of research pertaining to the social deficits of these disorders is 

simply a failure to include assessments of social functioning when conducting research on these 

individuals.   Frequently, the psychotic features, cognitive deficits, and genetic correlates take 

precedence when conducting research on GNDD’s (Gothelf, Feinstein, et al., 2007).  

Furthermore, diagnostic overshadowing has been problematic in elucidating the specific social 

deficits in VCFS.  Specifically, the cognitive impairments are viewed as the etiology of social 

features and therefore little concern is placed on determination of independent etiologies for 

these social deficits (Hodapp & Dykens, 2005; Jopp & Keys, 2001).  Indeed, these cognitive 

impairments contribute to the observed deficits in social functioning; however, there is 

neuroanatomical evidence suggesting that there is an etiology for the social deficits in VCFS that 

is independent of their cognitive limitations.  Moreover, there is evidence from other 

neurodevelopmental disorders that low IQ is unrelated to social functioning.  For example, 

individuals with William’s Syndrome exhibit highly social behavior despite having a lower IQ 

relative to normal controls (Steinlin, 2007).  In other words, there is something about the specific 

cognitive profile of individuals with VCFS that contributes to the social impairment in this 

population.   
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 Despite being overlooked throughout the history of VCFS research, recent research has 

identified a number of social deficits that commonly occur in individuals with VCFS.  One such 

social deficit is impaired social communication.  Interestingly, these individuals develop normal 

communication skills throughout the first two years of life, but then show significant delays 

acquiring the ability to use short phrases and sentences.  Furthermore, their speech is typically 

unintelligible due to the emergence of compensatory articulation patterns (Golding-Kushner, 

Weller, & Shprintzen, 1985).  The most common compensatory articulation in children with 

VCFS is the implementation of glottal stop substitutions (Shprintzen, 1997).  As result of such 

communication difficulties, few utterances are understood and early speech attempts may not be 

reinforced or encouraged leading to further disintegration of communication abilities.   

 Another social deficit that may emerge as a result of these communication issues is 

extreme shyness and withdrawal (Shprintzen, 2000).  Swillen et al. (2001) administered the 

Child Behavior Checklist (CBCL) to both individuals with VCFS and individuals with speech 

pathology and learning impairments.  They found that individuals with VCFS exhibited 

significantly more withdrawal behavior, suggesting that the speech difficulties in VCFS interact 

with other features of the disorder to contribute to social withdrawal (Swillen, Devriendt, 

Ghesquiere, & Fryns, 2001). 

 One of the social deficits that may result from the shyness and social withdrawal is a 

failure to initiate interactions (Eliez et al., 2000).  In their case study describing the language, 

speech, and psychological features of five individuals with VCFS, Eliez et al. (2001) noted a 

significant deficit in the number of attempts made to interact.  The authors attributed this social 

deficit to communication difficulties and the tendency to engage in more withdrawn behaviors. 
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 In addition to their initiation deficits, VCFS individuals also show deficits in facial 

recognition (Stiers et al., 2005).  Stiers and colleagues (2005) noted that the substantial 

impairments in facial recognition correlated with decreased volume of the right inferior parietal 

and superior occipital lobe.  In addition, there was a pronounced reduction of white matter 

behind the inferior frontal gyrus relative to controls.  Thus, it is possible that the social deficits 

observed in these individuals relating to their inability to recognize faces may be mediated by 

abnormalities in these brain areas. 

 Further contributing to deficits in social functioning are impairments in processing facial 

expressions (van Amelsvoort et al., 2006).  VCFS individuals perform significantly worse on 

facial emotional processing tasks compared to age- and IQ-matched controls.  This deficit was 

associated with decreased activation in the right insula and frontal lobe.  Alternatively, there was 

increased activation in occipital regions in VCFS patients relative to controls.  The authors 

concluded that these genetically determined neuroanatomical anomalies might significantly 

contribute to social deficits due to their involvement in emotional processing. 

 In addition to their emotional processing difficulties, VCFS individuals have distinct 

personality characteristics that color many of their social interactions.  VCFS individuals are less 

conscientious, less emotionally stable, more irritable, and more dependent than normal controls 

(Prinzie et al., 2002).  Furthermore, VCFS individuals have been shown to have severe 

attachment and anxiety issues, which may contribute to or exacerbate their personality deficits.  

For example, Shprintzen (2000) noted age-inappropriate separation anxiety in VCFS individuals 

when compared with normal controls.  Also, children with VCFS are more phobic and present 

with obsessive compulsive personality disorder more frequently than controls (Papolos et al., 



14 

 

1996).  Indeed, the personality characteristics and anxious symptoms of people with VCFS 

greatly impede social development. 

 Last, these individuals show affective abnormalities that interfere with social relations.  

People with VCFS have been shown to have a flatter affect than normal controls during 

engagement in social interactions.  Furthermore, their facial response tends to be expressionless 

during social engagements that usually facilitate both affective and facial responses (Golding-

Kushner et al., 1985).  Indeed, this would make it difficult for individuals with VCSF to sustain 

conversations with others and provide reinforcing feedback to those with whom they are 

communicating.  As a result, these individuals may have shorter interactions with individuals 

they are meeting for the first time. 

 In summary, individuals with VCFS have numerous features contributing to their social 

deficits.  It is likely that many of the genetically prescribed neuroanatomical anomalies 

associated with VCFS contribute to these deficits.  The following section will identify etiological 

theories for these social deficits.         

Etiology of Social Impairments  

One prominent theory regarding the etiology of social deficits in VCFS individuals 

suggests that the language deficits are the foundation for the other social impairments.  

Shprintzen (2000) argues that the language deficits observed in these individuals leads to 

ineffectual communication skills.  These ineffectual communication skills then lead to social 

isolation due to lack of social reinforcement.  Oftentimes these children are ridiculed for their 

poor communication skills, leading to withdrawal and the formation of social anxieties.  In this 

way, language impairment can account for a number of other social peculiarities associated with 

the disorder. 
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 Another physiological explanation for the etiology of social deficits is lesions.  White 

matter hyperintensities and cysts have been consistently observed in individuals with VCFS 

(Mitnick, Bello, & Shprintzen, 1994).  The individuals presenting with these abnormalities have 

the characteristic behavioral and social deficits commonly observed in this population.  Though 

the lesions were not statistically related to the behavioral deficits, it is possible that they interact 

with other structural abnormalities to produce the social disturbances. 

 Additionally, there has been some work identifying specific brain structures and sub-

nuclei that have been associated with the social deficits observed in this population.  For 

example, one study found significant volumetric changes in amygdala, prefrontal cortex, and 

orbitofrontal cortex (Kates et al., 2006).  These volumetric differences were positively correlated 

with impaired performance on social competency scales such as the CBCL and other parent 

report measures.  Thus, as amygdala volume increased in size, symptom endorsement regarding 

social competency increased. 

With regard to the amygdala, Kates et al. (2006) noted that after controlling for total 

brain size, the amygdala to prefrontal cortex ratio in VCFS patients was found to be significantly 

larger than in sibling controls.  As the amygdala as been implicated in emotional processing 

(Davidson & Irwin, 1999; LeDoux, 2000; Phillips, Drevets, Rauch, & Lane, 2003), learning and 

memory (Maren, 1999), and facial processing (Adolphs, Tranel, Damasio, & Damasio, 1994; 

Hamann et al., 1996), this finding may account for many of the social features observed in 

individuals with VCFS.  Though it is tempting to conclude that the genetic anomalies associated 

with this disorder mediate this neuroanatomical deviation, it has been proposed that this increase 

in amygdala volume could be the result of high anxiety levels in this population (Feinstein et al., 

2002).  Increased amygdala volumes have been observed in individuals with phobia and 
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generalized anxiety disorders (Bellis, 2000).  Dong and Greenough (2004) found that this 

increased anxiety leads to experience-dependent neuronal remodeling in the amygdala, which 

may contribute to its increased volume (Dong & Greenough, 2004b).  Thus, it is possible that the 

anxiety associated with these patients leads to the volumetric changes in the amygdala.  These 

neuroanatomical changes then contribute to difficulties with emotional regulation, facial 

recognition, and affective style. 

In addition to amygdala volume discrepancies, individuals with VCFS also have a 

prefrontal cortex (PFC) that is smaller than that of age-matched, non-clinical controls (Kates et 

al., 2006).  The PFC has been implicated in the ability to modulate emotional stimuli and was 

found to be correlated with social impairments in individuals with VCFS (Kates et al., 2006).  In 

particular, smaller volumes were observed in the orbitofrontal cortex relative to controls.  The 

orbitofrontal cortex has been implicated in the modulation of anxiety (Breiter & Rauch, 1996; 

Rauch, Savage, Alpert, Fischman, & Jenike, 1997).  Thus, it is possible that many of the 

attachment and anxiety issues in VCFS patients may be related to abnormalities in this particular 

structure. 

Other sub-regions of the PFC have been implicated in social functioning.  For example, 

the dorsolateral PFC (DLPFC) has been shown to be involved in the regulation of affect and has 

been implicated in the etiology of mood disorders such as depression (Gainotti, 1972; Robinson, 

Kubos, Starr, Rao, & Price, 1984; Sackeim, Decina, & Malitz, 1982).  Thus, it is conceivable 

that aberrant functioning in this sub-region could mediate the mood symptoms that are frequently 

observed in individuals with VCFS.  That said, there is some recent evidence to suggest that 

DLPFC plays only a secondary role in the etiology of mood disorders and is primarily involved 

in the regulation of attentional systems and complex cognitive processing (Kobel et al., 2010; 



17 

 

Seidman, Valera, & Bush, 2004; Seidman et al., 2006).  Thus, though the DLPFC has historically 

been implicated in the regulation of affect, contemporary research using advanced imaging 

techniques suggests that the aberrant DLPFC functioning may underlie only the cognitive 

deficits associated with VCFS. 

In addition to the dorsolateral PFC, the ventromedial PFC (VMPFC) also has a role in 

social functioning.  The VMPFC has been implicated in the anticipation of future consequences 

(Bechara, Damasio, Damasio, & Anderson, 1994).  Specifically, individuals with damage to this 

region showed an inability to accurately anticipate both positive and negative consequences.  

Interestingly, individuals with damage to this region showed reduced electromodal responses 

when they were presented with a risky choice relative to controls who demonstrated both 

conscious recognition of the risky choice and full electromodal responses (Bechara, Damasio, 

Tranel, & Damasio, 1997; Bechara, Tranel, Damasio, & Damasio, 1996).  Indeed, it is possible 

that much of the impulsiveness and disinhibition observed in individuals with VCFS might be 

mediated by volumetric differences in this particular region.  Despite this logical connection, 

there has been limited research with regard to this region of the frontal cortex in individuals with 

VCFS. 

Taken together, these data suggest that anomalies in the prefrontal cortex mediate many 

of the social deficits observed in individuals with VCFS.  Furthermore, specific sub-regions 

should be examined in individuals with VCFS in order to determine whether differences in these 

structures mediate the observed social deficits. 

Additional neuroanatomical analysis in individuals with VCFS has found discrepancies in 

volume of the insular cortex (van Amelsvoort et al., 2001).  In addition to this volumetric 

difference, van Amelsvoort and Schmitz (2006) also noted decreased activation in right insula 
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during tasks that involved facial processing (van Amelsvoort et al., 2006).  The insula has been 

shown to be involved in the processing of general emotions and has been implicated as one of 

the etiological factors of anxiety (Rauch et al., 1995).  Furthermore, it has been demonstrated 

that the insular cortex plays a critical role in regulating autonomic responses accompanying 

emotion.  Also, the insula is a site that has been implicated in gustatory processing.  It is 

especially active during exposure to disgusting foods and photos of faces with an expression of 

disgust, suggesting one of its functions is the recognition of distasteful stimuli (Rozin, 1997; 

Young, 1997).  Last, given the known input and output pathways of the insular cortex, Davidson 

and Irwin (1993) concluded that the insula is likely associated with the physiological changes 

that occur following autonomic activation (Davidson & Irwin, 1999).  In sum, given what is 

known regarding the functions of the insular cortex, the anatomical and activation abnormalities 

in this structure may underlie such social deficits as withdrawal, inhibition, poor attachment, and 

social anxiety.  Though some speculation has been made regarding the insular cortex and social 

deficits in VCFS, no one to date has directly assessed the relationship between insula and social 

deficits.   

In addition to the aforementioned structures, it is also possible that the STS mediates 

some of the social deficits observed in individuals with VCFS.  The STS has been implicated in 

the development of theory of mind (ToM; Moriguchi, Ohnishi, Mori, Matsuda, & Komaki, 

2007).  Theory of mind is defined as the ability to attribute mental states to the self and others.  

As such, it has been implicated in the development of social deficits in a number of disorders 

including ASD and schizophrenia (Castelli, Frith, Happe, & Frith, 2002; Happe et al., 1996; 

Ohnishi et al., 2000).  Given that individuals with VCFS experience a number of social deficits 

including impairments in controlling gaze, which has been hypothesized to be related to theory 
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of mind (Garrett, Menon, MacKenzie, & Reiss, 2004), it is plausible that these individuals may 

show volumetric differences in the STS relative to controls.  Additionally, individuals with 

activation deficits in this structure have difficulty maintaining appropriate social posturing as is 

the case with individuals diagnosed with ASD and schizophrenia.  Furthermore, the STS has 

been implicated in the processing of vocal sounds (Gervais et al., 2004).  Autistic individuals 

showed decreased activation in this area during exposure to vocal sounds.  Gervais et al. (2004) 

concluded that some of the social deficits observed in ASD might be attributed to deficits in 

vocal processing.   

