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ABSTRACT 

As automotive coating technology advances, the manufacturers have developed new 

generations of after-market coatings as well as OEM (Original Equipment Manufacturing) 

coatings. The new coatings possess much stronger mar/scratch resistance either with raised 

elastic modulus and hardness or with the ability of self-healing. These pose new challenges to the 

auto-body refinish work. In the refinishing process, the after-market coatings are applied to the 

bodies (surfaces), and then the imperfections, which are inevitable during the application process 

due to the environmental dust in the shops, will be buffed out to make a smooth and shining 

surface. The new coatings are very difficult to work with in the refinish process. 

Sponsored by 3M Incorporation, the largest producer of the refinish devices and materials, 

we have carried out a systematic study of the scratching/buffing mechanism of the clearcoats in 

the refinish work. We measured modulus and hardness at depths of nano/micron meters at the 

coating surface, checked the heating effect on the mars and scratches at the coating surface, and 

examined the surface morphologies in nano and micro scales of different coatings at different 

stages in the refinish process. We also studied the variations of the mechanical and tribological 

properties of the coatings during the curing process after the baking, etc., using newly developed 

nano instruments, a Nano-Indenter XP and a Scanning Probe Microscope (SPM).  This study has 

increased our knowledge of the scratching and buffing mechanism of coatings and the refinish 

process, thus shedding light on the direction for improvement of the technique and 

devices/materials in the refinish work. 
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1: Introduction 

There have been developments in the automotive refinish clearcoats industry that 

make the coats self-healing, scratch resistant, economically affordable and with better 

adhesion.  They have made a phenomenal impact on the change of mechanical properties 

like scratch and mar resistance of automotive coatings.  The clearcoat, being a top layer 

coat of a multilayered coating system of 4 to 5 layers, is prone to various environmental 

damage like stone chipping, marring, UV radiation, acid rain, snow, etc.1, 2 The 40 to 60 

µm fast drying automotive clearcoat, which is a mixture of acrylic polyol/thermoset 

polyurethane resin and a curing agent reactive with hydroxyl groups, makes the 

automobiles look glossy, and protects them from environmental damage.  The clearcoats, 

therefore, must provide resistance to chemical and mechanical damage to preserve the 

look of vehicles.3, 4  In automotive refinish work, one has to take several measures to get 

the final coat to the expected finish, and the surface must be clear from any visible flaws.  

The quality of an automotive coating is determined predominantly by the appearance, 

which must remain attractive to the customers.  In the refinish process, despite taking 

several precautions, the coated samples are prone to several surface flaws that need to be 

buffed out to give the panel a glossy appearance.  Imperfections in the clearcoats are the 

results of the environmental conditions in the bodyshops, such as unclean substrate 

surfaces, untidy surroundings, improper air filtration and circulation, and uneven 

temperature variations inside the coating chamber, which are difficult to control during 

the application process.  It is more economical to buff out the surface flaws rather than to 

create prefect environmental conditions. 
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In this paper I have discussed three parts of a study conducted by the Surface 

Science and Nanotribology Laboratory (SSNTL).  Part 1 of the study examines the 

recovery mechanism of different clearcoats at high temperatures (up to 70°C).   Part 2 of 

the study seeks a better understanding of the mechanism of buffing at different stages.  

Part 3 of the study examines the curing process of the clearcoats.        

Initially we studied the indentation and the scratch mechanisms of two samples 

(sample 1 is an advanced coating and sample 2 is a standard coating) available on the 

market.   Initially we took two sets of samples of each coating on which we performed 

indentation and scratch tests.  The indentation and scratch tests were carried out on a 

Nano Indenter XP, produced by MTS.  The indentation tests were carried out with a 

Brockovich tip, and indents were made using different loads from which hardness and 

modulus of the coatings were determined.  The scratch tests were carried out using a 

conical tip of one micron radius, in which a set of progressive and constant load scratches 

were made.  Data from the scratch tests, like the ditch area, shoulder area, and the load 

applied on sample, gave information regarding the mar resistance.  The recovery 

mechanism (memory) of the coating at higher temperatures was determined in this part of 

the study; we found that modern coatings can easily restore plastic deformation simply by 

warming of the metallic substrate on a sunny day without any need of buffing or 

polishing aids.  We used two different methods of applying heat to the samples, dry heat 

(samples placed in an oven) and wet heat (samples immersed in hot water). 
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In the second part of study we tried to explore the buffing mechanism of the 

clearcoats. In order to better understand what happens in the process of buffing, we  

 

 

visited a workshop where we observed the steps involved in buffing.  We also visited 

several body shops to encounter the real world application of buffing and refinish work.  

