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ABSTRACT 

 

 Nontypeable H. influenzae (NTHi) causes repeated respiratory infections 

characterized by a brisk inflammatory response that results in the expression and 

secretion of proinflammatory cytokines.  We hypothesized that secreted and cell 

asssociated NTHi proteins mediate cellular interactions with respiratory epithelial cells, 

leading to the production of  interleukin (IL)-8.  We exposed human tracheal epithelial 

cells to H. influenzae strain Rd and compared the resulting profiles of IL-8 secretion.  

Putative H. influenzae Rd modulins were enriched from culture supernatant fluid.  

Proteome analysis of the enriched fractions revealed 27 candidate proteins.  Further 

analysis of four proteins, ClpB, OmpP2, TonB, and RelA, suggested a potential role in 

the IL-8 response.  A fifth protein, FtsH, showed no such response.  Study of the other 22 

proteins is required to understand their role in cytokine induction.  These results suggest 

that factors other than lipooligosaccharide (LOS) contribute to IL-8 secretion. 
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CHAPTER 1 

INTRODUCTION 

 

A. Nontypeable Haemophilus influenzae (NTHi) and Epidemiology 

 Chronic obstructive pulmonary disease (COPD) afflicts more than 15 million 

Americans, is responsible for more than 15 million physician office visits each year, and 

results in approximately 150 million days of disability  per annum (2, 116).  The total 

direct cost of medical care expenses because of this disease is approximately $15 billion 

per year (136).  It is the fourth most common cause of death in the United States (121).  

Nontypeable Haemophilus influenzae (NTHi) is the most common cause of exacerbation 

among patients with COPD (96, 121, 128, 147).  NTHi  is also known to be associated 

with cystic fibrosis (CF), the most common autosomal recessive disease among 

Caucasians, affecting 1 in 2500 newborns (24).  Isolates of  NTHi account for 20-30% of 

all episodes of acute otitis media and perhaps a higher percentage of recurrent otitis 

media infections (47).  Recent research has shown that this bacterium is also responsible 

for over 40% of the cases of chronic otitis media (110).  Approximately one-third of the 

cases of acute or chronic sinusitis is caused by NTHi (39, 142).  Apart from the above- 

mentioned diseases, NTHi is known to be associated with diseases like chronic 

bronchitis, pulmonary exacerbations, community-acquired pneumonia, meningitis, septic 

arthritis, and septicemia (86, 98).  

 NTHi causes pathogenesis in patientS with COPD by first colonizing the upper 

respiratory tract followed by contiguous spread in the adjacent areas.  In most cases of 
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systemic disease due to NTHi,  the patients have anatomic abnormalities or compromised 

immunities (86).  The upper respiratory infection disrupts mucociliary activity, integrity 

of the mucosal lining, and neutrophil function, predisposing NTHi to cause several 

diseases (48, 84).  For example, existing lung diseases such as CF, chronic bronchitis, 

and bronchiectasis impair the mucociliary escalator, thus allowing NTHi access to the 

lower respiratory tract, causing bronchitis and pneumonia (48, 84).  Excessive exposure 

to cigarette smoke, air pollution, or viral infection results in goblet cell hyperplasia, 

mucus hypersecretion, and decreased respiratory epithelial cell ciliary function, which 

further increases the possibility of NTHi causing chronic respiratory  tract infections (83, 

95, 100, 131).   

 Apart from NTHi, other pathogens like Pseudomonas aeruginosa, Burkholderia 

cepacia, Bordetella pertussis, Moraxella catarrhalis, and Streptococcus pneumoniae  are 

also known to be involved with the above-mentioned respiratory diseases (52, 120).  All 

of these organisms produce several molecules that react with respiratory epithelial cells 

and cause the elevation of proinflammatory cytokines (68, 146, 148).  These molecules 

can be bacterial cell associated or extracellular in nature and might include 

lipooligosaccharide (LOS), proteases, outer membrane proteins, adhesins, outer 

membrane vesicles, or secreted molecules (69, 146).   

 NTHi LOS produces the ciliotoxic effects of infection with the whole organism 

and is found to be 10-fold more potent than other virulence factors in stimulating the 

release of monocyte-derived inflammatory mediators such as tumor necrosis factor 

(TNF)-α, interleukin (IL)-1β, and interleukin (IL)-6 (78, 56).  NTHi LOS has been shown 

to stimulate cytokine and chemokine (e.g., interleukin (IL)-8 gene expression) in human 
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respiratory epithelial cells (43, 125, 138).  Recent studies have shown that NTHi LOS 

accounts for approximately 50% of the proinflammatory cytokine stimulation from the 

human respiratory epithelial cells, suggesting that other bacterial molecules (e.g., 

modulins) play a role in the inflammatory response (23).  The interaction of the modulins 

with the respiratory epithelial cells stimulates the secretion of proinflammatory cytokines 

and chemokines (17, 19, 29, 34, 57, 85).  The chemokine IL-8, in particular, shows a high 

level of activity from  respiratory epithelial cells when stimulated with NTHi modulins 

and is believed to be involved in the process of recruitment  and activation of  neutrophils 

and other leukocytes in the lungs of the patients with COPD (15, 75, 78, 133). 

 

B. Nontypeable Haemophilus influenzae and the Proteins or Factors Involved in 

Pathogenesis 

 Haemophilus influenzae, belonging to the family Pasteurellaceae, is a Gram-

negative, fastidious, nonspore-forming, coccobacillus-to-long-filament-shaped bacterium 

that was first described by Pfeiffer in 1892 (31, 107).  It has derived its name 

Haemophilus, which means “blood-loving”, from its dependence on heme-related 

molecules for growth under aerobic conditions (6).  H. influenzae exists in two forms, 

encapsulated and nonencapsulated.  Six antigenically and structurally distinct capsular 

polysaccharides, referred to as serotypes a-f, are expressed in the encapsulated strains 

(109).  Nontypeable H. influenzae (NTHi) are unencapsulated strains that do not react 

with the antisera against the polysaccharide capsules (63).   

 NTHi  is a common commensal organism in the human nasopharynx and occupies 

this niche as its natural habitat (63, 72, 88).  The rate of nasopharyngeal colonization 
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increases from approximately 20% during the first year of life to over 50% by the age of 

5-6 yrs, then remains high through adulthood (63, 72).  Adults typically carry one strain, 

whereas children simultaneously harbor multiple strains (63, 88).  β-lactam antibiotics, 

such as ampicillin and amoxicillin, are known to treat many disease incidences of  NTHi;  

increasing resistance is becoming evident, however, and tends to be associated with the 

production of β-lactamase (12, 61, 108).  Occasional isolates demonstrate penicillin 

resistance from an altered production of penicillin-binding protein and diminished 

affinity for β-lactam antibiotics.  Resistance to other antibiotics, like trimethoprim-

sulfamethoxazole, clarithromycin, and azithromycin, has been found (61,108). 

 An important requirement for NTHi in establishing infection is to first adhere to 

respiratory epithelium successfully, followed by persistence on the mucosal surface.  

Various studies have been performed that indicate many bacterial factors that aid in 

adherence and colonization on the mucosal lining.  These include the outer membrane of 

NTHi that represents the interface between the organism and the human host, containing 

integral membrane proteins, surface associated proteins, and lipooligosaccharide (62). 

Lipopolysaccharide (LPS) is present as the major outer membrane component of many 

gram-bacilli and plays an important role in pathogenesis.  In H. influenzae this LPS lacks 

an O-antigen and therefore is called lipooligosaccharide (LOS) (7,42).  Studies performed 

in vitro have shown that the LOS from NTHi is responsible for the release of 

proinflammatory chemokines and cytokines from cultured human bronchial epithelial 

cells, middle ear epithelial cells, and monocytes (56,81,82,138).  Moreover, LOS from 

NTHi also played a significant role in the stimulation of intercellular adhesion molecule-

1 (ICAM-1) from the surface of human bronchial epithelial cells (81, 82).  These surface 
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exposed ICAM-1 molecules, along with other cytokines, like IL-8, help in the 

recruitment of polymorphonuclear leukocytes (PMNs) to the site of infection caused by 

NTHi.  Recently, another series of molecules, found in the soluble cytoplasmic fraction  

(SCF), were studied and  found to be made up of  lipopeptides (143).   These SCF 

molecules were approximately   < 3-kDa and were associated with IL-8-inducing activity. 

