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ABSTRACT 

With the development of the World Wide Web, online courses are becoming 

more and more popular in modern science education. CyberLab aims to solve an 

important issue in distance science education -- laboratory experiments in online courses. 

It is a toolkit that handles creation, exportation, and execution of virtual experiments 

(within web browsers). It consists of LabCreator and LabExecutor. With LabCreator, 

instructors can create virtual experiments and export them into intermediate files. 

Students can download those files from online course websites and execute them in 

LabExecutor on their own computers.  

The paper reports on the completion of two important tasks in the development of 

CyberLab: (1) the implementation of LabCreator and (2) a system allowing exportation 

of the experiment to intermediate web accessible format and the loading of the 

experiment into LabExecutor. 

The feasibility of the design and structure of CyberLab is proved by integrating 

the LabCreator and LabExecutor for the first time. The advantage of CyberLab is shown 

through a demonstration of the deployment of a virtual experiment. 

ii 



TABLE OF CONTENTS 

 

ACKNOWLEDGEMENT................................................................................................... i 

ABSTRACT ....................................................................................................................... ii 

CHAPTER 1  INTRODUCTION.......................................................................................1 

1.1  Online courses .........................................................................................................1 

1.1.1  Advantage and disadvantage. ...........................................................................1 

1.1.2  Existing online course platforms. .....................................................................2 

1.2  Virtual laboratories for online science courses........................................................2 

1.2.1  The importance of laboratories in science courses. ..........................................2 

1.2.2  What is a virtual laboratory?.............................................................................3 

1.2.3  The benefits of using virtual laboratories. ........................................................3 

1.3  Related works in online courses laboratories. .........................................................4 

1.3.1  Simulations implemented in APL.....................................................................4 

1.3.2  Multimedia based online laboratories...............................................................4 

1.3.3  Online hybrid laboratories. ...............................................................................6 

1.3.4  Pre-developed online virtual laboratories.........................................................8 

1.3.5  Online virtual laboratory creation tool. .......................................................... 13 

1.4  Brief introduction to CyberLab ............................................................................. 14 

1.4.1  Purpose of CyberLab. ..................................................................................... 14 

1.4.2  Structure of CyberLab. ................................................................................... 14 

1.4.3  Model of experiments in CyberLab................................................................ 15 

1.4.4  Previous work in CyberLab. ........................................................................... 16 

iii 



1.4.5  My work in this thesis. ....................................................................................17 

CHAPTER 2  IMPLEMENTATION OF LABCREATOR ..............................................19 

2.1  Graphic User Interface (GUI) of LabCreator. ....................................................... 19 

2.2  Experiment widgets. .............................................................................................. 21 

2.3  What You See Is What You Get (WYSIWYG). ................................................... 22 

2.3.1  Drag and Drop. ............................................................................................... 22 

2.3.2  Appearance of widgets. .................................................................................. 23 

2.4  Data structure of CyberLab virtual experiments. .................................................. 24 

2.5  An example of how a virtual experiment works.....................................................26 

2.6  Create virtual experiments with LabCreator...........................................................27 

2.6.1  The simple heating experiment........................................................................27 

2.6.2  The procedure to create the heating experiment..............................................29 

2.7  Preview experiments in LabCreator. ..................................................................... 33 

CHAPTER 3  INTERGRATION OF LABCREATOR INTO CYBERLAB....................37 

3.1  Java Object Serialization. .......................................................................................37 

3.2  Export experiments from LabCreator.................................................................... 40 

3.3  Load and execute experiments in LabExecutor..................................................... 41 

3.4  Usability test and feedback.................................................................................... 42 

CHAPTER 4  CONCLUSION AND FUTURE WORK...................................................45 

4.1  Conclusion. ............................................................................................................ 45 

4.2  Future work.............................................................................................................47 

REFERENCES  .................................................................................................................52 

APPENDIX A: An excerpt of the Java code for widget-related classes. ..........................58 

iv 



APPENDIX B: An excerpt of the Java code for widgets drag and drop...........................59 

APPENDIX C: An excerpt of the Java code for Java serialization...................................61 

v



LIST OF FIGURES 

Figure 1. Structure of CyberLab....................................................................................... 15 

Figure 2. Graphic User Interface of LabCreator............................................................... 19 

Figure 3. The appearance of a CyberButton..................................................................... 21 

Figure 4. The appearance of CyberTextField ................................................................... 21 

Figure 5. Dialog for CyberButton initial settings ............................................................. 23

Figure 6. Right-click pop-up menu for CyberButton ....................................................... 24 

Figure 7. FSA diagram of the heating experiment ........................................................... 28 

Figure 8. GUI of the heating experiment.......................................................................... 29

Figure 9. FSA Menu of LabCreator.................................................................................. 30

Figure 10. Dialog for creating new variable “temp.”.......................................................  30 

Figure 11. The right-click pop-up menu for Text Display widget ................................... 30 

Figure 12. Dialog for creating new state “Medium.” ....................................................... 31 

Figure 13. Set Starting State as “Medium.”...................................................................... 31 

Figure 14. Dialog for creating a FSA edge....................................................................... 32 

Figure 15. GUI of LabCreator after the heating experiment is created. ........................... 33

Figure 16. Preview of heating experiment (initial state “Medium”) ................................ 35

Figure 17. Preview of heating experiment (initial state “Hot”)........................................ 35 

Figure 18. Preview of heating experiment (initial state “Cold”) ...................................... 36 

Figure 19. Part of the “.exp” file for the heating experiment ........................................... 41

Figure 20. The heating experiment in LabExecutor ......................................................... 44 

Figure 21. The FSA of the free falling experiment. ......................................................... 48 

Figure 22. The prototype for the graphic user interface of “Equation Editor”................. 50 

vi 



CHAPTER 1 

INTRODUCTION 

1.1  Online courses. 

Online courses have been widely used in distance education. Many universities in 

the United States, including Eastern Michigan University, have offered online courses. 

The credits from online courses can now be used to fulfill the requirements for obtaining 

a degree or certificate. Some universities even offer degree programs totally online, such 

as the online M.S. in Computer Science program at George Mason University [28]. 

 

1.1.1  Advantage and disadvantage. 

Online courses owe a great deal of their popularity to their flexibility [21]. They 

are usually described as “any time, any place” learning [9]. With online materials, a 

student is able to adjust study time and pace according to his or her own situation and 

habit. With Internet connections at home, students and instructors do not have to spend 

time and money to commute any more. 

Other advantages of online courses may include low requirements for teaching 

facilities, better monitoring of each student’s progress, and helping students to develop 

ability in independent learning [7]. 

Every coin has two sides. It is argued that course completion and program 

retention rates are generally lower in distance education courses than in their face-to-face 

counterparts [2]. It may also take time for instructors to learn to use online course tools. 

Universities have to spend a fair amount of money to build and maintain online course 

systems. 
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1.1.2  Existing online course platforms. 

There have been a lot of comprehensive online course delivery platforms. Widely 

used commercial products include WebCT [11, 13], BlackBoard [22] and eCollege [8]. 

There are also a number of open-sourced systems. One of the most popular open-source 

platforms is Moodle [4].  

 

1.2  Virtual laboratories for online science courses. 

 Science courses are important in education. However, some theories and equations 

are very abstract and thus difficult to understand. Therefore, students consider them 

boring while instructors sometimes have no interesting ways to teach them. However, a 

study showed that online science courses, especially those with laboratory experience, if 

properly designed and implemented, could make students more interested and active in 

science courses [31]. 

 

1.2.1  The importance of laboratories in science courses. 

Instructors of science courses have long recognized the need for laboratory 

experience, through which students can deepen their understanding of the conceptual 

material [18]. It is therefore necessary and helpful to give students laboratory or 

experiment experience when they take science courses online. 

However, existing online course systems mainly rely on features like web pages, 

emails, multimedia files (audio and video), and forums to deliver the course materials. 