In order to study different stages of buffing, we used six different commercial 

clearcoats.  Clearcoats 1 & 2 are the Original Equipment Manufacturer/ OEM coatings 

for which the curing temperature is high, and the clearcoats 3, 4, 5, 6 are the after-market 

coatings that have a lower curing temperature.  Clearcoat 3 is an established coating that 

has been in use for a long time, is generally considered to buff easily, and is used in this 

study as a reference coating.  We recognized six steps for the buffing process.  The first 

(step 0) was the initial unbuffed coated sample and next five buffing steps (steps 1 

through 5) involved a progressive abrading of the clearcoats from course to ultrafine.  We 

have studied the characteristic damage on each of the clearcoats at each of the buffing 

steps. The damage was characterized by measuring roughness after each of the buffing 

steps.  We also measured hardness and modulus after each of the buffing steps in order to 

determine any changes due to buffing.  A Scanning Probe Microscope (SPM) was used to 

measure the roughness, and a Nano Indenter XP was used to measure modulus and 

hardness.  There were a total of 36 samples corresponding to the six clearcoats in six 

different buffing steps.  The results are interpreted by plotting variations of average 

roughness, average modulus, and average hardness Vs indentation depth in each of the 

buffed samples.   
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In Part 3 of the study we made a time study of the curing process of clearcoat 3, 

which was our after-market reference clearcoat.  The clearcoats are cured in an oven for a 

certain amount of time depending on the manufacturer’s specifications. The clearcoats 

are considered fully cured after coming out of the oven, but it was suspected that the 

clearcoats continue to cure for several days even after they are baked.  We observed the 

changes in the mechanical properties over time from four hours out of the oven up to 

several days.  Samples were prepared using the facilities in the Coatings Research 

Institute (CRI, EMU) and brought to the Surface Science Lab for testing within 2 to 3 

hours after coating and baking.  Starting at 4 hours after coming out of the oven, we did 

indentation testing, measuring the elastic modulus and hardness of the sample.  

Concurrently we did scratch testing, scratching the surface of the clearcoat at different 

constant loads. The tests were continued on the second day, fourth day, and so on.  The 

test results clearly showed changes in mechanical properties.  

Developments in the clearcoat industry have changed the way coatings behave in 

response to different damages physically and environmentally.   In the refinish process, 

the discrepencies in the final clearcoats need to be buffed out; this paper identifies the 

problem of the advanced coatings and distingushes the differences between the new and 

the OEM (Original Equipment Manufacturer) coatings.     
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2: Instruments 

We used a Nano Indenter XP and a Scanning Probe Microscope (SPM) to study 

the mechanical and tribological properties of the clearcoats.  A Nano indenter is used to 

make indents and scratches to characterize hardness and modulus, and a Scanning Probe 

Microscope is used to image the scratched surface to determine the roughness.   

 

2.1 Nano Indenter XP 

The Nano Indenter XP is one of the most common devices used to study the 

mechanical properties of materials at the sub-micron scale range.  We used a Nano 

indenter XP for indenting and scratching, which provides an easy and quick way obtain 

mechanical data on the nano scale.5, 6  It is made by MTS and is a software-controlled 

device that has an easy user interface.  Many studies have been published in the field of 

the tribology using a Nano indenter8.  The instrument is very accurate in detecting the 

surface and measuring creep on polymer films8.  We used the instrument to measure 

hardness and modulus as a continuous function of displacement in the surface.  Elastic 

Modulus and hardness are calculated as following  

Elastic modulus9 (Bulk);   
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Hardness9;                           
 

where β is a constant dependent on the tip geometry (β = 1.034 for Berkovich tip) and A 

is the projected area of contact.  S (df/dh or Newton/meter) is the slope of indentation 

curve (as shown in Figure 9) and is determined by the force with respect to displacement 

in to the surface.9, 10   is the maximum force applied on the tip. 

In the surface and nano-tribology laboratory we are using a Nano indenter XP, 

which is equipped with continuous stiffness measurement (CSM).  The CSM mode 

allows us to simultaneously calculate the hardness and modulus, the measuring stiffness 

data along the applied load, and the displacement into the surface at each and every data 

point.11  The reliability of the tribological properties of a surface does not only depend on 

the tip geometry, force, and displacement measurements but also on the stiffness of the 

contact area between the indenter tip and the sample material; this allows us to measure 

hardness and modulus accurately.11, 12 

 Nano indenter XP is also used to measure storage and loss modulus.  Storage 

modulus is a quantity used to describe the ratio of stress in phase with strain to the total 

strain, and loss modulus is energy dissipation as heat due to mechanical deformation; 

these are observed in materials due to visco-elastic damping. 
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Figure 1: Nano indenter XP and CSM equipment in the Surface Science and 
Nanotribology Laboratory. It is operated using the attached computer.  

 
Preparation before the test 

(1) The sample must be as flat as possible.  (2) The surface roughness affects the 

measure of hardness and modulus.  It should be examined by profiling the sample before 

testing.  (3) Mounting the sample to the indenter is also important in characterizing the 

tribological properties of the coatings.  The glue used in mounting should not give a 

cushion effect to the samples.  Glues like epoxy have this effect, but hot glue, which is an 

adhesive that melts around 70ºC and solidifies at room temperature, gives a better 

adhesion and is also harder.  However, we mainly used superglue in mounting the 

samples in this study, as it does not give any cushion effect to the sample and is also very 

thin.  (4) It is better to be familiar with the film thickness and sample substrate and to 

have a rough idea of hardness and modulus before running the tests. 