  Apart from LOS, some of the other examples of bacterial cell surface factors that 

aid in adherence to the respiratory epithelium are molecules like pili, HMW proteins, Hia, 

and Hap (10, 11, 135).  Pili are hairlike appendages protruding from the surface of the 

bacteria that help  in adherence to the respiratory epithelium (135).  The HMW adhesins 

consist of HMW1 (125-kDa) and HMW2 (120-kDa).  They are part of the autotransporter 

family of proteins and  are encoded by genes that encode for the adhesive molecules  in 

different strains of NTHi (11, 129).  Nearly one-fourth of the nontypeable strains of H. 

influenzae lack HMW proteins but still show the ability of adhering to the respiratory 

epithelium (130).  For example, there are other proteins that play an important role in 

adhering to respiratory epithelial cell surface, like Hia (10).  Hap is another such protein 

that has the ability to adhere to the bacterial surface (132).  A recent study showed Hap 

protein’s having no function in respiratory epithelial cells’ cytokine stimulation (93, 128).   

Adhesive activities have been described in the work of Hartmann and Lingwood in 

NTHi; it was found that in response to heat shock, bacteria showed an increase in binding 

activity to sulfatoxygalactosylglycerol and sulfatoxygalactosylceramide (65).  The 

increased adherence was due to two Hsp 70-related heat-shock proteins (65).  Another 

protein from NTHi, known as OapA, has proved to be important for significant adherence 

and colonization in the nasopharynx  of a rat model (144).  The studies performed by 
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Kubeit and Ramphal showed that NTHi  attaches to a major component of mucus, called 

mucin aiding, in the formation of colonies within the mucus layers, followed by the 

release of  soluble factors that cause ciliostasis and sloughing of the ciliated cells in the 

upper respiratory tract (62, 87, 111).   

 After successful adherence to the epithelial surface, the next step for the bacteria 

is to persist inside the host successfully.  One of the main ways of achieving this goal is 

by attacking the host immune system to derive nutrients such as heme and iron.  

Immunoglobin IgA, which is present on the mucosal surfaces of the host, inhibits the 

adherence and binding action of the bacteria by agglutination (18).  NTHi secretes the 

endopeptidase IgA1 protease, which inactivates host IgA and facilitates bacterial 

colonization under such circumstances.  This protease acts by cleaving the peptide bond 

present in the hinge region of the serum and secretory forms of IgA1 and helps in release 

of the antigen-binding domain, therefore further reducing the chances of any 

agglutination activity (97).  In one of the recent studies, this gene showed the absence of 

any stimulation of proinflammatory cytokines from human respiratory epithelial cells 

(23, 74, 93).           

 Other proteins of NTHi playing important roles in the pathogenic process are the 

six major outer membrane proteins (OMP), P1 to P6.  Of these six proteins, P2 is known 

to be the most abundant OMP (99).  It forms a trimer and has porin activity, allowing 

molecules of  up to 1400 Dalton to pass through the membrane (27, 62, 99).  Omp P2 has 

been shown to act as a target for protective antibodies in an H.influenzae type b (Hib) 

experimental model (59).  Reports showed that the Hib porin contributed to the signaling 

process in the inflammatory cascade during disease and that this porin mediated 
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proinflammatory cytokine induction by the TLR2/MyD88 pathway (45, 46).  Omp P2 has 

been shown to be a facilitator for nicotinamide-based nucleotide transport (4).    

 Omp P6 is a highly conseved 16-kDa lipoprotein that has been associated with 

induction of proinflammatory cytokine and chemokines, mainly IL-10, TNF-α, and IL-8, 

from human macrophages (14).  Omp P6 has also been found to activate NF-κB via 

TLR2-TAK1-dependent NIK-IKK / -I B  and MKK3/6-p38 MAP kinase-signaling 

pathways (125).  NF-κB, a transcription regulator, plays an essential contribution during 

the pathogenesis of diseases and has been shown to play an important role in the 

expression of many genes, including cytokines, chemokines, and other mediators, that are 

involved during the process of inflammation (67). 

 In addition to the above-mentioned major outer-membrane proteins, many minor 

outer-membrane proteins are also involved in the acquisition of heme (53, 145).    

Examples of such minor outer-membrane proteins involved in the binding and acquisition 

of heme are transferrin-binding proteins (Tbp1 and Tbp2) and several other heme-   

binding proteins, namely Hxu, Hgp, and Hit.  The transferrin-binding proteins serve as 

surface receptors for human transferrin and help in the acquisition and transport of iron 

into the bacterial periplasm (54, 71, 119).  This is a complex transport process that 

involves a second protein, called TonB (54, 71, 119).  TonB is an energy-transducing 

transmembrane protein that assists in the transport of several vital metabolites after they 

bind to bacterial cell-surface receptors.  Recent studies by Clemans et al. described tbpA 

and tbpB as having no such involvement with IL-8 induction from the human respiratory 

epithelial cells (74, 93, 128). 
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  In vitro research has shown that heme, hemoglobin, heme complexed with 

hemopexin, or hemoglobin complexed with haptoglobin can also provide porphyrin and 

iron required by H. influenzae for aerobic growth of (28, 134).  TonB fulfills this 

requirement of NTHi by actively transporting chemicals like heme, hemoglobin, 

hemoglobin:haptoglobin, heme-albumin, and heme:hemopexin and further transferring 

them into the periplasm (25, 76, 92).   

 Apart from the above-mentioned outer membrane proteins, there are several other 

proteins involved with H. influenzae that help in the acquisition of heme and thus further 

assist this bacterium in establishing pathogenesis inside the host environment.  Proteins 

encoded by the hxu operon called HxuA, HxuB, and HxuC are associated with heme and 

hemopexin transport.  HxuA, which is a 100-kDa protein, is required for utilization of 

heme bound to hemopexin (25).  The 60-kDa HxuB is thought to be associated with 

facilitating  the secretion of  HxuA (25).  HuxC, a 78-kDa protein is involved in the 

transport of the HxuA: heme complex into the bacterial cell (25).  In an in vitro study, the 

phenotype of an 
hxuC mutant showed a lack of the  ability  to utilize heme at very low 

concentrations (25).  H. influenzae can also bind to hemoglobin by the process that 

involves various proteins, including 120-kDa HgpA, 115-kDa HgpB, and 120-kDa HgpC.  

HgpA helps in binding and transport of hemoglobin:haptoglobin complexes and free 

hemoglobin;  HgpB is associated with the binding and transport of hemoglobin; and 

HgpC is involved in binding and transport of  hemoglobin:haptoglobin.  Hgp proteins 

have shown no contribution in the stimulation of human respiratory epithelial cell 

cytokine activation (23, 74, 93).    
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C. H. influenzae and Inflammation 

          In order to establish itself inside a hostile host environment, H. influenzae has 

acquired various mechanisms to escape the innate as well as the adaptive immune 

responses elicited by its host.  H. influenzae type b is more resistant to a host immune 

system than are other strains because it contains the polyribosyl ribitol phosphate 

polysaccharide capsule (139).  The respiratory infection caused by NTHi has been 

associated with direct damage of the epithelial cells and has been found to be associated 

with elevated proinflammatory response.   

             In vitro experiments with NTHi have shown cytokines like IL-6, IL-8, and TNF-

α (82) involved in mechanisms to up regulate inflammation.  Recent studies demonstrated 

that the p38 mitogen-activated protein kinase (MAPK) and the Src-dependent Raf-1-

Mek1/2-extracellular signal-regulated kinase mitogen-activated protein kinase (ERK 

MAPK) pathways are required for NTHI-induced IL-8 production (143).  In chronic 

bronchitis and COPD, the airway bacteria are associated with an increase in 

concentrations of neutrophils, leukotriene B4 (LTB4),   and TNF- α (30, 112).  The rise in 

the levels of TNF-α during exacerbation leads to an increase in the activity of endothelial 

adhesion molecules that directly activates PMNs (1, 80, 122). 