 Yet another structure that has been implicated in social processing and may contribute to 

the social deficits observed is the anterior cingulate cortex (ACC).  The ACC has been 

implicated in the ability to attend to emotional events (Posner, 1995).  Additionally, Lang et al. 

(1997) showed increased activity in the ACC during tasks for which attention to emotional 

stimuli was required (Lane et al., 1997).  When subjects were asked to attend to non-emotional 

stimuli, no such activation in the ACC was recruited.  It was therefore concluded that one of the 

roles of the ACC was to facilitate attention to emotional stimuli.  The ACC has also been 

implicated in the mediation of other affective and cognitive functions (Fujiwara et al., 2007).  

Specifically, the ACC helps modulate emotional responses and has been found to be an essential 

component in social cognition and mentalizing (Kopelman, Andreasen, & Nopoulos, 2005).  

Interestingly, volumetric differences in the ACC have been observed in schizophrenic patients 

relative to controls (Kopelman et al., 2005).  The smaller ACC volume has also been correlated 

with specific deficits in social cognition (Fujiwara et al., 2007).   

In addition to a structural level analysis of the etiology of psychopathology in individuals 

with VCFS, there has been some work done at the neurochemical level.  For example, the 
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pathophysiological and neurochemical mechanisms that underlie depression in VCFS are 

believed to be the same as for major depression.  Specifically, deficits in both serotonin (5HT) 

production and transmission may have been implicated in etiology of depression in this 

population.  Such deficits in 5HT have been observed via microdialysis procedures in mouse 

models of VCFS (Tuathaigh et al., 2002).  Furthermore, VCFS individuals suffering from 

depression, OCD, and generalized anxiety respond well to treatment with selective-serotonin 

reuptake inhibitors (SSRI’s), suggesting a deficiency in this neurotransmitter.   

Similarly, neurotransmitter abnormalities have been observed in norepinephrine (NE) in 

individuals with VCFS that present with mania (Papolos, Veit, Faedda, Saito, & Lachman, 

1998).  In addition to NE deficits, gamma-aminobutyric acid (GABA) deficiencies have also 

been implicated as one of the pathophysiological mechanisms in anxiety disorders.  Though there 

has not been a direct examination of this neurotransmitter in individuals with VCFS who have 

anxiety symptoms, anxiolytics such as benzodiazepine, a GABA agonist, are effective in 

regulating anxiety levels in this population (Krishnan, 2005)    

Additionally, cortisol and the subsequent production of glucocorticoids has been 

implicated in anxiety (Hoehn-Saric, McLeod, Lee, & Zimmerli, 1991), depression (Vythilingam 

et al., 2004), and some features of social impairment (Corbett et al., 2009) in related populations.  

Anomalous cortisol levels have not yet been demonstrated in this population, but have been 

shown in children with ASD (Curin et al., 2003; Naber et al., 2007; Richdale & Prior, 1992) and 

schizophrenia (Carroll, 1976; Walder, Walker, & Lewine, 2000), two disorders commonly 

associated with VCFS.  The remainder of this literature review will emphasize the role of cortisol 

in the development of various psychopathology and social impairment. 
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Physiological Description of the Human Stress Response 

 It is a widely disseminated finding that there are two distinct types of stress.  There is 

short-term, brief stress, which is generally thought to be adaptive, and necessary to sustaining 

and energizing the fight or flight response.  This is the type of stress associated with brief 

sympathetic activation and is one of the autonomic physiological mechanisms that is said to have 

facilitated our survival throughout evolution.  The stress response is quite complex, requiring the 

integration between numerous structures, hormones, and systems throughout the body (Sapolsky, 

1996).  First, a stressor occurs.  This, in the short-term, usually involves some immediate danger 

that requires the body to engage in action.  Following recognition of the stressor, a cascade of 

events occurs.  Initially, there is a brief release of catecholamines.  Specifically, epinephrine and 

norepinephrine are secreted by nerve cells approximately 2 seconds following exposure to the 

stressor (Sapolsky, Romero, & Munck, 2000).  Examination using microdialysis has found that 

stressful situations are associated with higher concentrations of norepinephrine in the 

hypothalamus, frontal cortex, and lateral basal forebrain (Cenci, Kalen, Mandel, & Bjoerklund, 

1992; Yokoo et al., 1990).  Approximately 10 seconds later, the hypothalamus receives signals to 

release corticotropin releasing hormone (CRH) into general circulation (Horowitz, 1986).  CRH 

is also released into the brain where it acts as a neuromodulator and neurotransmitter.  This 

means that CRH can have direct impact on the regulation of simple and complex functions of the 

nervous system.   For example, CRH has been shown to impact periaqueductal gray matter, the 

locus coeruleus, and the central nucleus of the amygdala (Moriceau, Roth, Okotoghaide, & 

Sullivan, 2004).  The infusion of CRH into the central nervous system has behavioral 

consequences.  Interestingly, these behavioral consequences mirror those associated with 

exposure to aversive stimuli.  For example, injections of CRH into the central nervous system 
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lead to an increase in neophobia in rats (Britton, Koob, Rivier, & Vale, 1982).  Additionally, 

CRH infusions to the central nervous system have been shown to facilitate acquisition of a 

classically conditioned fear response (Cole & Koob, 1988).  Alternatively, introduction of CRH 

antagonists via intracerebroventricular injection decreases the experience of anxiety that is 

caused by an array of stressful situations (Kalin, Sherman, & Takahashi, 1988).  Thus, the stress 

response does indeed have an impact on structures and circuits of the CNS.   

 Next, CRH bind to receptors on the pituitary gland stimulating the release of adreno-

corticotropic hormone (ACTH; Kvetnansky et al., 1995).   Following these changes, the 

hypothalamus decreases production and release of gonadotropin releasing hormone (GnRH) with 

subsequent decreases in pituitary gonadotropins (Sapolsky et al., 2000).  This initial 

physiological response to immediate stressors occurs quickly, with only a small delay between 

endocrine up-regulation and activation of target tissues via a second messenger cascade.  It is this 

initial physiological response to environmental threats that is responsible for changes associated 

with sympathetic activation, which includes pupil dilation, salivation inhibition, sweating 

stimulation, vasoconstriction, inhibition of digestion, and so on (Carlson, 2004).  This initial 

response to a stressor is brief, usually terminating within an hour (Sapolsky et al., 2000).       

 The next step in the physiological stress response involves the release of glucocorticoids, 

in particular cortisol.  Cortisol is released when ACTH, released by the pituitary gland, enters the 

general circulation and binds to the adrenal cortex stimulating glucocorticoid release.  Under 

normal circumstances of low-grade stress, glucocorticoids facilitate the degradation of proteins 

and the subsequent conversion to glucose preparing nutrients for the organism to utilize.  

Additionally, the hormone helps increase blood flow, thereby increasing blood pressure.  Also, 

glucocorticoids stimulate behavioral responsiveness in numerous biological systems  (Carlson, 
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2004).  Overall, glucocorticoids have numerous effects throughout the brain due to the ubiquity 

of glucocorticoid receptors throughout body tissues and brain.    

 These effects in the short term have evolved to ensure organismal survival.  In fact, 

individuals with damage to their adrenal cortex are prone to death when encountering stressful 

stimuli and need to be administered exogenous glucocorticoids (Tyrell & Baxter, 1981).  That 

said, the stress response evolved to manage short-term, immediate, and identifiable stressors.  In 

contemporary society, stressors exist that are long-term and ambiguous.  For example, financial 

concerns, work-related stress, family stressors, and stress associated with physical and emotional 

trauma are just a few types of stressors that activate the stress response frequently over long 

periods of time.  Long-term exposure to stressful situations can significantly impact overall 

physical health and functioning.  For example, holocaust survivors, particularly those who lived 

in concentration camps, have significantly poorer health in later stages of life than individuals 

not exposed to such extremely stressful conditions (Cohen, 1953).  Further evidence of the 

deleterious impact of long-term stress on overall physical health is seen in subway drivers and 

air-traffic controllers.  According to Theorell et al. (1992), subway drivers who were involved in 

accidents where individuals were maimed or killed developed more illnesses in several months 

following the incident than individuals not exposed to significant stressors (Theorell et al., 1992).  

Air-traffic controllers are also prone to stress-related health conditions and demonstrate a higher 

incidence of high blood pressure, ulcers, and diabetes (Cobb & Rose, 1973).    

Physical Deficits Associated With Long-Term Stress Exposure 

 There is little debate as to the etiology of health deficits following prolonged exposure to 

stress. In a seminal work, Hans Selye (1976), implicated glucocorticoids as the primary cause of 

the deleterious health consequences of prolonged stress exposure (Selye, 1976).  Subsequent 
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analyses of the effect of glucocorticoids on stress-related health decline have demonstrated that 

glucocorticoids can impact a variety of systems.  In particular, prolonged glucocorticoid 

exposure has been implicated in increased blood pressure, damage to muscle tissue, diabetes, 

infertility, inhibition of growth, inhibition of the inflammatory response, and suppression of the 

immune system (Carlson, 2004). 

 Secondary effects of high blood pressure include increased risk of heart attack and stroke.  

According to DeVries et al. (2001), social stressors increase the risk of stroke and subsequent 

apoptosis-related damage by suppressing bcl-2 expression (DeVries et al., 2001).  The bcl-2 gene 

is involved in the prevention of cellular necrosis and apoptosis.  Social stressors, particularly 

those involving chronic intimidation, have a pronounced effect on bcl-2 protein production, 

increasing susceptibility to stroke and more severe damage and tissue loss during stroke.  Thus, 

stress both increases the likelihood of a stroke by increasing blood pressure and then makes the 

impact of the stroke more damaging by decreasing expression of neural protective proteins. 

 As mentioned previously, stress can impact physical growth and development.  In 

children, exposure to long-term stress can lead to decreased attainment in height and failure to 

thrive.   The mechanism for decreased stature and body weight is complicated and influenced by 

numerous factors.  However, on the simplest level, long-term exposure to glucocorticoids leads 

to suppression of the release of growth hormones leading to background growth failure without 

organic etiology (Skuse, Albanese, Stanhope, Gilmour, & Voss, 1996).  Interestingly, once the 

children were removed from familial stressors, spontaneous “catch-up” occurred and growth 

hormonal levels normalized.  Thus, childhood stress has a significant impact on growth and 

development.      
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 Glucocorticoids have also been shown to inhibit the positive inflammatory response, 

resulting in increased healing time and permanent tissue damage and infection following injury.  

Some of the deleterious effects of stress were demonstrated by examining the healing rate of 

wounds on caregivers of patients suffering from Alzheimer’s disease relative to controls 

(Kiecolt-Glaser, Marucha, Malarkey, Mercado, & Glaser, 1995).  Measures of wound 

size/diameter and application of hydrogen peroxide indicated that care-giving related stress 

delays wound healing.  As mentioned previously, mechanistically, this occurs via suppression of 

the inflammatory response. 

 There are other physical problems that occur in response to long-term exposure to stress; 

however, these are beyond the scope of this discussion.  It is sufficient to conclude that 

glucocorticoids can impact nearly every system of the body as a result of diffuse receptor 

distribution. 

Impact of Stress on Cognition 

 In addition to the deleterious effects of long-term glucocorticoid exposure on physical 

health, there are negative cognitive consequences to long term stress exposure.  There are 

multiple cognitive consequences of stress including memory impairment, compromised learning 

ability, executive dysfunction, and attentional impairments. 

 Memory changes are one of the most prominent changes observed in response to long-

term stress exposure.  On a specific assessment of declarative memory performance in the 

elderly, researchers observed that exposure to a stressful task (public speaking) has a more 

negative impact on memory than exposure to a benign task (Lupien et al., 1997).  Additionally, 

there seems to be some specificity with regard to the type of memory impaired during prolonged 

cortisol exposure.  According to Newcomer et al. (1999), verbal declarative memory was 



26 

 

differentially impacted when compared with performance on nonverbal memory measures 

following exposure to long-term stress (Newcomer et al., 1999).  Thus, though memory 

impairment is a common finding in examinations of the effects of long-term stress exposure, it 

appears there is some preservation of nonverbal memory abilities.  

 Not only does long-term psychological stress have an impact on encoding and retrieval, it 

also has an impact on memory strategies (Johnsen & Asbjornsen, 2009).   According to 

researchers, individuals with Post-Traumatic Stress Disorder (PTSD), a disorder associated with 

high-resting cortisol levels, have difficulty employing effective list-learning strategies as 

evidenced by poor performance on the California Verbal Learning Test-II (CVLT-II).  

Specifically, individuals did not use semantic clustering strategies, but rather employed only a 

recency strategy during recall trials.  According to the authors, this reflected an underlying 

deficit in the formation of effective encoding strategies.   Thus, not only is there evidence of 

mechanistic deficit associated with encoding and retrieval, there are also deficits in the way the 

individual organizes information before encoding. 

 There are numerous hypotheses regarding the mechanism of memory impairment 

observed in individuals exposed to long-term stress and glucocorticoid exposure.  One generally 

accepted mechanism is hippocampal atrophy.  The hippocampus is an essential structure in 

learning and memory (Carlson, 2004).  According to Sapolsky and McEwan (1995), long-term 

exposure to glucocorticoids damages neurons located in field CA1 of the hippocampus.  Cellular 

atrophy occurs because corticosteroids prevent the entry of glucose into the cell as well as the 

reuptake of glutamate, two essential features for survival of the cell (McEwen & Sapolsky, 

1995).  Furthermore, due to the decreased reuptake of glutamate, there are excessive amounts of 

glutamate outside of the cell body.  This extracellular glutamate opens an inordinate amount of 
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calcium channels leading to excitotoxicity and cell death.  The cell death in this structure is so 

pronounced that volumetric changes can be observed using imaging technology (Gurvits et al., 

1996).  In combat exposed veterans with symptoms of PTSD, a 20 percent reduction in 

hippocampal volume was observed.  Interestingly, the amount of tissue loss was positively 

correlated with the amount of combat exposure.  A similar finding was observed in children who 

were the victims of child abuse. In this population, hippocampal atrophy has been implicated in 

the formation of false memories and inability to recall specific details of the abuse event 

(Bremner, Krystal, Southwick, & Charney, 1995).   