Components of the indenter 
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 Some of the components of the indenter head, which is operated with computer 

using testworks software provided by MTS, are shown in Fig 2. 

 

Figure 2: Schematic diagram of the indenter head and its components.7 

Tips used for indentation and scratching 

We used a Berkovich tip and a conical shaped tip in order to indent and scratch 

the samples, respectively.  The Berkovich tip is a pyramidal shaped tip used to indent the 

surface to obtain a measurement of the hardness and modulus.  The conical tip of 1µm 

diameter was used to make progressive and constant load scratches to find the mar 

resistance and abrasive wear of the clearcoats.  Figure 3 illustrates the shapes of the (1) 

Berkovich tip and (2) The conical shaped tip.  
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(1)                                                          (2) 

Figure 3: Typical shape of a (1) Berkovich indentation tip and (2) Conical shaped scratch 
tip.7  

 

 

 

 

 

 

 

 

2.2 Scanning Probe Microscope (SPM) 

 Scanning Probe Microscopy is one of the best techniques employed in the surface 

characterization of various materials.  It is a technique associated with nano science that 

is used to form images of surfaces on the atomic/molecular scale using a physical probe. 

SPM is widely used in a variety of applications in the field of research involving surface 

studies of materials like polymers and biological samples.13  Ever since its development 

in 1985, the Scanning Probe Microscopy technique has been branching out into several 
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fields with an improved imaging speed and force sensitivity.13  Images produced using an 

SPM can be in the scale range of a few nanometers (nm) to several hundred micrometers 

(µm) in the x-y direction and 4 to 6 micrometers in the z direction.  Images with a 

magnification to the level of an atom, are made using a nano tip that is glued to a very 

low spring constant cantilever that gently touches the surface without damaging it.  This 

interaction between the probe and the surface is used in obtaining a topographic 

representation or an image, as illustrated in Figure 4.  The Scanning Probe Microscopy 

technique is operated on a principle based on Van der Waals forces between the tip and 

the surface. These forces may be either the short range repulsive or the long range 

attractive force when operated in contact-mode and tapping mode respectively.13  The 

force measurement using an SPM is not only recorded in the direction normal to the 

surface but also in the direction parallel to it, measuring the torsional moment of the 

cantilever.  The force normal to the surface gives rise to a height image, and the force 

parallel to the surface gives a friction image in contact mode and a phase image in 

tapping mode.14  The tip scans the selected area on the surface of the samples in a 

particular way as shown in Figure 5; this method is called “Raster Movement”. 13  The 

SPM used in the lab (SSNTL) is a Veeco instrument and is equipped with a Nanoscope 

IIIa controller.  In this study the SPM was operated in the Atomic Force Microscope 

(AFM) mode. 
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Figure 4: Physical interpretation of Scanning Probe Microscopy (SPM) components and 
principal involved in the SPM technique.13 

 

 

Figure 5: Raster movement. The tip moves on the surface following a precise movement 
called raster, as shown.13 

Different Modes of Scanning 

A scanning probe microscope can be operated in contact mode as well as in 

dynamic or tapping mode based on the surface characteristics.18  Contact mode is best in 

imaging harder surfaces, and tapping mode is used to image softer surfaces.  Larger 
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contact forces in the contact mode and higher tapping voltages in tapping mode may lead 

to changes to or damage in the surface, resulting in a decrease of the sharpness of the 

tip.18   

In contact mode the tip approaches the sample surface and makes contact with the 

surface.  The tip follows the contour of the surface while it is traced and retraced.  The 

topographic variation is read by a laser beam detector from the vertical displacement of 

the tip, and an image is formed on a computer screen that is a representation of the 

surface.20, 21 The same thing happens with the tapping mode, but the cantilever is vibrated 

with an oscillating magnetic field that detects the smallest change in the morphology of 

the sample. These small changes are crests and troughs that are produced by the 

irregularities on the surfaces of the coatings which are only within the nanometer range of 

the original morphology but can be identified by the larger deflection of the tip in tapping 

mode.  

However, since most of our polymeric samples were hard, the contact mode 

operated with a silicon nitride tip, which is flexible in friction and height measurements 

and which was a better choice rather than with a silicon tip, which is brittle and can be 

damaged at faster scanning rates. The samples are mounted on the scanner, which is 

equipped with a piezo-electric actuator. 

 

Micro-Mar Resistance 

 Mar is defined as a shallow and light scratch on the surface of the coating, and a 

scratch can be identified as intense or severe damage.15  The data for calculating the 

components are obtained by measuring the depth of penetration and the dimensions of 
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each mar made by a single scratch.16 The cross section of the ditches and of the shoulders 

of the mar can be closely approximated by troughs.17  The areas of the cross sections of 

each ditch and the sum of two shoulders are measured for about 400 sets of data along 

each mar, and the results are averaged.  Figure 6 is a diagram showing the evaluation of a 

constant load scratch and defining the cross-sections of the indentation, the ditch, two 

shoulders, and the trough, to find Micro Mar Resistance (MMR).   

