
Eastern Michigan University
DigitalCommons@EMU

Master's Theses and Doctoral Dissertations Master's Theses, and Doctoral Dissertations, and
Graduate Capstone Projects

2006

Implementation of labcreator and the integration of
cyberlab
Kang Zhao

Follow this and additional works at: http://commons.emich.edu/theses

Part of the Education Commons, and the Software Engineering Commons

This Open Access Thesis is brought to you for free and open access by the Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects
at DigitalCommons@EMU. It has been accepted for inclusion in Master's Theses and Doctoral Dissertations by an authorized administrator of
DigitalCommons@EMU. For more information, please contact lib-ir@emich.edu.

Recommended Citation
Zhao, Kang, "Implementation of labcreator and the integration of cyberlab" (2006). Master's Theses and Doctoral Dissertations. 81.
http://commons.emich.edu/theses/81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eastern Michigan University: Digital Commons@EMU

https://core.ac.uk/display/268101115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.emich.edu?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses/81?utm_source=commons.emich.edu%2Ftheses%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@emich.edu

IMPLEMENTATION OF LABCREATOR

AND THE INTEGRATION OF CYBERLAB

by

Kang Zhao

Thesis

Submitted to the Department of Computer Science

Eastern Michigan University

in partial fulfillment of requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

Thesis Committee:

Matthew Evett, PhD, Chair

Augustine Ikeji, PhD

William McMillan, PhD

October 25th, 2006

Ypsilanti, Michigan

APPROVAL

IMPLEMENTATION OF LABCREATOR

AND THE INTEGRATION OF CYBERLAB

Kang Zhao

APPROVAL:

--- ----------------------------
Matthew Evett, PhD, Chair Date
Thesis Chair

--- ----------------------------
Augustine Ikeji, PhD Date
Committee Member

--- ----------------------------
William McMillan, PhD Date
Committee Member

--- ----------------------------
William McMillan, PhD Date
Department Head

--- ----------------------------
Deborah de Laski-Smith, PhD Date
Interim Dean of the Graduate School

ACKNOWLDGEMENTS

 I take this opportunity to thank my advisor, Dr. Matthew Evett, for his support

and encouragement during the development of the project, and for his comments and

revision of the thesis.

I am very grateful to Dr. Ikeji and Dr. McMillan for serving as my committee

members and providing many helpful suggestions.

I would also like to thank the faculty, staff, and fellow students at the Department

of Computer Science, who made my study here a very pleasant experience.

Last, but not least, I thank my fiancée Yu. It is your love that drives me forward.

Kang Zhao

i

ABSTRACT

With the development of the World Wide Web, online courses are becoming

more and more popular in modern science education. CyberLab aims to solve an

important issue in distance science education -- laboratory experiments in online courses.

It is a toolkit that handles creation, exportation, and execution of virtual experiments

(within web browsers). It consists of LabCreator and LabExecutor. With LabCreator,

instructors can create virtual experiments and export them into intermediate files.

Students can download those files from online course websites and execute them in

LabExecutor on their own computers.

The paper reports on the completion of two important tasks in the development of

CyberLab: (1) the implementation of LabCreator and (2) a system allowing exportation

of the experiment to intermediate web accessible format and the loading of the

experiment into LabExecutor.

The feasibility of the design and structure of CyberLab is proved by integrating

the LabCreator and LabExecutor for the first time. The advantage of CyberLab is shown

through a demonstration of the deployment of a virtual experiment.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENT... i

ABSTRACT ... ii

CHAPTER 1 INTRODUCTION...1

1.1 Online courses ...1

1.1.1 Advantage and disadvantage. ...1

1.1.2 Existing online course platforms. ...2

1.2 Virtual laboratories for online science courses..2

1.2.1 The importance of laboratories in science courses. ..2

1.2.2 What is a virtual laboratory?...3

1.2.3 The benefits of using virtual laboratories. ..3

1.3 Related works in online courses laboratories. ...4

1.3.1 Simulations implemented in APL...4

1.3.2 Multimedia based online laboratories...4

1.3.3 Online hybrid laboratories. ...6

1.3.4 Pre-developed online virtual laboratories...8

1.3.5 Online virtual laboratory creation tool. .. 13

1.4 Brief introduction to CyberLab ... 14

1.4.1 Purpose of CyberLab. ... 14

1.4.2 Structure of CyberLab. ... 14

1.4.3 Model of experiments in CyberLab.. 15

1.4.4 Previous work in CyberLab. ... 16

iii

1.4.5 My work in this thesis. ..17

CHAPTER 2 IMPLEMENTATION OF LABCREATOR ..19

2.1 Graphic User Interface (GUI) of LabCreator. ... 19

2.2 Experiment widgets. .. 21

2.3 What You See Is What You Get (WYSIWYG). ... 22

2.3.1 Drag and Drop. ... 22

2.3.2 Appearance of widgets. .. 23

2.4 Data structure of CyberLab virtual experiments. .. 24

2.5 An example of how a virtual experiment works...26

2.6 Create virtual experiments with LabCreator...27

2.6.1 The simple heating experiment..27

2.6.2 The procedure to create the heating experiment..29

2.7 Preview experiments in LabCreator. ... 33

CHAPTER 3 INTERGRATION OF LABCREATOR INTO CYBERLAB....................37

3.1 Java Object Serialization. ...37

3.2 Export experiments from LabCreator.. 40

3.3 Load and execute experiments in LabExecutor... 41

3.4 Usability test and feedback.. 42

CHAPTER 4 CONCLUSION AND FUTURE WORK...45

4.1 Conclusion. .. 45

4.2 Future work...47

REFERENCES ...52

APPENDIX A: An excerpt of the Java code for widget-related classes.58

iv

APPENDIX B: An excerpt of the Java code for widgets drag and drop...........................59

APPENDIX C: An excerpt of the Java code for Java serialization...................................61

v

LIST OF FIGURES

Figure 1. Structure of CyberLab... 15

Figure 2. Graphic User Interface of LabCreator... 19

Figure 3. The appearance of a CyberButton... 21

Figure 4. The appearance of CyberTextField ... 21

Figure 5. Dialog for CyberButton initial settings ... 23

Figure 6. Right-click pop-up menu for CyberButton ... 24

Figure 7. FSA diagram of the heating experiment ... 28

Figure 8. GUI of the heating experiment.. 29

Figure 9. FSA Menu of LabCreator.. 30

Figure 10. Dialog for creating new variable “temp.”... 30

Figure 11. The right-click pop-up menu for Text Display widget 30

Figure 12. Dialog for creating new state “Medium.” ... 31

Figure 13. Set Starting State as “Medium.”.. 31

Figure 14. Dialog for creating a FSA edge... 32

Figure 15. GUI of LabCreator after the heating experiment is created. 33

Figure 16. Preview of heating experiment (initial state “Medium”) 35

Figure 17. Preview of heating experiment (initial state “Hot”).. 35

Figure 18. Preview of heating experiment (initial state “Cold”) 36

Figure 19. Part of the “.exp” file for the heating experiment ... 41

Figure 20. The heating experiment in LabExecutor ... 44

Figure 21. The FSA of the free falling experiment. ... 48

Figure 22. The prototype for the graphic user interface of “Equation Editor”................. 50

vi

CHAPTER 1

INTRODUCTION

1.1 Online courses.

Online courses have been widely used in distance education. Many universities in

the United States, including Eastern Michigan University, have offered online courses.

The credits from online courses can now be used to fulfill the requirements for obtaining

a degree or certificate. Some universities even offer degree programs totally online, such

as the online M.S. in Computer Science program at George Mason University [28].

1.1.1 Advantage and disadvantage.

Online courses owe a great deal of their popularity to their flexibility [21]. They

are usually described as “any time, any place” learning [9]. With online materials, a

student is able to adjust study time and pace according to his or her own situation and

habit. With Internet connections at home, students and instructors do not have to spend

time and money to commute any more.

Other advantages of online courses may include low requirements for teaching

facilities, better monitoring of each student’s progress, and helping students to develop

ability in independent learning [7].

Every coin has two sides. It is argued that course completion and program

retention rates are generally lower in distance education courses than in their face-to-face

counterparts [2]. It may also take time for instructors to learn to use online course tools.

Universities have to spend a fair amount of money to build and maintain online course

systems.

1

1.1.2 Existing online course platforms.

There have been a lot of comprehensive online course delivery platforms. Widely

used commercial products include WebCT [11, 13], BlackBoard [22] and eCollege [8].

There are also a number of open-sourced systems. One of the most popular open-source

platforms is Moodle [4].

1.2 Virtual laboratories for online science courses.

 Science courses are important in education. However, some theories and equations

are very abstract and thus difficult to understand. Therefore, students consider them

boring while instructors sometimes have no interesting ways to teach them. However, a

study showed that online science courses, especially those with laboratory experience, if

properly designed and implemented, could make students more interested and active in

science courses [31].