 The hippocampus plays another important function in the stress response by operating as 

a stop gap for stress hormone release (Sapolsky et al., 2000).  That is, the hippocampus is part of 

a negative feedback loop that disengages the stress response.  This mechanism works perfectly 

under conditions of brief exposure to stress.  However, as exposure to stress hormones becomes 

prolonged, the hippocampus becomes more atrophied.  As the atrophy progresses, the structure 

loses its ability to help regulate the stress response via biofeedback, and the stress hormones are 

able to circulate unimpeded throughout the various systems of the body.  Thus, prolonged stress 

exposure leads to the inability to further regulate the stress response, which leads to more 

hippocampal damage, more memory impairment, and even less ability to regulate the stress 

hormone.  In other words, the system gets converted from a system regulated by negative 

feedback to one that resembles a feed forward process. 

 The impact of stress on memory and learning is not entirely mediated by the impact of 

glucocorticoids and the hippocampus.  The amygdala, a structure implicated in the coordination 

of stress behaviors and modulation of memory consolidation, also plays a role in the deleterious 

effects of the stress response (Kim, Lee, Han, & Packard, 2001).  In an experiment examining 
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the role of the amygdala in stress-related memory and learning impairments, researchers 

observed that rats with lesions to the amygdala did not show learning deficits during 

performance of the Morris Water Maze following exposure to stress.  Thus, elevated 

glucocorticoid levels alone are not sufficient to induce cognitive impairment; other structures 

within the limbic system facilitate the physiological and behavioral response to stress. 

Psychological Problems Associated with Long-Term Exposure to Glucocorticoids 

 There have been numerous psychological disorders mediated by or exacerbated by long-

term exposure to stress.  Indeed, PTSD is one disorder characterized by stress-related atrophy to 

the hippocampus (Gurvits et al., 1996).  Interestingly, individuals with PTSD do not show 

elevated cortisol secretion.  In fact, they have a tendency to show decreased production and 

release of cortisol (Yehuda, 2001).  Despite this decrease in cortisol production, individuals show 

an elevated stress response because of an increase in stress hormone receptor proliferation and 

sensitivity.  That is, there are more receptors with increased sensitivity for the stress hormone. As 

such, there is less cortisol released by the adrenal cortex, but the negative effects are still 

observed due to increased binding efficiency. 

 In addition to PTSD, Generalized Anxiety Disorder (GAD) and Panic Disorder have also 

been associated with increased cortisol levels (Graeff, 2007; Hoehn-Saric et al., 1991).  The 

amygdala is a neurological structure directly implicated in anxiety and depression.  

Corticosteroids have been shown to increase the CRH mRNA expression at the central nucleus 

of the amygdala (Merali, Anisman, James, Kent, & Schulkin, 2008).  This expression increases 

activation in the amygdala, leading to a potentiation of the fear response and symptoms of 

anxiety.  Thus, cortisol can affect the development of anxiolytic symptoms via promotion of 

CRH release in the central nucleus of the amygdala. 
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 Mood disorders are also mediated by increased levels of corticosteroids.  A more recent 

conceptualization of the neurobiological etiology of some forms of depression posits that a 

decrease in neurogenesis has a significant impact on mood stability.  Neurogenesis is defined as 

the birth of new neurons (Carlson, 2004).  To date, there are only a few sites in the brain that 

have been shown to be capable of producing new neurons.  One of these structures is the 

hippocampus; the same region where atrophy takes place following prolonged exposure to 

glucocorticoids.  Neurogenesis is facilitated by neurotrophic growth factors.  Long-term cortisol 

exposure can inhibit production of neurotrophic factors such as brain-derived neurotrophic factor 

(BDNF).  This results in the inhibition of cell proliferation and integration into existing 

neurological circuits.  Such decreases of cell proliferation have been associated with mood 

impairment in individuals with depression (Huang & Herbert, 2006).  Thus, stress can lead to the 

decrease of neurogenesis, which contributes to the development of depression.  Further evidence 

for the role of neurogenesis in the regulation of mood was demonstrated in an experiment 

assessing the mechanism of efficacy for fluoxetine, a selective serotonin reuptake inhibitor 

(SSRI) commonly used in the treatment of depression and anxiety.  Findings suggest that 

fluoxetine facilitates the proliferation of progenitor cells, the precursors to hippocampal cells, in 

the dentate gyrus (Huang & Herbert, 2006).  Following cellular proliferation, cognitive and 

mood symptoms associated with depression are alleviated, usually within 3 weeks, the same 

length of time it takes new cells to become integrated into neuronal circuits.  In summary, 

cortisol inhibits neurogenesis, an integral process in the maintenance of cognitive functioning 

and mood stability.  Moreover, it is this inhibition of neurogenesis and active degradation of 

neural tissues that may account for many of the aforementioned neuroanatomical anomalies 

found in individuals with VCFS.  
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 To conclude, increased cortisol levels may contribute significantly to the 

psychopathology and cognitive deficits observed in individuals with VCFS.  To date, there have 

been no studies examining the direct impact of cortisol on psychopathology in this particular 

population.  However, given evidence from other populations, it is reasonable to conclude that 

some of the observed short-term memory deficits, mood impairment, anxiety, and psychotic 

symptoms may be mediated or exacerbated by the presence of high baseline cortisol levels in 

individuals with VCFS. 

Specific Social Deficits Related to Abnormal Cortisol Levels  

As previously mentioned, cortisol and the subsequent production of glucocorticoids has 

been implicated in anxiety (Hoehn-Saric et al., 1991), depression (Vythilingam et al., 2004), and 

social impairment (Corbett et al., 2009) in related populations.  To date, anomalous cortisol 

levels have not yet been demonstrated in this population but have been shown in children with 

ASD (Curin et al., 2003; Naber et al., 2007; Richdale & Prior, 1992) and schizophrenia (Carroll, 

1976; Walder et al., 2000), two disorders commonly associated with VCFS.  Specifically, in 

children with ASD, higher ACTH levels were observed relative to control children, suggesting a 

significant disruption in the HPA axis (Curin et al., 2003).  Additionally, higher cortisol levels in 

children with ASD were associated with greater sensory sensitivity and social stress (Corbett et 

al., 2009).  Finally, cortisol levels in children with ASD were correlated with parental 

attachment.  Aberrant cortisol levels in children with ASD were related to poorer attachment 

ratings as measured by the Strange Situation Procedure (SSP; Naber et al., 2007).  Moreover, the 

severity of autistic symptoms was also correlated with baseline cortisol levels.  Thus, given what 

is known about this hormone in children with ASD, it is conceivable that cortisol may have both 

a direct or indirect impact on overall social competency in VCFS, a population that exhibits 
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considerable social impairment.  Indeed, additional research is necessary to determine cortisol’s 

role in regulating mood, anxiety, and pro-social behavior in children with VCFS.  From the scant 

research on the impact of cortisol in children with ASD, it is difficult to ascertain whether 

elevated cortisol levels are due to exposure to environmental stress or physiological 

predisposition to dysregulation of the HPA axis.  However, in individuals with VCFS, previous 

research has demonstrated enlargement in structures involved in glucocorticoid regulation (Kates 

et al., 2006).  That said, enlargement of the amygdala in this population does not rule out an 

environmental explanation of elevated stress hormones.  Indeed, neuroplasticity occurs 

frequently in response to environmental contingencies (Dong & Greenough, 2004a).  As 

mentioned previously, Dong and Greenough (2004) found that increased exposure to anxiety- 

provoking situations lead to experience-dependent neuronal remodeling in the amygdala, which 

may contribute to its increased volume (Dong & Greenough, 2004b).  Thus, it is possible that the 

anxiety associated with these patients leads to the volumetric changes in the amygdala and the 

subsequent release of glucocorticoids.  Thus, it is difficult to hypothesize whether environmental 

circumstances or physiological predispositions to HPA hyperactivation contribute to 

hypothesized cortisol elevations in individuals with VCFS and related disorders.  Thus, it is 

important to note that one aim of the current study is not to provide evidence for the etiology of 

elevated cortisol levels in children with VCFS, but rather to examine the relationship between 

cortisol and measures of memory, social functioning, and adaptive functioning.       

To conclude, there is considerable evidence from a variety of clinical groups that aberrant 

cortisol levels have an impact on neuroanatomical architecture, physical symptomatology, 

psychopathology, cognitive functioning, and social competency. Given that children with VCFS 

display behaviors and symptomatology similar to other groups known to have disruptions in 



32 

 

cortisol levels, it is reasonable to hypothesize that a similar cortisol disruption would be observed 

in this population as well.  Moreover, the poor regulation of cortisol would be related to specific 

cognitive and social deficits in children with VCFS.  

An understanding of the relationship between cortisol levels, cognitive impairment, and 

social competency is important for several reasons.  

First, understanding causal mechanisms of social and cognitive impairment can help 

facilitate more accurate theories of the etiology of symptoms associated with 

neurodevelopmental disorders.  Moreover, understanding of the relationship between aberrant 

cortisol levels and social and cognitive impairment can contribute to our current understanding 

of normal brain-behavior relationships.   

Second, understanding the relationship between cortisol and various symptomatologies 

can inform treatment.  That is, cortisol levels and rhythms can be normalized pharmacologically 

and behaviorally.  Evidence for pharmacological regulation of glucocorticoids is observed in 

Cushing’s patients who receive treatment with glucocorticoid antagonists such as ketoconazole 

(Nizoral), mitotane (Lysodren), and metyrapone (Metopirone; Carlson, 2004).  Following 

treatment, many of the emotional and cognitive symptoms associated with Cushing’s are reduced 

(Sonino & Fava, 1998).  Behaviorally, the deleterious impact of cortisol on biological systems 

has been successfully treated with behavioral activation procedures.  This process works via the 

promotion of neurotrophic factors and the facilitation of neurogenesis, which leads to increased 

hippocampal volumes and increased regulation of glucocorticoid release.  Though there are few 

studies to date that have directly examined the role of behavioral activation therapy on the 

cortisol response in children and adults with VCFS, it is likely that increased exposure to 

reinforcing elements of the environment leads to an increase in neurogenesis, which helps to 
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alleviate the cognitive and mood symptoms associated with depression.  For example, one study 

found that “rewarding” behaviors such as running, eating, and sexual activity all increase 

neurogenesis and function as antidepressants in animal models of depression (Brene et al., 2007).  

Thus, to date there has been research implicating that behavioral activation serves to alleviate 

depressive symptoms through the increase of neurogenesis and normalization of HPA 

functioning.  Therefore, further understanding of hormonal regulation in individuals with VCFS 

can inform treatment recommendations and protocols and lead to enhanced prognosis. 

Third, understanding of the relationship between neurohormones and behavior can lead to 

the development of physiological biomarkers that can facilitate determinations of severity and 

prognosis.  In addition to imaging and genetic biomarkers, neurohormonal assays are frequently 

being employed as biomarkers indicative of psychopathology (Bartels, de Geus, Kirschbaum, 

Sluyter, & Boomsma, 2003).  Recently, cortisol has been implicated in the susceptibility of 

individuals to Post-Traumatic Stress Disorder (PTSD; Bachmann et al., 2005; Yehuda, 1999), 

developmental deficits in children with ASD (Curin et al., 2003), and the etiology of 

schizophrenia and affective disorders (Carroll, 1976; Gerra et al., 2008).  That said, to date there 

have been no studies examining the relationship between baseline cortisol levels and the social 

and cognitive deficits observed in VCFS.  Indeed, an examination of cortisol in this population 

may help predict the type of deficits expected and may facilitate early, more specific 

intervention.  That is, currently, the presentation of symptomatology in VCFS is highly variable.  

Research using neurohormonal assessments may unveil relationships between specific 

symptomatology and cortisol levels, which may help practitioners more accurately predict the 

presence or absence of symptoms and therefore design more efficient interventions. 
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In summary, there are multiple reasons for examining the role of cortisol in the 

development of cognitive and social impairment in children with neurodevelopmental disorders.   

Moreover, children with VCFS due to their significant deficits in social competency and 

comorbid cognitive impairment are an ideal group to study neurohormonal contributions to 

pathology given their specific range of deficits.   

 Hypotheses  

 Specific Aim 1 was to determine if there are differences between baseline cortisol levels 

in individuals with VCFS relative to controls. Given the role that cortisol plays in emotional 

processing and the experience of anxiety and the fact that children with VCFS have increased 

anxiety likely due to their neuronal architecture, cognitive interpretation of stressful events, and 

as they are less emotionally stable, it was hypothesized that VCFS individuals will have a 

significantly higher baseline cortisol levels relative to controls.  

 Specific Aim 2 was to determine whether individuals with VCFS perform significantly 

poorer on tests of memory and learning relative to controls.  Given existing literature regarding 

cognitive functioning in individuals with VCFS, it was hypothesized that individuals with VCFS 

would exhibit significantly lower performance on measures of memory and learning.  

Specifically, individuals with VCFS would exhibit specific deficits in general memory ability, 

working memory ability, and attention and concentration as measured by the Wide Range 

Assessment of Memory and Learning (WRAML-2).   

