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ABSTRACT 

Quantification of Short-Chain Fatty Acids in Cecal Material by Gas Chromatography-Mass 

Spectrometry 

Probiotic bacteria in the human colon that produce C2 – C4 short chain fatty acids (SCFA) and 

Lactobacillus species that produce lactate in addition to SCFAs are known to have positive 

health benefits. These organic acids were extracted with ether from murine cecal material 

(from Dr. Gary Huffnagle, Univ. of Mich.) and derivatized for quantitative measurement by gas 

chromatography-mass spectrometry.  Antibiotic-treated animals gavaged with Candida- 

albicans had a lower level of cecal butyrate relative to untreated animals, but a higher level of 

butyrate when treated mice were also administered Lactobacillus johnsonii NF-1.  More recent 

studies have demonstrated a butyrate-lowering effect of antibiotic-/C. albicans treatment 

relative to antibiotic or C. albicans treatment alone, but a corresponding increase in the level of 

lactate.  It is proposed that the steady state levels of small organic acids provide a marker of 

human health and disease. 
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INTRODUCTION 

1.1 Gastrointestinal tract (GI) 

The gastrointestinal tract in mammals contains a series of organs that are responsible for 

digestion of foods and absorption of nutrients into the body. The remaining substances that 

are not absorbed are then processed and removed via defecation.  The GI system is 

commonly divided into the upper GI tract and lower GI tract.  As shown in Figure 1, The 

upper portion of the GI tract begins at the mouth and extends past the stomach into the 

duodenum of the small intestines.  The lower GI tract consists of most of the small and large 

intestines, and the anus.  The large intestine itself is composed of the cecum, the colon, and 

the rectum. 

 

Figure 1. Diagram of Human Gastrointestinal System 

http://www.newworldencyclopedia.org/entry/Gastrointestinal_tract(accessed November 2009) 

http://www.newworldencyclopedia.org/entry/Gastrointestinal_tract
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Given the length of and diversity of tissue in the GI tract within the human body, it is no 

surprise that the physiological conditions of the various organs vary greatly with conditions 

such as pH and oxygen levels.  The GI system is known to host a wide variety of 

microorganisms, commonly referred to as the microbiota.  Along with the varying 

conditions of the GI tract, there is great variation in the concentration and identity of 

organisms residing in specific portions of the GI tract.  It has been found that few organisms 

can survive the low pH in the stomach; therefore, a low concentration of bacterial cells is 

observed in this acidic environment.  Further down the GI tract the concentration of 

microorganisms increases, with the highest concentration located in the colon.  Anaerobic 

bacteria are found in the GI tract due to the very low levels of oxygen available in these 

deep organ tissues (1).  

 

1.2 Microbiota in Humans 

A highly diverse population of microorganisms resides specifically in the lower GI tract.  A 

great level of diversity in microbiota exists as well from human to human, with adults 

exhibiting a high degree of complexity in the GI microbiota.  One factor that affects the 

bacterial composition in the human GI tract is diet (2).  The reason for this is that food 

intake provides nutrients for the host but also for the microorganisms that reside therein.  

Food nutrients that are not digested may serve as an energy source for the organisms living 

within the intestines and colon.  A change in diet may consequently eliminate the preferred 

energy source of a particular organism, and that organism may no longer be able to survive 

within the GI tract.  For example, undigested carbohydrates and proteins can enter the large 
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intestine or colon and be partially broken down by certain organisms.  The leftover material 

may then serve as an energy source by a different set of organisms, which may then break 

down the by-products into short chain fatty acids (SCFA).  These SCFA are known to have 

positive health benefits to the host (3). 

 

1.3 Health benefits of short chained fatty acids 

It is recognized that many GI-related diseases and health issues are caused by imbalances in 

the microbiota in the large intestines (4).  The common known related diseases and illnesses 

include Crohn’s disease, colitis, irritable bowel syndrome, and colon cancer.  It has  been 

reported that the large intestines can contain an excess of up to 200g of material, of which  

approximately half of this mass may be microbial biomass (5).  In healthy individuals these 

organisms are non-pathogenic and provide positive health benefits (6).  Not only do these 

organisms provide competition inhibiting pathogenic organisms from colonizing, their main 

function is to breakdown undigested food materials into SCFA.  This is beneficial because 

the starches and fiber that they process would otherwise be removed by defecation with no 

benefit to the host system.  Instead these organisms produce useful materials that the host 

can use.  The presence of SCFA in the GI system has been found to provide several positive 

health benefits (7).  The average daily SCFA production in the large intestines has been 

reported as 400mmol (8).  Two of the most beneficial SCFA are believed to be butyrate and 

lactate (Figure 2). 
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Figure 2.  Common short chain fatty acids produced in GI system 

 

In vivo experiments with GI epithelial cells and lactate-producing bacteria have 

demonstrated a modified T-cell immune response regulating the allergic immune response 

(9).  Results of studies have provided evidence that lactate is commonly metabolized to 

butyrate (10).  Therefore, lactate production may be necessary for the formation of 

butyrate.  Butyrate has been found to lower the risk of colon cancer in humans (11).  One 

possible explanation for this is that butyrate is the preferred energy source of epithelial cells 

in the colon (4).  It has been reported that these cells derive 70% of their energy through 

the oxidation of butyrate (12).  Butyrate and lactate are used by the host organism’s cells 

for healthy cellular function.  It has also been shown that butyrate may induce apoptosis in 

human colonic tumor cell lines (13).  The lead theory for the etiology of ulcerative colitis is a 

failure of butyrate metabolism (14). 
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1.4 Sources of SCFA production 

As stated earlier there are several dietary sources that lead to the formation of SCFA in the 

large intestines.  Commonly these dietary sources enter the GI system as indigestible 

carbohydrates, polysaccharides, starches, fiber, and protein.  Upon entering the large 

intestines they are used as an energy source for microorganisms residing in the GI tract.  In 

certain instances they may directly be broken down to produce SCFA, or maybe converted 

into an intermediary component, which may then be converted by another organism to 

finally yield SCFA.  Figure 3 displays how specific microorganisms are able to produce 

butyrate from any of a variety of nutrient precursors. Interestingly, despite the diversity of 

nutrient precursors used to form butyrate, all biochemical pathways contain crotonyl-CoA 

as a common intermediate.  Acetyl-CoA, polyphenols, and the amino acids lysine and 

glutamate are able to directly form this compound.  Carbohydrates and other proteins must 

first produce succinate, which passes through the Kreb’s cycle to yield crotonyl-CoA.  This 

pathway ultimately leads through the action of various enzymes to the production of 

butyrate and one equivalent of acetyl-CoA.  Acetyl-CoA then reenters the pathway and 

leads to the formation of more butyric acid.  Once the pathway has begun there is an 

alternative cycle that certain organisms possess.  For these organisms, enzymes catalyze the 

reaction of acetyl-CoA with phosphate to form butyryl phosphate, which goes to yield 

butyrate. 
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Figure 3.  Biochemical pathway of butyrate production associated with various nutrient 

sources and organisms. 
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1.5 Analysis of SCFA of gas chromatography/mass spectrometry 

Chemical derivitization and analysis by GC/MS is a technique that is commonly used for 

characterization of SCFA.  Typically investigators prepare trimethylsilyl (TMS) derivatives of 

SCFAs (11).  Alternatively,2,3,4,5,6-pentaflourobenzyl bromide (PFBB) is used to prepare the 

pentaflouro-ester linkage with the SCFA as shown in Figure 4. 