Little has been done to replicate actual science experiments in online course systems due 

to the technical difficulty [26]. 
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1.2.2  What is a virtual laboratory? 

 Because there are many definitions in literature, it is difficult to give “virtual 

laboratory” a decisive definition. It is described as “a computer simulation which enables 

essential functions of laboratory experiments to be carried out on a computer” according 

to [14]. Another definition is “a virtual reality environment that simulates the real world 

for the purpose of discovery learning” [34].  

 

1.2.3  The benefits of using virtual laboratories. 

As we described in 1.2.1, it is important to provide laboratory experience to 

students who take online science courses. Besides all the advantages it shares with online 

courses, virtual laboratory gives students the chance to apply what they learned into 

experiments so that they can strengthen their knowledge. It could facilitate a range of 

different learning processes, such as solution of complex problems, discovery of new 

content and new assessment of already known information by discovery learning, 

construction of general principles from experimental work, and comparison of individual 

phenomena (inductive learning) [14]. Research [7] has found that virtual laboratory in 

online science courses helped students to better understand abstract concepts and theory.  

Additionally, virtual laboratory has some advantages over a traditional lab. It 

gives instructors and students increased access to laboratory resources, especially during 

experiments that require expensive or fragile equipment or that present safety hazards. 

Virtual laboratory allows instructors to offer more interesting experiments. At the same 

time, students are free to explore all the possibilities without fear of damage or danger 

[26]. 
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 On the other hand, it is also important to mention that experiments in virtual 

laboratory are not for everyone and cannot completely replace traditional physical 

experiments [7, 10].   

 

1.3  Related works in online courses laboratories. 

 Research has been conducted in order to introduce laboratory and experiments 

into online science courses. We found that the previous work falls mainly into the 

following categories: 

 

1.3.1  Simulations implemented in APL. 

A simulation of stochastic process was developed in [39]. It could be used in a 

great number of physics and mathematics courses. Though this simulation could 

successfully simulate a lot of phenomena in its subject, it is written in APL, an array 

programming language. However, the small user base of APL in mathematics and 

finance engineering make this approach unpopular among virtual laboratory researchers. 

Besides, APL simulations are designed for offline purpose, which means additional work 

has to be done to integrate it into online science courses. 

 

1.3.2  Multimedia based online laboratories. 

 As broadband internet connection becomes popular, it is easier for students to get 

access to online audio and video streams. Research has been done to make use of online 

real-time multimedia technology for experiments in online science courses.  
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 JETS (Java-Enabled Telecollaboration System) was developed by [33]. Instructors 

and students can share educational resources such as whiteboard, 3-D viewing in a real-

time way. They can also interact with each other via audio and video. Its advantages in 

sharing multimedia information and real-time interaction make it possible for instructors 

to conduct experiments in a real laboratory and show the results to students who are in 

front of computers with high-speed Internet connection. Nevertheless, its synchronous 

nature requires instructors and students to be online at the same time, which sacrifices the 

flexibility of “learn at any time” of online courses.  

Asynchronous multimedia teaching, when compared with its synchronous 

counterparts, does not require instructors and students to be online at the same time. It is 

thus more welcomed by students because it adds usable hours to the student’s day. NEW 

(Network Education Ware) [29] provides both synchronous and asynchronous 

multimedia teaching. Another example is the online video physics laboratory for high 

school students developed by [30]. 

Though real experiments are shown to students instead of simulation in an 

interactive way, the multimedia approach has one major disadvantage when being used 

for laboratory experiments. All the experiments are conducted and controlled by 

instructors while students watch the demonstration most of the time. Even though 

students can also interact with instructors in order to observe experiments conducted in 

the way they are interested in, it is still an observation process rather than hands-on 

experience, from which students would benefit more. 
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1.3.3  Online hybrid laboratories. 

 These laboratories and experiments are special in that they are based on real 

experiment rather than virtual unreal simulations though they are placed online. They are 

the hybrid of “physical” experiments and web-based simulation. 

DropBall [24] is such an online physics experiments for Newtonian mechanics. 

The major components of DropBall include mechanical apparatus, force sensors, 

electronic control device, turntable, and web interface.  

Students interested in the experiment can visit the DropBall website 

(http://dropball.cs.emporia.edu/) and request an experiment to be conducted with 

customized parameters such as drop height and ball type. The system gets requests from 

the web server and automatically conducts the experiment by invoking real experiment 

instruments in a real laboratory in Emporia State University. For example, the turntable 

will choose the ball chosen by the user and the electromagnetic lifting apparatus will lift 

the ball to the specified height and drop it. 

Students can observe the experiment process via real-time online video. What is 

more interesting is that the system could acquire data, such as velocity and acceleration, 

from multiple sensors, which are located in the laboratory, during the experiment and 

conduct data analysis. Data observed by sensors, statistical data generated by DropBall’s 

analysis system, and graph are presented in students’ web browsers. Students could also 

choose to have these data sent to their email boxes so that they can save them for further 

study. 

Another similar system is the Remote Dynamical Systems Laboratory at Stevens 

Institute of Technology (online at http://dynamics.soe.stevens-tech.edu).  
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There is another variation in the category of hybrid laboratory. The ideas are 

similar to DropBall. Real experiments are also conducted with real instruments in real 

laboratories. The difference is that instead of displaying the experiment process with 

online video, they use virtual reality technology to show the ongoing experiment process 

as animations in web browsers. They are therefore more accessible for students whose 

Internet bandwidth does not support real-time video streams. Examples include 

Interactive Chaotic Pendulum at Mercer University [20] (online at 

http://physics.mercer.edu/pendulum) and FVRLE at Chuang Yuan Christian University 

[40].  

The hybrid approach is appealing in that students can still get firsthand 

experiment data without having to go to a real laboratory and conduct real experiments. 

As with most student experimentation, actually generating and even saving the data 

provides students with ownership of their data and analysis, which transcends simply 

analyzing canned or textbook data. All the four foregoing systems are now used as part of 

statistics or introductory physics courses, and students’ response to using this hybrid 

approach has been favorable. 

However, though little human interference or assistance is needed, the hybrid 

approach suffers from limited laboratory resources, just like a traditional laboratory. 

Right now, DropBall has only one set of experiment instruments, which means it could 

satisfy users’ requests only one by one. On its website, there is a queue for those who 

want to conduct this experiment. For example, if student A’s experiment is running in the 

laboratory, student B can only watch A’s experiment and wait till A’s experiment is over 
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before B’s experiment starts. This is very inconvenient if a group of students in one class 

are asked to use this system. 

Besides, such a hybrid system also requires a hybrid of technology. The 

development will involve researchers from mechanics, automation control, signal sensing 

and processing, and web programming, which will raise the cost for development and 

maintenance. 

 

1.3.4  Pre-developed online virtual laboratories. 

 Systems in this category present purely virtual laboratory experiments. There are 

no real instruments or laboratories behind them. They rely mainly on modeling of 

knowledge in specific science subjects and programming techniques. Though some of 

them are very powerful and can be referenced by instructors when teaching online 

courses, they share one major disadvantage:  instructors and students have the same 

access privilege to those systems, which means instructors cannot modify the 

experiments according to their special needs, unless they are the original developer. Even 

if given the source code and resource to replicate those systems, instructors are required 

to be proficient programmers of various programming languages or competent users of 

certain complicated software packages in order to create, customize, and deploy their 

own experiments. 

 

 Virtual Chemistry, as its name implies, is an online virtual chemistry laboratory 

[35] developed by the Department of Chemistry at Oxford University. It provides a lot of 

information about chemistry experiments, ranging from experiment manuals and 
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experiment designs to result analysis. The most notable and interesting feature is 

“LiveChem,” the Macromedia Flash-based virtual laboratory. “LiveChem” provides a 

platform to show the visual results of chemical reactions when mixing different salts and 

reagents. All the chemicals have photos, showing their color and state. Students are first 

asked to select one from thirteen kinds of salts and one reagent out of twenty-two options. 