 Specific Aim 3 was to determine if there are any differences in the level of social 

functioning between individuals with VCFS and controls.  Given the significant social 

impairment commonly reported in studies involving children with VCFS, it was hypothesized 

that children with VCFS would perform significantly worse on measures of social functioning.  
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Specifically, ratings of social competency would be lower while ratings of social problems, 

thought problems, and anxiety/depression as measured by the CBCL would be significantly 

higher in children with VCFS.  Additionally, individuals with VCFS would be rated significantly 

lower on the social scale and communication scale of ABAS-II.  Finally, Children with VCFS 

would exhibit significantly higher levels of social anxiety and total anxiety as measured by the 

RCMAS-2 relative to controls. 

Specific Aim 4 was to assess the relationships between cortisol levels and memory and 

social functioning in individuals with VCFS.  Given the impact that elevated cortisol levels have 

on neurological structures supporting working memory, long-term memory, 

attention/concentration, and nonverbal memory storage, it was predicted that cortisol level would 

be negatively correlated with measures of cognitive performance in these domains.  Additionally, 

there is evidence in the PDD literature suggesting that an augmented physiological stress 

response underlies many of the social competency issues associated with ASD and other PDD 

(Curin et al., 2003; Naber et al., 2007).   As a result of the significant anxiety observed in 

individuals with VCFS, it was hypothesized that the cortisol levels would be correlated with 

measures of social competency and social functioning.  Specifically, it was hypothesized that 

cortisol levels would be negatively associated with social competency as measured by the CBCL.  

Additionally, it was predicted that a positive association between cortisol levels and the anxious, 

depressed, social problems, and thought problems subscales of the CBCL would be observed.  

Moreover, a negative association would be observed between cortisol levels and the socialization 

and communication subscales of the ABAS-II.  Finally, a positive association would be observed 

between the social anxiety scale and total anxiety of the RCMAS-2.  
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Measures 

 Child Behavior Checklist (CBCL):  The CBCL is a standardized, parent-report measure 

of children’s (ages 4-18) behavior problems and competencies.  The problem portion of the 

measure consists of 118 specific problem items that compose the 9 subscales (Withdrawn = 9 

items, Somatic Complaints = 3 items, Anxious/Depressed = 14 items, Social Problems = 8 items, 

Thought Problems = 7 items, Attention Problems = 11 items, Delinquent Behavior = 13 items, 

Aggressive Behavior = 20 items, and Other Problems including Sex Problems = 33 items).  The 

competency portion of the measure contains 20 items that compose the 3 subscales (Activities = 

5 items, Social = 6, School = 4 items, and Other = 5 open items not scored in the profile).   

 CBCL Subscales and Competency: For the problem scale, items are scored on a 3-point 

Likert-type response scale with the following anchors: 0 = Not True, 1 = Somewhat or 

Sometimes True, 2 = Very True or Often True.  Problem Scale scores can range from 0 to 236.  

Raw scores are converted into T scores for clinical analysis.  A high total problem score (>T = 

70) indicates that the child is experiencing a clinically significant level of disordered behavior.  

Furthermore, a child can have a low total problem score but have an elevated sub-scale (>T = 70) 

indicating significant behavior problems in the specific domain.  For the competency scale, items 

are scored on a mix of three (0, 1, 2), and four (0, 1, 2, 3, 4) option Likert-type items as well as 

number of dichotomously scored items (0 = no, 1 = yes).  Competency Scale scores can range 

from 0 to 23.  The raw scores are then converted into T scores for clinical analysis.  High total 

competency scores indicate a high level of competence.  Low total competency scores (<T = 30) 

indicate a low level of overall competence.  Furthermore, a child can have relatively high 

competency scores but score low in one particular domain, indicating a lack of competency in 

the corresponding subscale. 
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 Problem scales for the CBCL were derived from an item-level principal components 

analysis.  Thus, the composition of items for each subscale is based on internal consistency of a 

group of items.  The total problems scale has good overall internal consistency (α = .96).  The 

problem subscales also have acceptable internal consistencies (Withdrawn, α = .80; Somatic, α = 

.72; Anxious/Depressed, α = .86; Social Problems, α = .76; Thought Problems, α = .68; Attention 

Problems, α = .83; Delinquent Behavior, α = .83; Aggressive Behavior, α = .92).  The 

competency scales were derived in a similar fashion using principal component analyses.  The 

total competency scale has less overall internal consistency than the total problem score (α = 

.64).  Similarly, each competence subscale has lower internal consistency than the problem 

subscales (Activities, α = .42; Social, α = .60; School, α = .61).  This lower internal reliability is 

likely due to the small number of items in each competency subscale relative to the problem 

subscales. 

 In addition to adequate internal consistency, the CBCL has high inter-interviewer 

reliability.  Scores from three interviewers of 723 children were compared.  The overall intra-

class correlation coefficient (ICC) for problem items was .96.  The overall ICC for the 

competence items was .93.  Thus, inter-interviewer reliability is high. 

 The CBCL also has a high inter-parent reliability according to Cohen’s (1988) criteria.  

The overall mean r for the total problems scale was .76.  Each problem subscale also had a 

significant mean r indicating high inter-parent agreement (Withdrawn, r = .66; Somatic 

Complaints, r = .52; Anxious/Depressed, r = .66; Social Problems, r = .77; Thought Problems, r 

= .48; Attention Problems, r = .79; Delinquent Behavior, r = .78; Aggressive Behavior, r = .77; 

Sex Problems, r = .52).  Similarly, the overall total competence scale has high inter-parent 
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reliability indicated by a mean r of .79.  Each competence subscale also had a significant mean r 

indicating high inter-parent agreement (Activities, r = .59; Social, r = .73; School, r = .87). 

 Furthermore, the CBCL has high test-retest reliability across a seven-day interval.  Scores 

from 80 subjects were used in the temporal stability analysis.  The overall total competence scale 

had a mean r (averaged across all competency subscale scores) of .89.  Each problem subscale 

also had a significant test-retest reliability (Withdrawn, r = .82; Somatic Complaints, r = .95; 

Anxious/Depressed, r = .86; Social Problems, r = .87; Thought Problems, r = .82; Attention 

Problems, r = .90; Delinquent Behavior, r = .86; Aggressive Behavior, r = .91; Sex Problems, r = 

.83).  Similarly, the competence scale had high overall test-retest reliability in the analysis with a 

mean r of .87.  Each competence subscale also had a significant mean r indicating high test-retest 

reliability (Activities, r = .80; Social, r =.70; School, r =.92). 

 In sum, the CBCL has high internal consistency, scores are stable over a brief time frame 

(one week), and there is acceptable inter-rater agreement for both interviewers and parents.  

Collectively, these data support the use of the CBCL in this experiment. 

 CBCL Validity: The problem scale of the CBCL has high convergent validity evidenced 

by high correlations with other behavioral measures including the Connor’s Parent Questionnaire 

(1973) and the Quay-Peterson Revised Behavior Checklist (1983).  The correlation between the 

total problem scale on the CBCL and the Connors Parent Questionnaire is .82 (p < .0001).  The 

problem subscales were also highly correlated with related subscales on the Connors Parent 

Questionnaire (Somatic Complaints-Psychosomatic r =.70; Anxious/Depressed-Anxiety, r = .67; 

Attention Problems-Impulsivity/Hyperactivity, r =.59; Delinquent Behavior-Antisocial, r = .77; 

Aggressive Behavior-Conduct Problem, r = .86).  The correlation between the total problem 

scale on the CBCL and Quay-Peterson Revised Behavior Checklist was r = .81 (p < .0001).  The 
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problem subscales were also highly correlated with related subscales on the Quay-Peterson 

Revised Behavior Checklist (Withdrawn-Anxiety, r = .66, Anxious/Depressed-Anxiety, r =.78; 

Thought Problems-Psychotic, r =.64; Attention Problems-Attention Problems, r = .77; 

Delinquent Behavior-Socialized Aggression, r = .59; Aggressive Behavior-Conduct Disorder, r 

= .88).  Thus, the CBCL is highly correlated with measures and subscales purporting to measure 

similar constructs.  Statistics for discriminate validity were unavailable for this particular 

measure. 

 The criterion-related validity of the CBCL is supported by the fact that the CBCL 

quantitative scale can discriminate between referred and non-referred children after removing the 

effects of demographics.  The overall total problem score accounts for 32% of the variance in 

referral status.  Most problem subscales also account for a significant percentage of the variance 

in referral status (Withdrawn= 16%; Anxious/Depressed= 21%; Social Problems= 24%; Though 

Problems= 16%; Attention Problems= 31%; Delinquent Behavior r = 21%; Aggressive Behavior 

r = 24%).  Similarly, the overall total competence score accounts for a significant amount of 

variance in referral status (26%).  Additionally, two of the three subscales account for a 

significant amount of the variance in referral status (Social= 18%; School= 37%).  Thus, because 

the CBCL can discriminate between clinical samples and non-clinical samples, it is said to have 

a high measure of criterion-related validity.  In further support of criterion-related validity, 

clinical cut points on the scale scores were shown to discriminate between referred and non-

referred children (Achenbach, 1991). 

 In sum, the CBCL has content validity, convergent validity, and criterion-related validity, 

which support construct validity.  Thus, it use in this particular experiment to assess the 

behavioral problems and social competency of individuals with VCFS is justified.  Overall, this 
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measure was chosen for its internal and external validity as well as its ability to capture a wide 

array of pathological behaviors.  Additionally, there is a subscale on this measure specifically 

devoted to social competency, a construct that is of particular interest in this study and not well 

established on other measures of social functioning. 

 ABAS-II:  The ABAS-II (Parent Form; Ages 5-21) is a diagnostic assessment measuring 

adaptive behaviors associated with daily functioning in both domestic and external social 

environments.  It consists of 232 items that compose 10 primary skill areas:  Communication, 

Community Use, Functional Academics, Home living, Health and Safety, Leisure, Self-Care, 

Self-Direction, Social, and Work.   Item responses are selected based on a 4-point Likert scale 

with the following anchors:  0= Is Not Able; 1= Never or Almost Never When Needed; 2= 

Sometimes When Needed; 3= Always or Almost Always When Needed.  Overall, higher standard 

scores on the ABAS-II denote greater competency in a specific domain.  Standard scores are 

based on a normal curve distribution. 

 Items on the ABAS-II were developed using pilot and tryout studies involving 1045 

parents.  Item statistics, differential item functioning, item guessing rate, item bias, skill area 

reliability, validity, clarity of instructions, and clinical usefulness were determined based on pilot 

data.  Standardization was done using a representative sample stratified according to data from 

the 2000 census.  Eleven age groups spanning ages 5-21 were utilized for standardization.  An 

equal number of males and females were used in each of the 11 age groups.  Racial groupings 

were stratified into the 11 age groups according to the proportions indicated by the census data.  

Finally, geographic regions were included into the age groups proportionally as indicated by the 

census data.  Some of the relevant data will be reported here.  For the complete statistical profile 

and item analyses see Harrison & Oakland (2003). 
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 ABAS-II Reliability:  With regard to internal consistency, coefficient alpha was 

calculated to determine inter-item relationships.  Average reliability coefficients for the adaptive 

domains across the six standardization samples are between .80 and .97, indicating that there is a 

high degree of internal consistency for the measure.   

 In addition to a high degree of internal consistency, the ABAS-II also has a low standard 

error of measurement (SEM).  Average SEM ranges from .86-1.38 for the skill areas, suggesting 

low overall measurement error for each of the domains assessed in the scale. 

 Test-retest reliability was examined by having parents rate the same child on two separate 

occasions with approximately 12 days between each rating.  Correlations ranged from .84-.93 for 

skill areas, suggesting that the measure is reliable at two individual time points and that the test-

retest reliability is adequate for this experiment. 

 Inter-rater reliability and cross-form consistency were calculated with Pearson’s product-

moment correlation.  Inter-rater reliability correlations ranged from .76-.93, suggesting adequate 

consistency across raters.  Cross-form consistency ranged from .51-.81, which is relatively high 

given that the ratings were taken in two distinct forms on two separate individuals settings.   

 In summary, the ABAS-II has good reliability characteristics that should facilitate the 

acquisition of consistent data in this experiment. 

 ABAS-II Validity:  Content validity of the ABAS-II is supported by inclusion of 

theoretical skill areas purported to measure adaptive behavior that have been shown to be 

important in the development of independent living and social skills in previous research studies 

(Harrison & Oakland, 2003).  Specifically, the 10 skill areas included in the measure have been 

shown in previous literature to be highly correlated with global functioning and age-appropriate 

activities of daily living.  Additionally, in order to support content validity, items were selected 
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according to four principles.  First, items selected needed to be clinically relevant and applicable 

to practice.  Second, total item number was to be high enough to support reliability but low 

enough to promote respondent completion without interference from fatigue.  Third, items 

included needed to be directly observable.  Fourth, psychometric properties (previously reported) 

should be adequate for an observer-report measure.  These guiding principles combined with use 

of theory-based skill area inclusion support content validity in this measure.  

 In addition to theory-based item selection, confirmatory factor analysis using the Tucker-

Lewis Index (TLI) was conducted in order to ensure the content validity of the measure.  A one-

factor model was found to fit the data best (TLI= .91), suggesting that the 10 skill areas underlie 

a global adaptive ability index.  In other words, the skills areas do in fact measure a unified 

construct of global adaptive functioning and therefore items in each of these skill areas are 

sufficiently measuring the construct.   