 

Figure 6: Diagram used to show the characterization of Micro Mar Resistance by a 
scratch.17 

 
 

3: Experimental and Data analysis 

In the first phase, we studied the temperature dependent recovery mechanism of 

clearcoats; in the second, we studied the buffing mechanism of various types of clear 
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coats in five different stages of buffing; and finally we studied the curing process of 

different clearcoats. 

3.1 Recovery Process 

Automotive coating systems are made of 4 to 5 layers of coatings in which the clearcoat 

is the topmost layer.  The thickness of this layer is about 2 to 3 mil (1mil = 10-3 inch = 

25.4 µm).  In order to study the damage within this layer (since the focus of the study was 

on buffing systems), we received panels prepared by the project sponsor.  The panels 

were cut into small pieces of 1cm×1cm size, using a shear cutter, so they would fit into 

Nano-indenter and Scanning Probe Microscope.  

On a sunny day, automotive panels are normally heated to a temperature higher 

than 70ºC. We therefore felt comfortable using a thermoset glue to mount the samples to 

the Nanoindenter for testing the clearcoats. Though mounting and dismounting the 

samples is easy with thermoset glue, we observed a marked change in the scratch 

morphology due to heating the samples to remove them from the mount.  We then 

switched to superglue (ethyl cyanoacrylate) to mount the sample.  We studied the 

indentation and the scratch mechanisms of two clearcoats named Sample 1 and Sample 2.  

Sample 1 is an advanced coating and Sample 2 is the standard coating available in the 

market.  We further studied the recovery due to heating that we observed when we were 

using thermoset glue. 

 

Original Morphologies 

We examined the original morphologies of both the clearcoats using an Atomic 

Force Microscope (AFM).  A 100 × 100 µm image was taken at different spots on each 
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of the samples to examine the differences in the surface morphologies. Sample 1 showed 

a smoother surface than Sample 2, as shown in images (1) and (2) of Figure 7, where the 

z scale is 50 nm.  We also found larger imperfections on the same set of samples, as 

shown in images (3) and (4) of Figure 7 In this case the z scale is 3 µm. 

       
(1)                                                      (2) 

       
                                       (3)                                                          (4) 
 

Figure 7: (1) and (2) are the smooth surface morphologies of Samples 1 and 2, 
respectively, with a height (z) scale of 50 nm and (3) and (4) are the areas of 

imperfections on the clearcoat Samples 1 and 2, respectively, with a z-scale of 3µm; all 
the images are 100×100 µm in the x-y plane. 

 
Direction of the study 

 Phase 1 of the study was initially intended to differentiate between the two 

clearcoats as a part of the preliminary study in a project sponsored by 3M.  Accidentally 
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we discovered when using a thermoset glue that the heat has considerable effect on the 

clear coats.  The glue is heated to a temperature of 70ºC to melt; due to this, the cylinders 

used to mount the samples in the indenter are heated.  The same process is repeated to 

remove the samples from the mount after testing.  After dismounting the samples we 

noticed that the scratch morphology was greatly affected due to the heat treatment.  

Figure 8 is the optical images of Sample 1 before and after the heat treatment.  It is also 

interesting to note that the scratches have healed, but the imperfections (pits) that occur 

while coating are much less affected. 

        

Figure 8: optical images of sample 1 that clearly shows the recovery due to heat 
treatment. 

 

 

 

Indentation and scratching 

The indentation tests were carried out, taking a sample set of each coating, using a 

Brockovich tip and indents were made with different load to determine the hardness and 
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modulus of the coatings. Indents were made at nine locations at a distance of 1µm apart 

on each sample. In a typical indentation test, the tip finds the surface, starts indenting to a 

pre-determined load, holds the maximum load to check the creep, and finally unloads, as 

shown in the Figure 9.  The graph shows all nine indentation curves illustrating the 

repeatability of our measurements. The hardness and modulus of Samples 1 and Sample 2 

are plotted against the load on the sample, as shown in the Figure 10.  

        
Figure 9: Indentation test curve to a depth of 10µm and nine indent locations 1mm apart, 

the graph shows all nine indentation curves illustrating repeatability of our 
measurements. 
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Figure 10: plots of Hardness and Modulus Vs load on sample of both the samples 

1 and 2. 
 
 
The scratch tests were carried out using a conical tip of one micron radius, in 

which a set of progressive and constant load scratches were made. The progressive load 

scratches are the scratches that are made with an assigned maximum incremental load 
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from the start to the end point.  Progressive scratches determine the different tear 

response of material at different loads.  We can estimate the forces of marring, cracking, 

and chipping on the surface with these scratches. 