        Studies have shown that during an NTHi infection in patients with COPD, 

inflammatory cells infiltrate the respiratory airways, limiting oxygen flow and 

manifesting increased breathlessness in the patients (33, 104, 113).  During 

exacerbations, pulmonary inflammation becomes more prominent with the recruitment of 

eosinophils and an increase in the number of CD4+ lymphocytes (151).  Release of 

elastase and different proteinases due to neutrophil degranulation causes respiratory 
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epithelial cell damage and reduced ciliary action (126).  This further promotes the goblet 

cells to stimulate mucus secretion (102), leading to edema and protein exudation into the 

airway due to an increased amount of permeability of the bronchial mucosa (50).  A 

decrease in the concentration of colonized bacteria shows reduction in the levels of 

inflammation.  The cytokine found to be associated with the neutrophilic inflammatory 

changes during most severe episodes of the disease is IL-8.  Thus, it is important to 

identify the modulins present in NTHi that might cause the release of these 

proinflammatory cytokines and chemokines from the human respiratory epithelial cells. 

 Further study on the NTHi proteins that play a role in respiratory epithelial cell 

inflammation will shed new light on the understanding of the intricate mechanisms 

involved between host-pathogen interaction in patients with COPD and other respiratory 

diseases. 

 

D. Rationale and Hypothesis 

 Study from the literature supports our hypothesis that NTHi stimulate a variety of 

human cells to secrete proinflammatory cytokines and indicate that pathogenic H. 

influenzae are capable of recognizing several different cell-surface receptors.  So far no 

studies have comprehensively analyzed all of the NTHi modulins that stimulate a 

proinflammatory response in host respiratory epithelial cells.  Our hypothesis, therefore, 

is that the secreted and cell associated, non-LOS, NTHi modulins induce the production 

of proinflammatory cytokines from human respiratory epithelial cells.  The goal of this 

study is to identify and characterize the secreted and cell-associated non-LOS modulins 
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from NTHi that stimulate the secretion of proinflammatory cytokines from respiratory 

epithelial cells.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

A. Bacterial Strains and Growth Conditions 

 Table 1 describes the bacterial strains and plasmids used in this study.  Mutant 

strains of H. influenzae were kindly provided by Tim Murphy (State University of New 

York, Buffalo).  Strains of H. influenzae were cultured on chocolate agar plates (BBL, 

Becton Dickinson, Cockeysville, Md.) at 37oC in 5% CO2.  H. influenzae were cultured in 

the chemically defined MIc liquid medium or the complex Brain Heart Infusion (BHI) 

(Difco, Becton Dickinson, Cockeysville, Md.) (9, 20). BHI is useful for growing 

fastidious bacterial strains like H. influenzae.  Further, we shifted to work with BHI 

ultrafiltered with YM 30 membrane, as it showed fewer protein contaminants in the 

medium and thus gave a clearer background on the sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) gels.  All H. influenzae growth media 

were supplemented with hemin (100 µg/ml) and β-NAD (nicotinamide adenine 

dinucleotide) (both from Sigma Chemical Co., St. Louis, Mo).  H. influenzae mutants 

with antibiotic resistant markers were cultured in media containing 34 µg/ml 

chloramphenicol.  E. coli strains containing the antibiotic resistance markers were grown 

in LB medium (Difco) containing 100µg/ml ampicillin.  For long-term storage, the 

strains were stored at -80oC in skim milk (H. influenzae strains) or 30% glycerol (E.coli 

strains). 
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Table 1.   Bacterial strains and plasmids used 

Strain or plasmid Description of phenotype Reference 

 

H. influenzae 

Rd 

P2 mutant 

13P24H1 

13P24H1 mutant 

 

E. coli 

JM109 

 

Plasmids 

pGEMT-Easy 

clpB: pGEMT-Easy 

relA: pGEMT-Easy 

tonB: pGEMT-Easy 

 

 

Wild-type Rd strain  

Rd strain deficient in P2, Cmr
 

Clinical isolate strain from COPD patient 

Clinical isolate strain deficient in P2, Cmr 

 

 

Host strain used for cloning experiments 

 

 

TA cloning vector, Ampr 

clpB gene from strain Rd in TA cloning vector 

relA gene from strain Rd in TA cloning vector 

tonB gene from strain Rd in TA cloning vector 

 

 

41 

26 

124, 123 

124, 123 

 

 

Promega 

 

 

Promega 

This study 

This study 

This study 

 
Cmr –  Chloramphenicol resistant cassette 
Ampr – Ampicillin resistant cassette 
 
 
 

B. Cell Culture 

 The human respiratory epithelial cell line 9HTEo- was obtained from Dieter C. 

Gruenert (University of California, San Francisco) (55).  These cells were cultured in 75 -

cm2  tissue culture flasks  (Techno Plastic Products, Trasadingen, Switzerland) in 20 ml 

of Eagle’s minimum essential medium (Gibco, Invitrogen, Carlsbad, Calif.) 

supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin solution, and 1% 

L-glutamine (all from Gibco).  After the formation of confluent monolayers, the adhered 
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cells were released from the plastic surface of the flask with 0.05% trypsin, 0.53 mM 

EDTA (Gibco) for 10 minutes at 37oC and 5% CO2.  Viable cells were enumerated in a 

hemocytometer through the use of trypan blue dye (Gibco) exclusion.  Cells were 

resuspended in cell-culture freezing medium (Gibco) and cryopreserved for extended 

periods under liquid nitrogen.   

 

C. Ultracentrifugation of the Supernatant Fluid Obtained from H. influenzae 

Strain Rd 

 H. influenzae strain Rd was grown in sBHI (supplemented brain heart infusion) 

broth at 37°C in a shaking water bath set at 100 rpm.  The overnight culture of bacteria 

containing the whole bacterial cells with the broth they had been growing in is referred to 

as the culture fluid (CF).  All the experiments beyond this point were carried out at 4oC to 

retain the protein activity.  Bacterial CF was filtered by use of 0.22-µm nitrocellulose 

filters, and the resulting filtrate devoid of bacterial whole cells is referred to as the 

supernatant.  Further, the two fractions of greater than and less than 100-kDa were 

generated by the process of ultrafiltration of the supernatant fraction with YM100 

membranes (Millipore Corporation, Bedford, Mass.).  These fractions were 

ultracentrifuged at 100,000 xg for 2 hrs to recover potential membrane-containing 

fractions (37).  The pellets obtained after separation from the supernatant fluid were 

washed with phosphate-buffered saline (Gibco).  Each of the fractions obtained were 

assayed with Bio-Rad protein assay to determine the protein concentration (Bio-Rad 

Laboratories, Hercules, Calif.).   
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D. Enrichment of Modulin from H. influenzae Strain Rd 

 The culture fluid (CF) was obtained after growing H. influenzae strain Rd to the 

stationary phase.  All further steps were carried out at 4oC to prevent the loss of any 

protein activity.   The culture fluid was centrifuged (Sorvall superspeed RC2-B, Ivan 

Sorvall Inc., Norwalk, Conn.) inside 250-ml GSA centrifuge bottles (Nalgene, Rochester, 

N.Y.) at 3020 xg for 20 minutes.   The pellet obtained was discarded, and the supernatant 

was carefully decanted into a fresh, sterile bottle.  This supernatant fluid was filtered with 

a 0.22-µm nitrocellulose filter (Millipore) to eliminate the whole bacterial cells.  Protease 

inhibitor cocktail (Cat.# P-8465, Sigma)  was added to the filtered supernatant fluid at a 

ratio of 500µl of protease inhibitor to 500 ml of the supernatant fluid.   An ultrafiltration 

cell (Amicon Corporation, Denvers, Mass.) equipped with a YM100 membrane 

(Millipore) was used to concentrate 2.5 liters of culture fluid to 4-5 ml and generate 

>100-kDa and <100-kDa fractions.  The highly concentrated  >100-kDa fraction was 

washed 3-4 times with  20 mM Tris pH8.5, 50 mM NaCl buffer and then dialysed three 

times with 20 mM Tris, pH8.5, 50 mM NaCl buffer.  Protein concentration was 

quantified with the Bio-Rad protein reagent (Bio-Rad).   