After the “Play” button is pressed, the virtual experiment will start. A short Flash 

animation, which comes from the video of the actual reaction, will appear in the web 

browser, showing how the reaction happens and the visual result. This virtual chemistry 

laboratory is vivid and easy to use.  

Students are also given a great number of options to explore and observe different 

reactions. Detailed analysis about reactions is also accessible in order to help students 

better understand what they have seen on the screen. At the same time, the limits of the 

system are also obvious. The system is designed in an ad-hoc way without underlying 

models of chemistry knowledge. One video clip or animation is specific for one reaction 

only. As a result, if a new salt is to be added into the laboratory, developers have to 

conduct the real experiments, in which the new salt is mixed with each of the existing 

twenty-two reagents in the laboratory, videotape the visual effects of those reactions, 

convert video files into Flash, and integrate those animations into the system. 

 

 VRPS [15] is a real-time virtual laboratory providing interactive experiments in 

physics courses, such as electric current testing, spread of water waves and a simple 

oscillator. The experiments are shown as 3D animations in web browsers. It is created 

with 3D Webmaster, a software toolkit for creating 3D web pages, and Supercape 
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Control Language (SCL), a script language used to control the action of objects in a 

virtual reality environment.  

It was claimed that students’ performance in learning was enhanced by using 

VRPS. But the usage of the system is limited. First, users have to be very familiar with 

virtual reality technology and must be able to use 3D Webmaster and to program with 

SCL. Second, similar to “LiveChem,” there is no model or data structure behind those 

virtual experiments. Experiments are designed in an ad-hoc way. The reusability of the 

existing experiments is thus limited. New experiments have to be created almost from 

scratch. Besides, since there is no library for experiment widgets or instruments, one has 

to design all the visual models, including 3D models, for experiment apparatus one by 

one and spend a lot of time on the layout of apparatus. 

 

 VPL [3] was developed by the Distance Education and Learning 

Telecommunication Applications (DELTA) group at the German National Research 

Centre for Information Technology and is a modularized online virtual laboratory for 

physics and astronomy experiments. It consists of three modules: (1) Simulation: the 

experiments are modeled as computer programs, which are implemented in general 

purpose programming language like C++ or Java. This module is not directly accessible 

online. (2) Visualization: this is the module that supports the user interface and displays 

experiments to students. It is based on Java, Java-3D and Virtual Reality Modeling 

Language (VRML). (3) Translation and Interface: this module links Simulation and 

Visualization. Graphic user interface is dynamically activated using Common Gateway 

Interface (CGI) scripts.  
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The VPL system works in the following process: when students visit the system, 

they are asked to select the experiment and input parameters from the user interface. The 

Translation and Interface module then sends those customized requests to the Simulation 

module, which will simulate the experiment according to requests. Real-time outputs 

from the Simulation are sent to the Translation and Interface module, where those outputs 

are translated for the Visualization module. With the translated data, the Visualization 

module could virtually rebuild the experiment process and present it in web browsers. 

The modular design of VPL benefits from the Simulation module, which could 

model very complex experiments with the power of general programming language.  It is 

also possible to reuse some existing simulations by adding interface to the Translation 

and Interface module. The Visualization module could also vividly represent ongoing 

experiments in 3D animations. Example experiments created with VPL include 

Geometric Optics, Hydrodynamics Entropy and Virtual Astronomy Solar System, and 

Kepler’s Law.  

On the other hand, though powerful and vivid, the complexity of each individual 

module adds to the complexity of VPL, which make it very difficult to implement and 

maintain. The cost of such a system will thus be higher than other virtual laboratories. 

 

BioLab [5, 16, 27] is an online virtual biology laboratory developed at Eastern 

Michigan University. It aims at helping students from non-biology major to learn 

fundamental biology. Professors from both Computer Science and Biology departments, 

along with graduate students, built a virtual biology laboratory with Java Applet and 

designed a few experiments. For example, the enzyme activity experiment is used to 
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examine the effects of temperature and pH on the activity of the enzyme salivary amylase. 

The cellular respiration experiment can help students to understand how activity and 

temperature affect respiration rate. BioLab has been used for online biology courses at 

Eastern Michigan University. Though all the experiments in BioLab are hard coded, it 

was the development of BioLab that inspired the idea of CyberLab. 

 

ViBE [34] is a virtual laboratory for biology experiments. The main characteristic 

of the ViBE is the three-tier architecture, which comprises the vertical tiers of 

presentation, domain logic, and storage. The modular Model-View-Controller (MVC) 

architecture is similar to the modular structure of VPL. The ViBE’s presentation tier is 

virtually free of the application logic and deals with visualizing the experiments and 

accepting user inputs. The domain tier contains all the model objects and deals with the 

semantics of experiments and rules, as well as abstract data representation.  Data about 

experiments are exchanged in eXtensible Markup Language (XML). Most of the system 

components, including all the virtual labs, are implemented as Java Beans.  

ViBE can be extended to implement different laboratories, thanks to its modular 

design and the resulting separation of concerns and tasks. It supports augmentation by 

animation effects and realistic renderings of virtual objects. The software framework is 

lightweight and can be downloaded as an applet in a browser. Students can also save their 

lab reports in XML and review or edit them later. 

A few interesting experiments have been created with ViBE, including 

Spectrophotometry, Cell Mitosis and Meiosis, and Virtual Microscope. The way those 
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experiments are created is relatively straightforward but one still has to be able to 

program with XML and Java Beans. 

 

1.3.5  Online virtual laboratory creation tool. 

 Physlets [6], also known as Physics Applets, are small flexible non-commercial 

Java applets designed for virtual experiments in online science education (online at 

http://webphysics.davidson.edu/Applets/Applets.html).  According to our research, it is 

the only tool that aims at allowing instructors to easily create their own science 

experiments. It is based on Java and provides a set of APIs (Application Programming 

Interface), which could be easily used in Java Script to construct an experiment. It is 

designed specially for online courses, which means they can run on (almost) any platform 

and be embedded in almost any type of HTML document. It is claimed that it can be used 

for almost any subject in mechanics and almost any topic in electrostatics with small 

changes in the Java Script associated with each experiment.  Data taking and data 

analysis can be added using inter-applet communication. 

 With tutorial and well supported documentation, it may not be difficult for a 

competent Java Script programmer to create an experiment. However, though Java Script 

is not a complicated language for computer science majors, its user population is still 

limited, which limits the usage of Physlets among instructors of online science courses. 
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1.4  Brief introduction to CyberLab 

1.4.1  Purpose of CyberLab. 

 After an extensive literature review, we found that existing online virtual 

laboratories are either pre-designed for specific experiments or require programming 

skills for instructors to create experiments.  

After the development of BioLab (described in 1.3.4), the idea of CyberLab was 

proposed by [10] as a set of tools for virtual online laboratories. It aims at helping 

instructors with little programming background to create their own interactive 

experiments for online science courses and giving students a convenient online access to 

those experiments and an easy way to execute them. 

 

1.4.2  Structure of CyberLab. 

CyberLab consists of two main components: LabCreator and LabExecutor 

(Figure 1). Instructors of science courses will use LabCreator to design what the 

laboratory experiments will look like and how they will function. LabCreator then 

generates a file that contains the definition and description of the experiment, which is 

called an “experiment descriptor.” This descriptor file is then stored on the instructor’s 

web server of online courses. 

LabExecutor is used by students to conduct experiments. The LabExecutor is a 

Java Applet, which can be executed in most web browsers. To run the online experiment, 

students will visit the instructor’s website and invoke the LabExecutor.  LabExecutor 

then downloads the experiment descriptor file from the instructor’s web server, uses it to 
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determine the construction and design of the experiment, displays the experiment in web 

browsers, and allows students to conduct the experiment. 