 

O

OH

Butyrate

+
Br

F

F

F

F

F F

F

F

F

FO

O

Butyrate-PFB ester linked derivativePFBB

Figure 4. Reaction of SCFA with PFBB yielding SCFA-PFB ester linked derivative 

 

The PFB group yields a derivative with a greater mass than that for the TMS derivative, thus  

improving GC/MS detection and peak quality.  This reaction has been found to occur readily 

at room temperature and reaches completion in a relatively short amount of time.  This 

derivative can then be prepared in solvent and injected onto the GC for resolution and 

characterization by a mass-selective detector.  As shown in Figure 5, for short chain fatty 

acids like lactate, the TMS derivatization of the hydroxyl and carboxylate groups is carried 

out with N,O-bis(trimethyl-silyl) trifluoroacetamide containing 1% trimethylchlorosilane 

(BSTFA) to form the bis-trimethylsilyl derivative (15). 
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Figure 5. Reaction of hydroxyl-fatty acid with BSTFA forming (bis)-TMS derivative  

 

An internal standard is also used in quantitative analysis.  It is added at constant volume to 

all standards and samples.  The internal standard normalizes for the loss of any analytes in 

the derivatization process and solvent loss prior to sample injection. 

 

1.6 Gas chromatography mass spectrometric detection of analytes 

A gas chromatograph is an instrument that is commonly used in analyses of organic 

materials.  The column used in the current study involves ultra high purity helium as the 

mobile phase and a coated 30-meter capillary column for the stationary phase.  A small 

aliquot of sample is injected into the port via glass syringe.  This liquid sample is then 

vaporized into its gaseous form and swept onto the column by the mobile phase (helium 

gas).  As the sample passes through the stationary phase column, its chemical components 

are separated based on their interaction with the column walls.  The individual components 

of the sample traverse the column at different times (known as the retention time), based 

on the extent to which they interact with the stationary phase.  Gas chromatographs are 
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compatible with several detectors such as flame ionization detector (FID), thermal 

conductivity detector (TCD), and the mass selective detector (MSD).  A mass selective 

detector was used in this research project. 

 

The resolved analytes exit the GC column and enter the mass spectrometer’s ion trap 

through a heated transfer line.  The materials are then bombarded by an electron beam, 

which fragments the compounds into charged species.  The mass analyzer then calculates 

the mass-to-charge ratio of the charged particles and sorts the ions based on this ratio.  

Finally the sorted ions pass through a detector, which calculates the abundance of each of 

the ions.  In the data analysis stage the operator can then identify the individual compound 

by the fragments. 

 

1.7 Use of mouse model system 

Model organisms are extensively used in biological research to investigate particular 

biological occurrences.  They are commonly used to gain information related to human 

diseases and possible treatments for such disorders.  Researchers have a wide variety of 

research organisms to choose from that are certified to meet specific qualifications for 

research and are readily available from commercial suppliers.  In our studies, commercially 

available mice were housed in sterile environments that do not contain microorganisms 

that may interfere with the experimental procedures.    
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EXPERIMENTAL PROCEDURES 

 

Preparation of standards 

Stock solutions of all short chain fatty acids including acetate, propionate, butyrate, and lactate 

were prepared in acetonitrile.  The concentrations of each of the materials varied from 

200mg/L to 700mg/L.  The stock solution of 200mg/L would be prepared to make standards for 

experiments when a lower concentration was needed to evaluate the lower limits of the 

calibration curve.  The compound chosen for the internal standard for non-hydroxyl short chain 

fatty acid analyses was a dideuterated compound, propionic acid-2,2-d2.  Stock solutions of this 

material were prepared with acetonitrile as the solvent, at a concentration of 200mg/L.  All 

stock solutions were stored at -20°C, and replaced on a monthly basis. 

 

Preparation of pentaflouro benzyl bromide esters of fatty acids 

A stock solution of 2,3,4,5,6-Pentafluorobenzyl bromide (PFBB) was prepared monthly by 

adding 0.355mL of PFBB to 11.55mL of acetonitrile yielding a concentration of 58mg/mL.  This 

solution was also stored at -20°C.  Standards of SCFA-PFB derivatives were prepared in glass 

test tubes on ice.  For a five-point calibration curve, the typical volumes of SCFA stock solution 

selected were 1, 5, 10, 15, and 20µL, which encompassed a range of SCFA from 5.8µg to 116 g.  

After adding the stock solution, 10µL (2 g) of the deuturated propionate stock solution were 

added to each test tube.  A 25-µL Hamilton syringe was used to transfer aliquots of SCFA and 

internal standards.  Subsequently, 100µL of the PFBB stock solution were added to each test 

tube, followed by 20µL of the catalyst N,N-diisopropylethylamine 100% (EDIPA).  Each test tube 
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was vortexed at moderate speed for one minute and then returned to a test tube rack.  The 

reaction was then allowed to proceed at ambient room temperature for twenty minutes. 

After the twenty-minute reaction time, the solvent in each test tube was evaporated to dryness 

under a steady stream of nitrogen gas.  The dried contents of each tube were re-suspended in 

100µL of ethyl acetate and vortexed for an additional minute prior to injection onto the GC/MS 

system.  

Hydroxyl fatty acid analysis   

For fatty acids such as lactate containing an additional hydroxyl group, an alternative assay was 

developed to ensure that both the hydroxyl group and the carboxylic group were derivatized.  

The derivatizing reagent was N,O-bis(trimethyl-silyl) trifluoroacetamide (BSTFA) with 1% 

trimethylchlorosilane (TMS), and the subsequent derivative prepared was (bis)-TMS-lactate. 