 The ABAS-II also has a high degree of convergence with scales purporting to measure 

general adaptive ability.  Specifically, individual and global scales of the ABAS-II are highly 

correlated with related scales of the Vineland Adaptive Behavior Scale (VABS).  Specifically, 

correlations on related skill areas ranged from .69 to .84, suggesting a high degree of convergent 

validity.   Moreover, the ABAS-II has a weak relationship with other measures of behavior that 

serve as behavior screens or indicators of severe impairment.  For example, correlation of the 

ABAS-II global composite with the Scales of Independent Behavior- Revised (SIB-R) broad  

independence score, a brief screen of independent daily activities, was fairly low (r = .18).  

Taken together, these data suggest that the ABAS-II has adequate convergent and discriminant 

validity. 
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 Finally, the ABAS-II has adequate clinical validity as well.  That is, it can distinguish 

well between clinical groups and normal controls.  A reporting of data from these clinical groups 

is beyond the scope of this paper.  However, it is important to note that children with ASD and 

other social deficits were reported as being considerably worse in the social domain relative to 

normal controls.  Specifically, they were rated 36.25 points lower on average in this particular 

skill domain relative to controls (p< .01).  In summary, the scale is sensitive with regard to 

differentiation of clinical populations.  Moreover, the items composing the social skills scale are 

clearly sufficient to detect social deficits and therefore, its use in this particular experiment is 

justified.  

 To conclude, the ABAS-II exhibits both adequate reliability as evidenced by the high 

degree of internal consistency, test-retest reliability, and inter-rater reliability.  Additionally, 

construct validity and overall validity are supported with evidence of content validity, 

convergent validity, discriminant validity, and clinical validity.  As such, the test is an adequate 

measure of key aspects of social functioning and other activities of daily living. 

WRAML-2:  The WRAML-2 is a comprehensive assessment of memory and learning 

designed to assess memory abilities following traumatic brain injury, neurological insult, trauma, 

and other psychological issues (Sheslow & Adams, 2003).  The battery takes less than 1 hour to 

administer in most cases and therefore is ideal for capturing global memory abilities in children 

with shorter attention spans or other disability.  Also, due to its relative brevity the measure is of 

good use as a memory screener.   The WRAML-2 is normalized for individuals age 8 to adult 

and therefore is ideal for studies involving both children and young adults.  Generally, the 

WRAML assesses immediate and delayed recall, verbal memory, visual memory, and working 

memory.  Primary indices include General Memory, Verbal Memory, Visual Memory, and 
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Attention-Concentration.  These indices are composed of 17 subtests assessing different domains 

of cognitive functioning:  Story Memory, Verbal Learning, Design Memory, Picture Memory, 

Finger Windows,  Number/Letter Sequencing, Sentence Memory, Sound Symbol Test, Verbal 

Working Memory, Symbolic Working Memory, Story Memory, Verbal Learning Delay Recall, 

Sound Symbol Delay Recall, Story Memory Recognition, Verbal Learning Recognition, Design 

Memory Recognition, and Picture Memory Recognition. Test items and domain construction 

was based on previous editions of the WRAML and other tests purporting to measure specific 

areas of cognitive functioning (Sheslow & Adams, 2003). 

WRAML-2 reliability.  Cronbach’s Alpha was used to determine the internal reliability 

of the primary indices composing the General Memory Index (.90-.96):  Verbal Memory Index 

(.89-.94); Visual Memory Index (.82-.93); Attention/Concentration Index (.83-.91); and 

Screening Memory Index (.90-.95).  These values indicate adequate internal consistency and 

high intercorrelations between related items of a specific index. 

 Test-retest reliability was evaluated by administration of the measure two times separated 

by an average interval of 49 days and calculating a reliability coefficient:  Verbal Memory Index 

(.85); Visual Memory Index (.67); Attention/ Concentration Index (.68); General Memory Index 

(.81); Memory Screening Index (.78).  Coefficients indicate a relatively stable measure across 

multiple administrations. 

 Inter-rater reliability is also relatively high for the WRAML-2.  Inter-rater reliability was 

calculated using Cohen’s Kappa.  Kappa scores ranged from .977-.981, suggesting a high degree 

of inter-rater reliability.   

 Given the degree of internal consistency of the subscales, the test-retest reliability, and 

the inter-rater reliability, the measure has adequate reliability for the purposes of this experiment. 



45 

 

WRAML-2 Validity:  Internal validity was examined by evaluation of the inter-

correlations of the primary indices and subtests of the WRAML-2.  All correlations were found 

to be significant at the p = .01 level.  Thus, the items composing the subtests and indices of the 

WRAML-2 are likely measuring a relatively uniform construct.   

Internal validity was also examined using exploratory factor analyses in order to 

determine the factor structure of the core subtests.   A three-factor solution was found to fit the 

data best from the six core subtests. A follow-up confirmatory factor analysis also supported the 

three-factor model (AGFI=.973).  According to the data from the analysis, over 70% of the 

variance was explained by the three-factor model.  In other words, construction of the test using 

three primary indices composing the General Memory Index is supported by the factor analysis.   

In addition to measures of internal validity, external validity of the WRAML-2 has also 

been established.  Specifically, convergence has been established between the WRAML-2 and 

other related measures of memory and learning.  For example, the WRAML-2 was correlated 

with the Children’s Memory Scale (CMS), Test of Memory and Learning (TOMAL), and the 

California Verbal Learning Test-II (CVLT-2).  Correlations between the General Memory Index 

and indices from other tests of memory and learning ranged from .44-.64, suggesting a moderate 

relationship between the WRAML-2 and other measures of memory and learning.  Lower, non-

significant correlations were observed between indices of the WRAML-2 and unrelated indices 

of memory and learning measures.  The Visual Memory Index of the WRAML-2 was found to 

be unrelated to tests of verbal memory on other measures (.03).  In summary, the WRAML-2 

exhibits both convergent and discriminant validity, which supports the construct and overall 

external validity of this measure. 
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 Clinical validity has also been demonstrated with this measure.  Specifically, the 

WRAML-2 effectively distinguishes Alzheimer’s patients, traumatic brain injury, Parkinson’s, 

and chronic alcohol abusers from normal healthy controls. 

 In summary, the WRAML-2 has adequate internal and external validity justifying the use 

of this measure as an indicator of learning and memory abilities in this study. 

RCMAS (Revised Children’s Manifest Anxiety Scale): The Revised Children’s 

Manifest Anxiety Scale (RCMAS) is a widely used self-report measure designed to assess the 

degree and nature of anxiety in children and adolescents aged 6 to 19 years old.  This measure is 

administrated through a series of 37 items to which the child answers “yes” or “no.”  The “yes” 

responses are considered descriptive of the child’s feelings or actions and are counted toward a 

Total Anxiety score comprised of 4 subscales (Physiological Anxiety = 10 items, 

Worry/Oversensitivity = 11 items, Social Concerns/Concentration = 7 items, and Lie = 9 items).  

Because each “yes” answer adds to the Total Anxiety score, a high score is indicative of a high 

level of anxiety in the child.   

RCMAS Subscales and General Indexes: Three of the four subscales on the RCMAS 

are factor-based.  The first of these, Physiological Anxiety, is an index of the child’s 

physiological response when experiencing anxiety.  A high score on this subscale indicates that 

the child has specific physiological responses that are normally experienced during moments of 

anxiety.  The second of these subscales is Worry/Oversensitivity.  The items from this subscale 

contain the word “worry” or insinuate in some way that the child is afraid, nervous, or generally 

oversensitive to environmental pressures.  A high score on this index suggests that the child may 

internalize much of the anxiety experienced and become overwhelmed with trying to subside the 

anxiety.  There may be a strong need here for the child to learn coping mechanisms in order to 
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verbalize feelings of anxiety more openly.  The third factor-based subscale, Social 

Concerns/Concentration, assesses the child’s concerns regarding face-to-face interactions with 

another person and evaluates the degree of difficulty the child has in concentrating.  A high score 

on this subscale indicates anxiety that the child experiences because the child feels he or she 

cannot meet the expectations laid out for them by the adults in their lives.  The final subscale, 

which is not factor-based, is the Lie subscale score, which is used to determine whether the child 

has a negative intent to deliver false information to the examiner of the RCMAS.  This index 

includes items that say, “I like everyone I know,” and “I never lie.”  Since these statements could 

seldom be true of any person, much less a child, this could potentially suggest activity of 

inaccurate self-reporting. 

RCMAS Reliability: The Kuder-Richardson formula 20 (KR20) was used to determine 

inter-item reliability given that items are scored dichotomously.  The range for the average 

reliability coefficients across the six study samples involving children from varying ethnicities, 

sex, and ages is between .78 and .85.  Thus, there is a high level of consistency across ethnicity, 

sex, and age, with the exception of black females, in which case, the reliability coefficients are 

remarkably lower at ages 6, 8, 10, and 11 than their white female cohorts.  Overall, for most ages 

and most ethnicity and sex groups, the alpha value for the Total Anxiety score equals or 

surpasses .80, the alpha value most recommended by Wilson and Reynolds (1996) for use in 

decision making.  Internal consistency demonstrates coherence across the board for a number of 

normal as well as special or unique study samples. 

The RCMAS has not only a high level of internal consistency, but also has a consistently 

low standard error of measurement (SEM) for the Total Anxiety Score.  The coefficient alpha 

values reported for a standardization sample of 5,000 children produced 1 SEM at a 68% 
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confidence interval, 1.96 SEM at a 95% confidence interval, and a 2.58 SEM at a 99% 

confidence interval.  For the kindergarten children included in this sample, the SEM t-scores 

were 4.58 for boys, 3.87 for girls, and 4.24 for the combined group of boys and girls.  These 

figures mirror the reliability estimates from earlier studies. 

Test-retest reliability research has been done only for the Total Anxiety Score and the Lie 

Subscale.  In a sample of 534 elementary school-aged children who were tested approximately 9 

months apart, a test-retest reliability coefficient of .68 was reported.  Meanwhile, among the 

same group of students, the Lie Subscale correlation was reported at .58 when tested 9 months 

apart.  The results from the Total Anxiety Score give justifiable evidence of constancy of general 

trait anxiety over an elongated period of time.  However, the results from the Lie subscale are 

less favorable, but promising nonetheless.  These results support the material stability of the 

RCMAS and its function in assessing chronic anxiety in children. 

In sum, the RCMAS has strong reliability attributes that should provide for facilitated 

acquisition of consistent data in this study. 

RCMAS Validity: Factor analysis currently reinforces the presence of a strong general 

anxiety factor (Ag), represented by the Total Anxiety Score, and the factor-influenced subscales 

as well as the Lie subscale.  The RCMAS has strong construct validity when evidenced by the 

comparison with other measures, including the State-Trait Anxiety Inventory for Children 

(1973).  Means and standard deviation was calculated for each scale: RCMAS, STAIC-Trait, and 

STAIC-State; Pearson product-moment coefficients of correlation were used between each pair 

of variables.  The RCMAS correlated strongly with the STAIC-Trait scale (r=.85, p<.001); 

however, the RCMAS did not correlate significantly with the STAIC-State scale (r=.35, p<.05). 
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These results give ample support for the construct validity of the RCMAS as a measure 

of chronic manifest anxiety, regardless of state or situational anxiety being experienced.  Despite 

the correlations between the self-reported measures and observed behaviors being smaller than 

expected, overall the correlations produced were as anticipated.  The RCMAS Total Anxiety 

Score correlated with the STAIC-Trait scale at r = .65 for males and r = .67 for females.  

Correlations between the RCMAS subscales and the five dimensions of behavior evaluated by 

the Walker Problem Behavior Identification Checklist (1971) were nearly all positive 

correlations, maintaining a total problem behavior score of r = .32 for males and r = .29 for 

females.  Correlations between child-reported anxiety symptoms and teacher-observed behavior 

problems establish supportive evidence for the validity of the RCMAS. 

In summary, the RCMAS has convergent and divergent validity, which gives credence to 

the construct validity of the scale.  Thus, this is a highly reliable measure with which to evaluate 

the degree and nature of anxiety in children with VCFS, who frequently present with a number 

of anxiety disorders. 

Methods 

Participants 

 Subjects included 22 children (11 males and 11 females) ages 6-16 years.  Eleven of 

these children (6 male and 5 female, mean age = 11.6) were individuals diagnosed with VCFS.  

The other 11 children (6 male and 5 female, mean age = 12.5) served as controls.  The 

neurotypical children were all of average intellectual ability based on brief neuropsychological 

testing using a two subtest intelligence scale.  Previous experiments using cortisol analysis have 

demonstrated large effect sizes (d = .66-.85), justifying the use of 20 subjects (Alpers, Abelson, 

Wilhelm, & Roth, 2003; Kuhlmann & Wolf, 2006).  Children with VCFS were recruited 
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primarily through the VCFS network of support groups.  Leaders of VCFS support groups were 

contacted.  The study was explained in detail to group heads and contact information and an 

informational flyer was given to them.  Following this, group leaders contacted their members 

and asked if the families were interested in participating in the study.  Interested families 

contacted the experimenter directly, and formal informed consent procedures (described below) 

commenced.   Controls were recruited through peer nomination.  Peer nomination and sibling 

controls are two methods of recruitment commonly used to collect data on neurotypicals in 

genetic research (Antshel, Conchelos, Lanzetta, Fremont, & Kates, 2005; Antshel et al., 2006; 

Kates, Antshel et al., 2007). A list of a group of local children of matching ages was generated. 

 From this, a random sampling was taken.   

  Inclusion criterion for the current study included a VCFS diagnosis confirmed by FISH.  

Controls were matched with VCFS individuals on the variables of age and sex.  Exclusion 

criteria for children with VCFS included the presence of pre- or perinatal pathology, head injury, 

or substance abuse.  In controls, the exclusion criteria consisted of the presence of learning 

disabilities or other neurological insults.  Informed consent was obtained from the parents of 

children with VCFS and controls upon the first consultation following a demographic interview.  