1.2.1 The importance of laboratories in science courses.

Instructors of science courses have long recognized the need for laboratory

experience, through which students can deepen their understanding of the conceptual

material [18]. It is therefore necessary and helpful to give students laboratory or

experiment experience when they take science courses online.

However, existing online course systems mainly rely on features like web pages,

emails, multimedia files (audio and video), and forums to deliver the course materials.

Little has been done to replicate actual science experiments in online course systems due

to the technical difficulty [26].

2

1.2.2 What is a virtual laboratory?

 Because there are many definitions in literature, it is difficult to give “virtual

laboratory” a decisive definition. It is described as “a computer simulation which enables

essential functions of laboratory experiments to be carried out on a computer” according

to [14]. Another definition is “a virtual reality environment that simulates the real world

for the purpose of discovery learning” [34].

1.2.3 The benefits of using virtual laboratories.

As we described in 1.2.1, it is important to provide laboratory experience to

students who take online science courses. Besides all the advantages it shares with online

courses, virtual laboratory gives students the chance to apply what they learned into

experiments so that they can strengthen their knowledge. It could facilitate a range of

different learning processes, such as solution of complex problems, discovery of new

content and new assessment of already known information by discovery learning,

construction of general principles from experimental work, and comparison of individual

phenomena (inductive learning) [14]. Research [7] has found that virtual laboratory in

online science courses helped students to better understand abstract concepts and theory.

Additionally, virtual laboratory has some advantages over a traditional lab. It

gives instructors and students increased access to laboratory resources, especially during

experiments that require expensive or fragile equipment or that present safety hazards.

Virtual laboratory allows instructors to offer more interesting experiments. At the same

time, students are free to explore all the possibilities without fear of damage or danger

[26].

3

 On the other hand, it is also important to mention that experiments in virtual

laboratory are not for everyone and cannot completely replace traditional physical

experiments [7, 10].

1.3 Related works in online courses laboratories.

 Research has been conducted in order to introduce laboratory and experiments

into online science courses. We found that the previous work falls mainly into the

following categories:

1.3.1 Simulations implemented in APL.

A simulation of stochastic process was developed in [39]. It could be used in a

great number of physics and mathematics courses. Though this simulation could

successfully simulate a lot of phenomena in its subject, it is written in APL, an array

programming language. However, the small user base of APL in mathematics and

finance engineering make this approach unpopular among virtual laboratory researchers.

Besides, APL simulations are designed for offline purpose, which means additional work

has to be done to integrate it into online science courses.

1.3.2 Multimedia based online laboratories.

 As broadband internet connection becomes popular, it is easier for students to get

access to online audio and video streams. Research has been done to make use of online

real-time multimedia technology for experiments in online science courses.

4

 JETS (Java-Enabled Telecollaboration System) was developed by [33]. Instructors

and students can share educational resources such as whiteboard, 3-D viewing in a real-

time way. They can also interact with each other via audio and video. Its advantages in

sharing multimedia information and real-time interaction make it possible for instructors

to conduct experiments in a real laboratory and show the results to students who are in

front of computers with high-speed Internet connection. Nevertheless, its synchronous

nature requires instructors and students to be online at the same time, which sacrifices the

flexibility of “learn at any time” of online courses.

Asynchronous multimedia teaching, when compared with its synchronous

counterparts, does not require instructors and students to be online at the same time. It is

thus more welcomed by students because it adds usable hours to the student’s day. NEW

(Network Education Ware) [29] provides both synchronous and asynchronous

multimedia teaching. Another example is the online video physics laboratory for high

school students developed by [30].

Though real experiments are shown to students instead of simulation in an

interactive way, the multimedia approach has one major disadvantage when being used

for laboratory experiments. All the experiments are conducted and controlled by

instructors while students watch the demonstration most of the time. Even though

students can also interact with instructors in order to observe experiments conducted in

the way they are interested in, it is still an observation process rather than hands-on

experience, from which students would benefit more.

5

1.3.3 Online hybrid laboratories.

 These laboratories and experiments are special in that they are based on real

experiment rather than virtual unreal simulations though they are placed online. They are

the hybrid of “physical” experiments and web-based simulation.

DropBall [24] is such an online physics experiments for Newtonian mechanics.

The major components of DropBall include mechanical apparatus, force sensors,

electronic control device, turntable, and web interface.

Students interested in the experiment can visit the DropBall website

(http://dropball.cs.emporia.edu/) and request an experiment to be conducted with

customized parameters such as drop height and ball type. The system gets requests from

the web server and automatically conducts the experiment by invoking real experiment

instruments in a real laboratory in Emporia State University. For example, the turntable

will choose the ball chosen by the user and the electromagnetic lifting apparatus will lift

the ball to the specified height and drop it.

Students can observe the experiment process via real-time online video. What is

more interesting is that the system could acquire data, such as velocity and acceleration,

from multiple sensors, which are located in the laboratory, during the experiment and

conduct data analysis. Data observed by sensors, statistical data generated by DropBall’s

analysis system, and graph are presented in students’ web browsers. Students could also

choose to have these data sent to their email boxes so that they can save them for further

study.

Another similar system is the Remote Dynamical Systems Laboratory at Stevens

Institute of Technology (online at http://dynamics.soe.stevens-tech.edu).

6

There is another variation in the category of hybrid laboratory. The ideas are

similar to DropBall. Real experiments are also conducted with real instruments in real

laboratories. The difference is that instead of displaying the experiment process with

online video, they use virtual reality technology to show the ongoing experiment process

as animations in web browsers. They are therefore more accessible for students whose

Internet bandwidth does not support real-time video streams. Examples include

Interactive Chaotic Pendulum at Mercer University [20] (online at

http://physics.mercer.edu/pendulum) and FVRLE at Chuang Yuan Christian University

[40].

The hybrid approach is appealing in that students can still get firsthand

experiment data without having to go to a real laboratory and conduct real experiments.

As with most student experimentation, actually generating and even saving the data

provides students with ownership of their data and analysis, which transcends simply

analyzing canned or textbook data. All the four foregoing systems are now used as part of

statistics or introductory physics courses, and students’ response to using this hybrid

approach has been favorable.

However, though little human interference or assistance is needed, the hybrid

approach suffers from limited laboratory resources, just like a traditional laboratory.

Right now, DropBall has only one set of experiment instruments, which means it could

satisfy users’ requests only one by one. On its website, there is a queue for those who

want to conduct this experiment. For example, if student A’s experiment is running in the

laboratory, student B can only watch A’s experiment and wait till A’s experiment is over

7

before B’s experiment starts. This is very inconvenient if a group of students in one class

are asked to use this system.

Besides, such a hybrid system also requires a hybrid of technology. The

development will involve researchers from mechanics, automation control, signal sensing

and processing, and web programming, which will raise the cost for development and

maintenance.

1.3.4 Pre-developed online virtual laboratories.

 Systems in this category present purely virtual laboratory experiments. There are

no real instruments or laboratories behind them. They rely mainly on modeling of

knowledge in specific science subjects and programming techniques. Though some of

them are very powerful and can be referenced by instructors when teaching online

courses, they share one major disadvantage: instructors and students have the same

access privilege to those systems, which means instructors cannot modify the

experiments according to their special needs, unless they are the original developer. Even

if given the source code and resource to replicate those systems, instructors are required

to be proficient programmers of various programming languages or competent users of

certain complicated software packages in order to create, customize, and deploy their

own experiments.

 Virtual Chemistry, as its name implies, is an online virtual chemistry laboratory

[35] developed by the Department of Chemistry at Oxford University. It provides a lot of

information about chemistry experiments, ranging from experiment manuals and

8

experiment designs to result analysis. The most notable and interesting feature is

“LiveChem,” the Macromedia Flash-based virtual laboratory. “LiveChem” provides a

platform to show the visual results of chemical reactions when mixing different salts and

reagents. All the chemicals have photos, showing their color and state. Students are first

asked to select one from thirteen kinds of salts and one reagent out of twenty-two options.

After the “Play” button is pressed, the virtual experiment will start. A short Flash

animation, which comes from the video of the actual reaction, will appear in the web

browser, showing how the reaction happens and the visual result. This virtual chemistry

laboratory is vivid and easy to use.

Students are also given a great number of options to explore and observe different

reactions. Detailed analysis about reactions is also accessible in order to help students

better understand what they have seen on the screen. At the same time, the limits of the

system are also obvious. The system is designed in an ad-hoc way without underlying

models of chemistry knowledge. One video clip or animation is specific for one reaction

only. As a result, if a new salt is to be added into the laboratory, developers have to

conduct the real experiments, in which the new salt is mixed with each of the existing

twenty-two reagents in the laboratory, videotape the visual effects of those reactions,

convert video files into Flash, and integrate those animations into the system.