The lactate stock solution was prepared in acetonitrile following the same procedures used for 

other fatty acids.  The internal standard compound that was chosen for this assay was 1,3-

propandiol.  The stock solution for this material was prepared following the same procedure as 

for the deuterated compound used for the butyrate analysis. 

 

Conversion of hydroxyl fatty acids to their (bis)-TMS ester derivatives by use of BSTFA  

For preparations of standards to be used as a calibration curve for lactate analysis, the 

following procedure was employed.  A fixed quantity of the lactate stock solution was added via 

a 25-µL glass Hamilton syringe to corresponding test tubes representing the five different 
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calibration levels.  Typically the volumes of the stock solution used for the calibration levels 

were 1, 5, 10, 20, and 25µL, encompassing a range from 5.8 g to 145 g.  All calibration curves 

used for quantitative analysis were performed in duplicate.  A 10-µL aliquot of the 1,3-

propanediol internal standard stock solution was added to each of the test tubes via a 25-µL 

glass Hamilton syringe.  200µL of neat BSTFA with 1% TMS would then be added to each test 

tube, followed by 25µL anhydrous pyridine. 

Each test tube was then covered securely with two squares of parafilm and submitted to 

vortexing for one minute.  Optimum reaction conditions were achieved by placing the test 

tubes in an 80°C water bath for 30 minutes.  Once the samples returned to room temperature, 

they were injected onto the GC column. 

 

Processing of biological samples 

All biological samples were stored at -80°C until processing.  The first step involved acquiring 

the mass of the cecal material and the plastic vials in which they were stored using an analytical 

balance and measured out to 0.0001g.  Samples were thawed on ice.  Into each vial containing 

the biological sample, 500µL of filtered DNAase-free water was added using a 1mL 

micropipetter.  The contents of each vial was mixed by inversion until a homogenous solution 

was achieved (approximately two minutes).  A vortex was not used to mix the sample for fear of 

cell lysis.  After the homogenous solution was obtained, the biological samples were placed in a 

10°C centrifuge for five minutes at a speed of 2500 Xg.  If two distinct layers did not result, 

samples were submitted to centrifugation for five additional minutes. 
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When two distinct layers were present in all samples, the top cecal layer was transferred to a 

new plastic screw top vial.  This was accomplished by use of an adjustable 100-µL volumetric 

micropipetter.  Initially 100µL aliquots were transferred, although smaller volumes could be 

used without compromising the quality of the results.  When complete, each sample was 

capped and placed in the -80°C freezer until the extraction period.  The final volume would then 

be recorded in the laboratory notebook along with the initial mass of material plus the vial.  The 

remaining cells in plastic vials would then be discarded in a biological waste container, and the 

vials would then be cleaned, dried, and weighed empty.  This mass was then recorded in the 

laboratory notebook and subtracted from the total mass of the vial plus biological material.  

The subtraction of those numbers yields the total mass of biological material processed.  

 

Extraction of cecal material for SCFA and lactate analysis 

Once the biological material had been processed it was then available for chemical extraction 

by ether.  The processed cecal samples were thawed on ice.  For each sample, two 

corresponding glass test tubes were labeled and placed in test tube racks.  Into each test tube, 

10µL of 0.6M HCl and 50µL of thawed cecal material were transferred using an adjustable 

micropipetter. 

To each test tube containing acidified cecal material, 1mL of diethyl ether, dried overnight in 

sodium sulfate, was added.  The samples were submitted to moderate vortexing for 30 

seconds.  The test tubes were then submitted to centrifugation for two minutes at a speed of 

2000 Xg.  The organic layer (upper) was transferred to the remaining clean glass test tubes, with 
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special care taken to not transfer any aqueous material (lower layer) into the second glass test 

tube.  Since the extraction procedure is to be repeated three additional times, it is not essential 

to remove the entire organic layer after the first extraction. 

 This procedure was carried out three additional times, thus resulting in four ether extractions.  

The remaining tubes containing the aqueous layer were disposed of in a container containing a 

phenolic antimicrobial solution.  Test tubes with the organic ether layer were placed aside to 

allow the ether to evaporate overnight.  If no aqueous layer is present in the test tubes, 

evaporation typically required 24 hours.  However, if moisture was present, an additional 24 

hours was required for complete evaporation.  Once all the ether is evaporated, samples were 

then ready for the derivatization procedure and analysis by GC/MS. 

 

Conversion of short chain fatty acids in cecal material to PFB-ester derivative   

When all ether was evaporated from the extraction test tube, the samples were then ready for 

conversion to PFB-ester derivative.  These samples were prepared in the same manner as the 

standards, except no butyrate stock solution was added to the biological samples. 

In the test tube used to collect the organic phase internal standard, PFBB stock solution, and 

the catalyst were added in the same volumes that were used for the calibration curve.  If time 

allowed, the calibration standards were prepared at the same time as the biological samples to 

ensure that volumes and reaction time for both samples and standards were held constant.  
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Once the PFB-ester derivative had been prepared, the standards and cecal samples were then 

injected onto the GC for quantitative analysis of the fatty acid of choice. 

For the extraction process determined for lactate, instead of choosing the PFBB assay for 

derivatization, the (bis)-TMS assay would be carried out and the standards and samples injected 

onto the GC column on the same day.  

 

Conversion of lactate and other SCFA in cecal material to (bis)-TMS derivative 

To the dried extracts of cecal material the internal standard, BSTFA, and pyridine were added in 

the exact same volumes as those used for standard calibration samples.  All reaction conditions 

were carried out in the exact manner as those used for lactate calibration standards.  If the 

number of biological samples is not too great, the calibration standards should be prepared at 

the same time to ensure the conditions are identical.  After the derivatization reactions had 

been completed, the calibration standards and the biological samples were then injected onto 

the GC column for the quantitative analysis of lactate present in the biological material. 

 

Materials: 

Table 1 and Table 2 provide the materials and reagents used, respectively, for this research 

project, along with CAS and product numbers: 
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Table 1.  Chemicals used for the research project, with corresponding identification and vendor 

source. 