Specifically, potential candidates were contacted and the study was explained in detail.  First, a 

demographic interview was completed to ensure that participants met inclusion criteria.  Next, 

the procedure was explained.  Participants were told that the experiment would involve a brief, 

painless cortisol swab, which occurred at 11am on a weekend day followed by an afternoon of 

cognitive testing.  Participants were told that cognitive testing would take approximately 3-4 

hours and involved an assessment of the child’s memory, social functioning, and adaptive 

behavior.  Parents were informed that neither they nor the child would receive results of testing 
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or cortisol analysis and that the testing protocols would be de-identified, locked in a filing 

cabinet, and housed in a secured laboratory.  Additionally, parents were informed that 

immediately following the cortisol analysis, swabs would be destroyed and no other information 

would be obtained from them.  After ensuring that the participants fully understood the 

procedure, any potential risks, the scientific benefits, and the time investment of the current 

study, they were scheduled for an appointment, and at that time written informed consent was 

obtained from the parents of the children.  As the children are minors, informed assent was also 

obtained following a demonstration and thorough explanation of the procedures.  

Design 

 The design of this experiment was a quasi-experimental study comparing two groups:  A 

VCFS group and a control group on cortisol levels, neurocognitive functioning, and social 

competence.  It was a between-groups design despite the fact that subjects were matched on 

certain characteristics.  Individuals were assigned to groups based on the presence or absence of 

VCFS.     

Procedures 

Neuropsychological Procedure: Neuropsychological testing was completed by a trained 

psychometrician at various testing locations.   Assent and consent were obtained from the child 

and his or her legal guardian, respectively, prior to the assessment.  These assessments included 

an evaluation of intellectual functioning, a comprehensive evaluation of verbal and visual 

memory, attention, neurobehavioral functioning, emotional functioning, and adaptive 

functioning.  The children underwent the neuropsychological assessment in the late morning.  

Cortisol swabs were taken before the assessment at 11 am to control for neurohormonal 

responses to testing conditions.  Testing order of experimental measures was as follows: (1) 
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WRAML-2; (2) CBCL; (3) ABAS-II; (4) RCMAS-2.  Total length of testing was approximately 

2.5 hours, a time interval short enough to reduce the impact of fatigue on cognitive performance 

(Lezak, 2008).   

Cortisol Procedure:  Subjects were interviewed prior to sample collection to determine 

if the individual had had any recent injuries to the mouth or had not maintained adequate oral 

hygiene over the last year, as both blood and other impurities can contaminate the sample and 

confound results.  Additionally, during the interview, subjects were asked if they had been to the 

dentist within the last 48 hours or had brushed their teeth within the last 45 minutes as these 

activities can increase the likelihood of oral irritation, which can release hormones that 

contaminate the sample.  Prior to collection, on the informed consent information packet, 

subjects were instructed to avoid alcohol 24 hours prior to testing, eating a major meal 60 

minutes prior to collection, dairy products 20 minutes before sample collection, and foods with 

large amounts of sugar or caffeine 24 hours prior to collection.  Finally, subjects were required to 

rinse their mouth out with water 20 minutes before collection in order to remove any solid 

particles from the oral cavity. 

Cortisol samples were taken from children at approximately 11:00 a.m.  Eleven in the 

morning was selected due to the relative stability of cortisol flux at this time of day (Tout, de 

Haan, Campbell, & Gunnar, 1998).  Times earlier than 11 a.m. are more impacted by individual 

differences in the child’s sleep-wake cycle and therefore can confound results (Dettling, Gunnar, 

& Donzella, 1999).  A similar problem has been reported in studies acquiring samples during the 

late afternoon.  In summary, acquiring time-locked samples reduces error associated with time of 

day and provides a cost-effective way of collecting samples.  Samples were acquired with a 

standard buccal swab using the passive, unstimulated collection method.   Children were directed 
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to tilt their head forward allowing the saliva to pool near their bottom lip.  A swab intended for 

use with children 6 years or older was used to collect approximately 1ml of saliva.  The material 

that forms the oral swab is a non-toxic polymer material, which is inert and hypoallergenic.  The 

swab was placed in a collection vile made of polypropylene intended to preserve the molecular 

structure of the steroid.  The sample was then marked with both a numerical and bar code 

identification tag, placed in an insulated container, and kept below 7-10 degrees Celsius.  

Temperature was monitored throughout the process using a standard body thermometer.   

Following the field collection process, the samples were shipped within 24-48 hours in 

their insulated containers to the Salimetrics lab for salivary cortisol distribution analysis.  Upon 

arrival to the lab, the samples were thawed and centrifuged for approximately 15 minutes at 3000 

rpms in order to separate cortisol from solute.  Using the standard immunoassay saliva extraction 

procedure, the steroid, cortisol, was then chemically isolated and concentrations per volume 

calculated and reported (Gatti et al., 2009).   The immunoassay procedure is useful because it 

reduces the number of sample preparation steps including additional cycles of washing and 

centrifuging, leading to reduced processing times and reduced cost (Rowe, Deo, Shofner, Ensor, 

& Daunert, 2007).  The immunoassay procedure works by isolating the free cortisol in the saliva 

using cortisol antibodies to bind the steroid.  Cortisol antibodies were developed via genetic 

modification of aequorin.  The saliva sample was then mixed with the aequorin to form an 

aequorin-cortisol conjugate.  Once the conjugate is formed, bioluminescence was used to 

calculate the concentration of bound cortisol (Rowe et al., 2007).  The immunoassay 

methodology was selected due to its ability to detect very small differences in free cortisol 

concentrations, 1 × 10
−10

 M (Rowe et al., 2007). 
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Collection materials and vials were purchased from the Salimetrics Laboratory.  Figure 1 

shows the swab that was utilized and the collection tube and is a graphical representation of the 

overall collection procedure.  Cortisol samples were destroyed immediately following analysis to 

comply with personal health information regulations.  Data were de-identified and password 

protected to comply with privacy regulations. 

 

Figure 1.  Salivary collection device and storage procedure.  Following the swabbing procedure, 

the collection tube cap is opened (1).  The swab is placed inside the tube directly above the 

centrifuge collection reservoir (2).  The air-tight cap is then placed on the pre-labeled collection 

tube in preparation for freezing (3).  

Analysis 

Analysis methods for both cortisol concentrations and neuropsychological test data 

included standard descriptive techniques for continuous variables.  Assumptions of normality 

were checked using standard techniques including tests for normality, skew, and kurtosis 
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(Tabachnick & Fidell, 1996).  Effect sizes were also calculated and reported (H. Cohen et al., 

2006; J. Cohen, 1988, 1992, 1994).  

 Initial analysis included a between-groups ANOVA to determine if there are any baseline 

cortisol differences (ug/dL), neurocognitive differences, or social/adaptive differences between 

individuals with VCFS and controls.  ANOVA was used to reduce alpha inflation. 

In order to examine the behavioral ramifications of cortisol anomalies in individuals with 

VCFS, Pearson r correlations assessing the relationship between cortisol levels and specific 

subscales of the CBCL, ABAS-II, and the WRAML-2 were conducted.  Table 1 describes the 

specific analyses that were conducted in order to address the hypotheses in question and 

correlation results.   
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Table 1 

 Summary of Analyses and Correlation Results Between Cortisol Level and Subscales of the 

CBCL, ABAS-II, WRAML-2, and RCMAS-2. 

Subscale     Correlation Between Cortisol and Psychological Measures in VCFS Patients 

CBCL     r-value 

Anxious/Depressed        .144                     

Social Problems        .169  

Thought Problems        -.406  

Social Competency        -.109  

ABAS-II_ 

Socialization         .563 

Communication        -.222 

WRAML-2 

General Memory        -.342 

Working Memory        .422 

Attention/Concentration       -.516 

RCMAS-2 

Social Anxiety         .563 

Total Anxiety         .487 

_________________________________________________________________________________________       

Note. CBCL = Child Behavior Checklist; ABAS-II= Adaptive Behaviors Assessment System 2nd Edition; RCMAS2= Revised 

Children’s Manifest Anxiety Scale 2nd Edition; WRAML-2= Wide Range Assessment of Memory and Learning 2nd Edition.
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Results 

This project examined the concentration of a specific stress hormone, cortisol, in 

individuals with VCFS and its impact on cognitive and social functioning in individuals with 

VCFS.  To do this, saliva samples were obtained using the aforementioned analysis procedures 

and the cortisol concentration calculated.  Next, the performance on neuropsychological memory 

and attention measures along with measures of social functioning in individuals with VCFS was 

compared to control subjects.   Finally, the relationship between the steroid hormone and scores 

on specific cognitive and behavioral measures were examined in individuals with VCFS in order 

to determine the impact of cortisol on these domains of functioning.  Table 2 provides the mean 

cortisol concentration for each group and corresponding effect sizes for individuals with VCFS 

and Controls.  Table 3 provides means and standard deviations for select subtests of the 

WRAML-2 in individuals with VCFS and Controls.  Table 4 summarizes mean scores of 

behavioral measures of functioning including the CBCL, ABAS-II, and RCMAS-2 in individuals 

with VCFS and Controls.  
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Table 2 

Mean Volume (cc) and SD of Cortisol in Individuals with VCFS and Controls 

        VCFS        Controls 

Hormone      M  SD         M       SD__  Effect Size     d    

Cortisol  .25354  .21342        .10408    .05443 1.01   

Note.  Cortisol concentrations are in micrograms per deciliter (ug/dL).  Effect size is calculated as Cohen’s d. 

 

Table 3 

Mean Index Scores, Standard Deviations, and Effect Sizes for WRAML-2 indices in individuals 

with VCFS and Controls 

        VCFS        Controls 

WRAML-2 Index     M  SD         M       SD__  Effect Size     d    

General Memory 74.03  12.76        109.45 14.22  -2.74 

 

Working Memory 88.88  22.90      108.88 8.590  -1.70 

 

Attn/Concentration 79.63  13.269      101.83 16.573   -1.55  

Note.  WRAML-2=Wide Range Assessment of Memory and Learning: 2nd edition.  Effect size is calculated as Cohen’s d. 
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Table 4 

Means and Standard Deviations for Subscales of the CBCL, ABAS-II, and RCMAS in Children 

With VCFS. 

        VCFS        Controls 

Subscale    M       SD  M      SD  Effect Size    d   

CBCL   

Anxious/Depressed  56.26  8.01  50.09         2.50 .95       

 

Social Problems  57.13  8.57  50.54            .687 1.14 

Thought Problems  58.82  8.91   52.00           3.06 1.07 

Social Competency  46.00  11.55  51.00           8.30 -.52 

ABAS-II_ 

Socialization   100.69  19.73  112.81        10.52 -.80  

Communication  7.36  3.21  11.81          1.66 -1.83  

RCMAS-2 

Social Anxiety   49.78  11.20  46.72           8.93 .33 

Total Anxiety   50.43  11.47  46.81           9.61 .36 

_________________________________________________________________________________________       

Note. CBCL = Child Behavior Checklist, M = 50, SD = 10 ; ABAS-II= Adaptive Behaviors Assessment System 2nd Edition, M = 

100, SD = 15 for composite, M = 10, SD = 3 for individual scales; RCMAS2= Revised Children’s Manifest Anxiety Scale 2nd 

Edition, M = 50, SD = 10. 

Specific Aim 1 

 It was predicted that salivary cortisol concentrations would be higher in individuals with 

VCFS relative to controls.  Figure 2 displays the mean cortisol concentration in individuals with 
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VCFS and controls.  Results indicated that mean cortisol concentration was significantly larger 

in individuals with VCFS relative to controls, F(1, 20) = 5.436, p < .05 .  

 

Figure 2.  Mean cortisol concentrations (ug/dL) (+SE) for individuals with VCFS (n = 11) and 

control individuals (n = 12). 

Specific Aim 2 

It was predicted that individuals with VCFS would perform significantly worse on tests 

of memory learning as measured by the WRAML-2.  In particular, general memory, attention 

and concentration, and working memory indices would be lower in individuals with VCFS.  

Results indicated significant difference in performance on these measures in individuals with 

VCFS when compared with controls:  General Memory, F(1, 20) = 37.875, p < .05; 

Attention/Concentration, F(1, 20) = 11.513, p < .05; Working Memory, F(1, 16) = 5.127, p < 
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.05.  Figure 3 displays the mean difference in standardized scores on these measures between 

individuals with VCFS and controls.   

 

Figure 3.  Mean index scores on neurocognitive measures for individuals with VCFS (n = 11) 

and control individuals (n = 11). 

Specific Aim 3 

  It was hypothesized that children with VCFS would have lower ratings on measures of 

social skills.  As anticipated, individuals with VCFS exhibited significantly more symptoms 

associated with lower social and adaptive functioning relative to controls:  Anxious Depressed 

(CBCL), F(1, 20) = 30.489, p < .05; Social Problems (CBCL),  F(1, 20) = 5.375,  p < .05; 
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Thought Problems (CBCL), F(1, 20) = 52.535,  p < .05; Social Competency (CBCL), F(1, 20) = 

5.826, p < .05; Socialization (ABAS-II), F(1, 20) = 16.327, p < .05; Communication (ABAS-II), 

F(1, 20) = 16.513,  p < .05.  Figure 4 displays the mean difference in T-scores on subscales of 

the CBCL in individuals with VCFS and controls.  Figure 5 displays the mean differences in 

standardized scores on the ABAS-II in individuals with VCFS and controls. 