 

E. Ion Exchange Chromatography 

 Ion exchange chromatography was performed with the use of 5-ml, HiTrap Q 

sepharose high-performance anion exchange columns (Amersham Biosciences, 

Piscataway, N.J.) at 4oC.  The concentrated and dialysed, >100-kDa protein fraction 

(approximately 90 µg) generated in section D, was loaded on the column and washed 

with buffer containing 20 mM Tris, pH 8.5, 50 mM NaCl.  Fractions were batch-eluted 
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with 20 mM Tris, pH 8.5 buffer containing increasing concentration of NaCl (0.1 M, 0.2 

M, 0.3 M, 0.5 M, and 1 M).  Each of the batches were eluted three times with 50 ml of  

buffer, pooled together, and further concentrated to a volume of 3-4 ml with a YM10 

ultrafiltration membrane.  Care was taken to avoid overlap between one fraction and 

another; the column was washed until it showed zero absorbance, measuring at 

wavelength 280 nm.  This was repeated before the column washes were shifted  from one 

concentration of NaCl to another. Each fraction was further concentrated to 250 µl with a 

Centricon C-10 concentrator (Millipore).  

 

F. Stimulation of 9HTEo- Cells with H. influenzae Strain Rd Modulins and 

Other Strains 

 Six-well tissue culture plates (Techno Plastic Products, Switzerland) or 24-well 

tissue culture plates (Techno Plastic Products) were seeded in the concentration of 2 X 

105 cells per mm2 in 3 ml or 1.5 ml of fresh supplemented Eagle’s minimal essential 

medium (Gibco), respectively.   On the second day, the medium was replaced with the 

respective volume of serum-free medium (SAGM from Clonetics, Cambrex Corporation, 

East Rutherford, N.J.) and allowed to grow overnight.  On the third day of growth, the 

cells were approximately 95% confluent.  The growth medium was replaced with 3 ml or 

1.5 ml of fresh serum-free medium for the 6-well or 24-well tissue culture plates, 

respectively.    

 A final protein concentration of 20 µg/ml from each of the samples was used to 

stimulate individual wells containing the 9HTEo- cells.  For the experiments involving 

the study of the role of a particular gene, the culture of E. coli cells in LB medium was 



 17 

incubated with agitation at 37oC overnight.  Bacterial cell concentration was determined 

spectrophotometrically at 610 nm.   6 x 107 bacterial cells were added to each of the wells 

in the 24-well plate already containing 6 x 105 9HTEo- cells per well.  This corresponds 

to a ratio of 100:1 bacterial cells to human respiratory epithelial cells.   

 All experiments included unstimulated (negative) control wells, positive control 

well(s) containing IL-1β (20 ng/ml: BD Pharmingen, San Diego, Calif.), and 

experimental wells containing various levels of stimuli.  

 Cell culture supernatant fluid was harvested after 16 hours of incubation in 5% 

CO2 at 37oC and stored at -80oC.  The schematic diagram of the above experiment is 

represented in Fig. 1. 
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Fig. 1.   In vitro assay system monolayers of 9HTEo- cells in serum-free medium. 

Stimuli   ���� 

 
· IL-1β (20 µg/ml) 
 
· H. influenzae Rd cells  
(20 µg/ml conc of modulin) 
 
· Other mutant and E.coli 

 strain (2 X 105  cfu/well ) 
 
· Column fractions or bacterial  
subcellular fractions 
 

����Harvest & Assay 
 

Culture fluid is harvested 
after 16 hr and assayed for 
IL-8 with commercially 
available kits  
(BD Pharmingen). 
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G. Enzyme-Linked Immunosorbent Assay (ELISA) of IL-8 

 The amount of IL-8 secreted into the cell culture medium following 16 h of 

incubation was determined by an enzyme-linked immunosorbent assay (ELISA).  

ELISAs were performed with BD Pharmingen IL-8 sets according to the manufacturer’s 

instructions.  For assay diluent preparation, the fetal bovine serum used was from Gibco.  

ELISA assays were performed in Immulon 2HB assay plates (Labsystems, Milford, 

Mass.).  The wells were developed with the substrate tetramethylbenzidine (TMB) and 

hydrogen peroxide (BD Pharmingen).  

 The cell culture supernatant fluid was diluted in the assay diluent in the ratio of 

1:10, and the IL-1β was diluted in the ratio 1:50. 

 

H. Statistical Analysis 

 Summary data from various groups were expressed as mean + S.E.M. 

Experimental treatments were compared with controls by the Students’s t test for two- 

sample.  Statistical analysis was performed with the GraphPad version 3.0 for Windows 

 [GraphPad Software, San Diego, Calif. (http://www.graphpad.com)]. 

 

I. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 SDS-PAGE was performed under denaturing and reducing condition on Novex 4-

12%  tris-glycine polyacrylamide pre-cast gels (Invitrogen). The samples were mixed 

with 2X tris-glycine SDS sample buffer (Invitrogen) and boiled for 10 minutes.  They 

were loaded inside the wells of the SDS-PAGE gel and electrophoresed at 125 V in an 
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XCell sure-lock electrophoresis cell (Novex, Invitrogen Corporation).  After 

electrophoresis, the gels were stained with Sypro ruby protein gel stain (Cambrex) and 

scanned with the help of an electronic U.V. transilluminator (Ultra Lum, Inc., Paramount, 

Calif.).  The bands that corresponded to the stimulatory fractions were chosen for 

MALDI-TOF (matrix-assisted laser desorption/ionization-time-of-flight) mass spectral 

analysis. 

 

J. MALDI-TOF (Matrix Assisted Laser Desorption/Ionization-Time-of-Flight)  

Mass Spectral Analysis 

 The specific bands in the SDS-PAGE gels relating to high IL-8 activity were 

submitted to the Michigan Proteome Consortium, University of Michigan, for mass 

spectrometry (MS) and tandem mass spectrometry (MS/MS) by MALDI-TOF technique.  

It is a device for prediction and confirmation regarding identification of given peptides to 

a mass accuracy up to 20 ppm.  The digest of the selected protein bands was performed 

with trypsin.  The tools used for interpretation were MS-Fit (for MS data) and MS-Tag 

(for MS/MS data).  The protein sequence and mass spectral data obtained were used to 

search and identify the H. influenzae putative modulin genes.  The databases used to 

search and identify the putative modulin genes were Protein Prospector 

(http://prospector.ucsf.edu), Mascot (http://www.matrix-science.com), the National 

Center for Biotechnology Information (NCBI; http://www.ncbi.nih.gov) and The Institute 

for Genomic Research (TIGR; http://www.tigr.org).  The parameters used for the 

database searches were hydrogen for peptide N terminus, free acid for peptide C 

terminus, and carbamidomethylation for cysteine modification, and the maximum 
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percentage of unmatched ions were kept at 50.   The putative hit proteins finally 

considered were the ones that corresponded to the correct band sizes from where they 

were excised and had pI > 8.5. 

 

K. Polymerase Chain Reaction (PCR) and Plasmid Construction 

 PCR was performed with PCR master mix (Promega, Madison, Wis.).  We 

obtained the H. influenzae Rd genomic DNA protocol from the manufacturer’s directions 

provided in the Wizard genomic kit (Promega).  The amplification of the various PCR 

products from the H. influenzae Rd genomic DNA were performed through the use of 

oligonucleotide primers listed in Table 2.  Fifty nanograms of chromosomal DNA and 20 

pg of each primer (forward and reverse) were used in a total reaction mixture of 50 µl.  