 VRPS [15] is a real-time virtual laboratory providing interactive experiments in

physics courses, such as electric current testing, spread of water waves and a simple

oscillator. The experiments are shown as 3D animations in web browsers. It is created

with 3D Webmaster, a software toolkit for creating 3D web pages, and Supercape

9

Control Language (SCL), a script language used to control the action of objects in a

virtual reality environment.

It was claimed that students’ performance in learning was enhanced by using

VRPS. But the usage of the system is limited. First, users have to be very familiar with

virtual reality technology and must be able to use 3D Webmaster and to program with

SCL. Second, similar to “LiveChem,” there is no model or data structure behind those

virtual experiments. Experiments are designed in an ad-hoc way. The reusability of the

existing experiments is thus limited. New experiments have to be created almost from

scratch. Besides, since there is no library for experiment widgets or instruments, one has

to design all the visual models, including 3D models, for experiment apparatus one by

one and spend a lot of time on the layout of apparatus.

 VPL [3] was developed by the Distance Education and Learning

Telecommunication Applications (DELTA) group at the German National Research

Centre for Information Technology and is a modularized online virtual laboratory for

physics and astronomy experiments. It consists of three modules: (1) Simulation: the

experiments are modeled as computer programs, which are implemented in general

purpose programming language like C++ or Java. This module is not directly accessible

online. (2) Visualization: this is the module that supports the user interface and displays

experiments to students. It is based on Java, Java-3D and Virtual Reality Modeling

Language (VRML). (3) Translation and Interface: this module links Simulation and

Visualization. Graphic user interface is dynamically activated using Common Gateway

Interface (CGI) scripts.

10

The VPL system works in the following process: when students visit the system,

they are asked to select the experiment and input parameters from the user interface. The

Translation and Interface module then sends those customized requests to the Simulation

module, which will simulate the experiment according to requests. Real-time outputs

from the Simulation are sent to the Translation and Interface module, where those outputs

are translated for the Visualization module. With the translated data, the Visualization

module could virtually rebuild the experiment process and present it in web browsers.

The modular design of VPL benefits from the Simulation module, which could

model very complex experiments with the power of general programming language. It is

also possible to reuse some existing simulations by adding interface to the Translation

and Interface module. The Visualization module could also vividly represent ongoing

experiments in 3D animations. Example experiments created with VPL include

Geometric Optics, Hydrodynamics Entropy and Virtual Astronomy Solar System, and

Kepler’s Law.

On the other hand, though powerful and vivid, the complexity of each individual

module adds to the complexity of VPL, which make it very difficult to implement and

maintain. The cost of such a system will thus be higher than other virtual laboratories.

BioLab [5, 16, 27] is an online virtual biology laboratory developed at Eastern

Michigan University. It aims at helping students from non-biology major to learn

fundamental biology. Professors from both Computer Science and Biology departments,

along with graduate students, built a virtual biology laboratory with Java Applet and

designed a few experiments. For example, the enzyme activity experiment is used to

11

examine the effects of temperature and pH on the activity of the enzyme salivary amylase.

The cellular respiration experiment can help students to understand how activity and

temperature affect respiration rate. BioLab has been used for online biology courses at

Eastern Michigan University. Though all the experiments in BioLab are hard coded, it

was the development of BioLab that inspired the idea of CyberLab.

ViBE [34] is a virtual laboratory for biology experiments. The main characteristic

of the ViBE is the three-tier architecture, which comprises the vertical tiers of

presentation, domain logic, and storage. The modular Model-View-Controller (MVC)

architecture is similar to the modular structure of VPL. The ViBE’s presentation tier is

virtually free of the application logic and deals with visualizing the experiments and

accepting user inputs. The domain tier contains all the model objects and deals with the

semantics of experiments and rules, as well as abstract data representation. Data about

experiments are exchanged in eXtensible Markup Language (XML). Most of the system

components, including all the virtual labs, are implemented as Java Beans.

ViBE can be extended to implement different laboratories, thanks to its modular

design and the resulting separation of concerns and tasks. It supports augmentation by

animation effects and realistic renderings of virtual objects. The software framework is

lightweight and can be downloaded as an applet in a browser. Students can also save their

lab reports in XML and review or edit them later.

A few interesting experiments have been created with ViBE, including

Spectrophotometry, Cell Mitosis and Meiosis, and Virtual Microscope. The way those

12

experiments are created is relatively straightforward but one still has to be able to

program with XML and Java Beans.

1.3.5 Online virtual laboratory creation tool.

 Physlets [6], also known as Physics Applets, are small flexible non-commercial

Java applets designed for virtual experiments in online science education (online at

http://webphysics.davidson.edu/Applets/Applets.html). According to our research, it is

the only tool that aims at allowing instructors to easily create their own science

experiments. It is based on Java and provides a set of APIs (Application Programming

Interface), which could be easily used in Java Script to construct an experiment. It is

designed specially for online courses, which means they can run on (almost) any platform

and be embedded in almost any type of HTML document. It is claimed that it can be used

for almost any subject in mechanics and almost any topic in electrostatics with small

changes in the Java Script associated with each experiment. Data taking and data

analysis can be added using inter-applet communication.

 With tutorial and well supported documentation, it may not be difficult for a

competent Java Script programmer to create an experiment. However, though Java Script

is not a complicated language for computer science majors, its user population is still

limited, which limits the usage of Physlets among instructors of online science courses.

13

1.4 Brief introduction to CyberLab

1.4.1 Purpose of CyberLab.

 After an extensive literature review, we found that existing online virtual

laboratories are either pre-designed for specific experiments or require programming

skills for instructors to create experiments.

After the development of BioLab (described in 1.3.4), the idea of CyberLab was

proposed by [10] as a set of tools for virtual online laboratories. It aims at helping

instructors with little programming background to create their own interactive

experiments for online science courses and giving students a convenient online access to

those experiments and an easy way to execute them.

1.4.2 Structure of CyberLab.

CyberLab consists of two main components: LabCreator and LabExecutor

(Figure 1). Instructors of science courses will use LabCreator to design what the

laboratory experiments will look like and how they will function. LabCreator then

generates a file that contains the definition and description of the experiment, which is

called an “experiment descriptor.” This descriptor file is then stored on the instructor’s

web server of online courses.

LabExecutor is used by students to conduct experiments. The LabExecutor is a

Java Applet, which can be executed in most web browsers. To run the online experiment,

students will visit the instructor’s website and invoke the LabExecutor. LabExecutor

then downloads the experiment descriptor file from the instructor’s web server, uses it to

14

determine the construction and design of the experiment, displays the experiment in web

browsers, and allows students to conduct the experiment.

Figure 1 Structure of CyberLab

1.4.3 Model of experiments in CyberLab.

 In CyberLab, each experiment is represented as Finite State Automata (FSA).

FSA [36] is a model of behavior composed of states, transitions, and actions. A state

stores information about the past; i.e., it reflects the input changes from the system’s start

to the present moment. A transition indicates a state change and is described by a

condition that would need to be fulfilled to enable the transition. An action is a

description of an activity that is to be performed at a given moment.

There are two types of FSA: Deterministic and Nondeterministic. In CyberLab,

we are using the Deterministic FSA, in which there is a deterministic next state given a

pair of current state and input. In this paper, when we mention FSA, we mean

Deterministic FSA.

15

1.4.4 Previous work in CyberLab.

 Dr. Evett and a few graduate students at Eastern Michigan University have been

working on CyberLab since 2003 and have made some progress.

Research on the data representation of the intermediate file--experiment

descriptor was conducted [32]. Because experiments in CyberLab consist of a collection

of Java objects, the major topic in this research was the best way to import Java objects

from LabCreator and export them to intermediate files. Three approaches are considered

as candidates: XML processing via Document Object Model (DOM), Java Serialization,

and Java XMLEncoder/Decoder. After comprehensive comparison, Java Serialization is

selected for its advantages of less restriction to the object class definition, simple object

processing programming with standard Java APIs, secure intermediate file format, and

less complexity in CyberLab system implementation.

A prototype for LabExecutor was developed [23]. Since the descriptor file was

not available at that time, another class called the Driver, which simulates the role of

descriptor and feeds LabExecutor with experiment information, was created for testing

purpose. Since the Driver has to be coded for each individual experiment, the

LabExecutor was tested with only two experiments generated by the Driver. The first

experiment implements two buttons as toggle buttons, and only one of them is active at

any time. The second experiment simulates a heating experiment, where temperature can

be incremented and decremented. The temperature in the heating experiment is limited

by a minimum and maximum value, and current temperature is displayed.

 The LabExecutor prototype showed that the ideas of using FSA to model

experiments and using Java Applet to display experiments are feasible. However, it is not

16

tested with descriptor and thus lacks the feature of loading descriptor, which left some

work to the integration of CyberLab.