 

Figure 1 Structure of CyberLab 
 

1.4.3  Model of experiments in CyberLab. 

 In CyberLab, each experiment is represented as Finite State Automata (FSA). 

FSA [36] is a model of behavior composed of states, transitions, and actions. A state 

stores information about the past; i.e., it reflects the input changes from the system’s start 

to the present moment. A transition indicates a state change and is described by a 

condition that would need to be fulfilled to enable the transition. An action is a 

description of an activity that is to be performed at a given moment.  

There are two types of FSA: Deterministic and Nondeterministic. In CyberLab, 

we are using the Deterministic FSA, in which there is a deterministic next state given a 

pair of current state and input. In this paper, when we mention FSA, we mean 

Deterministic FSA.  
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1.4.4  Previous work in CyberLab. 

 Dr. Evett and a few graduate students at Eastern Michigan University have been 

working on CyberLab since 2003 and have made some progress. 

Research on the data representation of the intermediate file--experiment 

descriptor was conducted [32]. Because experiments in CyberLab consist of a collection 

of Java objects, the major topic in this research was the best way to import Java objects 

from LabCreator and export them to intermediate files. Three approaches are considered 

as candidates: XML processing via Document Object Model (DOM), Java Serialization, 

and Java XMLEncoder/Decoder. After comprehensive comparison, Java Serialization is 

selected for its advantages of less restriction to the object class definition, simple object 

processing programming with standard Java APIs, secure intermediate file format, and 

less complexity in CyberLab system implementation. 

A prototype for LabExecutor was developed [23]. Since the descriptor file was 

not available at that time, another class called the Driver, which simulates the role of 

descriptor and feeds LabExecutor with experiment information, was created for testing 

purpose. Since the Driver has to be coded for each individual experiment, the 

LabExecutor was tested with only two experiments generated by the Driver. The first 

experiment implements two buttons as toggle buttons, and only one of them is active at 

any time. The second experiment simulates a heating experiment, where temperature can 

be incremented and decremented. The temperature in the heating experiment is limited 

by a minimum and maximum value, and current temperature is displayed. 

 The LabExecutor prototype showed that the ideas of using FSA to model 

experiments and using Java Applet to display experiments are feasible. However, it is not 
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tested with descriptor and thus lacks the feature of loading descriptor, which left some 

work to the integration of CyberLab. 

  

1.4.5  My work in this thesis. 

 The thesis mainly deals with the implementation of LabCreator in CyberLab, 

which did not exist yet, and its integration into the existing components of CyberLab. 

LabCreator has four major functions: design experiment layout, deploy 

underlying model, associate model with experiment components, and export descriptor. 

Layout tools are designed to be used in much the same way as the form layout 

tools in Integrated Development Environments (IDEs).  LabCreator will support the 

“Drag and Drop” feature, which allows instructors to select experiment widgets and 

components from a palette, place them on the screen, and specify how users can interact 

with them.  When a student is running an experiment, the interface will look almost 

exactly like what has been designed within the layout tools. Therefore, layout tools are 

said to be “what you see is what you get” (WYSIWYG) and free instructors from having 

to write source code themselves. To realize such functions, various experiment 

components must be developed, such as containers (flasks, treadmills, etc.), meters 

(thermometer, pHtester, etc.), other devices (lamps, agitators, etc.), and control 

components (menus, buttons, etc.).  

Underlying models of experiments consist of variables (dependent or 

independent), expressions, and FSA. Models specify how the experiment will behave at a 

certain point. For example, a variable may represent the density or temperature of a fluid 

within a flask, or the amount of time elapsed since the start of the experiment.  
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Visualization deals with the association between variables and experiment 

components. It is necessary to specify a correlation between the various visual elements 

of the experiment (e.g. the color of fluid within a beaker or the brightness of a burner) 

with the variables of the underlying model so that users can observe changes in the 

ongoing experiment. 

The exporting of descriptor happens after instructors finish the design of the 

experiment. LabCreator can export all the necessary information about the experiment 

into “experiment descriptor” with proper data format, which will be available online in 

the course server. 

 The integration of LabCreator into CyberLab will focus on how the descriptor is 

loaded and how the original experiment is re-constructed in LabExecutor. 
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CHAPTER 2 

IMPLEMENTATION OF LABCREATOR 

 This chapter discusses the LabCreator component of CyberLab, including how it 

is implemented in Java and how it is used to create experiments. 

 

2.1  Graphic User Interface (GUI) of LabCreator. 

 Figure 2 shows the GUI of LabCreator. There are four major panels: Widgets, 

Experiment Workbench, Experiment Information, and FSA Edge. 

 

Figure 2 Graphic User Interface of LabCreator 
 

 The Widget panel displays the visual components that can be used to construct 

virtual experiments. Though not all the widgets listed on the Widget Panel are yet 
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implemented, tabular views of widgets for different science subjects are provided for the 

convenience of future development. 

 The Experiment Workbench is the canvas where the layout of the experiment is 

designed. After users select experiment widgets and specify their initial attributes, those 

widgets will appear on Experiment Workbench. The users are then free to move the 

widgets to desired positions (the “Drag and Drop” feature will be discussed later in this 

paper), delete them, or modify their attributes. The layout of the experiment executed in 

LabExecutor will look the same as the one designed on the Experiment Workbench. 

 The Experiment Information panel and FSA Edge Panel are used to show the 

information about the experiment being created so that users have a good idea about what 

has been done and what remains to be done.  

Experiment Information is the rightmost vertical panel. It consists of two tabular 

panels. The Variable panel shows the name, type, and description of an experiment’s 

variables. The State panel shows the names of FSA states and the widgets associated with 

each. 

The FSA Edge panel is located under the Experiment Workbench. It shows the 

information about each edge of the experiment’s FSA, including its starting state, ending 

state, trigger widget, transition condition, and consequence. This panel is separated from 

Experiment Information panel because FSA edges usually have more information to 

display than variables and states, which requires more and wider columns in the table. It 

is therefore difficult to display them in the rightmost vertical panel. Besides, the FSA 

edge panel will display equations for transition conditions and consequences. Though not 

implemented now, it may be helpful to add an “equation editor,” which will help users to 
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construct an equation and prevent typos. In this case, having a stand-alone FSA Edge 

panel will leave more space and flexibility for future development of more features. 

 

2.2  Experiment widgets. 

 All the experiment widgets in CyberLab are implemented via the interface 

“Widget.” An excerpt of the Java code for widget-related classes can be found in 

Appendix A. 

 So far, only two types of widgets have been implemented: CyberButton and 

CyberTextField. 

 

Figure 3. The appearance of a CyberButton 
 
 
 CyberButtons are used as control buttons in experiments and make use of Java’s 

JButton class as the base class. The appearance of CyberButton on the Experiment 

Workbench is shown in Figure 3. The text “Start” on the button is specified by the label 

attribute. The CyberButton class is defined as: 

  
  

 

Figure 4. The appearance of CyberTextField 
  

CyberTextField is a text display of dynamic numeric values (Figure 4). The label 

of the widget is displayed on the upper part of the widget, while the numerical value of 
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the associated variable is displayed under the label. Because there is no similar GUI 

component in Java, we had to extend the JComponent class and overwrite the 

“paintComponent” method to draw the rectangles and texts. 

 

2.3  What You See Is What You Get (WYSIWYG). 

 WYSIWYG (pronounced “wiz-ee-wig”) is used to describe a system in which 

content during editing appears very similar to the final product. It is commonly used for 

word processors (e.g. Microsoft Word) and Web (HTML) authoring (e.g. Macromedia 

Dreamweaver). LabCreator is designed to be a WYSIWYG experiment editor. 