 

Figure 4.  Mean t-scores on CBCL subscales for individuals with VCFS (n = 11) and control 

individuals (n = 11). 
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Figure 5.  Mean standardized scores on ABAS-II subscales for individuals with VCFS (n = 11) 

and control individuals (n = 11). 

Specific Aim 4 

It was hypothesized that the cortisol level in individuals with VCFS would be 

significantly correlated with cognitive measures and measures of social and adaptive functioning.  

There were no significant correlations between cognitive measures and cortisol in individuals 

with VCFS.  That said, a significant negative correlation was observed between the General 

Memory and Attention/Concentration indices of the WRAML-2 and cortisol concentrations in 

controls:  r(11) = -.778,  p < .05;  r(11) = -.618,  p < .05. Figures 6 and 7 graphically depict the 
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relationship between cortisol, the General Memory index score, and the Attention/Concentration 

index score.    

 There were no significant correlations observed in individuals with VCFS on select 

subscales of the ABAS-2, CBCL, and RCMAS-2.  That said, the level of cortisol in control 

individuals was negatively correlated to the social competency scale of the CBCL, r(11) = -.639, 

p < .05.  Figure 8 is a graphical representation of the correlation between cortisol concentration 

and the social competency subscale of the CBCL in controls.   Taken together these data suggest 

that the individuals with VCFS have significantly larger concentrations of resting cortisol 

relative controls and significantly worse cognitive performance.   
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Figure 6.  Relationship between  average cortisol concentration (ug/dL) and the General Memory 

Index Score of the WRAML-2 in Controls. 
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Figure 7. Relationship between average cortisol concentration (ug/dL) and  the Attention/ 

Concentration Index Score of the WRAML-2 in Controls.  
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Figure 8.  Relationship between average cortisol concentration (ug/dL) and the Total 

Competency subscale of the CBCL. 

Discussion 

This study sought to identify the relationship between cortisol and severity of  cognitive 

and social impairments in individuals with VCFS.  In particular, one goal of this research was to 

elucidate brain-behavior relationships within the context of social cognition.  As social cognition 

has been implicated in numerous psychiatric disorders including pervasive developmental 

disorders, psychosis, and mood disorders, understanding the neural substrates involved is 

essential in determining the etiology of social deficits in these disorders, informing treatment, 

and enhancing outcome.  Recent studies have implicated elevated cortisol levels in both 

cognitive and social impairments associated with the various psychological disorders comorbid 
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with VCFS (Tout et al., 1998; Vythilingam et al., 2004; Walder et al., 2000).  In this study, 

salivary cortisol samples were taken from children with VCFS and neurotypicals in order to 

evaluate difference in resting cortisol levels between the groups.  These cortisol levels were then 

correlated with measures of cognitive functioning, adaptive functioning, and social functioning 

in order to help determine the role cortisol plays in the development of cognitive and social 

deficits in this population. 

Children with VCFS Show Elevated Cortisol Levels 

  The hypothesis that individuals with VCFS would have elevated resting cortisol levels 

relative to controls was supported.  Though this has been the first study to demonstrate this 

elevation in a population of individuals with VCFS, it has been observed in related populations.  

For example, such elevated levels of cortisol have been observed in children with ASD who 

exhibit significant social and cognitive deficits (Richdale & Prior, 1992).  

There are multiple theories regarding the etiology of cortisol elevation.  The first theory 

involves physiological mechanisms.  It may be possible that children with VCFS have an 

overactive hypothalamic-pituitary-adrenal axis that leads to the over-secretion of cortisol during 

both stressful and non-stressful events.  Select groups such as individuals who are predisposed to 

the development of PTSD and children with neurodevelopmental disorders such as ASD exhibit 

an elevated cortisol response when presented with minor to moderate stressors relative to control 

counterparts (Carrion et al., 2002).  Such a physiological profile may lead to increased startle 

response in individuals with PTSD and emotional regulation issues in children with ASD.  Thus, 

hypersecretion of cortisol in response to minor stressors in daily living may account for the 

elevated levels of the steroid observed in children with VCFS.   



69 

 

Indeed, such hypersecretion of the HPA axis may be the result of traumatic events and 

the over-exposure to stressful stimuli; however, another recent study suggests that the inability to 

suppress cortisol is what mediates the deleterious neuroanatomical effects and psychopathology 

and cognitive deficits associated long-term glucocorticoid exposure (Watson, Thompson, 

Ritchie, Nicol Ferrier, & Young, 2006).  Suppression of cortisol is one of the primary problems 

associated with Cushing’s disease (Carlson, 2004), a disorder characterized by abnormally high 

levels of glucocorticoids, cognitive impairments, and permanent changes in social functioning 

(Heald et al., 2004).  Cushing’s disease and cortisol suppression can be assessed using a 

Dexamethasone Suppression Test.  Dexamethasone is a steroid compound that is molecularly 

similar to cortisol and binds to glucocorticoid receptors.  After low-dose administration of 

Dexamethosone, blood concentration of ACTH, an upstream precursor to glucocorticoids, is 

reduced via biofeedback mechanisms responsible for HPA regulation.  In individuals with 

impairments in suppression of cortisol production, ACTH levels are not decreased, thereby 

signifying impairment in cortisol regulation.  This mechanism of impaired suppression of 

cortisol may explain some of the difference between trauma-induced elevated cortisol levels and 

developmental or genetic factors impacting basal cortisol levels.  That is, overproduction of 

cortisol, or hypersecretion, is often associated with stress exposure, while suppression 

impairment may be more developmental in nature.   

There is neuroanatomical evidence that may implicate deficits in ACTH suppression as a 

mediating factor for elevated cortisol levels in children with VCFS.  More specifically, the 

hippocampus of the temporal lobe has been found to be significantly smaller in this population 

(Jacobson, Rowe, & Lajiness-O'Neill, 2011; Kates et al., 2006).   As the receptors get bound 

with ligands, the negative feedback loop that leads to the suppression of ACTH production gets 
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initiated via second messenger signals.  As the hippocampus in children with VCFS is 

significantly smaller, it stands to reason that they have may have fewer receptors at this site 

meaning that regulation of ACTH production is going to be limited and temporally delayed.  

Thus, it is this well-documented anomaly of the hippocampus in the temporal lobe of children 

with VCFS that may contribute to deficits in suppression and the subsequent build-up of cortisol.  

That said, it still remains unclear as to whether children with VCFS were born with smaller 

hippocampi than controls or whether environmental factors such as exposure to significant 

amounts of stress, which have been known to cause hippocampal atrophy (Starkman et al., 1999; 

Suhr, Demireva, & Heffner, 2008), have contributed to the reduced hippocampal volumes.  Due 

to the technological limitations, complex sedation protocols, and resultant ethical considerations 

involving imaging in infants, it is difficult to ascertain the directionality of the relationship 

between the temporal atrophy, stress, and cortisol.  Future advances in technology may allow for 

early imaging in infants and may help determine the causal factors associated with HPA 

dysregulation in children with VCFS.   

As aforementioned, in this particular study, it is difficult to determine whether elevated 

cortisol levels are developmentally mediated or caused by environmental stressors.  That said, 

there were no differences observed between individuals with VCFS and controls on a self-report 

measure of total anxiety and social anxiety, suggesting that individuals with VCFS do not 

necessarily interpret engagement in social interaction as a stressful or anxiety-provoking event, 

nor are the children in this study endorsing significant levels of personal anxiety.   

 Though self-report measures did not indicate elevated anxiety or social anxiety, parent 

report measures did indicate significantly higher levels of anxiety and depression relative to 

controls.  Thus, it may be possible that children with VCFS have difficulty labeling their own 
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emotions.  Perhaps the children with VCFS who are experiencing physiological stress in 

response to certain situations though have become accustomed to the heightened arousal level 

and autonomic symptoms associated with the response and therefore do not recognize the 

situation as being particularly stressful.  That is, the experience of stress may become 

commonplace for these individuals, and the baseline for stimuli interpreted as being stressful is 

raised, despite having the physiological responses associated with experiencing a stressor and the 

corresponding cortisol elevation.  Such a process has been observed in rats that were exposed to 

a noxious audiologic stressor where, upon several exposures of the noxious stimuli, the rat 

stopped responding behaviorally to the stressor while still having physiological responses to the 

stimuli (Rabasa, Delgado-Morales, Munoz-Abellan, Nadal, & Armario, 2011).  This is not unlike 

a learned helplessness model in which escape or avoidance behaviors give way to more docile 

acceptance (Seligman, 1972).  In other words, the environment has not become any less stressful 

to the children, but their baseline for behavioral reaction has shifted up, which is why they are 

reporting less stress and anxiety than the corresponding observer report.   

 Another possible explanation for the cortisol elevation in children with VCFS involves an 

epigenetic model of HPA dysregulation in developing fetuses and newborns.  That is, there 

might be an interaction between the maternal environment, the uterine environment, and the 

genetic coding of proteins that impacts the development and functioning of the HPA axis.   There 

is some evidence from animal models to suggest that when a mother is exposed to significant 

stressors, permanent changes occur in the composition and functioning of the fetal HPA axis 

(Egliston, McMahon, & Austin, 2007; Wright, 2007).   Specifically, regulation or suppression of 

the stress response is impacted in offspring of mothers who have experienced significant 

amounts of stress during pregnancy.  Moreover, offspring exhibited higher resting cortisol levels 
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and delayed returns to baseline cortisol following exposure to mild stressors.  Indeed, maternal 

stress may be one factor influencing the elevated cortisol levels in VCFS.  More research is 

necessary in order to understand the impact of prenatal stress on the aberrant functioning of the 

HPA axis in individuals with VCFS.  

 In summary, it is unclear from these data whether children with VCFS are born with 

anomalous physiological mechanisms, which fail to suppress ACTH production or whether 

environmental stressors have a differential impact on the way these children secrete cortisol. 

Specific measures and records of stressful events and Dexamethosone Suppression Tests may be 

necessary in order to reach more definitive conclusions regarding the etiology of the elevated 

cortisol levels. 

Children with VCFS Perform Significantly Poorer on Selected Tests of Memory and 

Learning 

 The hypothesis that children with VCFS would exhibit reduced cognitive abilities relative 

to control counterparts was supported.  Specifically, children with VCFS exhibit poorer 

performance in general memory ability, attention and concentration ability, and working memory 

ability.  This finding is not surprising given the high rate of ADHD and LD observed in this 

population.  According to Antshel et al. (2007), children with VCFS exhibit an inattentive 

subtype of ADHD characterized by poor ability to focus and short attention span.  One of the 

causal mechanisms for ADHD in this population is poor self-monitoring ability mediated by 

functional deficits in the frontal lobes and volumetric anomalies in the caudate nucleus 

(Castellanos et al., 1994) of children with VCFS.  Specifically, children with VCFS show 

increased activation in the frontal lobe during a computerized continuous performance task.  

Such increased activation suggests that in order to perform well on the test, the individual needs 
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to work harder and recruit resources from other regions of the brain.  Such recruitment is 

commonly observed in studies of functional neuroimaging in individuals with ADHD.   

 In addition to the frontal lobes, the caudate nucleus of the basal ganglia has been 

implicated in the regulation of attention and the ability to maintain vigilance (Garrett et al., 

2008).  Individuals with ADHD performing cancellation and continuous performance tasks show 

decreased activation in these areas during the test period (Schneider et al., 2010).  Additionally, 

in control populations an asymmetry in this structure is observed (Hynd et al., 1993).  

Specifically, neurotypicals have a larger right caudate nucleus relative to the left.  However, in 

children with ADHD, the asymmetry is absent and there is no significant difference between the 

right and the left caudate.  Children with VCFS who exhibit symptoms associated with ADHD 

have a right and left caudate that are volumetrically indistinguishable (Sugama et al., 2000).  

Therefore, it is possible that volumetric anomalies in this structure are mediating some of the 

symptoms of inattention in this population.          

Genetics may also play a role in the inattention observed in this population.  Individuals 

with VCFS and comorbid ADHD have a low-activity COMT allele.  In fact, individuals with 

VCFS have only a single copy of the COMT gene and therefore have the lowest COMT activity 

(Gothelf, Michaelovsky et al., 2007; Lachman et al., 1996).  The COMT gene is responsible for 

coding for an enzyme associated with the breakdown of the neurotransmitter dopamine.  As a 

result of the low activity variant in individuals with VCFS, too much dopamine accumulates in 

regions associated with the maintenance of attention such as the frontal lobes and select 

structures of the basal ganglia.  Excessive dopamine in these regions have been associated with 

symptoms of inattention (Turic et al., 2005), rapid mood changes (Papolos et al., 1998), and 

psychosis (Murphy, Jones, & Owen, 1999).  Given these findings, it is highly possible that the 
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poor performance on measures of inattention may be related to the COMT gene and subsequent 

dopamine modulation. 

 The inattention and inability to concentrate may be one of the factors impacting the poor 

social skills observed in children with VCFS.  That is, the children do not attend to social cues 

such as facial expressions, eye gaze, and other social norms.  As a result, the children do not 

learn to engage reciprocally in social interactions and have decreased overall social competence.  

Additionally, given the involvement of dopamine in social reciprocity and social responsiveness 

(Nagaraj, Singhi, & Malhi, 2006), it is likely that the low activity COMT variant expressed in 

children with VCFS may also be contributing to their social skills deficits.  In other words, not 

only do the children have deficits attending to, learning, and using social cues, but they also may 

find social interaction less rewarding in general as a result of aberrant dopamine modulation.  

More research is necessary to determine the links between COMT, dopamine, cortisol, attention, 

and social functioning, in order to determine the magnitude and specific contributions of each of 

these variables.         