Material CAS No. Vendor Product # 

Butyric acid 107-92-6 Aldrich B10350-0 

L(+)-Lactic acid 79-33-4 Aldrich L6402-1G 

Acetic acid 64-19-7 Aldrich A6283 

Propionic acid 79-09-4 Fisher A258-500 

1,3-Propanediol 504-63-2 Aldrich P50404-100G 

Propionic acid-2,2-d2 
14770-51-

5 Aldrich 377929-1G 

N,N-Diisopropylethylamine (EDIPA) 7087-68-5 Aldrich 
550043-
100ML 

Pyridine (anhydrous) 110-86-1 Aldrich 
270970-
100ML 

N,O-bis(trimethyl-silyl) triflouroacetamide w/ 
1% trimethylchlorosilane (BSTFA) 

25561-30-
2 Aldrich T6381-25G 

2,3,4,5,6-Pentafluorobenzyl bromide, 99+% 
(PFBB) 1765-40-8 Aldrich 101052-25G 

 

Table 2. Solvents used for research project, with corresponding identification and vendor 

source. 

Solvent CAS No. Vendor Product # 

Acetonitrile (anhydrous) 75-05-8 Aldrich 271004 

Ethyl acetate 141-78-6 Aldrich E7770 

Diethyl ether 60-29-7 Aldrich 309966 

 

GC conditions for butyrate and short chain fatty acid PFB derivatives 

For the analysis of TMS-derivatives ultra high purity UHP helium was used as the carrier gas. 

The injection mode was set to “Std Split/Splitless,” with the injector temperature at 250°C.  The 

valve temperature was set at 275°C and the split ratio at 5:1.  For the oven parameters, the 
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initial oven temperature was 50°C and was held for one minute, while the column flow was 

1.4mL/minute.  Two temperature ramps were used for the method:  Ramp 1 proceeded at 

10.0°C/minute until 100°C was attained; Ramp 2 proceeded at 40.0°C/minuteuntil 230°C .  The 

total time of the method was 9.25 minutes. 

 

GC conditions for lactate (bis)-TMS derivatives 

For the analysis of TMS-derivatives, ultra high purity UHP helium was used as the carrier gas.  

The injection mode was set to “Std Split/Splitless,” with the injector temperature at 250°C.  The 

valve temperature was set at 275°C and the split ratio at 40:1.  For the oven parameters, the 

initial oven temperature was 50°C and was held for 1 minute, while the column flow was 

1.4mL/minute.  Two temperature ramps were used for the method:  Ramp 1 proceeded 

10.0°C/minute and was held for two minutes at 100°C; Ramp 2: proceeded at 30.0°C/minute 

until reaching a temperature at 230°C  The total run time was 11.33 minutes. 

 

Extraction of analytes using C18 cartridges 

All biological media were stored in -80°C freezer until ready for extraction.  When thawing 

biological medium, samples were placed on ice.  When no ice was present in the sample, it was 

placed in a test tube rack.  In a glass test tube, 500µL of the biological medium was transferred 

with a micropipetter.  50µL of 0.6M HCl was added to the test tube containing the medium, 

then moderately agitated for 30 seconds.  Using a glass pipette the entire contents of the test  
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tube were transferred into a C18 solid phase extraction (SPE) column.  Using a micropipetter,  

500µL diethyl ether was transferred to the same C18 SPE column.  The material was passed 

through the SPE column, and the eluent was collected in a new clean glass test tube.  The 

material that had been collected contained a high composition of aqueous material that 

needed to be removed.  This was accomplished by an organic solvent extraction, similar to that 

used for extracting cecal material. 

A 1mL aliquot of diethyl ether was dried overnight in sodium sulfate to remove water, which 

was then added to each test tube containing the C18 eluent fraction.  The samples were then 

moderately agitated by vortexing for 0.5 minutes, which allowed the layers to mix.  After 

agitation the test tubes were placed in a refrigerated centrifuge for two minutes and spun at a 

speed of 2000 rpm.  After centrifugation, two distinct layers were formed with the organic 

ether layer on top.  Using glass pipettes, the organic layer was then transferred to a new glass 

test tube.  Since the extraction procedure is to be repeated three additional times, it was not 

essential to remove the entire organic layer after the first extraction. 
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RESULTS 

3.1 PFBB derivative reaction of short chain fatty acid standards and calibration curve 

reproducibility  

Standards of the SCFA-PFB derivatives were prepared to verify that the reactions were feasible 

and that reproducibility could be achieved. The final procedure reported in the Experimental 

section was optimized over time as a result of varying reaction conditions and GC analysis 

parameters. Calibration curves were prepared with the standards of the various SCFA as shown 

in Table 3, to determine linearity and reproducibility of the assay.  The calibration curves 

determined about one year apart were linear in the range from 0.2 to 5 g (Figures 6 and 7).  

The ion chosen for peak area integration of butyrate was m/z 181 (see Figure 9 for mass 

spectrum), which represents the mass ion associated with the pentaflourobenzyl moiety, the 

prominent ion in the mass spectrum for the butyrate-PFB derivative.  For the dideuterated 

internal standard the molecular ion,m/z 256, was selected for peak area integration (mass 

fragmentation pattern not shown). 
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Table 3.  Raw data for butyrate-PFB calibration curve. 

Cal 
Level 

mass 
Butyrate 

derivatized 
(ug) IS butyrate ratio avg. ratio 

0 0.00 
none 
det. 

none 
det.   

      

1 0.20 17419 5953 0.34 0.35 

1 0.20 15932 5841 0.37  

      

2 1.00 5594 5639 1.01 1.02 

2 1.00 5401 5561 1.03  

      

3 2.00 
bad 
inj. Bad inj  1.33 

3 2.00 9947 13194 1.33  

      

4 3.00 18866 23532 1.25 1.69 

4 3.00 20739 44246 2.13  

      

5 4.00 16731 33809 2.02 2.33 

5 4.00 14985 39516 2.64  

 

 

Figure 6. Calibration curve for butyrate-PFB derivative.  Calibration points are based on the 

average peak area ratio of two standards. 
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Figure 7. Repeat calibration curve for butyrate-PFB derivative from April of the following year. 

Calibration points are based on the average peak area ratio of two standards. 

 

3.2 PFBB derivative reaction of butyrate in biological cecal sample and short chain fatty acid 

verification in samples 

In order to verify that butyrate was being derivatized in biological samples, retention time 

verification experiments were performed with biological samples and standards.  Identification 

was verified by preparing both standards and biological samples using the same assay on the 

same day. Verification could be confirmed by comparing both the total ion chromatograms for 

retention time verification and mass spectral data. 
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Figure 8. Overlay of GC select ion monitor of m/z 181 fragment from butyrate-PFB standard 

sample and butyrate-PFB peak found in biological sample. 