1.4.5 My work in this thesis.

 The thesis mainly deals with the implementation of LabCreator in CyberLab,

which did not exist yet, and its integration into the existing components of CyberLab.

LabCreator has four major functions: design experiment layout, deploy

underlying model, associate model with experiment components, and export descriptor.

Layout tools are designed to be used in much the same way as the form layout

tools in Integrated Development Environments (IDEs). LabCreator will support the

“Drag and Drop” feature, which allows instructors to select experiment widgets and

components from a palette, place them on the screen, and specify how users can interact

with them. When a student is running an experiment, the interface will look almost

exactly like what has been designed within the layout tools. Therefore, layout tools are

said to be “what you see is what you get” (WYSIWYG) and free instructors from having

to write source code themselves. To realize such functions, various experiment

components must be developed, such as containers (flasks, treadmills, etc.), meters

(thermometer, pHtester, etc.), other devices (lamps, agitators, etc.), and control

components (menus, buttons, etc.).

Underlying models of experiments consist of variables (dependent or

independent), expressions, and FSA. Models specify how the experiment will behave at a

certain point. For example, a variable may represent the density or temperature of a fluid

within a flask, or the amount of time elapsed since the start of the experiment.

17

Visualization deals with the association between variables and experiment

components. It is necessary to specify a correlation between the various visual elements

of the experiment (e.g. the color of fluid within a beaker or the brightness of a burner)

with the variables of the underlying model so that users can observe changes in the

ongoing experiment.

The exporting of descriptor happens after instructors finish the design of the

experiment. LabCreator can export all the necessary information about the experiment

into “experiment descriptor” with proper data format, which will be available online in

the course server.

 The integration of LabCreator into CyberLab will focus on how the descriptor is

loaded and how the original experiment is re-constructed in LabExecutor.

18

CHAPTER 2

IMPLEMENTATION OF LABCREATOR

 This chapter discusses the LabCreator component of CyberLab, including how it

is implemented in Java and how it is used to create experiments.

2.1 Graphic User Interface (GUI) of LabCreator.

 Figure 2 shows the GUI of LabCreator. There are four major panels: Widgets,

Experiment Workbench, Experiment Information, and FSA Edge.

Figure 2 Graphic User Interface of LabCreator

 The Widget panel displays the visual components that can be used to construct

virtual experiments. Though not all the widgets listed on the Widget Panel are yet

19

implemented, tabular views of widgets for different science subjects are provided for the

convenience of future development.

 The Experiment Workbench is the canvas where the layout of the experiment is

designed. After users select experiment widgets and specify their initial attributes, those

widgets will appear on Experiment Workbench. The users are then free to move the

widgets to desired positions (the “Drag and Drop” feature will be discussed later in this

paper), delete them, or modify their attributes. The layout of the experiment executed in

LabExecutor will look the same as the one designed on the Experiment Workbench.

 The Experiment Information panel and FSA Edge Panel are used to show the

information about the experiment being created so that users have a good idea about what

has been done and what remains to be done.

Experiment Information is the rightmost vertical panel. It consists of two tabular

panels. The Variable panel shows the name, type, and description of an experiment’s

variables. The State panel shows the names of FSA states and the widgets associated with

each.

The FSA Edge panel is located under the Experiment Workbench. It shows the

information about each edge of the experiment’s FSA, including its starting state, ending

state, trigger widget, transition condition, and consequence. This panel is separated from

Experiment Information panel because FSA edges usually have more information to

display than variables and states, which requires more and wider columns in the table. It

is therefore difficult to display them in the rightmost vertical panel. Besides, the FSA

edge panel will display equations for transition conditions and consequences. Though not

implemented now, it may be helpful to add an “equation editor,” which will help users to

20

construct an equation and prevent typos. In this case, having a stand-alone FSA Edge

panel will leave more space and flexibility for future development of more features.

2.2 Experiment widgets.

 All the experiment widgets in CyberLab are implemented via the interface

“Widget.” An excerpt of the Java code for widget-related classes can be found in

Appendix A.

 So far, only two types of widgets have been implemented: CyberButton and

CyberTextField.

Figure 3. The appearance of a CyberButton

 CyberButtons are used as control buttons in experiments and make use of Java’s

JButton class as the base class. The appearance of CyberButton on the Experiment

Workbench is shown in Figure 3. The text “Start” on the button is specified by the label

attribute. The CyberButton class is defined as:

Figure 4. The appearance of CyberTextField

CyberTextField is a text display of dynamic numeric values (Figure 4). The label

of the widget is displayed on the upper part of the widget, while the numerical value of

21

the associated variable is displayed under the label. Because there is no similar GUI

component in Java, we had to extend the JComponent class and overwrite the

“paintComponent” method to draw the rectangles and texts.

2.3 What You See Is What You Get (WYSIWYG).

 WYSIWYG (pronounced “wiz-ee-wig”) is used to describe a system in which

content during editing appears very similar to the final product. It is commonly used for

word processors (e.g. Microsoft Word) and Web (HTML) authoring (e.g. Macromedia

Dreamweaver). LabCreator is designed to be a WYSIWYG experiment editor.

LabCreator users, mostly instructors, could determine the appearance of the experiment,

such as the layout and the label of experiment components; and students, when executing

the experiment, will get the same appearance as that designed in LabCreator. Just like

Dreamweaver, which does not require its users to know HTML, LabCreator enables

those who do not know programming to create virtual experiments in an intuitive and

easy way.

2.3.1 Drag and Drop.

An important feature in WYSIWYG experiment editor is the “Drag and Drop” of

widgets when positioning them. When creating a widget, users can specify its initial

position on Experiment Workbench. After that, users can select the widget (by pressing

the left button of the mouse), drag it to anyplace on the Experiment Workbench canvas

(hold down the left button while moving the mouse), and drop it there (by releasing the

left button).

Widget “Drag and Drop” is implemented with the help of “MouseAdapter”—the

adapter interface class for receiving mouse events. Each widget added into the

22

Experiment Workbench will have an object implemented from MouseAdapter as its

action listener. The “mousePressed” and “mouseReleased” methods of MouseAdapter are

implemented to capture the user’s action on the mouse. The following is an excerpt of the

code for the implementation of the “Drag and Drop” for CyberButtons.

The Java code excerpt for widgets drag and drop is shown in Appendix B. In the

code excerpt, the “MouseMoved” method determines whether the widget has been

moved to a new position. In the “moveWidget” method, the position information is

stored in the widget object, which will allow the widget to be positioned correctly both in

the Experiment Workbench and by the LabExecutor.

2.3.2 Appearance of widgets.

 As described in 2.2, every widget will have a label that can be customized, either

during or after creation. For example, when a new control button (i.e. CyberButton) is to

be added, a dialog box (Figure 5) appears that allows the author to specify an initial

position as well as its label. To change an existing button’s label, users can right-click the

widget and select “Label” from the pop-up menu (Figure 6). The same menu also

provides for the deletion of a widget.

Figure 5. Dialog for CyberButton initial settings

23

Figure 6. Right-click pop-up menu for CyberButton

2.4 Data structure of CyberLab virtual experiments.

 Each virtual experiment has two parts: the GUI and an underlying model that

represents the state of the experiment.

The GUI part is relatively straightforward. Originally designed in the

LabCreator’s Experiment Workbench, the GUI is represented by a list of widgets and a

frame (“ExperimentFrame” class in CyberLab), where the widgets are displayed.

The underlying model is a collection of FSA, independent and dependent

variables, and the set of equations that define the relationships among them.

Execution of an experiment causes the FSA to move from state to state via edges.

Each state has a widget list indicating which widgets are active in this state, and a table

for possible transitions starting from this state. Once an edge is created, its information is

stored in the transition table of its starting state. The information in the transition table

includes the name of the edge, required interaction with a particular widget from the

experiment user (e.g. press a button) for the traversal of the edge, what is necessary in

order to move from one state to another (i.e. the condition for the transition), and certain

manipulation of the model (i.e. the consequence of the transition) as the result of the edge

traversal. The table also provides the next state the FSA has to go to as a result of the

transition.

24

In the aforementioned classes related to FSA, transition conditions are Boolean

expressions (e.g. temperature>1, speed==40) and consequence are mostly mathematical

expressions (e.g. speed=original_speed + 10). Expressions consist of experiment

variables (e.g. temperature of liquid, speed of falling ball), operators, and numbers. There

are two types of experiment variables: dependent and independent. A dependent variable

is associated with a function consisting of various operators and references to other

independent or dependent variables (e.g. speed=speed + acceleration*time). Each

independent variable has an associated initial value. Its value is independent of other

variables (e.g. temperature= temperature+1). Variables and their values are stored in the

model.

In order to determine the variable value and whether a transition condition holds,

it is necessary to design a mechanism to evaluate expressions (both Boolean and

mathematical expressions) and variable values.