 In making a progressive scratch, the indenter finds the surface, does a pre-scan 

over the surface to outline the original shape, then makes a scratch from zero to the 

assigned maximum load, and then does a post-scan, profiling the residual depth of the 

scratch.  Figure 11 is a displacement curve of a typical progressive scratch on one of the 

samples showing the scratch depth and residual depth curves as well as the marring, 

cracking, and chipping regions. The scratch length is 400 µm and the maximum load 

used was 150 mN at a velocity of 5 µm/s. 

 
Figure 11: The progressive load scratches on one of the samples showing the scratch 
depth (bottom curve) and the residual depth of the scratch (top curve) describing the 

marring, cracking, and chipping regions. 
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 There were three sets of samples of each of the advanced and traditional 

clearcoats; we made three progressive load scratches on each sample.  We used one set of 

samples as control samples, and the other two sets were to examine the effects of dry heat 

and wet heat (heating the samples in air and heating them in water) up to a temperature of 

70ºC in both the cases.  Figures 12 and 13 are the scratch images taken using a scanning 

probe microscope of the Samples 1 and 2, respectively. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 12: The images of progressive load scratches of Sample 1 (advanced coating) 

using an SPM (a) image of the actual scratch (control sample) (b) recovered scratch due 
to dry heat (c) wet heated scratch. 
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(a) 

 
(b) 

 
(c) 

 
Figure 13: The images of progressive load scratches of sample 2 (traditional coating) 

using an SPM (a) image of the actual scratch (control sample) (b) recovered scratch due 
to dry heat (c) wet heated scratch. 

 
 A set of constant load scratches (the load is kept constant from the start to the end 

point) of different loads, 15, 55, 87 & 125 mN were made; these loads were chosen in 

such a way that all of them are in different regions of marring, cracking, and chipping 

determined from the progressive load scratches. The constant load scratches of 15 and 55 

mN, which are in the mar region, are used to evaluate mar resistance.  Data from the 

scratch tests like the ditch area, the shoulder area, and the load applied on sample will 

give us information regarding the mar resistance. Figures 14 and 15 are the images of 

constant load scratches of the Samples 1 and 2, respectively.   
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Figure 14: Constant load scratches of sample 1 at 15, 55, 87 and 125 mN, respectively. 
 

 

Figure 15: Constant load scratches of sample 2 at 15, 55, 87 and 125 mN, respectively. 
 
 

Results and Discussions 

Sample 1 of the Indentation testing has a higher modulus and hardness.  Sample 1 

of the progressive (also from constant) load scratches had earlier onset of cracking and 

chipping than Sample 2.  Sample 2 of the Progressive load scratch testing showed more 

ductile than Sample 1 due to earlier onset of cracking and chipping.  Both samples 

showed a recovery when heated above 70ºc.  Sample 2 showed a better recovery than 

Sample 1, and there was very little difference in the wet and dry heating.   
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3.2 Buffing Study 

We examined the buffing process.  We first had a demonstration of the entire 

buffing process where we observed the procedure and the steps involved in buffing.  We 

also visited several body shops to encounter the real world application of buffing and 

refinish work.  Several panels were prepared for us by the project sponsor using the six 

commercially available clearcoats utilized in the study.  Each clearcoat was buffed to the 

various stages in the buffing process.  We learned several aspects from our initial study 

and from the workshop and the body shops.  The buffing mechanism involves two levels 

of controlled sanding for abrading the material to a thickness of the imperfection, and the 

next three levels make use of buffing compounds to buff out the scratches produced by 

earlier sanding.  The buffing compounds are chemical compounds with mineral 

abrasives.  P1500 and P3000 sized particle sandpaper with a random orbital sander was 

used to abrade the surface of the clearcoat in the first two stages of sanding.  The next 

three stages of buffing are compounding, polishing, and finishing, using a disc sander and 

wool or foam pads wetted with the buffing compounds.  After the five steps of buffing, 

the samples have a smooth finish; i.e., scratches are so fine that they are not visible to the 

human eye.    

In this phase of the study, we examined six different clearcoats each in six 

different stages of buffing, for a total of 36 samples.  Sample 1 and Sample 2 are the 

Original Equipment Manufacturer (OEM) or the standard coatings for which the curing 

temperature is high.  Samples 3, 4, 5, and 6 are the aftermarket coatings that have lower 

curing temperatures and in which sample 3 is an established coating that has been in use 

for a long time, and is generally considered to buff easily and is used as a reference 
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coating.  Out of the six stages of each clearcoat, the first stage or step 0 is the initial 

coated sample, and the next are the five buffing stages.  These samples were 

characterized using the Nano Indenter XP for hardness and modulus measurements and 

the AFM to measure roughness and scratch morphology at the various stages of the 

clearcoats.  

Indents were made on all 36 samples to determine the hardness and modulus.  