LabCreator users, mostly instructors, could determine the appearance of the experiment, 

such as the layout and the label of experiment components; and students, when executing 

the experiment, will get the same appearance as that designed in LabCreator. Just like 

Dreamweaver, which does not require its users to know HTML, LabCreator enables 

those who do not know programming to create virtual experiments in an intuitive and 

easy way. 

2.3.1  Drag and Drop. 

An important feature in WYSIWYG experiment editor is the “Drag and Drop” of 

widgets when positioning them. When creating a widget, users can specify its initial 

position on Experiment Workbench. After that, users can select the widget (by pressing 

the left button of the mouse), drag it to anyplace on the Experiment Workbench canvas 

(hold down the left button while moving the mouse), and drop it there (by releasing the 

left button).  

Widget “Drag and Drop” is implemented with the help of “MouseAdapter”—the 

adapter interface class for receiving mouse events. Each widget added into the 
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Experiment Workbench will have an object implemented from MouseAdapter as its 

action listener. The “mousePressed” and “mouseReleased” methods of MouseAdapter are 

implemented to capture the user’s action on the mouse. The following is an excerpt of the 

code for the implementation of the “Drag and Drop” for CyberButtons. 

The Java code excerpt for widgets drag and drop is shown in Appendix B. In the 

code excerpt, the “MouseMoved” method determines whether the widget has been 

moved to a new position.  In the “moveWidget” method, the position information is 

stored in the widget object, which will allow the widget to be positioned correctly both in 

the Experiment Workbench and by the LabExecutor. 

 

 

2.3.2  Appearance of widgets. 

 As described in 2.2, every widget will have a label that can be customized, either 

during or after creation. For example, when a new control button (i.e. CyberButton) is to 

be added, a dialog box (Figure 5) appears that allows the author to specify an initial 

position as well as its label. To change an existing button’s label, users can right-click the 

widget and select “Label” from the pop-up menu (Figure 6). The same menu also 

provides for the deletion of a widget. 

    

Figure 5. Dialog for CyberButton initial settings 
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Figure 6. Right-click pop-up menu for CyberButton 

 

2.4  Data structure of CyberLab virtual experiments. 

 Each virtual experiment has two parts: the GUI and an underlying model that 

represents the state of the experiment.  

The GUI part is relatively straightforward. Originally designed in the 

LabCreator’s Experiment Workbench, the GUI is represented by a list of widgets and a 

frame (“ExperimentFrame” class in CyberLab), where the widgets are displayed. 

The underlying model is a collection of FSA, independent and dependent 

variables, and the set of equations that define the relationships among them. 

Execution of an experiment causes the FSA to move from state to state via edges. 

Each state has a widget list indicating which widgets are active in this state, and a table 

for possible transitions starting from this state. Once an edge is created, its information is 

stored in the transition table of its starting state. The information in the transition table 

includes the name of the edge, required interaction with a particular widget from the 

experiment user (e.g. press a button) for the traversal of the edge, what is necessary in 

order to move from one state to another (i.e. the condition for the transition), and certain 

manipulation of the model (i.e. the consequence of the transition) as the result of the edge 

traversal. The table also provides the next state the FSA has to go to as a result of the 

transition.  
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In the aforementioned classes related to FSA, transition conditions are Boolean 

expressions (e.g. temperature>1, speed==40) and consequence are mostly mathematical 

expressions (e.g. speed=original_speed + 10). Expressions consist of experiment 

variables (e.g. temperature of liquid, speed of falling ball), operators, and numbers. There 

are two types of experiment variables: dependent and independent. A dependent variable 

is associated with a function consisting of various operators and references to other 

independent or dependent variables (e.g. speed=speed + acceleration*time). Each 

independent variable has an associated initial value. Its value is independent of other 

variables (e.g. temperature= temperature+1). Variables and their values are stored in the 

model.  

In order to determine the variable value and whether a transition condition holds, 

it is necessary to design a mechanism to evaluate expressions (both Boolean and 

mathematical expressions) and variable values. 

For a mathematical expression, the evaluation process will first parse the right 

hand side of the expression. If the right hand side contains a variable, the value of the 

variable will be retrieved from the model. The evaluated value of the right hand side will 

be given to the left hand side variable, and the new value of the left hand side is stored 

back in the model.  

Boolean expressions are different from mathematical expressions. The left hand 

side of a Boolean expression may be a combination of variables, operators, and numbers, 

while the left hand side of a mathematical expression usually has only one variable. 

Another difference is that relational operators are used to link left hand side and right 

hand side. As a result, both left and right hand sides of Boolean expressions are evaluated, 
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and their values are compared based on the relational operator. A Boolean expression is 

evaluated to integers. Zero represents False, while other values are treated as True. No 

variable’s value is going to be changed after the evaluation of a Boolean expression. 

 

2.5  An example of how a virtual experiment works. 

As for implementation, each experiment in CyberLab will correspond to one 

“Experiment” object, which contains a list of widgets, one “Model” object and one 

“FSA” object. The numbers of “FSAState,” “FSAEdge,” “Expression,” and 

“ExpressionNode” objects in an experiment may vary. 

The following example should better illustrate how a virtual experiment works.  

When an experiment starts, the “Experiment” object will ask the “FSA” object to 

check the current state. Active widgets associated with the current state are then 

displayed on “ExperimentFrame.”  

When a student manipulates a widget in the experiment (via LabExecutor), the 

“FSA” object is responsible for determining which widget is manipulated and hand over 

the action to current “FSAState,” which will then look into its transition table. If the 

manipulated widget is found in the table, the associated condition expression is evaluated. 

If the condition holds, the corresponding transition (i.e. FSAEdge) will be traversed. 

Whether FSA moves to a new state with the traversal depends on the ending state of the 

corresponding “FSAEdge.” As part of the transition, the consequence of the transition 

(usually a mathematical expression) is also executed. As a result, the value of the left 

hand side variable of the consequence expression is evaluated and updated in “Model” 

object.  
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After the transition, the “ExperimentFrame” is redrawn so that the current state of 

the experiment is shown to the student. 

This process is carried out until a termination state is reached, if there is one. If 

there is no termination state, the experiment executes until the student chooses to close 

the experiment.  

Another possible situation for an experiment with animations is that there will be 

a trigger to start the animation. At the end of the animation, the experiment won’t 

terminate but will usually sit there, possibly allowing the student to provide new 

execution parameters or to restart the animation. 

  

2.6  Create virtual experiments with LabCreator. 

 This chapter will demonstrate how to create a virtual experiment in LabCreator. 

We will use a simple heating experiment as the example, which will be used to test 

LabExecutor later. 
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2.6.1  The simple heating experiment. 

 

Figure 7. FSA diagram of the heating experiment 
 

This experiment simulates how the user’s decision on heating or cooling the air 

changes the temperature. The temperature is represented by the independent variable 

“temp.” It has maximum and minimum values, which are represented as MaxTemp and 

MinTemp, respectively. 

Three widgets are involved in this experiment: a thermometer (represented by a 

text box labeled as “Temperature”), a heating element (represented by a button labeled as 

“Heat”) and a cooling element (represented by a button labeled as “Cool”). Though the 

thermometer does not directly interact with users, manipulation of the experiment can be 

obtained by pressing either of the two buttons.  

There are three states: (1) Medium, which is the initial state; (2) Cold, which has 

the lowest temperature; and (3) Hot, which has the highest temperature. There is no 

termination state in this experiment.  
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In state “Medium,” temperature is neither too high nor too low. Users are thus 

free to raise or lower the temperature. When the heating element is used, the temperature 

increases by one degree. When the cooling element is used, the temperature decreases by 

one. After the temperature drops to its minimum value (state “Cold”), the cooling 

element is not active anymore. Users can use only the heating element. Similarly, when 

the temperature reaches its peak (state “Hot”), only the cooling element is available for 

users’ manipulation.  

 The detailed FSA of the experiment is shown in Figure 7.  