For a mathematical expression, the evaluation process will first parse the right

hand side of the expression. If the right hand side contains a variable, the value of the

variable will be retrieved from the model. The evaluated value of the right hand side will

be given to the left hand side variable, and the new value of the left hand side is stored

back in the model.

Boolean expressions are different from mathematical expressions. The left hand

side of a Boolean expression may be a combination of variables, operators, and numbers,

while the left hand side of a mathematical expression usually has only one variable.

Another difference is that relational operators are used to link left hand side and right

hand side. As a result, both left and right hand sides of Boolean expressions are evaluated,

25

and their values are compared based on the relational operator. A Boolean expression is

evaluated to integers. Zero represents False, while other values are treated as True. No

variable’s value is going to be changed after the evaluation of a Boolean expression.

2.5 An example of how a virtual experiment works.

As for implementation, each experiment in CyberLab will correspond to one

“Experiment” object, which contains a list of widgets, one “Model” object and one

“FSA” object. The numbers of “FSAState,” “FSAEdge,” “Expression,” and

“ExpressionNode” objects in an experiment may vary.

The following example should better illustrate how a virtual experiment works.

When an experiment starts, the “Experiment” object will ask the “FSA” object to

check the current state. Active widgets associated with the current state are then

displayed on “ExperimentFrame.”

When a student manipulates a widget in the experiment (via LabExecutor), the

“FSA” object is responsible for determining which widget is manipulated and hand over

the action to current “FSAState,” which will then look into its transition table. If the

manipulated widget is found in the table, the associated condition expression is evaluated.

If the condition holds, the corresponding transition (i.e. FSAEdge) will be traversed.

Whether FSA moves to a new state with the traversal depends on the ending state of the

corresponding “FSAEdge.” As part of the transition, the consequence of the transition

(usually a mathematical expression) is also executed. As a result, the value of the left

hand side variable of the consequence expression is evaluated and updated in “Model”

object.

26

After the transition, the “ExperimentFrame” is redrawn so that the current state of

the experiment is shown to the student.

This process is carried out until a termination state is reached, if there is one. If

there is no termination state, the experiment executes until the student chooses to close

the experiment.

Another possible situation for an experiment with animations is that there will be

a trigger to start the animation. At the end of the animation, the experiment won’t

terminate but will usually sit there, possibly allowing the student to provide new

execution parameters or to restart the animation.

2.6 Create virtual experiments with LabCreator.

 This chapter will demonstrate how to create a virtual experiment in LabCreator.

We will use a simple heating experiment as the example, which will be used to test

LabExecutor later.

27

2.6.1 The simple heating experiment.

Figure 7. FSA diagram of the heating experiment

This experiment simulates how the user’s decision on heating or cooling the air

changes the temperature. The temperature is represented by the independent variable

“temp.” It has maximum and minimum values, which are represented as MaxTemp and

MinTemp, respectively.

Three widgets are involved in this experiment: a thermometer (represented by a

text box labeled as “Temperature”), a heating element (represented by a button labeled as

“Heat”) and a cooling element (represented by a button labeled as “Cool”). Though the

thermometer does not directly interact with users, manipulation of the experiment can be

obtained by pressing either of the two buttons.

There are three states: (1) Medium, which is the initial state; (2) Cold, which has

the lowest temperature; and (3) Hot, which has the highest temperature. There is no

termination state in this experiment.

28

In state “Medium,” temperature is neither too high nor too low. Users are thus

free to raise or lower the temperature. When the heating element is used, the temperature

increases by one degree. When the cooling element is used, the temperature decreases by

one. After the temperature drops to its minimum value (state “Cold”), the cooling

element is not active anymore. Users can use only the heating element. Similarly, when

the temperature reaches its peak (state “Hot”), only the cooling element is available for

users’ manipulation.

 The detailed FSA of the experiment is shown in Figure 7.

2.6.2 The procedure to create the heating experiment.

 First, we will design the experiment GUI by selecting widgets from “Generic” tab

of the Experiment Widget panel and positioning them on the Experiment Workbench. In

this experiment, there are two Control Buttons: “Heat” and “Cool.” There is also one

Text Display: “Temperature” (Figure 8). Note that “Temperature” is set to zero as the

text display widget is not associated with any variable.

Figure 8. GUI of the heating experiment

 Next, we focus on constructing FSA for the experiment. Basically, this is done by

going through the menu items in “FSA” menu (Figure 9).

29

Figure 9. FSA Menu of LabCreator.

 First, we create the independent variable “temp,” which stands for the temperature

(Figure 10). Remember that the value of the variable (i.e. the temperature) is to be

displayed in Text Display widget “Temperature.” Therefore, we have to associate the

variable with the Text Display widget by accessing the right-click pop-up menu item

“Expression” of widget “Temperature” (Figure 11) and typing the variable name “temp”

in the following dialog. After this step, the widget “Temperature” displays the value of

variable “temp,” which is 0.0 at the very beginning.

Figure 10. Dialog for creating new variable “temp.”

Figure 11. The right-click pop-up menu for Text Display widget.

30

 Second, three states are created by typing names and selecting active widgets.

Figure 12 shows how state “Medium” is specified.

Figure 12. Dialog for creating new state “Medium.”

 After the three states are created, we have to specify the FSA starting state from a

scroll-down menu (Figure 13).

Figure 13. Set Starting State as “Medium.”

 The last step in FSA construction is to create FSA edges. This process is a bit

more involved than the aforementioned steps. Users have to assign a Boolean expression

as condition and a mathematical expression as consequence. For this experiment, six

edges are needed for the FSA. Figure 14 shows the dialog for the edge, which starts from

and ends in state “Medium” and causes the temperature to rise.

31

Figure 14. Dialog for creating a FSA edge

 Note that in this demonstration, the temperature limits--MaxTemp and MinTemp--

are set as 10 and -10 respectively.

During the construction of the FSA, the Experiment Information panel and FSA

Edges panel in LabCreator will display updated information about the FSA being

constructed. Figure 15 is the LabCreator GUI after the experiment creation process is

completed.

32

Figure 15. GUI of LabCreator after the heating experiment is created.

2.7 Preview experiments in LabCreator.

 After creating an experiment, instructors may want to review and test the

experiment before giving it to students. The experiment preview feature in the

LabCreator allows instructors to check how the experiment will look and function in the

LabExecutor.

 When the preview is invoked, a new window will appear. The preview window

looks quite similar to the window of LabExecutor because the preview is designed to

mimic LabExecutor. Instructors can manipulate widgets and observe the experiment, just

as students could do when using LabExecutor. If instructors found something wrong or

33

are not satisfied with the appearance of the experiment, they can stop the preview and re-

design the experiment in LabCreator.

 In terms of implementation, an inner class “PreviewExpAL” is defined to handle

the action on the “Preview” menu item. Two objects are important in the preview of a

CyberLab experiment: the “Experiment” object, which corresponds to the experiment

(discussed in section 2.5), and an “ExperimentFrame” object.

First, LabCreator will check the experiment to see whether there is anything

missing. For example, if starting state is not specified or there is no active widget in the

starting state, a warning dialog will pop up and the preview will not start.

Then all widgets of the experiment are loaded into the “Experiment” object. The

“ExperimentFrame” object is then created. It loads the “Experiment” object and displays

widgets of the starting state in a new window, where instructors can manipulate the

experiment. Manipulation of the buttons will be handled by the “FSA” object, which is

part of the “Experiment” object. Figures 16 to 18 show the preview of the heating

experiment. It works properly as designed in LabCreator.

34

Figure 16. Preview of heating experiment (initial state “Medium”)

Figure 17. Preview of heating experiment (initial state “Hot”)

35

Figure 18. Preview of heating experiment (initial state “Cold”)

36

CHAPTER 3

INTERGRATION OF LABCREATOR INTO CYBERLAB

 Since LabCreator has been successfully implemented, it is now necessary to

integrate it with LabExecutor into the CyberLab system. The main tasks include

exporting experiments created in LabCreator into intermediate files, loading the files in

LabExecutor, and executing the experiment.

 After the integration of the CyberLab system, a simple usability test was

conducted.

3.1 Java Object Serialization.

 As mentioned in section 1.4.4, Java Object Serialization is selected to generate the

intermediate file.

Java Object Serialization provides support for objects’ input and output, so that a

whole object in a Java program can be written to or read from a raw byte stream. This is

an important feature for an object-oriented programming language. When dealing with

files in order to load or write data, Pascal or C programmers usually face a lot of

annoying problems, such as the EOF mark, the EOLN mark and file pointers [17].

However, with the help of object serialization, Java programmers do not have to worry

about these problems anymore.

According to [19], Java Object Serialization “allows Java objects and primitives

to be encoded into a byte stream suitable for streaming to a transmission medium or

storage facility. It also supports the complementary reconstruction of the object graph

from the stream without damaging the persistence of objects.”