The 50 µl reaction mixture also included the master mix (Promega) containing Mg+2(3 

mM), buffer, taq polymerase (50 units/ml) and dNTPs (400 µM each dATP, dGTP, 

dCTP, and dTTP).   The cycling conditions consisted of 2 min of initial denaturation at 

95°C, cycle melt at 95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 4 

min, and final extension at 72°C for 5 min.  Under these conditions, a total of 30 cycles 

were repeated inside a thermocycler.  PCR products were mixed with 6X blue/orange 

loading dye (cat# G1881, Promega) and run on a 0.8% agarose gel with 1 kb DNA ladder 

(Promega) to confirm the amplified sequences.  Purification of the PCR products for 

nucleotide sequence analysis after agarose gel electrophoresis, the standard 

manufacturer’s protocol of the Wizard SV gel and PCR clean-up system, was used 

(Promega). 
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 Purified PCR products were ligated into the TA cloning vector pGEM-T Easy 

(Promega) by using the protocol provided in the standard manufacturer’s directions in the 

pGEM-TEasy vector system-I kit (Promega).  An additional step was taken to include a 

0.5-kb extra sequence on either side of the primers designed for the H. influenzae genes 

(clpB, relA, tonB, and ftsH) in order to include the promoter regions.  This was done to 

make sure that the genes were expressed.  These plasmids were transformed into E. coli 

JM109 (Promega).  

 Recombinant plasmids were isolated according to the protocol provided in the 

Wizard plus SV minipreps DNA purification system (Promega).  The DNA inserts were 

confirmed after EcoRI (Promega) restriction analysis and 0.8% agarose gel 

electrophoresis.  

Table 2.   Sequences of the primers used in this study 

Name of gene Primer sequences 

 

relA (forward) 

relA (reverse) 

 

5’- AGA TTT ATT TTG CGG CAT GG -3’ 

5’- GGC GAG ATA AAA TTG CGG TA -3’ 

 

clpB (forward) 

clpB (reverse) 

 

5’- CGC ACT GAA ATC CGA AAA AT -3’ 

5’- CTC GCA CAC TAC GCG ATT TA -3’ 

 

tonB (forward) 

tonB (reverse) 

 

5’-TTG CTA CCA TTT ATC TTC CAT ATC A -3’  

5’-CAA AAA TGT GGC AAT TGT TTC T -3’ 

 

ftsH (forward) 

ftsH (reverse) 

 

5’-GTC TTG GCA AGC AAA GGA AG -3’ 

5’-TTT CCG AAG AAA GGC TTT GA -3’ 
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The different genes of H. influenzae studied in the experiments were amplified with the 

commercially synthesized primers (Integrated DNA Technologies, Coralville, Iowa). 
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CHAPTER 3 

RESULTS 

 

A. IL-8 Stimulation from 9HTEo- Epithelial Cells 

 Haemophilus influenzae strain Rd was chosen as a model system for our 

experiments because its genome has been completely sequenced and annotated, and it 

showed a similar profile of cytokine stimulation from human respiratory epithelial cells  

as did selected  NTHi clinical isolates (23, 41).  H. influenzae strain Rd used to be a 

capsular type d, but with the accumulation of mutations, it converted to a noncapsular 

form known as nontypeable (nonencapsulated) (41).   

 Previous experiments by Clemans et al. showed that the modulin activity was 

located in the secretory fraction of bacterial cells cultured in Levinthal broth, sBHI, and 

MIc media (23, 74).  Heat lability and proteinase-K sensitivity experiments suggested 

that the modulin was a protein (23, 74).   Ultrafiltration of the secreted fraction revealed 

that the stimulation of IL-8   from the human respiratory epithelial cells was higher in the 

>100-kDa  fraction as compared to the <100-kDa fraction (Fig. 2).  When compared to 

the unstimulated controls, bacterial cell culture fluid showed a 73.75-fold increase, the 

cell-free supernatant fraction showed a 28.2-fold increase, bacterial <100-kDa fraction 

showed a 25.4-fold increase, and the  >100-kDa fraction showed a 66-fold increase in IL-

8 secretion.  The co-incubation of sterile sBHI broth with epithelial cells (negative 

control) showed a 4.2-fold increase in IL-8 secretion over the unstimulated control.  

These results suggested that the factors playing key roles in stimulation of IL-8 activity 

might be located in the >100-kDa fraction.  The 100-kDa fraction showed approximately 
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a  2.5-fold greater IL-8 secretion value over the <100-kDa size fraction (Fig. 2).  Perria 

and Clemans showed that the  >100-kDa fraction lost activity upon heat and protease 

treatment, thus proving that some protein(s) might be playing a role in this kind of high 

stimulatory activity (74).  The positive control (monolayers of 9HTEo- stimulated with 

20 ng per ml  IL-1β)  showed an IL-8 activity measuring  13,620.4 pg/ml.   

 The differences in the IL-8 secretions between <100-kDa and  >100-kDa  

obtained after stimualtion of human respiratory epithelial cells were statistically 

significant (p < 0.002). 
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Fig. 2.   Comparison of IL-8 response after treating the 9HTE0- cell line with 

different fractions obtained after ultrafiltration of culture fluid from Haemophilus 

influenzae strain Rd. Cultured monolayers of human respiratory epithelial 9HTE0- 

transfer cell line were coincubated with 20 µg/ml of protein from cell culture fluid, 

supernatant fluid (0.22 µm filtered), <100-kDa fraction, >100-kDa fraction, sterile sBHI 

(bacterial growth medium), and tissue culture medium alone (unstimulated).  Twenty 

nanograms of IL-1β per ml (IL-8 secretion was measured as 13,620.4 pg/ml) was used as 

a positive control.  Supernatant fluid was harvested after 16 h of coincubation with the 

monolayered cells.  Secreted cytokine IL-8 was measured with the commercially 

available ELISA kits.  The data shown are from one experiment of three similarly 

performed experiments.  The numerical value represented above each bar in the ELISA 

graph is the fold increase value of that particular fraction over the unstimulated control.  

The differences in the IL-8 expression between the two fractions, <100-kDa, and >100-

kDa, were statistically significant (p < 0.002).   
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 Ion exchange chromatography was used to enrich the protein modulins from the 

>100-kDa fraction.  The protein(s) obtained in this experiment were from the H. 

influenzae strain Rd grown in MIc liquid medium (9).  Fig. 3 shows the results of the 

stimulation of 9HTEo- monolayers with different fractions from ion exchange 

chromatography.  The batch elutions of 0.1 M NaCl, 0.3 M NaCl, and 0.5 M NaCl  

showed activity of about 6.6-fold, 8.5-fold, and 8.6-fold increases, respectively, over the 

unstimulated control (Fig. 3).  This indicated that the putative proteins that might be 

responsible for high level of cytokine IL-8 stimulation must be located in these fractions.  

The starting material, which consisted of very highly concentrated >100-kDa fraction, 

showed the highest activity of about 10.2-fold over the unstimulated control, whereas the 

flow through wash 1 and wash 2 showed 8-fold, 4.3-fold, and 3.2-fold increases, 

respectively, over the unstimulated control.  The reason behind the high stimulation by 

flow through and wash fractions could be the overloading of the ion exchange column.  

The positive control stimulated with IL-1β showed IL-8 induction of about 16,391.2 pg 

per ml.  The comparisons of the results of the unstimulated fraction with different 

fractions were all statistically significant (p < 0.005).  The comparisons between the wash 

fractions were statistically significant [starting material–flow through (p < 0.003);  0.1 M 

NaCl wash–0.5 M NaCl wash (p < 0.001);  0.3 M NaCl wash–0.5 M NaCl wash (p < 

0.003)]. 