Figure 16 is the average modulus graph of all the samples, and Figure 17 is the average 

hardness graph. Standard deviation bars (shown in Figures 16 and 17) of the hardness and 

modulus graphs in step 1 and step 2 are greater because of roughness of the samples; the 

greater the surface roughness, the greater the deviation from the represented value.   

 
Figure 16: The average modulus graph in all the buffing steps from 1 to 5 and unbuffed 

samples.  
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Figure 17: The average hardness graph in all the buffing steps from 1 to 5 & unbuffed 

samples.  
 
 The Scanning Probe Microscope was operated in contact mode, using a silicon 

nitride tip, to determine the roughness of all 36 samples.  The images were taken at 3 

different locations on each (1 cm × 1 cm) sample. The roughness measurement presented 

is the average of the three images with the standard deviation of the three measurements.  

Images of step 1 and step 2 were taken with dimensions of 100 µm × 100 µm in x-y scale 

and a z scale of 2 µm.  The images of steps 3, 4, 5, and 0 were taken at 25 µm × 25 µm 

using a z scale of 100 nm for steps 3 and 4 and 25 nm for steps 5 and 0.  The decrease in 

the z scale from 2 µm to 25 nm in the five stages of buffing signifies that the scratches 

are polished from coarse to ultrafine, making the surface look glossy and free from 

visible surface imperfections.  Figure 18 shows the images of one of the OEM samples; 
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the images illustrate the damage to the sample done by early sanding with a grit of P1500 

and P3000 in steps 1 and 2 that are buffed out in the steps 3, 4, and 5 with buffing 

compounds.  Figure 19 shows the average roughness of all the samples measured in each 

step. The average roughness was calculated using the roughness of the images taken from 

the Scanning Probe Microscope at three different places on each sample.  The average 

roughness for step 1 and 2 shows a large variation at different spots on the sample; it also 

can be spotted from the graph that these steps have a noticeable standard deviation. 

           
Step 1                                                           Step 2 

 

           
Step 3                                                            Step 4 
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Step 5                                                            Step 0 

 
Figure 18: SPM images of sample 2 used in estimating the roughness measurement, the 
dimensions of step 1 and step 2 images are 100 µm × 100 µm and a z scale of 2 µm and 

all the remaining steps 3, 4, 5 and 0 are at 25 µm × 25 µm but the z scale of 3 and 4 
images is 100 nm and the for the steps 5 and 0 is 25 nm. 

 

Figure 19: The Average Roughness graph in all the six steps of each sample measured 
with Scanning Probe Microscope.   
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Results and discussions 

The results of both the studies from the indentation and SPM can be interpreted 

by plotting the variations of average roughness, average modulus, and average hardness 

in each of the buffed samples. The average roughness plot shows that the OEM samples 

are slightly less rough than the aftermarket ones in the first stage of buffing.  The average 

modulus plot depicts that OEM samples have higher modulus than the aftermarket 

samples in the first stage of buffing, but gradually this reverses in the next four stages and 

it becomes opposite in the fifth stage.  The average hardness is comparatively higher in 

the OEM samples throughout the buffing stages, but one of the OEM’s (sample 1) 

displays greater hardness than any of the other samples.  The samples with higher 

hardness and higher elastic modulus seem to be cut more (remove excess material), and 

vice versa.  We were not able to reproduce scratches made by the buffer in order to know 

what happens while scratching using Nano indenter, since speed (speed of the buffer is 

ten thousand times greater than the velocity of the tip) was the main limitation of this part 

of the study.  The project sponsor found that Sample 2 is much more challenging to buff 

than Sample 1.  This is contrary to the idea that the harder materials are more difficult to 

buff.  
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3.3 Curing Study 

The refinish work of the automotive clearcoats was done between 4 to 6 hrs after 

the panel was coated and baked; this was because the body shops want to save time and 

cost.  To this end we wanted to make a time study of the curing process of the clearcoats 

testing the mechanical and tribological properties of the clearcoats right after they are 

painted.  In order to paint a sample, the coating was mixed with the hardener at a specific 

ratio and stirred properly for a fine mixing. This mixture was taken in to a cup holder of 

the spray gun, which should be thoroughly cleaned before spraying the clearcoat.  The 

coatings were done on steel panels that already have basecoat on them, and on aluminum 

panels that were also used in the later part of the study.  There are several parameters that 

should be controlled, such as using a clean substrate for coating the sample, maintaining 

dirt-free surroundings that are a constant temperature, and, most important, coating the 

film in a uniform thickness.  The coated panels are baked for a specific amount of time at 

a specific temperature, depending on the manufacturer directions.  Again the oven used 

for baking must be clean and have a uniform temperature and air filtration across the 

chamber.  Usually the paintings are done over at the Coatings Research Institute (CRI), 

Eastern Michigan University (EMU), and the samples are brought to the Surface Science 

and Nano Tribology Lab (SSNTL) and are tested within 4 to 5 hours after coating and 

baking as the samples were coated by a spray technique.  Starting the first curing tests 

with an aftermarket clearcoat, we measured the elastic modulus and hardness and 

scratched the surface of the paint at constant loads of 2, 4, 6, 8, and 10mN, about 4 - 5 

hours after taking the sample from the oven, as well as on the second day, fourth day, and 

after a week using the Nano-Indenter XP.  It was difficult for the indenter to find the 
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surface when the sample was too soft in the four-hour range.  The curing of the clearcoat 

within the first four hours was less and one has to manually define the surface when the 

indenter is running.  We discovered that when the stiffness dramatically shifted, then we 

considered it as the indenter found the surface.  This problem when testing the samples in 

the four-hour range was seen in all the clearcoats, and the problem also signifies that the 

clearcoats are not fully cured even 4 to 5 hrs after taking the samples out of the oven.  