 

Figure 8 indicates that the GC peak identified as butyrate-PFB in the standard samples is also 

present at the exact same retention time from the chromatogram of the biological samples that 

are reacted with the PFBB reagent.  Therefore, we have retention time verification of the 

butyrate-PFB peak in the biological samples. Investigation of the mass fragmentation pattern of 

the underlying peaks would yield further confirmation of peak identity. 
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Standard Butyrate-PFB Spectrum

Biological Butyrate-PFB Spectrum

 

Figure 9. Mass spectra of butyrate-PFB peaks found at retention time 8.1 minute from both a 

calibration standard and a biological sample exposed to the same reaction assay. 

 

Figure 9 provides mass spectral evidence that the butyrate present in the biological samples is 

able to react with PFBB yielding a derivative that is detected by GC/MS and provides robust 

peaks that are capable of being integrated.  For both of the spectra we see the base peak of 

m/z 181. This fragment represents PFB ions that were cleaved from the molecular ion.  The 

molecular ion is m/z 268 and is present in both samples and in similar fragment ratios.  

Figure 10 displays the mass spectrum of the internal standard, which was used for the analysis 

of the short chain fatty acids whose only functional group is a carboxylic acid.  Propionic acid-

2,2-d2 was subjected to a reaction with PFBB to form the internal standard-PFB complex. 

The molecular ion for this derivative is m/z 256 rather than 254, due to the fact that two 

deuterium atoms are present in the internal standard compound.  This is necessary due to the 

possible presence of propionate in the biological samples and for future quantification of the 

SCFA propionate.  



24 
 

Figure 10. Mass spectrum of internal standard-PFB derivative chosen for analysis of SCFA. 

3.3 Biological sample spiking with butyrate standards  

To determine the extraction efficiency of the assay, a spiking experiment was performed with 

biological samples. For the experiment, a group of cecal samples were pooled together to give 

sufficient amount of material to complete the experiment.  For each experimental set, 200µL of 

pooled sample was extracted following the reported procedure.   

 

 

 

 

 

 

 

 

 

Figure 11. Experimental results from butyrate spiking experiment of pooled biological samples. 
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The peak area ratio data from this experiment indicated that an extraction efficiency of ten 

percent was achieved for butyrate extraction from biological sample. This was calculated by 

comparing the sample only cell to the spiked samples and the 4µg butyrate standard. 

 

The sample represented in the first bar column had a peak area ratio of 0.7446, when 

substituted into the calibration curve for this experimented yielded 0.789μg butyrate 

derivatized.  The amount of material used for extraction was 200µL, yielding 3.95ng of 

butyrate/μL of biological samples.  Multiplying this value by the calculated extraction efficiency 

yields 39.5ng butyrate/μL cecal material. The early assay required that the original cecal 

material be re-suspended in a phosphate buffer solution by a dilution factor of 4.5. When this 

value is taken into account, the actual calculated concentration of butyrate was 177.8ng/µL or 

about 2.0mM. 

 

This experiment represented an initial analysis with the biological cecal samples using an assay 

developed by past researchers. It was determined as a result of this experiment that 

acidification was necessary to improve extraction efficiency and that filtered DNA-free water 

should be used for dilution of the provided biological material. 

 

3.4 Early (August 2008) butyrate analysis in biological samples  

The result of the first quantitative measurement experiment performed with biological samples 

is shown in Figure 12.  It should be noted that certain experimental samples displayed a wide 
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variation in the amounts of butyrate present upon repeated sampling, so it was deemed 

necessary to analyze each sample in triplicate.  The samples that were run in duplicate showed 

a large standard deviation and standard error, as demonstrated by the error bars.  However, 

when using 200µL of biological sample, as was done in this experiment, it is possible that not 

enough material exists to allow triplicate runs.  Therefore, it was determined that future 

analyses be performed with 50µL of cecal material, as described in the Experimental 

Procedures. 

 

Figure 12. Butyrate results from August 2008 analysis of biological samples  
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3.5 Butyrate analysis of experimental samples as a function of time of residence in GI tract. 

 

Figure 13. Butyrate results in cecal samples at days seven and fourteen of mice treated with C. 

albicans, the antimicrobial agent Cefoperazone, or both. 

 

The mice chosen for this experiment were from Jackson Laboratories and were ordered at six 

weeks of age.  The antimicrobial agent Cefoperazone was administered for seven days in the 

drinking water of the animals.  Seven days after the first treatment of Cefoperazone, the 

antimicrobial treatment was terminated (Day 0), and selected animals were administered the 

yeast strain C. albicans by gastric gavage.  The first animal harvest occurred seven days after the 

C. albicans gavage (Day 7), followed by a later harvest at day fourteen (Day 14).  Each 

experimental value represents the combined results of three different organisms, which were 

extracted and analyzed in triplicate by GC/MS. 

The results indicate that animals administered only the antimicrobial treatment displayed a 

large spike in butyrate from days seven to fourteen. This suggested to our collaborators at the 
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University of Michigan (Ann Arbor) that after the initial elimination of most of the butyrate-

producing bacteria, there is a repopulation of these microorganisms and subsequent butyrate 

production in the cecal material of these organisms.  It is also observed that the combination of 

the yeast and antimicrobial treatments yields a greater reduction of butyrate levels than either 

of the treatments alone.  This reduced level of butyrate remains the same after day fourteen.  

This suggested to our collaborators that the pathogenic C. albicans in some way lowers the 

level of butyrate in the cecum. 

 

3.6 Butyrate analysis in Abbott mice 

The following results were analyzed in the spring and summer of 2009 and involved a different 

strain of mouse. These experiments were divided into two separate analyses designated Abbott 

5 and Abbott 6 and were performed in consecutive months. The organisms chosen for these 

analyses were bred at the University of Michigan lab of Dr. Huffnagle and were not purchased 

directly from a laboratory animal supplier (unlike what was done in the prior experiment).  For 

the experimental design, there were five different experimental groups as shown in Table 4. 

Table 4.  Experimental groups for the Abbott 5/6 experiments 

Organism 
No. Treatment 

1,2,3 Untreated 

4,5,6 ovalbumin (OVA) 

7,8,9 Cefoperazone+C. albican+ OVA 

10,11,12 
Cef.+ C. albican+ OVA+ L. rhamnosus (prebiotic 
food) 

13,14,15 Cef.+ C. albican+ OVA+ L. rhamnosus and B.lactis 



29 
 

Figure 14 provides detailed daily descriptions of how and when the various treatments were 

administered to the organisms in the two experiments. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Procedural details of Abbott 5 and Abbott 6 experiment treatment administration.  

(Provided by Nicole Robson, University of Michigan, Ann Arbor, MI) 
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The only substantial difference between the two series of experiments is that the Abbott 5 

contained only female mice, and Abbott 6 contained only male mice.  Figure 15 shows the 

results from the Abbott 5 analysis for butyrate present in the provided cecal material: 

 

Figure 15. Butyrate results for Abbot 5 from cecal material of female mice. 