 The chemically defined MIc medium showed some problems with precipitation of 

media components and subsequent clogging of the ion exchange column during the 

course of performing the experiments.  The SDS-PAGE gels with the proteins recovered 

from the MIc-cultured H. influenzae strain Rd cells are shown in Figures 5 and 6.   
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Fig. 3.   Secretion of IL-8 from 9HTEo- cells after stimulation with various fractions 

obtained after performing ion exchange chromatography from Haemophilus 

influenzae strain Rd cultured in MIc liquid medium. Cultured human respiratory 

epithelial cells 9HTEo- were coincubated with starting material (highly concentrated 

>100 kDa fraction), flow through, three buffer washes (each 50 ml), and different 

fractions obtained after the washing of the column with increasing NaCl concentrations 

(0.1 M, 0.2 M, 0.3 M, and 0.5 M) during ion exchange chromatography.  Twenty 

nanograms of IL-1β per ml (16,391.2 pg/ml was the IL-8 secretion detected from this 

positive control), sterile MIc liquid medium (bacterial growth medium), and only SAGM 

(tissue culture medium) were used as controls for the experiment.  The supernatant cell 

culture fluid was harvested after 16 h, followed by ELISA to determine IL-8 activity with 

the use of commercially available kits. The data shown are from one experiment of 

several similarly performed experiments.   The numerical value represented above each 

bar in the ELISA graph is the fold increase value of that particular fraction over the 

unstimulated control.  The comparisons between the following fractions were statistically 

significant [0.1 M NaCl wash–0.5 M NaCl wash (p < 0.001); 0.3 M NaCl wash–0.5 M 

NaCl wash (p < 0.003)]. 
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 Ion exchange chromatography of samples from sBHI cultured bacteria (Fig. 4) 

showed a similar elution profile to that of samples from MIc-cultured bacteria (Fig. 3).  

SDS-PAGE gels from the sBHI-based samples are shown in Figures 5 and 6.   NaCl 

washes of 0.2 M, 0.3 M, and 0.5 M showed very high IL-8 activity of about 50-fold, 41-

fold, and 54.6-fold increases, respectively, over the unstimulated control.  Compared to 

the above three batch elutions, 0.1 M and 1 M NaCl washes showed lower fold values of 

4.6-fold and 16.23-fold increases, respectively, over the unstimulated control (Fig. 4).  

The starting material showed a high IL-8 activity of about a 35-fold increase over the 

unstimulated control, followed by flow through that showed a 20.8-fold increase.  

Washes 1 and 2, along with control containing only sterile bacterial growth medium, 

sBHI, showed very low or undetectable cytokine activity.  The IL-1β positive control   

showed about 16,391.2 pg per ml of IL-8.  The comparisons of the unstimulated fraction 

with the different elution fractions obtained after NaCl wahes were all statistically 

significant (p < 0.005).  The comparisons between the wash fractions were statistically 

significant [starting material–flow through (p < 0.003); 0.2 M NaCl wash–0.3 M NaCl 

wash (p < 0.001);  0.3 M NaCl wash–0.5 M NaCl wash (p < 0.004);  0.2 M NaCl wash–

 0.5 M NaCl wash (p < 0.004) ]. 
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Fig. 4.   Secretion of IL-8 from 9HTEo- cells after stimulation with various fractions 

obtained after performing ion exchange chromatography from Haemophilus 

influenzae strain Rd cultured in sBHI medium.   Each of the fractions shown in the 

figure are same as in Figure 3 except that one more wash with 1 M NaCl was performed 

that was not performed with MIc medium.  Also, sterile sBHI was used instead of sterile 

MIc as one of the negative controls.  The data shown are representative from one 

experiment of several similarly performed experiments.  The numerical value represented 

above each bar in the ELISA graph is the fold increase value of that particular fraction 

over the unstimulated control.  The comparisons between the following fractions were 

statistically significant [starting material–flow through (p < 0.003); 0.2 M NaCl wash–0.3 

M NaCl wash (p < 0.001); 0.3 M NaCl wash–0.5 M NaCl wash (p < 0.004); 0.2 M NaCl 

wash–0.5 M NaCl wash (p < 0.004)]. 
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Fig. 5.   Coomassie Blue stained 8-12% polyacrylamide gel with the numbered 

bands selected for MALDI-TOF analysis.  Lanes 1 and 10, molecular weight standards; 

lanes 2 through 5, 0.1, 0.2, 0.3, and 0.5 M NaCl washes, respectively, obtained after ion 

exchange chromatography from >100-kDa fraction from strain Rd. Lanes 6 through 9  

also follow the same pattern of NaCl washes (i.e., washes with 0.1, 0.2, 0.3, and 0.5 M 

NaCl).  The concentrated protein in lanes 2 through 5 was obtained from bacteria grown 

in MIc liquid medium, and lanes 6 through 9 had the protein obtained from bacteria 

grown in sBHI medium. The hits from the searches showed bands 2 and 3 as containing 

gene ponA; band 4 and 5 had hypothetical proteins HI0523 and HI1505. Band 4 also 

showed the presence of moaA. Band 3 showed the presence of relA. This gel 

representative corresponds to the data shown in Figures 3 and 4. 
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Fig. 6.   Silver stained 8-12% polyacrylamide gel with the numbered bands selected 

for MALDI-TOF analysis.   Lanes 1 and 10, molecular weight standards; lanes 2 

through 5, 0.1, 0.2, 0.3, and 0.5 M NaCl washes, respectively, obtained after ion 

exchange chromatography from >100-kDa fraction from strain Rd.  Lanes 6 through 9 

also follow the same pattern of washes.  The concentrated protein in lanes 2 through 5 

was obtained from bacteria grown in MIc liquid medium, and lanes 6 through 9 had the 

protein obtained from bacteria grown in sBHI medium.  ftsH was found in the search 

result from bands 2, 16, 19, and 21; ptsI from band 2; tonB from band 3; mglA from band 

6; metE from bands 2, 3, 10, and 14; IgA protease and HI1369 from band 3; ponA from 

band 5; oapA from band 7; cysS from band 17; moaA from band 18; and clpB from bands 

5 and 17.  This gel representative corresponds to the data shown in Figures 3 and 4. 
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 The graph showing the IL-8 activity of the various fractions obtained with 

ultrafiltered sBHI are shown in Fig. 7.  Fractions eluted from the ion exchange column 

with 0.1 M, 0.2 M, 0.3 M, 0.5 M, and 1 M NaCl washes showed 10.6-fold, 2.6-fold, 21.7-

fold, 15.8-fold, and 21.8-fold increases, respectively, when compared to the unstimulated 

control.  These results suggested that the proteins actively participating in IL-8 secretion 

from human respiratory epithelial cells were most likely located in the 0.3 M, 0.5 M, and 

1 M NaCl washes’ fractions.  Both the unstimulated cells and cells stimulated with 

growth medium showed very low IL-8 secretion from the 9HTEo- cells.  The positive 

control, stimulated with IL-1β, showed a very high IL-8 value of about 20, 552 picogram 

per ml.  The comparisons of the IL-8 activity were found to be statistically significant 

when each of the fractions (0.1 M, 0.2 M, 0.3 M, 0.5 M, and 1 M NaCl) were compared 

to the unstimulated control (p < 0.05).  The comparisons between the wash fractions from 

ion exchange chromatography were statistically significant [starting material–flow 

through (p < 0.01); 0.1 M NaCl wash–0.3 M NaCl wash (p < 0.001); 0.3 M NaCl wash–

0.5 M NaCl wash (p < 0.003); 1 M NaCl wash–0.5 M NaCl wash  (p < 0.03)]. 

  Initially we used MIc, as we thought it was a cleaner system because it would 

contained fewer protein contaminants.  MIc medium, however, had severe precipitation 

problems that hindered the ion exchange chromatography.  The complex medium sBHI 

contained several protein contaminants that interfered with SDS-PAGE analysis.  Finally, 

use of ultrafiltered sBHI in this experiment gave a much cleaner background in the SDS-

PAGE gels because of the absence of protein contaminants present in the medium 

(Figures 8, 9 and 10).  The protein bands were more prominent and visible against this 
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lighter background, unlike as compared to the proteins bands that were not that easily 

visible (Figures 5 and 6) when plain sBHI was used as the bacterial growth medium. 