37

Therefore, Java Object Serialization is widely used to store objects into files,

retrieve objects from files, and transmit objects between Java Virtual Machines.

To serialize an object, it is also necessary to traverse all the objects and primitives

that are referenced in the object. According to [17], “since an object’s state usually

consists of information stored in internal data, most objects will contain references to

other objects, which will need to be preserved if the original object is to regain its state

when it is de-serialized.”

As for implementation, serializing an object requires one of the two criteria to be

satisfied: the class of the object must either implement the “Serializable” interface or the

“Externalizable” interface.

The “Serializable” interface has no methods, which means that it is not necessary

to write any additional code in the class. It can be implemented by simply adding the

“implements Serializable” clause.

On the other side, to use the “Externalizable” interface, we have to define two

methods: “writeExternal” and “readExternal” in the class to be serialized. According to

[17], the “Externalizable” interface is often used “when it is necessary to define an object

which has complete control over its serialization and re-constitution process.” In other

words, this interface could give users the control of “the encoding used to send the

information and which fields are serialized.”

In this paper, we use the “Serializable” interface because it already satisfies our

needs for serializations, and it is easy to implement. During the serialization, each object

that is referenced by the serialized object and is not marked as transient must also be

serialized.

38

Some may ask why Java objects are not serializable by default. There are three

primary reasons, according to Wikipedia [37]:

(1) Not all objects capture useful semantics in a serialized state. For

example, a “Thread” object is tied to the state of the current Java Virtual

Machine. There is no context in which a de-serialized “Thread” object

would maintain useful semantics.

(2) The serialized state of an object forms part of its class’s compatibility

contract. Maintaining compatibility between versions of serializable

classes requires additional effort and consideration. Therefore, making a

class serializable needs to be deliberate and is not a default condition.

(3) Serialization allows access to non-transient private members of a class

that are not otherwise accessible. Classes containing sensitive information

(for example, a password) should not be serializable or externalizable.

When implementing object serialization in CyberLab, two classes--

ObjectOutputStream and ObjectInputStream-- are used. An ObjectOutputStream object is

used to serialize primitive data types and Java objects to an output stream. It is used

together with a FileOutputStream object so that the output stream of an object can be

written to a file. On the other hand, ObjectInputStream object is used to de-serialize

objects from an input stream and restore them. Similar to ObjectOutputStream, it is

accompanied by a FileInputStream object.

39

3.2 Export experiments from LabCreator.

As discussed in section 2.4, the information of an experiment created in

LabCreator is stored in the corresponding “Experiment” object. Therefore, we have to

export this object to an intermediate file.

As discussed before, all classes associated with the “Experiment” class will

implement the “Serializable” interface. Besides, we found that the parent class of the

serialized class must have a constructor with no argument.

To serialize an object, we have to go through the following steps: (1) Produce a

valid filename to write to; (2) Open a FileOutputStream; (3) Attach an

ObjectOutputStream to the FileOutputStream; (4) Write object data to object stream; and

(5) Flush the object stream and close it down. The code that deals with object

serializations in LabCreator is shown in Appendix C.

The intermediate files will have “.exp” as their suffix. Figure 19 shows part of the

file generated for the heating experiment in hexadecimal format. All Object Serialization

files start with the 2-byte “magic number”: AC ED, followed by the version number of

the object serialization format, which is currently 00 05. Then, it contains a sequence of

objects, in the order that they were saved.

40

Figure 19. Part of the “.exp” file for the heating experiment

3.3 Load and execute experiments in LabExecutor.

 We already have a LabExecutor prototype [23], but it does not provide any

support for intermediate files. Therefore, we have to implement the loading and

execution of experiments in this paper.

The object de-serialization process is very similar to the serialization process: (1)

Produce a valid filename to read from; (2) Open a FileInputStream; (3) Attach an

41

ObjectInputStream to the FileInputStream; (4) Read the object data to object stream; and

(5) Flush the object streams and close it down.

After an object is de-serialized, it is usually necessary to cast the object to its

original class type. The Java code handling the de-serialization of objects in LabExecutor

is shown in Appendix C:

 After successful loading of the intermediate “.exp” file, the experiment is

reconstructed in the window of LabExecutor. Students can then manipulate the

experiment in LabExecutor. As shown in Figure 20, the heating experiment is loaded into

LabExecutor. The layout of the experiment is the same as designed in LabCreator, and

the experiment functions well in LabExecutor (Figure 20).

3.4 Usability test and feedback.

After the integration of CyberLab, it is helpful to know how end users feel about

it. As CyberLab is designed for online science courses, I invited two students, both of

whom major in natural science subjects, for a simple and short CyberLab tryout. Clearly,

such a small sample size is insufficient for a formal efficacy analysis. Nonetheless, the

observations are of interest.

Student A got his Master’s degree in chemistry and has two years of

programming experience with C, C++, and Java. Student B is a graduate student from

EMU’s Geography and Geology Department. Though knowing little about programming,

B is quite familiar with the commonly used software in the Microsoft Windows platform.

42

 The tryout had four steps: (1) Introduction to CyberLab; (2) Demonstration of

how to use LabCreator and LabExecutor; (3) Creation and execution of experiments by

participating students; and (4) Discussion.

 The major obstacle we encountered in the tryout concerned the FSA. Student A

was already familiar with FSA’s, while Student B had never heard of FSA’s before this

tryout. Apparently, though, it is not necessary for the user to be an expert in FSA in order

to use LabCreator. A fifteen-minute introduction of FSA fundamentals and how the

experiment in CyberLab makes use of FSA’s was sufficient for student B to complete the

creation of the heating experiment.

 The rest of the tryout went smoothly, and both students were able to create, export,

and execute their heating experiments. Student A also created his own simple

experiments.

 In the discussion session, both students expressed their satisfaction with CyberLab.

They agreed that CyberLab provides an easy way for instructors to create virtual

experiments for online science courses. The data flow is straightforward, and the

operations of both LabCreator and LabExecutor are not difficult to learn.

 On the other side, they also had complaints. One thing both of them mentioned is

the way an FSA is constructed. The dialog and text-based approach for constructing FSA,

especially FSA edges, was not sufficiently intuitive. The information in the “FSA Edges”

panel did not give them a clear global view of the FSA they were constructing. Another

feature they want is be able to directly modify the experiment from the Experiment

Information panel if a mistake is found.

43

They also pointed out some other features that need to be improved or added,

which are discussed in Chapter 4.

Figure 20. The heating experiment in LabExecutor

44

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion.

Through the implementation of LabCreator and the integration of CyberLab

system in this paper, it has been proven that the design of CyberLab is feasible.

CyberLab can provide a package of services for the constructions of online virtual

laboratories, ranging from experiments design, creation, and export in LabCreator, to

experiments loading and execution in LabExecutor.

We consider CyberLab to be an important progress with unique characters in the

research of online virtual laboratories.

It has been discussed that laboratory experience is very important for science

education. Then why have virtual experiments rarely been integrated into online science

courses? When compared with the popularity of online science courses and the great

demand for online virtual experiments, the number of researchers dedicated to the

development of online virtual laboratories is obviously too small to serve all needs for

online virtual laboratories. It is therefore difficult to popularize online experiments unless

instructors are able to design and create online experiments for their own online science

courses. Another reason we must take into consideration is that though computers are

now widely used, instructors with programming skills are still only a small part of all the

instructors who need to create online virtual experiments.

According to our literature survey, though there have been a number of online

virtual laboratories [3, 5, 15, 20, 24, 29, 30, 33, 34, 39], CyberLab is one of the only two

tools (the other one is the Java Applet-based Physlets [6]) that allow online course

45

instructors to create online experiment themselves. More important, CyberLab is the first

tool that does not require experiment creators to know programming. By freeing

instructors of online science courses from learning programming languages and coding

virtual experiments themselves, CyberLab owns a major edge over Physlets, which

requires its users to know Java Script programming.

As a toolkit designed to construct virtual laboratories for online science courses,

CyberLab inherits the advantages of online education, such as “Any time, any place”

learning [9] and low requirements for laboratory facilities, while providing valuable

laboratory experience to students who take online science courses.

Meanwhile, by enabling instructors with no programming experience to create

online experiment, CyberLab could greatly expand its user population in online science

course instructors, which in turns facilitates the popularization of virtual experiments in

online science education.

Admittedly, experiments created with CyberLab are not as vivid as those video-

based or 3D virtual experiments. Both LabCreator and LabExecutor are still primitive.

There are a lot of things that need to be done before releasing the system to the public

(discussed in section 4.2).

Nevertheless, we believe that given more time, CyberLab will become a very

popular virtual laboratory system, which will make more virtual experiments available in

online courses and, therefore, greatly improve the effectiveness of online science

education.