 

Treatment with ovalbumin caused a marked decrease in the level of butyrate.  Ovalbumin is 

given to stimulate immune function in hopes of amplifying the effect of subsequent treatment 

of mice with antibiotics, probiotic organisms and/or pathogenic organisms (C. albicans).  

However, repopulation of the GI tract with organisms after a single cefoperazone treatment (to 

clear the GI tract of organisms) and coincident treatment with C. albicans, a pathogenic 

organism, caused an increase in the level of butyrate relative to ovalbumin controls. The fourth 

and fifth groups were administered an additional treatment of probiotic organisms; 

Lactobacillus rhamnosus or Lactobacillus rhamnosus and Bifidobacterium lactis, which greatly 
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diminished the level of butyrate produced in fluid extracted from the mouse cecum.   These 

results are in opposition to earlier data, which indicate that probiotic organisms increase 

butyrate levels and that pathogenic organisms diminish the level of butyrate.  

The results in the Abbott 6 experiment are shown in Figure 16 and are roughly equivalent to 

those of the Abbott 5 experiment except that the level of butyrate for all the male groups in the 

Abbott 6 experiment are less than those for the same treatment for female mice in the Abbott 

6 experiment. The range of butyrate concentrations detected in all samples was decreased, as 

the lowest reported set was 10.42ng/mg and the highest was 18.48ng/mg cecal material.  

When compared to the Abbott 5 series, where the lowest reported butyrate concentration was 

22.66ng/mg, these are greatly reduced.  The other significant difference between the Abbott 5 

and 6 experiments is that the negative effect of butyrate levels by ovalbumin was less 

pronounced in the Abbott 6 males as was the negative effect of probiotic organisms on 

butyrate levels.   

 

Figure 16. Butyrate results for Abbot 6 from cecal material of male mice. 

n=9 
n=9 
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3.7 Calibration curve of lactate-TMS derivative by GC/MS 

Figure 17 shows a four-point lactate-TMS calibration curve and the corresponding mass spectra 

of the lactate and internal standard-TMS derivatives.  For data analysis the molecular ion m/z 

219 ion fragment was selected for the lactate-TMS analyte.  For this analysis the molecular ion 

was a stable fragment that allowed for reliable selection for data analysis.   The mass 

fragmentation pattern for the propanediol-TMS spectrum is shown in Figure 18, and the m/z 

147 ion fragment was chosen to determine peak area for the internal 

standard.

 

Figure 17. Mass spectrum of lactate-TMS derivative selected from calibration standard.  m/z 
219 fragment represents the molecular ion for the derivative. 
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Figure 18. Mass spectrum of 1,3-propanediol-TMS derivative selected from calibration 

standard. 

 

 

Figure 19. Lactate-TMS derivative calibration curve with m/z 219 selected for lactate-TMS, and 

m/z 147 selected for internal standard. Each calibration point represents the average peak are 

ratio of two standards. 

 

The lactate-TMS assay was developed in a similar manner as for the butyrate-PFB method.  

Several standards and attempted calibration curves were prepared until consistent results 

could be achieved (Figure 19).  The lactate-TMS method does lack the consistency observed 
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with the butyrate method.  For example, it was observed that in a group of standards that were 

prepared at the same time under exact conditions, one or more standard/s did not react to 

form the derivative complex.  Figure 20 is an example of a calibration curve that was not 

successful due to lack of analyte formation in one or more standards. 

 

Figure 20.  Unsuccessful lactate-TMS calibration curve selecting same ion fragments for lactate-

TMS and internal standard analytes. 

 

Due to the inconsistencies with the lactate-TMS formation, it was decided to place emphasis on 

completing biological samples by analyzing for butyrate.  Also since the lactate assay would 

require separate extractions, there were limitations on how much cecal material was available 

from each organism.  If an analysis were performed for lactate and butyrate, there would not 

be enough cecal material to rerun any errant biological samples if necessary. 
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3.8 Analysis of lactate present in cecal material of biological results 

Figure 21 shows the lactate analysis of the same biological samples analyzed for butyrate at 

days seven and fourteen, after treatment with Cefoperazone and/or C. albicans.   

 

Figure 21.  Lactate analysis results of cecal samples from animals treated with antimicrobial 

agent followed by C. albican gavage at days seven and fourteen. 

 

These were the same biological samples analyzed for butyrate, except separate extractions 

were performed and the lactate-TMS assay was carried out.  The mice chosen for this 

experiment were Jackson mice ordered at six weeks of age.  The antimicrobial agent 

Cefoperazone was administered for seven days in the drinking water of the animals.  Seven 

days after the first treatment of Cefoperazone, the antimicrobial treatment was terminated 

(Day 0), and selected animals were administered the yeast strain C. albicans by gastric gavage.  

The first animal harvest occurred seven days after the C. albicans gavage (Day 7), followed by a 
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later harvest at day fourteen (Day 14).  Each experimental cell represents the combined results 

of three different organisms, which were extracted and analyzed in duplicate by GC/MS. 

The relative magnitude of the lactate levels for all the groups were similar as for the butyrate 

levels that were described earlier.  The lactate levels increase almost seven-fold from day seven 

to day fourteen, indicating that lactate-producing microorganisms repopulate the 

gastrointestinal system and continue to produce lactate in the cecum.  The Day 14 results 

indicate that samples treated with the yeast strain showed lower levels of lactate than the 

animals treated only with Cefoperazone.  It is also observed that the yeast strain inhibited 

lactate production when both administered alone or in combination with the antimicrobial 

agent. 

 

3.9 Additional short chain fatty acids 

Standards and calibration curves for propionate and acetate have been prepared and could be 

used for the quantification of these analytes in biological samples if desired.  The internal 

standard used in the analysis of propionate is deuterated propionate, which has only two mass 

units more than the short chain fatty acid propionate.  As expected when reacted with PFBB, 

both derivatives coelute as shown in Figure 22.  Therefore, mass spectral data is necessary to 

distinguish between the two materials, these spectra are shown in Figure 23. 
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Figure 22. Gas chromatograms of internal standard and propionate-PFB derivatives. 

 

Two examples of propionate-PFB calibration curves are given in Figures 24 and 25.  The mass 

ion used to integrate the propionate-PFB was m/z 254, which is the molecular ion for the 

undeuterated propionate-PFB derivative. The mass ion used to integrate the deuterated 

propionate-PFB was m/z 256, which is its molecular ion.  Figure 23 shows the mass spectra of 

propionate and deuterated propionate samples. 