 Compared to the IL-8 induction pattern obtained from the various fractions when 

MIc (Fig. 3) and sBHI (Fig. 4) were used, very similar trends in the cytokine stimulation  

were found from the different fractions of  ion exchange chromatography in this 

experiment with UF sBHI (Fig. 7). 
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Fig. 7.   Secretion of IL-8 from 9HTEo- cells after stimulation with various fractions 

obtained after performing ion exchange chromatography from Haemophilus 

influenzae strain Rd cultured in ultrafiltered sBHI.  Each of the fractions shown in the 

figure is the same as in Figure 3 except that one more wash with 1M NaCl was performed 

that was not done with MIc medium.  Also, sterile UF sBHI was used instead of sterile 

MIc or sBHI medium as one of the negative controls.  From the positive control 

stimulated with 20 ng/ml IL-1β, we detected 20,552 pg/ml IL-8 induction.  The data 

shown are representative from one experiment of several similarly performed 

experiments.   The numerical value represented above each bar in the ELISA graph is the 

fold increase value of that particular fraction over the unstimulated control.  The 

comparisons between the following fractions were statistically significant [starting 

material–flow through (p < 0.01); 0.1 M NaCl wash–0.3 M NaCl wash (p < 0.001);  0.3 

M NaCl wash–0.5 M NaCl wash (p < 0.003);  1 M NaCl wash–0.5 M NaCl wash  (p < 

0.03)]. 
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Fig. 8.   Silver stained 8-12% polyacrylamide gel with the numbered bands selected 

for MALDI-TOF.  The H. influenzae strain Rd was cultured in UF sBHI broth.   Lanes 1 

and 10, molecular weight standards; lane 2 is the starting material; lanes 4, 5, 7, 8, and 9 

correspond to 0.1 M, 0.2 M, 0.3 M, 0.5 M, and 1 M NaCl washes respectively, of 100-

kDa strain Rd.  kdsA was the hit from the searches from bands B3 and C4.  This 

representative gel corresponds to data from Fig. 7. 



 37 

 

 

Fig. 9.   Silver stained 8-12% polyacrylamide gel with the numbered bands selected 

for MALDI-TOF.  The H. influenzae strain Rd was cultured in UF sBHI broth.  Lane 1 

corresponds to the molecular weight standards.  Lanes 2 through 9 correspond to the 

different fractions obtained from ion exchange chromatography: lane 2 for starting 

material (>100-kDa); lane 3 for flow through; lanes 4 and 5 for the washes; lanes 6 

through 10 for 0.1, 0.2, 0.3, 0.5 M, and 1M NaCl washes. Search results from band A1 

are hgbA and huxC; from C1 is ompP2; from E1 are radC and trpX; from band F1 are 

kdsA and trpX; and from band H1 is rRNA methylase.  This representative gel is obtained 

from one of the several ion-exchange chromatography runs using UF sBHI. 
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Fig. 10.   Numbers showing the bands chosen for MALDI-TOF analysis after SDS-

PAGE and Sypro ruby staining.  Lanes 1 and 10 correspond to the molecular weight 

standards. The H. influenzae strain Rd was cultured in UF sBHI broth.  Lanes 2 through 9 

correspond to the different fractions obtained from ion-exchange chromatography: lanes 

2 and 3  for 0.2 M; lanes 4 and 5 for 0.3 M; lanes 6 and 7 for 0.5M; and lanes 8 and 9 for 

1 M NaCl.  The search result from band 2 is acpD; from bands 3 and 5, they are ompP2, 

and from band 6, they are ppiB and rps3.  This representative gel was obtained from one 

of the several ion-exchange chromatography runs with UF sBHI. 
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B. MALDI-TOF Mass Spectral Analysis 

 

 Various batches of protein bands corresponding to the active or high IL-8- 

stimulating fraction were selected from the gels (Figures 5, 6, 8, 9 and 12) for MALDI-

TOF mass spectral analysis.    With the results of the peptide fingerprints and tandem MS 

data provided by Michigan Proteome Consortium (University of Michigan), further 

searches (MS-Fit, Mascot) were performed to identify the putative modulin proteins in 

the various samples (Table 3).  Several peak lists were generated, and the greater number 

of matched peptides showing higher mowse scores and better coverage of proteins were 

considered.  The peptide with a reasonably high score was further analyzed for pI and the 

molecular weight.  Proteins with a wide range of pIs and molecular weights were 

obtained, but the ones within the range of pI < 8.5 (as molecular activity from H. 

influenzae strain Rd was negatively charged at pH 8.5) and corresponding molecular 

weights were finally selected.   In addition, information such as the function of each 

protein was also obtained from the database searches.  The significant hits of the proteins 

obtained on analysis revealed several important proteins that were categorized into four 

different functionally distinct groups (i.e., stress proteins, nutrient transport proteins, 

biosynthetic proteins. and hypothetical proteins) (Table 3). 
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Table 3.   List of protein obtained from the database searches after performing 

MALDI-TOF 

Name Accession#   Roles Gel 

figure 

Cellular 

location 

Stress proteins 

ClpB  P44403 Degradation of proteins, peptides, 
& glycopeptides 

Fig. 6 Cytoplasm 

FtsH  P71377 Cell division Fig. 6 Membrane 

RelA  P44644 Regulatory functions Fig. 5 Cytoplasm 

Nutrient transport proteins 

HxuC  33330978 Transport & binding proteins, 
heme/hemopexin 

Fig. 9 Membrane 

HgbA  AF221059 Transport & binding proteins, 
hemoglobin/haptoglobin 

Fig. 9 Membrane 

MglA  P44884 Transport & binding proteins: 
carbohydrates, org. alcohols, & 
amino acids 

Fig. 6 Periplasm 

OppA  P71370 Transport & binding proteins: 
peptides, amines & amino acids 

Fig. 6 Periplasm 

PtsI  P43922 Transport & binding proteins: 
carbohydrates, org. alcohols, & 
amino acids 

Fig. 6 Cytoplasm 

TonB  P42872 Transport & binding proteins: 
cations 

Fig. 6 Membrane 

AcpD  P43013 Fatty acid and phospholipid 
metabolism 

Fig. 10 Cytoplasm 

Biosynthetic proteins 

MetE  P45331 Amino acid biosynthesis: 
aspartate family 

Fig. 6 Cytoplasm 

(Table continued) 
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Table 3. (continued) 

MoaA  P45311 Biosynthesis of cofactors, 
prosthetic groups & carriers: 
molydopterin 

Figs. 5 
and 6 

Cytoplasm 

PonA  P31776 Cell envelope: biosynthesis of 
murein sacculus & peptidoglycan 

Figs. 5 
and 6 

Cytoplasm 

IgA 
protease 

 P45386 Cleaves peptide bonds Fig. 6 Cytoplasm 

OmpA 16273088M Outer membrane protein P5  Membrane 

OmpP2  23429714 Outer membrane protein P2 Fig. 9 and 
Fig. 10 

Membrane 

KdsA 16273457M Cell envelope: biosynthesis & 
degradation of surface 
polysaccharide 

Fig. 9 Cell wall 

TrpX 16272042M Protein synthesis: tRNA & rRNA 
modification 

Fig. 9 Cytoplasm 

PpiB   P44499 Protein fate: protein folding and 
stabilization 

Fig. 10 Cytoplasm 

Rps3   P44372 Protein synthesis: ribosomal 
proteins: synthesis and 
modification 

Fig. 10 Cytoplasm 

rRNA 
methylase 

16272372M Protein synthesis: tRNA & rRNA 
modification 

Fig. 9 Cytoplasm 

RadC P44952 DNA replication, recombination, 
and repair 

Fig. 9 Cytoplasm 

HemY  P44772 Protoheme IX synthesis Fig. 12 Membrane 

CysS P43816 Protein synthesis:  tRNA 
aminoacylation 

Fig. 6 Cytoplasm 

Hypothetical proteins 

HI0523  P44011 Hypothetical protein: conserved  Fig. 5 Unknown 

(Table continued) 
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Table 3. (continued) 