46

4.2 Future work.

 At present, the development of CyberLab is ongoing, and there is still a long way

to go before it can be widely used in the creation of virtual laboratories for online courses.

We analyzed the current implementation of CyberLab, reviewed the initial requirements

and purpose of CyberLab, considered users’ feedback, and summarized some work for

future development.

 First, it is definitely necessary to enrich the widget library so that CyberLab can

be used to create more experiments from different subjects. For example, we may need

balls and speedometers for free fall experiments, rope and brackets for pendulum

experiments, tubes and pH testers for enzyme experiments, light bulbs and green plants

for photosynthesis experiments. The number and variety of widgets supported will be

very important for the popularization of CyberLab.

 Second, it is necessary to introduce Thread programming or add internal timer

components to the existing FSA of CyberLab experiments, in order to implement

animations in CyberLab experiments. At present, the traversals of FSA edges in an

experiment can only be triggered by users’ manipulations of widgets. But when an

animation is needed, the elapse of time will be used to trigger FSA edge traversals. For

example, in a free fall experiment, after students press the “Start” button, the ball starts to

fall from a certain height, and its position is shown as an animation. The FSA of the

experiment is shown in Figure 21. In the experiment, the falling process consists of

repeated traversals of the “Edge 2” in the FSA. The traversals of “Edge 2” can be

implemented as threads. They can also be triggered by the passage of time since the start

of the experiment. After the experiment starts, the timer tick keeps increasing at a certain

47

pace automatically and will stop increasing after the ball hits the ground. Once the timer

tick changes, “Edge 2” will be traversed, the speed of the ball is updated, and the position

of the ball is redrawn in the animation.

Figure 21. The FSA of the free falling experiment.

Third, to address users’ concerns on FSA construction in LabCreator, we suggest

a graphical way to design the experiment FSA. It could be a diagram-based editor, where

users can create an FSA by drawing diagrams similar to Figure 7 and Figure 21. Users

can create an FSA state by drawing a rectangle and adding text labels as state names.

When selecting active widgets for the state, users can directly drag widgets from the

Experiment Workbench into the rectangle, instead of using the check boxes in the dialog

window. All FSA states that have been created will appear in the editor as rectangles.

Users can then create an FSA edge simply by drawing a directed line to link FSA states.

Compared with the current dialog and text-based approach, the new graphical approach is

48

more intuitive. It will also give users a global view of the FSA they are creating, so that

they can easily know what has been done and what is missing.

 Fourth, users who have little knowledge about FSA may find it difficult to follow

the correct procedure when creating the FSA for an experiment. For example, if one

creates an FSA edge with a variable, which has not been created in the condition or

consequence expression, exceptions will happen when LabCreator tries to evaluate the

expression. Adding an “Experiment Design Wizard” in LabCreator may help. The wizard

will give users step-by-step tutorials and instructions, which guides users to go through

all the required steps in the correct order.

 Fifth, when creating FSA edges in LabCreator, expressions for condition and

consequence are created from strings inputted by users. During the usability test, there

were complaints that it was easy to make mistakes when creating those expressions. For

example, some may type “=” instead of “==” for a Boolean expression, or some may type

a variable that is not created for the experiment. If the expressions are not correct, neither

the preview nor the exported file will work properly. In this case, users have to check the

design carefully to find out their mistakes. Though mistakes can be avoided by referring

to the “Variable” panel frequently and typing carefully, the expression creation process

can become more convenient to users by using an “Equation Editor.” The editor will

present an equation field and a panel with numbers, available variables, and operators.

When constructing an expression, users are not allowed to add any element into the

equation field directly. Instead, elements of an expression are added to the equation field

via clicking the elements on the panel. A prototype for the graphic user interface of the

editor is proposed in Figure 22. Before adding the expression created by users into the

49

FSA, the editor will also check the internal model of the experiment to make sure the

expression is valid, so that the internal model can focus on the expression parsing instead

of checking.

Figure 22. The prototype for the graphic user interface of “Equation Editor”

Sixth, Java Object Serialization is currently used to generate the intermediate files. This

is mainly because this technology is mature and easy to implement. However, if students’

and instructors’ computers have different versions Java Runtime Environments, there

might be problems when executing the experiment. At the same time, XML files have the

advantage of platform-independence. Therefore, we may choose XML instead of Java

serialization as the intermediate file format in the future, so that those files can be

executed on different computing platforms.

Last, but not least, inspired by DropBall [26], which is described in 1.3.3, we

think it is useful to add the data collection feature to LabExecutor, so that students can

save the data and analyze it later. For example, in a free fall experiment, the speed and

height of the falling ball are collected every second. After the experiment, students can

50

use the data collected by LabExecutor to generate a “Speed vs Time” graph and verify

whether the speed of the ball during the falling process was in accord with the laws of

Newton mechanics.

Of course, what we summarized at this moment cannot cover all the work that

needs to be done to improve CyberLab. However, we hope this chapter could give a brief

guideline for the future development of CyberLab.

51

REFERENCES:

[1] Bell, J. The biology labs on-online project: producing educational simulations that

promote active learning. Interactive Multimedia Electronic Journal of Computer-

Enhanced Learning, (February 1999).

http://imej.wfu.edu/articles/1999/2/01/index.asp (Accessed October 4, 2006).

[2] Carr, S. As distance education comes of age, the challenge is keeping the students.

Chronicle of Higher Education Information Technology, (February 2000).

http://chronicle.com/free/v46/i23/23a00101.htm (Accessed October 2, 2006).

[3] Chakaveh, S., Zlender, U., Skaley, D., Fostiropoulos, K. and Breitschwerdt, D..

DELTA's virtual physics laboratory (case study): a comprehensive learning

platform on physics and astronomy. In Proceedings of the conference on

Visualization '99: celebrating ten years. (San Francisco, California, USA, 1999).

421-423.

[4] Chaven, A. and Pavri, S. Open-source learning management with Moodle. Linux

Journal, 128 (December 2004). http://www.linuxjournal.com/article/7478

(Accessed October 20, 2006)

[5] Chen, X. Online virtual biology laboratory. Master of Science Thesis, Eastern

Michigan University, Ypsilanti, MI, 2001.

[6] Christian, W. and Belloni, M. Physlets: Teaching Physics with Interactive

Curricular Material. Prentice Hall, New York, NY, 2001.

[7] Chu, K. C. What are the benefits of a virtual laboratory for student learning?. In

Proceedings of the HERDSA Annual International Conference. (Melbourne,

52

Australia, July 1999). www.herdsa.org.au/branches/vic/Cornerstones/pdf/Chu.PDF

(Accessed September 28, 2006).

[8] Colace, F., De Santo, M. and Vento, M. Evaluating on-line learning platforms: a

case study. In Proceedings of the 36th Annual Hawaii International Conference on

System Sciences (HICSS'03) (Hawaii, USA, January 2003). 5, 154-162.

[9] Dehoney, J., Booth, L., Lau, K.F., Reichgelt, H., Rutherfoord, R.H., and Stewart, J.

Many cooks improve the broth: developing an inter-institutional, online, bachelor

of science degree in information technology. In Proceedings of the 4th Conference

on Information Technology Curriculum (CITC4’03) (Lafayette, Indiana, USA,

October 2003). Distance education session, 155-159.

[10] Evett, M.P. CyberLab, a tool for constructing laboratory experiments for on-line

science courses. Proposal for a Spring-Summer Award for Research and Creative

Activity, Eastern Michigan University, Ypsilanti, MI, 2003.

[11] Fuller, A., Awyzio, G. and McFarlane, P. Using WebCT to support team teaching.

In Proceedings of the Second IEEE International Conference on Advanced

Learning Technologies (ICALT'01) (August 2001). 315-318.

[12] Garapati, S. Online scientific lab kit. Research Project Report, Eastern Michigan

University, Ypsilanti, MI, 2003.

[13] Goldberg, M.W., Salari, S. and Swoboda, P. World Wide Web - Course Tool: an

environment for building WWW-based courses. Computer Networks and ISDN

Systems, 28, (1996), 7–11.

http://www.ra.ethz.ch/CDstore/www5/www156/overview.htm (Accessed

September 29, 2006).

53

[14] Harms, U. Virtual and remote labs in physics education. In Proceedings of the

Second European Conference on Physics Teaching in Engineering Education,

(Budapest, Romania, 2000). http://www.bme.hu/ptee2000/papers/harms1.pdf

(Accessed September 29, 2006).

[15] Kim, J.H., Park, S.T., Lee, H., Yuk, K.C. and Lee, H. Virtual reality simulations in

physics education. Interactive Multimedia Electronic Journal of Computer-

Enhanced Learning (February 2001). http://imej.wfu.edu/articles/2001/2/02/

(Accessed October 4, 2006).

[16] Kudire, P.K. Drag and drop toolkit and on-line biology laboratory experiments.