Internal Standard  

Propionate-PFB 
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Figure 23. Mass spectral results of dideuterated propionate used as internal standard versus 

propionate found in biological samples. 

 

 

Figure 24. Early propionate calibration curve with m/z 254 fragment ion selected propionate-

PFB derivative, and m/z 256 fragment ion was selected for internal standard.  
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Figure 25. Example of successful propionate calibration curve with m/z 254fragment ion 

selected propionate-PFB derivative, and m/z 256 fragment ion selected for internal standard. 

 

Another short chain fatty acid of interest is acetate.  Figure 26 shows the results of acetate 

standards that have been carried out following the PFBB derivatization assay.  Ethyl acetate is 

used as the solvent to re-suspend the sample, and so it was important to show that no acetate 

(obtained by hydrolysis of ethyl acetate) was observed in the ethyl acetate blank at a retention 

time that was coincident with that of acetate standard.  Interestingly, the biological sample 

contained a peak that had the same retention as that of acetate-PFB standard and so provides 

evidence that acetate can be quantified in cecal material.  Figure 27 shows that the acetate-PFB 

mass fragmentation spectrum is qualitatively the same as that for the substance in the cecal 

sample that has the same retention time.  
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Blank (no Acetate)

Acetate-PFB Standard

Biological Sample w/ Acetate-PFB

 

Figure 26.  Chromatogram of acetate-PFB identification. 

 

Biological Acetate-PFB Spectrum

Standard Acetate-PFB Spectrum

 

Figure 27. Mass spectra of acetate-PFB and the substance with the same retention time (7.02 

min) in a cecal sample. 
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DISCUSSION 

Pentafluorobenzyl derivatization has been a well-established method for analyzing short chain 

fatty acids such as propionate and butyrate by GC/MS (12).  This approach has been used in the 

current study to evaluate standards and calibration curves of these two analytes.  Literature 

articles commonly report TMS derivatives being prepared when analyzing these types of fatty 

acids involving preparation of the fatty acid in an ester linkage to a trimethylsilyl group (13).  

TMS derivatization requires a greater reaction time and an increase in temperature above 

ambient conditions.  Through internal trials and replications of standard calibration curves, 

optimal ratios of derivatizing reagent, catalyst, and SCFA were determined and are reported in 

the Experimental section. 

The use of deuterated propionate as an internal standard has been found to be effective in the 

quantification of SCFA such as butyrate.  Since these two compounds have similar molecular 

weights and chemical properties, the dideuterated propionate has proven to be an acceptable 

internal standard for the quantification of various SCFA.  By use of the internal standard assay 

presented, calibration curves of standards have been achieved with correlation coefficients 

near 1.0.  The use of glass micro syringes was needed in order to achieve linear calibration 

curves; plastic micropipette instruments were not able to transfer small aliquots of materials 

accurately for calibration.  After five-point calibration curves had been prepared repeatedly 

with consistent results and correlation coefficients near 1.0, it was determined that three-point 

calibration curves, prepared in duplicate, were sufficient for quantitative analyses of biological 

cecal material.  The advantage of only three points is that, for certain experiments, up to thirty 

biological samples could be prepared for analysis, and all calibration curves are required to be 
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analyzed on the same day as the biological samples.  Therefore, a reduction in total samples 

required for analysis could save time and allow for more biological samples to be prepared.  

Whereas quantitative analyses of propionate and acetate were not performed with the 

biological cecal material in this project, they have been qualitatively identified in cecal materials 

provided to us.  It has been verified in standards that both of these compounds readily react 

with the PFBB reagent to form the ester-linked derivative. 

Preparation of the lactate-TMS derivative has been found to be less reliable than the SCFA-

PFBB derivative.  As presented, calibration curves could be achieved with success and 

acceptable correlation coefficients.  However, not all standards appeared to react with the 

BSTFA reagent consistently.  Initial assays involved adding stock solutions of both lactate and 

internal standard, followed by removing the solvent and re-suspending in BSTFA and pyridine.  

This procedure did not produce quantifiable results but could be used to obtain qualitative 

data.  The assay as currently used no longer involves re-suspension of the lactate and internal 

standard in BSTFA, but rather requires that all reagents are together for reaction in the water 

bath.  After reaction of the materials, no evaporation of solvent is allowed to take place, and 

the samples are ready for injection onto the GC.  This change has improved reproducibility; 

however, as stated in section 3.6, formation of the derivatives in both standards and biological 

samples does not always occur.  A possible explanation considered is the amount of moisture 

present in the laboratory in which the samples are being prepared.  Due to inconsistent 

humidity levels in the lab space, moisture could enter into the reaction with BSTFA.  It is known 

that even small amounts of moisture could disrupt this reaction due to the fact that water will 
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readily react with BSTFA.  If moisture levels could be reduced in the reaction conditions, greater 

consistency may be achieved. 

Another solution proposed by a former member of the laboratory is to replace the BSFTA 

containing 1% trimethylchlorosilane (TMCS), with material containing greater than 10% (TMCS).  

It has been suggested that the greater composition of TMCS may also improve reaction 

efficiency and conversion to the lactate-(bis)-TMS ester derivative. 

Initial extractions of biological cecal material were performed without acidification of the cecal 

material.  This resulted in poor extraction efficiencies.  Literature articles support the concept of 

extracting biological materials prior to extraction of fatty acid species (14).  Protonation of the 

carboxylates in the extracted material with 10µL of 0.1M HCl leads to increased amounts of 

butyrate that are now able to enter the organic layer for subsequent derivative conversion and 

analysis. 

The quantification of butyrate was made the priority of most analyses.  The assay performed 

more consistently and with greater reproducibility when compared to the lactate-TMS method.  

The cecum of a mouse is a small compartment of the gastrointestinal system; therefore, a 

limited amount of material was available to perform multiple analyses with enough repetitions.  

Hence, focus was placed on the butyrate-PFBB assay, with a minimum of three replications per 

organism.  As seen in earlier results, a sample processed in duplicate did not provide the 

sampling number to achieve the tight standard deviation and standard error needed to 

determine a difference in butyrate levels of various samples.  The butyrate-PFBB assay did 

provide results consistent with levels of butyrate reported in previous literature.  The lower 



44 
 

limit of detection was determined to be 0.5µg of butyrate derivatized, which yields a 

concentration of 4.2µmol butyrate/kg cecal matter, based on the average cecal mass.  This limit 

of detection is consistent with that previously reported (15) and below the expected levels of 

butyrate in the cecal material of both germ-free and wild-type mice. 