 

2.6.2  The procedure to create the heating experiment. 

 First, we will design the experiment GUI by selecting widgets from “Generic” tab 

of the Experiment Widget panel and positioning them on the Experiment Workbench. In 

this experiment, there are two Control Buttons: “Heat” and “Cool.” There is also one 

Text Display: “Temperature” (Figure 8). Note that “Temperature” is set to zero as the 

text display widget is not associated with any variable. 

 

Figure 8. GUI of the heating experiment 
  

 Next, we focus on constructing FSA for the experiment. Basically, this is done by 

going through the menu items in “FSA” menu (Figure 9).  
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Figure 9. FSA Menu of LabCreator. 
 

 First, we create the independent variable “temp,” which stands for the temperature 

(Figure 10). Remember that the value of the variable (i.e. the temperature) is to be 

displayed in Text Display widget “Temperature.” Therefore, we have to associate the 

variable with the Text Display widget by accessing the right-click pop-up menu item 

“Expression” of widget “Temperature” (Figure 11) and typing the variable name “temp” 

in the following dialog. After this step, the widget “Temperature” displays the value of 

variable “temp,” which is 0.0 at the very beginning. 

 

Figure 10. Dialog for creating new variable “temp.” 
 

 

Figure 11. The right-click pop-up menu for Text Display widget. 
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 Second, three states are created by typing names and selecting active widgets. 

Figure 12 shows how state “Medium” is specified.  

 

Figure 12. Dialog for creating new state “Medium.” 
  

 After the three states are created, we have to specify the FSA starting state from a 

scroll-down menu (Figure 13). 

 

Figure 13. Set Starting State as “Medium.” 
 

 The last step in FSA construction is to create FSA edges. This process is a bit 

more involved than the aforementioned steps. Users have to assign a Boolean expression 

as condition and a mathematical expression as consequence. For this experiment, six 

edges are needed for the FSA. Figure 14 shows the dialog for the edge, which starts from 

and ends in state “Medium” and causes the temperature to rise. 
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Figure 14. Dialog for creating a FSA edge 
  

 Note that in this demonstration, the temperature limits--MaxTemp and MinTemp-- 

are set as 10 and -10 respectively. 

During the construction of the FSA, the Experiment Information panel and FSA 

Edges panel in LabCreator will display updated information about the FSA being 

constructed. Figure 15 is the LabCreator GUI after the experiment creation process is 

completed. 
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Figure 15. GUI of LabCreator after the heating experiment is created. 
 

2.7  Preview experiments in LabCreator. 

 After creating an experiment, instructors may want to review and test the 

experiment before giving it to students. The experiment preview feature in the 

LabCreator allows instructors to check how the experiment will look and function in the 

LabExecutor.  

 When the preview is invoked, a new window will appear. The preview window 

looks quite similar to the window of LabExecutor because the preview is designed to 

mimic LabExecutor. Instructors can manipulate widgets and observe the experiment, just 

as students could do when using LabExecutor. If instructors found something wrong or 
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are not satisfied with the appearance of the experiment, they can stop the preview and re-

design the experiment in LabCreator. 

 In terms of implementation, an inner class “PreviewExpAL” is defined to handle 

the action on the “Preview” menu item. Two objects are important in the preview of a 

CyberLab experiment: the “Experiment” object, which corresponds to the experiment 

(discussed in section 2.5), and an “ExperimentFrame” object.  

First, LabCreator will check the experiment to see whether there is anything 

missing. For example, if starting state is not specified or there is no active widget in the 

starting state, a warning dialog will pop up and the preview will not start.  

Then all widgets of the experiment are loaded into the “Experiment” object. The 

“ExperimentFrame” object is then created. It loads the “Experiment” object and displays 

widgets of the starting state in a new window, where instructors can manipulate the 

experiment. Manipulation of the buttons will be handled by the “FSA” object, which is 

part of the “Experiment” object. Figures 16 to 18 show the preview of the heating 

experiment. It works properly as designed in LabCreator. 
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Figure 16. Preview of heating experiment (initial state “Medium”) 
 
 

 

Figure 17. Preview of heating experiment (initial state “Hot”) 
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Figure 18. Preview of heating experiment (initial state “Cold”) 
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CHAPTER 3 

INTERGRATION OF LABCREATOR INTO CYBERLAB 

 Since LabCreator has been successfully implemented, it is now necessary to 

integrate it with LabExecutor into the CyberLab system. The main tasks include 

exporting experiments created in LabCreator into intermediate files, loading the files in 

LabExecutor, and executing the experiment. 

 After the integration of the CyberLab system, a simple usability test was 

conducted. 

 

3.1  Java Object Serialization. 

 As mentioned in section 1.4.4, Java Object Serialization is selected to generate the 

intermediate file. 

Java Object Serialization provides support for objects’ input and output, so that a 

whole object in a Java program can be written to or read from a raw byte stream. This is 

an important feature for an object-oriented programming language. When dealing with 

files in order to load or write data, Pascal or C programmers usually face a lot of 

annoying problems, such as the EOF mark, the EOLN mark and file pointers [17]. 

However, with the help of object serialization, Java programmers do not have to worry 

about these problems anymore. 

According to [19], Java Object Serialization “allows Java objects and primitives 

to be encoded into a byte stream suitable for streaming to a transmission medium or 

storage facility. It also supports the complementary reconstruction of the object graph 

from the stream without damaging the persistence of objects.” 
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Therefore, Java Object Serialization is widely used to store objects into files, 

retrieve objects from files, and transmit objects between Java Virtual Machines. 

To serialize an object, it is also necessary to traverse all the objects and primitives 

that are referenced in the object. According to [17], “since an object’s state usually 

consists of information stored in internal data, most objects will contain references to 

other objects, which will need to be preserved if the original object is to regain its state 

when it is de-serialized.” 

As for implementation, serializing an object requires one of the two criteria to be 

satisfied: the class of the object must either implement the “Serializable” interface or the 

“Externalizable” interface. 

The “Serializable” interface has no methods, which means that it is not necessary 

to write any additional code in the class. It can be implemented by simply adding the 

“implements Serializable” clause. 

On the other side, to use the “Externalizable” interface, we have to define two 

methods: “writeExternal” and “readExternal” in the class to be serialized. According to 

[17], the “Externalizable” interface is often used “when it is necessary to define an object 

which has complete control over its serialization and re-constitution process.” In other 

words, this interface could give users the control of “the encoding used to send the 

information and which fields are serialized.” 

In this paper, we use the “Serializable” interface because it already satisfies our 

needs for serializations, and it is easy to implement. During the serialization, each object 

that is referenced by the serialized object and is not marked as transient must also be 

serialized.  
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Some may ask why Java objects are not serializable by default. There are three 

primary reasons, according to Wikipedia [37]:  

(1) Not all objects capture useful semantics in a serialized state. For 

example, a “Thread” object is tied to the state of the current Java Virtual 

Machine. There is no context in which a de-serialized “Thread” object 

would maintain useful semantics.  

(2) The serialized state of an object forms part of its class’s compatibility 

contract. Maintaining compatibility between versions of serializable 

classes requires additional effort and consideration. Therefore, making a 

class serializable needs to be deliberate and is not a default condition.  

(3) Serialization allows access to non-transient private members of a class 

that are not otherwise accessible. Classes containing sensitive information 

(for example, a password) should not be serializable or externalizable. 

 

When implementing object serialization in CyberLab, two classes-- 

ObjectOutputStream and ObjectInputStream-- are used. An ObjectOutputStream object is 

used to serialize primitive data types and Java objects to an output stream. It is used 

together with a FileOutputStream object so that the output stream of an object can be 

written to a file. On the other hand, ObjectInputStream object is used to de-serialize 

objects from an input stream and restore them. Similar to ObjectOutputStream, it is 

accompanied by a FileInputStream object. 
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3.2  Export experiments from LabCreator. 