Nine indents were made, each at the time of 4 hrs, the second day, and fourth day, and 

after a week.  On one of the aftermarket samples, we tested to measure the hardness and 

modulus.  Figure 20 is the graph of the average modulus, and Figure 21 is the graph of 

the average hardness.  They clearly show the change in the mechanical properties with 

the time. It is also interesting to note from the graphs that the samples tend to cure over a 

week.  The cure rate is faster in the first 2 to 3 days and approaches a stable value that 

increases at a reduced rate.  

We made both indents and scratch studies.  Nine indents were made in an array of 

a 3×3 matrix.  Scratch testing was performed on each of the samples immediately 

following the indentation testing on each of the testing days.  The scratch tests were 

performed with different constant loads of 2, 4, 8, and 10 mN.  We made a second study 

on the same samples but this time with a different thickness with the same spray 

technique.  The hardness and modulus measured this time was less than the previous 

values due to the difference in thickness.  Figures 22 and 23 are the average modulus and 

hardness graphs of the same clearcoat but with a different thickness. The graphs clearly 

indicate the change in mechanical properties over a period of time, but when compared to 

the same clearcoat at a different thickness, the sample initial modulus varied from 2.48 
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GPa (thick) to 1.69 GPa (thin) and also the initial hardness varied from 1 GPa (thick) to 

0.5 GPa (thin). The final modulus and hardness approached the same values in both the 

cases. 

 

 
Figure 20: Average modulus graph for the thick sample; this clearly shows the 

change in modulus over time. 

 
Figure 21: Average hardness graph for the thick sample; also shows the change in 

hardness over time. 
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Figure 22: Average modulus of the same sample but different thickness; the graph 

clearly shows the increase in modulus with time.  
 

 
Figure 23: Average hardness of the same sample with different thickness; the 

graph clearly shows the increase of hardness over time. 
 

 
There is an indication that the thickness also affects the mechanical properties of 

the clearcoats in the early stages of curing.  As mentioned earlier, the above bar graphs 

are the results of same clearcoat, but Sample 1 is thicker than Sample 2 since they were 

made by different people at different times.  We further studied the effect of thickness on 

the curing process.  As it is very difficult to get an exact thickness of the film with the 
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spray technique, we considered using the drawdown method using a drawdown bar.  The 

film thickness is also found to be more consistent than the spray method.  We made a 

systematic study of the change in mechanical properties measured during the curing 

process of a coating applied by spray and a coating of the same thickness applied using a 

drawdown bar.  For this purpose we prepared three samples of the same aftermarket 

sample used previously.  On one we applied the paint using a spray gun in a single coat, 

with a dry film thickness of approximately 1 mil (1 mil = 25.4 µm).  On another we 

applied the paint using a drawdown bar with a dry film thickness also of approximately 1 

mil.  And for a third sample we also applied the paint using the drawdown bar, but with a 

dry film thickness of approximately 0.5 mil. 

We did indentation testing to measure the hardness and modulus of the cured 

samples.  Tests were run on Day One or the first day of the study, starting about 2 hours 

after the samples came out of the oven.  The tests were repeated on days 2, 5, and 8.  Four 

separate indentations approximately 300 µm apart were done on each sample each day of 

the study.  First one indentation was done on each of the samples, and then the second 

indentation, and so on.  Figure 24 shows the progress of curing with time and clearly 

demonstrates how the modulus varies with depth for each of the samples on the four days 

when testing was conducted.  Each line is the result of a separate indentation test. The 

three colors differentiate the tests run on each of the samples where the blue and green 

color curves show the samples prepared using drawdown technique of 0.5mil and 1mil 

thick, respectively, and the red color curves shows the sample prepared with the spray 

technique with 1mil thick.  It can be clearly seen from these graphs that the two samples 

prepared using different coating methods behave very similarly, while the thinner coating 
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cures much faster than the thicker coatings. The hardness data also followed a similar 

trend.    

Figures 25 and 26 show the average hardness and modulus graphs of the curing 

study with spray and drawdown techniques. The graphs presented are the averaged 

results between 3 to 5 µm of indentation depth. The 3D bar graphs show that the coating 

done with drawdown of 0.5mil is different from the 1mil thick samples, as the 0.5mil 

thick sample shows higher modulus and hardness in the beginning, but all three samples, 

after being fully cured, attain a constant maximum value. Hardness and modulus over 

time for all the samples increases at a reducing rate. 