Butyrate levels had been measured in organisms exposed to various experimental treatments.  

It was found in both the December 2008 and Abbott 5 experiments that butyrate-producing 

organisms are able to repopulate and continue to produce butyrate after cefoperazone 

treatment.  As seen in the seven and fourteen day harvests from December 2008, the levels of 

butyrate increased three times in organisms that were harvested after Day 14 compared to 

organisms harvested only seven days after the end of the antimicrobial treatment.  This 

experiment also indicated that the combination of Cefoperazone, and C. albicans inhibited the 

butyrate production more than either treatment alone, and that the butyrate levels remained 

low even after fourteen days.  This may indicate that when the yeast is exposed to organisms 

that already have a decreased level of microorganisms in the GI tract, the yeast strain is able to 

populate the system and prevent repopulation of butyrate producing anaerobic bacteria.  With 

the known benefits of butyrate for healthy functional cellular activity, these organisms may 

have digestive problems and be at greater risk to immune and other diseases. 

In the Abbott 5 series it was reported that the butyrate concentrations of organisms treated 

with cefoperazone, C. albicans, and ovalbumin returned to the same approximate levels of 

those seen in untreated animals.  The comparison of this experiment to the one performed in 

December 2008 may not be valid due to the fact that the Abbott 5 animals were harvested 
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twenty-four days after the beginning of all treatments.  This extra time may be enough to allow 

for repopulation of butyrate producing microorganisms.  These organisms were also exposed to 

ovalbumin, which was added to induce an allergic response in the animals tested.  As previously 

noted, the mice chosen for the Abbott experiments were bred in house at the University of 

Michigan, and the Jackson mice used for the December 2008 experiment were purchased at six 

weeks of age.  This may also make comparisons between the experiments difficult at best.  

It is unclear why the Abbott 6 series did not produce comparable butyrate concentrations  in 

any of the sample cells.  After data analysis of this group was complete, multiple extractions 

were repeated to verify the initial results obtained.  The second analysis confirmed the results 

and continued to yield low butyrate concentrations in all samples analyzed.  As stated, the only 

difference between Abbott 5 and Abbott 6 is in the sex of the animals harvested.  This may or 

may not be the reason for the conflicting results seen between these two analyses.  However, it 

is interesting that the earlier indicated that probiotics induce a higher level of butyrate and that 

a pathogenic organism drives down the level of butyrate; however, the later Abbott studies 

demonstrate the complete opposite effect of probiotics (a decrease) and pathogenic bacteria 

(an increase) on butyrate levels.  Obviously, the housing the of the animals, the gender 

differences in the animals, and prior ovalbumin treatment may all be mitigating influences on 

the system that must be characterized.  However, the current study defines the conditions that 

are necessary for a consistent and reproducible assay of butyrate in cecal samples. 

Future directions of this project could lead to the incorporation of multiple SCFA analysis with 

one assay quantifying multiple chemical compounds.  As reported in the literature, lactate is a 
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SCFA that has known health benefits when present in the GI system.  Therefore, the assay could 

be further developed to remove inconsistencies in the reaction and improve reaction 

conversions.  This may be accomplished by replacing BSFTA with 1% TMCS with 10% TMCS.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

REFERENCES 

1. Martin F.J., Wang Y., Sprenger N., Yap I.K., Lundstedt T., Lek P., Rezzi S., Ramadan, Z., 

Van Blanderen P., Fay L.B., Kochnar, S., Lindon J.C., Holmes E., Nicholson J.K. Molecular 

Systems Biology. 4(157), (2008). 

2. Wollowski I., Rechkemmer G., Pool-Zobel B.L. The American Journal of Clinical Nutrition. 

73 (2001). P. 451S-5S.  

3. Pomare E.W., Branch W.J., Cummings J.H. Journal of Clinical Investigation. 75(5), (1985). 

P. 1448-54.Noverr M.C., Huffnagle G.B. Clinical and Experimental Allergy. 35 (2005), p. 

1511-1520 

4. Cummings J.H. Macfarlane G.T. Nutrition. 13 (1997). p. 476-478  

5. Tappenden, K.A., Deutsch, A.S. Journal of the American College of Nutrution. 26(6), 

(2007) p. 679S-683S. 

6. Topping, D.L., Clifton, P.M. Physiological Reviews. 81 (2001), p. 1031-64 

7. Cummings, J; Quantitative short chain fatty acid production in humans. 

In: Cummings, J.; Binder, H.J.; Soergel, K, editors. Short-chain fatty acids. Boston: Kluwer 

Academic Publisher; 1994 

8. Ratajczak C., Duez C., Grangette, C., Pochard, P., Tonnel, A., Peste, J. Journal of 

Biomedicine and Biotechnology. 2007 (2007). 

9. Blaut M., Clavel T. The Journal of Nutrition. 137 (2007). P. 751S-755S 

10. Archer, S.Y.; Meng, S.; Shei, A.; Hodin, R.A.; Proceedings of the National Academy of 

Sciences of the United States of America. 95(12) (1998), p. 6791-6796 

11. Hague, A.; Butt, A.J.; Paraskeva, C.; Proceedings of the Nutritional Society. 55 (1996), p. 

937-943 

12. Roediger, W.E.; Lancet. 2 (8197), 1980, p. 712-715 

13. Moreau, N.M.; Goupry, S.M.; Antignac, J.P.; Monteau, F.J.; Le Bizec, B.J.; Champ, M.M.; 

Martin, L.J.; Dumon, H.J.;  Journal of Chromatography B. 784 (2003), p. 395-403. 

14. Hanada, Y.; Imaizumi, I.; Kido, K.; Tanizaki, T.; Koga, M.; Shiraishi, H.; Soma, M.; 

Analytical Science. 18 (2002), p. 655 



48 
 

15. Adams, M.A.; Chen, Z.; Landman, P.; COlmer, T.D.; Analytical Biochemistry. 266 (1999), 

p. 77-84 

16. Bettinardi, N; Colombo, C; Corbetta, C. Clinical Chemistry. 3 (1999), p. 406-407 

17. Hoverstad, T; Midtvedt, T; Journal of Nutrition. 116 (1986), p. 1772-1776 

 


	Eastern Michigan University
	DigitalCommons@EMU
	2010

	Quantification of short-chain fatty acids in cecal material by gas chromatography-mass spectrometry
	Charles Harrison
	Recommended Citation


	Quantification of Short-Chain Fatty Acids in Cecal Material by Gas Chromatography-Mass Spectrometry