 In addition to inattention and concentration deficits, individuals with VCFS in this study 

exhibited general memory deficits.  These data are consistent with previous findings examining 

the cognitive profile of children with VCFS (Debbane, Glaser, & Eliez, 2008; Kates, Krauss et 

al., 2007; Lajiness-O'Neill et al., 2006; Majerus, Van der Linden, Braissand, & Eliez, 2007; 

Swillen et al., 1999).  Children with VCFS exhibit nonverbal learning deficits, recognition 

deficits for both verbal and nonverbal information, and difficulties suppressing irrelevant 

content, which all contribute to the general memory impairment commonly observed in this 

population.  It has been reported that the general memory deficits observed in this population 

relate to neuroanatomical and functional inefficiencies in bilateral hippocampus of children with 
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VCFS.  As previously stated, children with VCFS have decreased volume in their hippocampus 

(Jacobson et al., 2011; Kates et al., 2006).  These volumetric anomalies have been correlated 

with decreased performance on tests of memory and learning relative to neurotypical children.  

In particular children with VCFS exhibit a NLD profile (Lajiness-O'Neill et al., 2006) though 

recently deficits have been observed in serial learning of verbal information and recognition of 

verbal information (Majerus et al., 2007).  In summary, children with VCFS exhibit deficits in 

general ability characterized by nonverbal memory and learning deficits and circumscribed 

verbal learning deficits.  It is likely that these deficits are caused by neuroanatomical and 

functional deficits in substructures of the temporal lobe.        

 Working memory abilities were also found to be reduced in children with VCFS relative 

to controls.  These data have also been reported and therefore the data reported in this study is 

consistent with previous findings (Coman et al., 2010; De Smedt et al., 2008; Kates, Krauss et 

al., 2007; Lajiness-O'Neill, 2005; van Amelsvoort et al., 2004).  Working memory requires a 

combination of neurological structures working in concert.  Specifically, working memory is 

supported by sub-regions of the frontal lobe and the parietal lobe.  For example, an examination 

of frontal lobe structures in individuals with decreased working memory ability found decreased 

activity in the frontal lobes.  With regard to the parietal lobe, individuals with VCFS have 

exhibited volumetric and functional anomalies in this lobe of the brain (Eliez et al., 2000).  

Additionally, Diffusion Tensor Imaging (DTI) studies have examined the white matter pathways 

connecting the frontal and parietal lobes in this population and children with VCFS and found 

that the Fractional Anisotropy (FA) values in white matter tracts in the supramarginal gyrus and 

angular gyrus were positively correlated with performance on the arithmetic subscale of the 

WAIS/WISC, suggesting that aberrant connectivity between the frontal and parietal lobes may 
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contribute to spatial working memory deficits observed in this population (Barnea-Goraly, Eliez, 

Menon, Bammer, & Reiss, 2005).  Moreover, studies have found decreased activation in the 

temporal lobe of patients with working memory deficits (White, Hongwanishkul, & Schmidt, 

2011).  Children with VCFS exhibit deficits and functional anomalies in all of these areas 

supporting working memory.   

As aforementioned, decreased frontal volumes and aberrant activation of oribitofrontal 

and ventromedial prefrontal cortex has been observed in this population (Kates et al., 2010; 

Kates et al., 2006).  The functional deficits associated with both the frontal lobe and temporal 

lobe have again been attributed to increased dopamine levels in this region, which impact both 

receptor sensitivity, overall efficiency of dopamine transmission, and production of factors 

essential to the maintenance of healthy cellular functioning and memory encoding (Gothelf, 

Schaer, & Eliez, 2008).  It is possible that due to increased exposure to dopamine as a result of 

the inability to degrade dopamine, down regulation of D2 receptors occurs.  D2 receptors have 

been shown to be essential for working memory (Goldman-Rakic, 1999; Wang, Vijayraghavan, 

& Goldman-Rakic, 2004).  Moreover, the presence of excessive amounts of dopamine has been 

shown to lead to the down regulation of D2 receptors (Ginovart, Farde, Halldin, & Swahn, 1999; 

Zemlan, Hitzemann, Hirschowitz, & Garver, 1985).  For example, in individuals with 

schizophrenia, release mediated down-regulation of central and cortical D2 receptors has been 

observed along with reduced receptor density (Ginovart et al., 1999; Zemlan et al., 1985).  As 

working memory deficits have been observed in the schizophrenic population as well, it stands to 

reason that D2 receptor modulation may contribute to deficits observed in children with VCFS.     

Additionally, evidence from cocaine abuse studies suggest that particular working 

memory deficits are mediated by the underproduction of Nuclear factor kappa B (NFkappaB), 
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which is a modulator of oxidative stress and a key component of short-term memory formation 

(Muriach et al., 2010).  Following administration of high doses of exogenous cocaine, a synthetic 

dopamine agonist, NFkappaB was greatly reduced in frontal regions.  Corresponding deficits in 

memory performance were also observed.  Thus, it seems that an interaction between 

neuroanatomical deficits in the frontal cortex, parietal lobe, and temporal lobe along with 

overproduction of dopamine may mediate the significant difference in working memory 

performance in individuals with VCFS and controls.  More research is necessary in order to 

understand the unique role that dopamine and NFkappaB plays in the development of working 

memory deficits in individuals with VCFS. 

To summarize, it is unclear what the role of cortisol is in mediating cognitive deficits 

observed in this population.  More research is necessary in order to determine whether elevated 

cortisol levels underlie some of the morphometric anomalies in children with VCFS.   As will be 

shown, there may not be a direct relationship between elevated cortisol and other symptoms such 

as working memory attention, general memory.  However, cortisol might share an indirect role 

or secondary role to dopamine in the impairment and symptomatology observed in this 

population. 

The Relationship Between Cortisol and Cognitive and Behavioral Measures of Functioning  

The hypothesis that cortisol levels would be correlated with select measures of cognitive 

functioning and social competence in individuals with VCFS was not supported.  Specifically, no 

relationship between cortisol and general memory, attention and concentration, or working 

memory was observed.  Moreover, a significant relationship was not observed between cortisol 

level and anxiety/depression, social problems, thought content problems, and social competency 

in individuals with VCFS.  Additionally, cortisol levels were unrelated to measures of adaptive 
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functioning including social skills and communication.  Finally, in children with VCFS cortisol 

was not related to measures of social anxiety or total anxiety.  Though it is tempting to conclude 

that cortisol may be unrelated to these cognitive and behavioral measures, drawing such a 

conclusion is premature given the relationships observed in the control group.  In the control 

group, a significant negative correlation was observed between cortisol and social competence as 

measured by the CBCL.  Additionally, a negative correlation was observed between cortisol and 

the attention/concentration subscale of the WRAML-2.  Thus, in controls, aspects of 

neurocognitive functioning are strongly correlated with resting cortisol levels.  This may imply 

that in children with VCFS, another physiological or neuroanatomical mechanism may be 

influencing the strength and direction of the relationship between cortisol and neurocognitive and 

behavioral measures.   

One possible explanation for the differences observed in the cortisol relationships 

between controls and individuals with VCFS is receptor sensitivity or down regulation.  Down 

regulation of receptors is observed when there is a high presence of a certain endogenous or 

exogenous chemical messenger in the brain (Carlson, 2004).  Essentially, receptor modulation is 

a physiological mechanism through which neurons attempt to maintain homeostasis.  Put simply, 

receptors on the surface of cells are rendered inactive in response to high levels of transmitter.  

As a result, more transmitter is required in order to produce the same behavioral effect.  Such 

receptor modulation governs the process of physiological and behavioral tolerance to certain 

drugs (Carlson, 2004).  Glucocorticoid receptor down regulation has been observed in animal 

models.  In response to long-term water exposure and restraint, the number of glucocorticoid 

receptors observed in the brains of rats were greatly reduced, leading to hyposuppression of the 

stress response (Huizenga et al., 2000; Mizoguchi et al., 2001).  Given the long-term exposure to 
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elevated glucorticoids in individuals with VCFS, it may be possible that receptor down 

regulation may be occurring throughout the limbic system and prefrontal cortex.  Such receptor 

down regulation may be the reason that the cortisol does not have a significant relationship with 

measures of cognitive and social functioning.  It also explains the different findings between the 

two groups.  Since individuals without VCFS are not exposed to the high levels of 

glucocorticoids for long periods of time, receptor down regulation in key areas of the brain 

associated with memory, learning, and social functioning may not have occurred, and 

performance on cognitive and behavioral measures is still affected.  Thus, it may be that children 

with VCFS have developed somewhat of a tolerance to cortisol through receptor modulation and 

therefore do not exhibit the strong correlations between cortisol, cognition, and social 

functioning seen in controls.  Further research examining the temporal relationship between 

receptor down regulation and cognitive and behavioral functioning in individuals with VCFS is 

necessary in order to determine if exposure to high levels of glucocorticoids throughout 

development impacts the effect that cortisol has on symptomatology.   

Though glucocorticoid receptor modulation explains the differential cortisol findings in 

VCFS and controls, it does not explain the relativity poor cognitive performance and higher 

levels of symptomatology observed in the VCFS children in this study.  Thus, an additional 

mechanism may also be acting along with cortisol and may significantly contribute to deficits 

observed in this population.  One possible mechanism mediating the cognitive and social deficits 

associated with VCFS is dopamine.  Due to the low-activity COMT variant expressed in children 

with VCFS, dopamine levels in this population are high (Gothelf et al., 2008; Papolos et al., 

1998; van Amelsvoort et al., 2008; Yu, Zhang, Huang, Ding, & Li, 2007).  Such high levels of 

dopamine have been associated with impaired memory performance (B. L. Murphy, Arnsten, 
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Goldman-Rakic, & Roth, 1996), attention/concentration deficits (Russell et al., 2006), and social 

deficits  (Liddle, 2000).  Thus, it is possible that both dopamine and cortisol act in concert to 

produce the deficits observed in VCFS.  Moreover, given the COMT variant in children with 

VCFS ,it is likely that these children have significantly higher levels of dopamine than their 

control counterparts.  These elevated dopamine levels may contribute to D1 and D2 receptor 

insensitivity in some regions of the brain associated with reward and attention while 

simultaneously contributing to symptoms associated with psychosis.  The combination of 

dopamine and cortisol may have impacted the ability to observe a significant relationship 

between cortisol alone and the neuropsychological functioning of the children with VCFS.  That 

is, the elevated dopamine levels may have exacerbated deficits and impacted test scores in such a 

way as to make the relationship with cortisol non-linear.         

Treatment Implications 

Given what is observed in neurotypical children regarding the relationship between 

cortisol level, cognitive performance, and social competence, this study has some relevant 

treatment implications.  Reduction of cortisol level has been shown to improve mood impairment 

and cognitive functioning (Baker et al., 2010).  When used to treat bipolar disorder, mifepristone, 

an antiglucocorticoid drug, was effective in reducing hypercortisolaemia.  Following the 

reduction of glucocorticoids, verbal fluency, spatial recognition abilities, and working memory 

abilities improved significantly relative to a no-treatment control group (Young et al., 2004).  In 

addition, mood symptoms were also reduced.   To date there have not been any published studies 

examining the impact of mifepristone on cognitive functioning and social competency in 

individuals with VCFS.  Given the high rate of bipolar disorder in this population and the 

relative effectiveness of the drug to treat both mood and cognitive symptoms, it may be a useful 
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treatment in this population, and further research is necessary in order to determine the efficacy 

of the drug in the alleviation of symptoms in this population. 

In addition to drug therapy, behavioral interventions have also been shown to reduce 

cortisol levels and improve cognitive functioning (Baker et al., 2010).  Following a regimen of 

daily moderate exercise, individuals with Alzheimer’s disease showed an increase in their ability 

to regulate the HPA axis and a corresponding decrease in cortisol level.  Performance on 

neurocogntive measures in the area of executive functioning and short-term memory were 

significantly improved relative to controls.  These data further suggest that regulation of cortisol 

is effective in reducing cognitive symptoms.  

In summary, regulation of cortisol may be an important treatment target for both 

individuals with VCFS and other populations exhibiting high levels of cortisol.  Both behavioral 

and physiological treatments have been shown to reduce cortisol levels.  More research is 

necessary in order to determine the optimal levels of cortisol and the specific impact that a 

reduction in cortisol levels would have on cognition and social functioning in patients with 

VCFS and other neurodevelopmental disorders. 

Limitations 

 One of the primary limitations of this study was sample size.  Indeed, the sample size was 

sufficient to be able to detect differences in resting cortisol levels.  However, given the 

individual variability of neurocognitive performance, a larger sample size would have enhanced 

the power and decreased the likelihood of making a type-II error.   

 Sample composition is another limitation of this study.  Due to the fact that subjects were 

recruited through the VCFS support group, there may be confounds associated with individuals 

who have access to the group.  Additionally, these individuals are often apprised of recent 
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treatments, and it is possible that the children in the support group may have received more 

surgical, pharmacological, and psychological treatment than VCFS children not in the support 

group. 

 Another limitation is that only one physiological variable was examined in this study.  It 

is likely that multiple factors contribute to the high levels of cortisol levels and cognitive and 

behavioral symptomatology observed in this population.  It would be informative to incorporate 

multiple variables to determine the relative contribution of several possible etiological variables.      

 Finally, another limitation and confound in this study was the inability to control for 

various medications.  Due to the wide range of medications taken in the VCFS sample and the 

inability to have patients not take their medication for any extended period of time, it was 

difficult to statistically control for any one type of medication (i.e. psychostimulants, antibiotics, 

antidepressants, anxiolytics, etc.).  Future studies of cognitive and social functioning in this 

population should examine and control for the specific effects of the medication the individuals 

are taking.  This would require a significantly larger sample size and a more consistent 

medication record between patients.
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