As discussed in section 2.4, the information of an experiment created in 

LabCreator is stored in the corresponding “Experiment” object. Therefore, we have to 

export this object to an intermediate file. 

As discussed before, all classes associated with the “Experiment” class will 

implement the “Serializable” interface. Besides, we found that the parent class of the 

serialized class must have a constructor with no argument. 

To serialize an object, we have to go through the following steps: (1) Produce a 

valid filename to write to; (2) Open a FileOutputStream; (3) Attach an 

ObjectOutputStream to the FileOutputStream; (4) Write object data to object stream; and 

(5) Flush the object stream and close it down. The code that deals with object 

serializations in LabCreator is shown in Appendix C. 

The intermediate files will have “.exp” as their suffix. Figure 19 shows part of the 

file generated for the heating experiment in hexadecimal format. All Object Serialization 

files start with the 2-byte “magic number”: AC ED, followed by the version number of 

the object serialization format, which is currently 00 05. Then, it contains a sequence of 

objects, in the order that they were saved.  
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Figure 19. Part of the “.exp” file for the heating experiment 
 

3.3  Load and execute experiments in LabExecutor. 

 We already have a LabExecutor prototype [23], but it does not provide any 

support for intermediate files. Therefore, we have to implement the loading and 

execution of experiments in this paper. 

The object de-serialization process is very similar to the serialization process: (1) 

Produce a valid filename to read from; (2) Open a FileInputStream; (3) Attach an 
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ObjectInputStream to the FileInputStream; (4) Read the object data to object stream; and 

(5) Flush the object streams and close it down. 

After an object is de-serialized, it is usually necessary to cast the object to its 

original class type. The Java code handling the de-serialization of objects in LabExecutor 

is shown in Appendix C: 

 After successful loading of the intermediate “.exp” file, the experiment is 

reconstructed in the window of LabExecutor. Students can then manipulate the 

experiment in LabExecutor. As shown in Figure 20, the heating experiment is loaded into 

LabExecutor. The layout of the experiment is the same as designed in LabCreator, and 

the experiment functions well in LabExecutor (Figure 20).  

 

3.4  Usability test and feedback. 

After the integration of CyberLab, it is helpful to know how end users feel about 

it. As CyberLab is designed for online science courses, I invited two students, both of 

whom major in natural science subjects, for a simple and short CyberLab tryout. Clearly, 

such a small sample size is insufficient for a formal efficacy analysis.  Nonetheless, the 

observations are of interest. 

Student A got his Master’s degree in chemistry and has two years of 

programming experience with C, C++, and Java. Student B is a graduate student from 

EMU’s Geography and Geology Department. Though knowing little about programming, 

B is quite familiar with the commonly used software in the Microsoft Windows platform. 
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 The tryout had four steps: (1) Introduction to CyberLab; (2) Demonstration of 

how to use LabCreator and LabExecutor; (3) Creation and execution of experiments by 

participating students; and (4) Discussion. 

 The major obstacle we encountered in the tryout concerned the FSA. Student A 

was already familiar with FSA’s, while Student B had never heard of FSA’s before this 

tryout. Apparently, though, it is not necessary for the user to be an expert in FSA in order 

to use LabCreator. A fifteen-minute introduction of FSA fundamentals and how the 

experiment in CyberLab makes use of FSA’s was sufficient for student B to complete the 

creation of the heating experiment. 

 The rest of the tryout went smoothly, and both students were able to create, export, 

and execute their heating experiments. Student A also created his own simple 

experiments. 

 In the discussion session, both students expressed their satisfaction with CyberLab. 

They agreed that CyberLab provides an easy way for instructors to create virtual 

experiments for online science courses. The data flow is straightforward, and the 

operations of both LabCreator and LabExecutor are not difficult to learn. 

 On the other side, they also had complaints. One thing both of them mentioned is 

the way an FSA is constructed. The dialog and text-based approach for constructing FSA, 

especially FSA edges, was not sufficiently intuitive. The information in the “FSA Edges” 

panel did not give them a clear global view of the FSA they were constructing. Another 

feature they want is be able to directly modify the experiment from the Experiment 

Information panel if a mistake is found. 
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They also pointed out some other features that need to be improved or added, 

which are discussed in Chapter 4. 

 

 

Figure 20. The heating experiment in LabExecutor 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1  Conclusion. 

Through the implementation of LabCreator and the integration of CyberLab 

system in this paper, it has been proven that the design of CyberLab is feasible. 

CyberLab can provide a package of services for the constructions of online virtual 

laboratories, ranging from experiments design, creation, and export in LabCreator, to 

experiments loading and execution in LabExecutor. 

We consider CyberLab to be an important progress with unique characters in the 

research of online virtual laboratories.  

It has been discussed that laboratory experience is very important for science 

education. Then why have virtual experiments rarely been integrated into online science 

courses? When compared with the popularity of online science courses and the great 

demand for online virtual experiments, the number of researchers dedicated to the 

development of online virtual laboratories is obviously too small to serve all needs for 

online virtual laboratories. It is therefore difficult to popularize online experiments unless 

instructors are able to design and create online experiments for their own online science 

courses. Another reason we must take into consideration is that though computers are 

now widely used, instructors with programming skills are still only a small part of all the 

instructors who need to create online virtual experiments. 

According to our literature survey, though there have been a number of online 

virtual laboratories [3, 5, 15, 20, 24, 29, 30, 33, 34, 39], CyberLab is one of the only two 

tools (the other one is the Java Applet-based Physlets [6]) that allow online course 
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instructors to create online experiment themselves. More important, CyberLab is the first 

tool that does not require experiment creators to know programming. By freeing 

instructors of online science courses from learning programming languages and coding 

virtual experiments themselves, CyberLab owns a major edge over Physlets, which 

requires its users to know Java Script programming.  

As a toolkit designed to construct virtual laboratories for online science courses, 

CyberLab inherits the advantages of online education, such as “Any time, any place” 

learning [9] and low requirements for laboratory facilities, while providing valuable 

laboratory experience to students who take online science courses. 

Meanwhile, by enabling instructors with no programming experience to create 

online experiment, CyberLab could greatly expand its user population in online science 

course instructors, which in turns facilitates the popularization of virtual experiments in 

online science education. 

Admittedly, experiments created with CyberLab are not as vivid as those video-

based or 3D virtual experiments. Both LabCreator and LabExecutor are still primitive. 

There are a lot of things that need to be done before releasing the system to the public 

(discussed in section 4.2). 

Nevertheless, we believe that given more time, CyberLab will become a very 

popular virtual laboratory system, which will make more virtual experiments available in 

online courses and, therefore, greatly improve the effectiveness of online science 

education. 
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4.2  Future work. 

 At present, the development of CyberLab is ongoing, and there is still a long way 

to go before it can be widely used in the creation of virtual laboratories for online courses. 

We analyzed the current implementation of CyberLab, reviewed the initial requirements 

and purpose of CyberLab, considered users’ feedback, and summarized some work for 

future development. 

 First, it is definitely necessary to enrich the widget library so that CyberLab can 

be used to create more experiments from different subjects. For example, we may need 

balls and speedometers for free fall experiments, rope and brackets for pendulum 

experiments, tubes and pH testers for enzyme experiments, light bulbs and green plants 

for photosynthesis experiments. The number and variety of widgets supported will be 

very important for the popularization of CyberLab.  

 Second, it is necessary to introduce Thread programming or add internal timer 

components to the existing FSA of CyberLab experiments, in order to implement 

animations in CyberLab experiments.  At present, the traversals of FSA edges in an 

experiment can only be triggered by users’ manipulations of widgets. But when an 

animation is needed, the elapse of time will be used to trigger FSA edge traversals. For 

example, in a free fall experiment, after students press the “Start” button, the ball starts to 

fall from a certain height, and its position is shown as an animation. The FSA of the 

experiment is shown in Figure 21. In the experiment, the falling process consists of 

repeated traversals of the “Edge 2” in the FSA. The traversals of “Edge 2” can be 

implemented as threads. They can also be triggered by the passage of time since the start 

of the experiment. After the experiment starts, the timer tick keeps increasing at a certain 
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pace automatically and will stop increasing after the ball hits the ground. Once the timer 

tick changes, “Edge 2” will be traversed, the speed of the ball is updated, and the position 

of the ball is redrawn in the animation.  