Scratch testing was also performed on each of the samples immediately following 

the indentation testing on each of the testing days. Scratching was done under each of the 

following constant loads, 2, 4, 8, 16, and 32 mN, with a scratch length of 1000 µm. As 

with the indentation, first a 2mN scratch was performed on each of the samples, then the 

4 mN scratches, and so on, to limit the time difference for the tests on each of the 

samples.   
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Day 1         Day 2 

 
Day 5         Day 8 

 
Figure 24: Modulus graphs of the same after market sample tested earlier at different 

thicknesses 2 hours after of coming out of the oven and on the 2, 5, and 8 days. Red tests 
were run on the spray sample (approximately 1 mil coating thickness), Green tests were 

run on the drawdown sample (approximately 1 mil coating thickness), and Blue tests 
were run on the drawdown sample (approximately 1/2 mil coating thickness). 
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Figure 25: Average modulus graph of a clearcoat with thickness ½ mil (blue) and 

1 mil (green) using drawdown technique and 1mil (red) using spray technique.  
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Figure 26: Average hardness graph of a clearcoat with thickness ½ mil (blue) and 

1 mil (green) using drawdown technique and 1mil (red) using spray technique.  
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Results and discussions 

The indentation test results clearly showed the changes in the properties.  As the 

time progressed, the elastic modulus and hardness increased at a reducing rate of change.  

The sample with the slightly increased thickness of the same coating showed the same 

tendency, but the modulus and hardness values were lower at the beginning because the 

samples were not totally cured.  This trend was also shown by the spray and drawdown 

indentation tests.  

The scratch tests showed that the ditch area, shoulder area, and trough area 

decreased, indicating increasing resistance of the paint against the abrasive wear and the 

plastic deformation.  Over all, the coating method appears to influence scratching 

morphology at least as much as film thickness.  The real-time scratch depth is less on the 

sprayed sample than on the two drawdown samples on Day 1 and Day 2 of the study, 

regardless of film thickness.  But by day 8 of the study, the real-time scratch depth is 

similar for similar film thickness, regardless of coating method.  Also, all three samples 

have a similar residual scratch depth, even though the real-time scratch depth was 

different.  The mar resistance for the spray coating was better overall than for the 

drawdown coatings.  

As was predicted earlier, the thickness of the coating considerably affects the 

mechanical properties in the process of curing, but it showed no effect after curing.   
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4: Conclusions 

In the presented work, we first measured and compared the mechanical properties 

of a traditional coating and a new coating. It was thought for a long time that the higher 

modulus and hardness were the causes of the difficulties in the grinding/buffing work. 

We found it may not be always true. The tested new coating, which is difficult to buff to 

make a smooth surface, possesses lower modulus and hardness than the traditional 

coating. Although hardness is a cause of the difficulties, sometimes soft coatings may be 

ductile and viscous, which makes smoothing the surface difficult. 

3M carried out cut tests, measuring the mass loss after grinding and buffing, and 

finish tests, measuring the Haze level of the grinded and buffed surface, in the study of 

refinish work, and found no clear pattern of correlation between the cut and the finish. 

More cuts did not necessarily result in a better finish. After we examined 36 samples, i.e., 

six coatings at six stages during the refinish process, using the scanning probe 

microscope, we found that the cut is a measure of abrasive wear, i.e., mass loss, while the 

Haze level is an indication of the surface morphologies after grinding and buffing, 

including gouges caused by mass loss and ditches and shoulders caused by plastic 

deformation, etc., thus they do not have a clear correlation. We also measured elastic 

modulus and hardness of the six samples at each stage using the Nano-Indenter XP, and 

found the samples with higher hardness and higher elastic modulus seem to be cut more, 

and vice versa. For example, aftermarket PPG ceramic clear coating possesses a lower 

hardness and modulus and was cut less, which might be due to its softness and its being 

more ductile and viscous. 
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 Since the technicians in the body shops begin their grinding/buffing work within a 

couple of hours to several hours after applying and baking the coatings, we studied the 

freshly prepared samples intensively and found the mechanical and tribological properties 

of coatings changed dramatically in the curing process, especially in the first 12 hours. As 

the time went on, the modulus and hardness of the coatings increased at a gradually 

reduced rate to reach the stabilized values as weathered coatings. The new coatings 

usually are not ready for the refinish work due to their uncured softness and being ductile 

and viscous a couple of hours to several hours after baking. To ease the refinish work, we 

have to adjust the baking conditions (temperature and time), modify the formula of the 

coatings (e.g., add some solvent), etc. to open a “window” (to discover a better time to 

buff the samples) a couple of hours to several hours after baking, at which time the 

coating possesses moderate hardness and elastic modulus, while not being ductile and 

viscous, in addition to improve the grinding and buffing devices, pad materials, and 

buffing compounds. 
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