Research Project Report, Eastern Michigan University, Ypsilanti, MI, 2002.

[17] Kurotsuchi, B.T. The Wonders of Java Object Serialization. ACM Crossroads,

4.2(Winter 1997). http://www.acm.org/crossroads/xrds4-2/serial.html (Accessed

October 4, 2006).

[18] Lee, Y., Ma, W., Du, D.H.C. and Schnepf, J.A. Creating a virtual network

laboratory. In Proceedings of the International Conference on Multimedia

Computing and Systems (ICMCS'97) (June 1997). 642-643.

[19] Lunney, T. and McCaughey, A. Object persistence in Java. In Proceedings of the

2nd International Conference on Principles and Practice of Programming in Java.

(Kilkenny City, Ireland, 2003). Information systems session,115 - 120.

[20] Marone, M. The Mercer Online Interactive Chaotic Pendulum. Computing in

Science and Engineering (July/August 2002). 94-97.

[21] McDonald, M., Dorn, B. and McDonald, G. A statistical analysis of student

performance in online computer science courses. In Proceedings of the 35th

54

SIGCSE Technical Symposium on Computer Science Education (SIGCSE '04)

(Norfolk, Virginia, USA, March 2004,). 36, 1, 71-74.

[22] Parker, B. and Hankins, J. AAHE's seven principles for good practice applied to an

online literacy course. Journal of Computing Sciences in Colleges 17, 4 (2002), 39-

48.

[23] Parlapalli, S. 2005. Implementation of the student-side component of CyberLab.

Master of Science Thesis, Eastern Michigan University, Ypsilanti, MI, 2005.

[24] Pheatt, C.B. and Ballester, J.L. Developing web-based experiments. Journal of

Computing Sciences in Colleges 18 (2003), 238-245.

[25] Physics Experiment Online Website.

http://freespace.virgin.net/gareth.james/virtual/index.html. 2006. (Accessed

October 4, 2006).

[26] Pniower, J. C., Ruane, M., Goldberg, B.B. and Ünü, M.S. Web-Based Educational

Experiments. In Proceedings of the 1999 ASEE National Conference, (Charlotte,

NC, USA, June 1999). http://ultra.bu.edu/papers/asee-web-99.pdf (Accessed

September 29, 2006).

[27] Pradhan, M.. Online biology laboratory experiments and Java toolkit. Research

Project Report, Eastern Michigan University, Ypsilanti, MI, 2002.

[28] Pullen, J. Scaling up a distance education program in computer science, In

Proceedings of the 11th Annual SIGCSE Conference on Innovation and technology

in Computer Science Education (ITICSE '06) (Bologna, Italy. June 2006). 38, 3, 33-

37.

55

[29] Pullen, J. Applicability of Internet Video in Distance Education for Engineering, In

Proceedings of 31st ASEE/IEEE Frontiers in Education, (Reno, NV, USA, October

2001). T2F, 14-19.

[30] Rodriguez, F.G., Silva, J.L.P, Rosano, F.L., Contreras, F.C. and Vitela, A.M.

Creating a High School Physics Video-Based Laboratory. IEEE MultiMedia (July

2001), 78-86.

[31] Seng, L. and Mohamad, F.S. Online learning: Is it meant for science courses?

Internet and Higher Education, 5 (2002), 109–118.

[32] Shi, Z. Portable Intermediate Representations of Collections of Java Objects.

Reserch Project Report. Eastern Michigan University, Ypsilanti, MI, 2004.

[33] Shirmohammadi, S., Saddik, A.E., Georganas, N.D. and Steinmetz, R. Web-based

multimedia tools for sharing educational resources. ACM Journal on Educational

Resources in Computing (JERIC) 1, 1 (2001), Article No.9.

[34] Subramanian, R. and Marsic, I. ViBE: Virtual Biology Experiments. In Proceedings

of the tenth international conference on World Wide Web (WWW '01) (Hong-Kong,

May 2001). 316-325.

[35] Virtual Chemistry Website. http://www.chem.ox.ac.uk/vrchemistry/. 2006.

 (Accessed October 4, 2006).

[36] Wikipedia. Finite State Machine. http://en.wikipedia.org/wiki/Finite_state_machine.

2006. (Accessed October 4, 2006)

[37] Wikipedia. Serialization. http://en.wikipedia.org/wiki/Serialization. 2006.

(Accessed October 4, 2006)

56

[38] Wikipedia. Usability testing. http://en.wikipedia.org/wiki/Usability_testing. 2006.

(Accessed October 27, 2006)

 [39] Wittig, S. W. and Eggensperger, R. APL in Computer-Assisted Instruction:

Simulation of Stochastic Processes in science teaching. In Proceedings of the

Eighth International Conference on APL (Ottowa, Canada. 1976). 447-455.

[40] Wu,Y., Chan, T., Jong, B., Lin, T. and Liang, Y. A Web-Based Dual Mode Virtual

Laboratory Supporting Cooperative Learning. In Proceedings of the 18th

International Conference on Advanced Information Networking and Applications

(AINA'04) (March 2004) 1, 642-647.

57

APPENDICES

APPENDIX A: An excerpt of the Java code for widget-related classes.

/*** This is part of code from Widget.java***/
public interface Widget {
 public Model getCyberModel();
 public void setCyberModel(Model model);
 public String getName();
 public void setName(String name);
 public void setPosition(Point pos);
 public Point getPosition();
 public void setLabel (String label);
 public String getLabel ();
}
/***/

 /*** This is sampled from CyberButton.java ***/
public class CyberButton extends JButton implements Widget {

 … …
}
… …
/***/

 /*** This is sampled from CyberTextField.java***/
public class CyberTextField extends JComponent implements Widget{
 … …
 public void paintComponent(Graphics g){
 … …

}
}

 … …

58

APPENDIX B: An excerpt of the Java code for widgets drag and drop.

/****This is sampled from Creator.java ****/
/****Demonstrate how Drag and Drop works for a control button****/
… …
// Create a control button
CyberButton cntrlBtn=new

CyberButton(mod,ctrlBtnDlg.getButtonLabel());
// Set the button to the initial position specified by user.
cntrlBtn.setPosition((Point)ctrlBtnDlg.getButtonPos());
… …
… …
cntrlBtn.addMouseListener(new MouseAdapter(){
public void mousePressed(MouseEvent evt){

 if(evt.isPopupTrigger()){
… … /* action for right button release*/

 }
 else{

… …
 setBtnOrigin(evt.getX(),evt.getY());
 }
}
public void mouseReleased(MouseEvent evt) {

if(evt.isPopupTrigger()){
… … /* action for right button release*/

}
else{

 if(MouseMoved(evt.getX(),evt.getY()))
 moveWidget(evt);
 … …

}
}
});
… …
… …
// Set the original position of the widget
// used for comparison with new position
private void setBtnOrigin(int x, int y){
 OrgMouseX=x;
 OrgMouseY=y;
}

// Determine whether a widget has been moved by user
private boolean MouseMoved(int x, int y){
 return !(x==OrgMouseX && y==OrgMouseY);
}

// Move the widget to new position
private void moveWidget(MouseEvent evt){
 Object evtSrc=evt.getSource();
 for (int i = 0; i < widgetsOnCanvas.size(); i++)
 if (widgetsOnCanvas.get(i)==evtSrc) {
 // Select widget to be moved

Widget tmp=(Widget)(widgetsOnCanvas.get(i));
 // Get new position

evt.translatePoint((int)tmp.getPosition().getX(),

59

(int)tmp.getPosition().getY());
// Set new widget position unless out of bound
if(PosInBound(evt.getX(),evt.getY()))

tmp.setPosition(evt.getPoint());
else

 System.out.print("Out of Bound”);
 // Repaint the workbench

 // and display the widget at new position
 mycanvasPanel.update(widgetsOnCanvas);
 jFrame.pack();
 return ;
 }
 return;
}
… …

60

APPENDIX C: An excerpt of the Java code for Java serialization.

/*******This is for serialization in LabCreator*********/
… …
try{
ObjectOutputStream out=new ObjectOutputStream(

new FileOutputStream(filename)
);

out.writeObject(exp);
out.close();
}
catch (Exception e){
 e.printStackTrace();
}
… …

/*******This is for de-serialization in LabExecutor*********/
try{
ObjectInputStream in=new ObjectInputStream(

new FileInputStream(filename)
);

newexp = (Experiment) in.readObject();
in.close();
}
catch (Exception e){
e.printStackTrace();
}
… …

61

	Eastern Michigan University
	DigitalCommons@EMU
	2006

	Implementation of labcreator and the integration of cyberlab
	Kang Zhao
	Recommended Citation

	blank1.pdf
	Title.pdf
	Approval.pdf
	Ack.pdf
	abs.pdf
	TOC_LOF.pdf
	body.pdf
	blank2.pdf