 

 

Figure 21. The FSA of the free falling experiment. 
  

Third, to address users’ concerns on FSA construction in LabCreator, we suggest 

a graphical way to design the experiment FSA. It could be a diagram-based editor, where 

users can create an FSA by drawing diagrams similar to Figure 7 and Figure 21. Users 

can create an FSA state by drawing a rectangle and adding text labels as state names. 

When selecting active widgets for the state, users can directly drag widgets from the 

Experiment Workbench into the rectangle, instead of using the check boxes in the dialog 

window. All FSA states that have been created will appear in the editor as rectangles. 

Users can then create an FSA edge simply by drawing a directed line to link FSA states. 

Compared with the current dialog and text-based approach, the new graphical approach is 
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more intuitive. It will also give users a global view of the FSA they are creating, so that 

they can easily know what has been done and what is missing. 

 Fourth, users who have little knowledge about FSA may find it difficult to follow 

the correct procedure when creating the FSA for an experiment. For example, if one 

creates an FSA edge with a variable, which has not been created in the condition or 

consequence expression, exceptions will happen when LabCreator tries to evaluate the 

expression. Adding an “Experiment Design Wizard” in LabCreator may help. The wizard 

will give users step-by-step tutorials and instructions, which guides users to go through 

all the required steps in the correct order. 

 Fifth, when creating FSA edges in LabCreator, expressions for condition and 

consequence are created from strings inputted by users. During the usability test, there 

were complaints that it was easy to make mistakes when creating those expressions. For 

example, some may type “=” instead of “==” for a Boolean expression, or some may type 

a variable that is not created for the experiment. If the expressions are not correct, neither 

the preview nor the exported file will work properly. In this case, users have to check the 

design carefully to find out their mistakes. Though mistakes can be avoided by referring 

to the “Variable” panel frequently and typing carefully, the expression creation process 

can become more convenient to users by using an “Equation Editor.” The editor will 

present an equation field and a panel with numbers, available variables, and operators. 

When constructing an expression, users are not allowed to add any element into the 

equation field directly. Instead, elements of an expression are added to the equation field 

via clicking the elements on the panel. A prototype for the graphic user interface of the 

editor is proposed in Figure 22. Before adding the expression created by users into the 
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FSA, the editor will also check the internal model of the experiment to make sure the 

expression is valid, so that the internal model can focus on the expression parsing instead 

of checking. 

 

Figure 22. The prototype for the graphic user interface of “Equation Editor” 
  

Sixth, Java Object Serialization is currently used to generate the intermediate files. This 

is mainly because this technology is mature and easy to implement. However, if students’ 

and instructors’ computers have different versions Java Runtime Environments, there 

might be problems when executing the experiment. At the same time, XML files have the 

advantage of platform-independence. Therefore, we may choose XML instead of Java 

serialization as the intermediate file format in the future, so that those files can be 

executed on different computing platforms. 

Last, but not least, inspired by DropBall [26], which is described in 1.3.3, we 

think it is useful to add the data collection feature to LabExecutor, so that students can 

save the data and analyze it later. For example, in a free fall experiment, the speed and 

height of the falling ball are collected every second. After the experiment, students can 
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use the data collected by LabExecutor to generate a “Speed vs Time” graph and verify 

whether the speed of the ball during the falling process was in accord with the laws of 

Newton mechanics.  

 

Of course, what we summarized at this moment cannot cover all the work that 

needs to be done to improve CyberLab. However, we hope this chapter could give a brief 

guideline for the future development of CyberLab. 
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APPENDICES 
 

APPENDIX A: An excerpt of the Java code for widget-related classes. 
 

/*** This is part of code from Widget.java***/ 
public interface Widget { 
   public Model getCyberModel(); 
   public void setCyberModel(Model model); 
   public String getName(); 
   public void setName(String name); 
   public void setPosition(Point pos); 
   public Point getPosition(); 
   public void setLabel (String label); 
   public String getLabel (); 
} 
/*********************************************/ 

   /*** This is sampled from CyberButton.java ***/ 
public class CyberButton extends JButton implements Widget { 

  … … 
} 
… …  
/***********************************************/ 

   /*** This is sampled from CyberTextField.java***/ 
public class CyberTextField extends JComponent implements Widget{ 
 … … 
 public void paintComponent(Graphics g){ 
  … … 

} 
} 

    … …  

58 



APPENDIX B: An excerpt of the Java code for widgets drag and drop. 
 

/****This is sampled from Creator.java                       ****/ 
/****Demonstrate how Drag and Drop works for a control button****/ 
… … 
// Create a control button 
CyberButton cntrlBtn=new  

CyberButton(mod,ctrlBtnDlg.getButtonLabel()); 
// Set the button to the initial position specified by user. 
cntrlBtn.setPosition((Point)ctrlBtnDlg.getButtonPos()); 
… … 
… … 
cntrlBtn.addMouseListener(new MouseAdapter(){ 
public void mousePressed(MouseEvent evt){      

  if(evt.isPopupTrigger()){ 
… …  /* action for right button release*/ 

 } 
 else{     

… … 
  setBtnOrigin(evt.getX(),evt.getY()); 
 } 
} 
public void mouseReleased(MouseEvent evt) { 

if(evt.isPopupTrigger()){  
… …  /* action for right button release*/ 

} 
else{                   

 if( MouseMoved(evt.getX(),evt.getY())) 
   moveWidget(evt); 
  … … 

} 
} 
}); 
… … 
… …  
// Set the original position of the widget  
// used for comparison with new position 
private void setBtnOrigin(int x, int y){ 
  OrgMouseX=x; 
  OrgMouseY=y; 
} 
 
// Determine whether a widget has been moved by user 
private boolean MouseMoved(int x, int y){ 
  return !(x==OrgMouseX && y==OrgMouseY); 
} 
 
// Move the widget to new position 
private void moveWidget(MouseEvent evt){ 
 Object evtSrc=evt.getSource(); 
 for (int i = 0; i < widgetsOnCanvas.size(); i++) 
  if (widgetsOnCanvas.get(i)==evtSrc) { 
   // Select widget to be moved   

Widget tmp=(Widget)(widgetsOnCanvas.get(i));      
 // Get new position 

evt.translatePoint((int)tmp.getPosition().getX(), 
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(int)tmp.getPosition().getY()); 
// Set new widget position unless out of bound 
if(PosInBound(evt.getX(),evt.getY())) 

tmp.setPosition(evt.getPoint());        
else 

         System.out.print("Out of Bound”); 
   // Repaint the workbench  

  // and display the widget at new position 
       mycanvasPanel.update(widgetsOnCanvas); 
       jFrame.pack(); 
        return ; 
   } 
     return; 
} 
… …  
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APPENDIX C: An excerpt of the Java code for Java serialization. 
 
     

/*******This is for serialization in LabCreator*********/ 
… … 
try{   
ObjectOutputStream out=new ObjectOutputStream( 

new FileOutputStream(filename) 
   ); 

out.writeObject(exp); 
out.close(); 
} 
catch (Exception e){   
  e.printStackTrace();  
} 
… …  

 
/*******This is for de-serialization in LabExecutor*********/ 
try{ 
ObjectInputStream in=new ObjectInputStream( 

new FileInputStream(filename) 
 ); 

newexp = (Experiment) in.readObject(); 
in.close(); 
} 
catch (Exception e){  
e.printStackTrace();  
} 
… …  
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