HI1369  P45182 Hypothetical protein: conserved  Fig. 6 Unknown 

HI1505  P44227 Hypothetical protein: conserved  Fig. 5 Unknown 

 

 

 

C. Stimulation of 9HTEo- Cells with the Fractions Obtained from 

Ultracentrifugation of H. influenzae Strain Rd Supernatant Fluid  

 Outer membrane vesicles (OMV) of Haemophilus influenzae type b have been 

shown to play an important role in induction of meningeal inflammation (101).  This 

experiment was performed to assess the role of various fractions obtained from the 

supernatant fluid (which might contain OMV) in stimulating an IL-8 response.  Both the 

pellets obtained after ultracentrifugation of the >100-kDa fraction and the culture fluid 

fraction showed high IL-8 secretion (Fig. 11).  The pellets obtained from >100-kDa and 

0.22 µm filtered culture fluid showed 15.2-fold and 14.6-fold increases, respectively, 

whereas the supernatant fractions from the >100-kDa fraction and 0.22 µm culture fluid 

showed 13.4-fold and 8.6-fold increases, respectively, when compared to the 

unstimulated control.  These results suggested that the pellet fraction, because of the 

presence of some specific proteins that might be absent in the supernatant fraction, shown 

higher IL-8 activity.  The gels obtained after running all these fractions on SDS-PAGE 

are shown in Fig. 12. 

  The comparisons of the IL-8 activity from different fractions after comparison 

with the unstimulated control obtained from human respiratory epithelial cells after 

stimualtion with the different fractions obtained after the ultracentrifugation experiment 
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were statistically significant and within p < 0.003.  The following comparisons were also 

shown to be statistically significant  [>100-kDa fraction’s pellet–0.22-µm filtered culture 

fluid pellet with (p < 0.003); >100-kDa fraction’s supernatant– supernatant from 0.22-µm 

filtered culture fluid (p < 0.001)]. 
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Fig. 11.   Induction of IL-8 from 9HTEo- cells upon stimulation with Haemophilus 

influenzae strain Rd proteins after ultracentrifugation at 100,000xg.  Human 

respiratory epithelial cells were co-incubated with 20 µg/ml of proteins each from the 

>100-kDa fraction’s pellet, the >100-kDa fraction’s supernatant, pellets from 0.22-µm 

filtered culture fluid, and supernatant from 0.22 µm filtered culture fluid, PBS, and tissue 

culture medium (unstimulated). Twenty nanograms of IL-1β per ml was recorded as 

positive control (IL-8 secretion = 6652.7 pg/ml).  IL-8 values given in picogram per 

milliliter units were tested with commercially available ELISA kits.  IL-8 secretion was 

measured after 16 h incubation of the 24-well plates containing all the stimuli.  The data 

shown are from one experiment of the three similarly performed experiments.  The 

numerical value represented above each bar in the ELISA graph is the fold increase value 

of that particular fraction over that of the unstimulated control.  The comparisons of the 

IL-8 activity between different fractions were statistically significant [>100-kDa 

fraction’s pellet– 0.22-µm filtered culture fluid pellet with (p < 0.003); >100-kDa 

fraction’s supernatant– supernatant from 0.22-µm filtered culture fluid (p < 0.001)]. 
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Fig. 12.   Silver stained 8-12% polyacrylamide gel with the numbered bands selected 

for MALDI-TOF mass spectral analysis from the experiment with prepared NTHi 

membranes.  Lanes 1 and 10 are molecular weight standards; lanes 2 and 3 are 0.22 µm 

filtered fraction; lanes 4 and 5 are pellets obtained from 0.22 µm filtered fraction; lanes 6 

and 7 are >100-kDa fraction supernatant; lanes 8 and 9 are >100-kDa fraction pellet. 

hemY was found as the search result from band C23 after mass spectral analysis.  This 

representative gel corresponds to Fig. 11. 
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D. Analysis of the Role of Selected Proteins 

Outer membrane protein P2 

  Omp P2, found from the 0.5-M NaCl wash fraction during ion exchage 

chromatography,  is the most abundant and highly variable major outer membrane protein 

of NTHi.  Various studies have been performed that deal with the structural and transport 

characteristics of this protein (27).  We chose to study this protein in terms of its 

contribution to IL-8 activity from human respiratory epithelial cells, as no such study has 

been previously performed dealing with this aspect of Omp P2.  To analyze the 

expression of IL-8 activity by Omp P2, four different strains were studied.  The first two 

strains were the wild type (13P24HI) and the mutant type (13P24HI-P2 mutant) of a 

clinical isolate strain obtained from a patient with COPD (123, 124).  The other two 

strains were the Omp P2 mutant and the wild type from H. influenzae strain Rd (123, 

124).  We used mutants of Omp P2 in H. influenzae strains, whereas for other proteins 

(ClpB, RelA, TonB and FtsH), we chose recombinant E. coli to express the H. influenzae 

genes.  This decision was based on the availability of Omp P2 mutants from Dr. Tim 

Murphy’s laboratory (123, 124).  Comparison of the IL-8 stimulation profile for all 

strains is shown in Fig. 13. 
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Fig. 13.   Role of P2 in IL-8 secretion in Haemophilus influenzae from a clinical 

isolate strain 13P24H1 and strain Rd.  6 x 105 human respiratory epithelial cells 

9HTE0- were coincubated with 6 x 107 bacterial cells, and the wells were stimulated with 

culture fluid (CF), cell-free supernatant fluid, and whole cells (WC) obtained from the 

various bacterial strains. Tissue culture medium was used alone (unstimulated), and 20 ng 

of IL-1β per ml was used as the positive control (IL-8 secretion = 11,505 pg/ml). The 

chemokine IL-8 activity was assayed with commercially available ELISA kits.  The 

results were replicated three times, and this is one of the representative data from one of 

those three.  The difference while comparing IL-8 expression between the following 

fractions was also found to be statistically significant [WC from strain 13P24HI–WC 

from strain 13P24HI P2 mutant (p < 0.04); CF from strain Rd–CF from strain Rd P2 

mutant (p < 0.05); CF from strain 13P24HI–CF from strain 13P24HI P2 mutant (p< 

0.03)]. 
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 The result from this experiment showed that culture fluid (CF) from the wild-type 

13P24HI clinical isolate strain obtained from COPD patients induced a 121-fold increase 

in IL-8 secretion, compared to a 92-fold increase by the same fraction in the P2 mutant 

strain 13P24HI over the unstimulated controls in 9HTE0- cells after 16 h incubation (p < 

0.003).   The whole cells from the wild-type 13P24HI clinical isolate strain induced a 68-

fold increase in IL-8 secretion, compared to a 37-fold increase by the 13P24HI P2 mutant 

strain over unstimulated controls (p < 0.001).  On the other hand, culture fluid (CF) from 

the wild-type strain Rd induced a 34.5-fold increase in IL-8 secretion, compared to a 

57.25-fold increase by P2 mutant strain Rd when compared over unstimulated controls in 

9HTE0- cells (p < 0.01).  The difference while comparing IL-8 expression between the 

following fractions was also found to be statistically significant  [WC from strain 

13P24HI – WC from strain 13P24HI P2 mutant (p < 0.04); CF from strain Rd – CF from 

strain Rd  P2 mutant (p < 0.05); CF from strain 13P24HI – CF from strain 13P24HI P2 

mutant (p < 0.03)]. 

  The supernatant fractions from all the strains showed very little difference in the 

induction of IL-8 activity, and their differential values were not statistically significant.  

The negative control (unstimulated monolayers of 9HTEo- cells) showed no detectable 

IL-8 activity.  The responses of IL-8 activity from all three fractions (culture fluid, 

supernatant, and whole cells) in both the mutant and the wild-type strains after each of 

them were compared with the unstimulated control were statistically significant (p < 

0.01).  These results suggest that Omp P2 plays a positive role in elevation of the 

cytokine IL-8 in the clinical strain 13P24HI isolated from a COPD patient.  In contrast, 

the ompP2 mutant from strain Rd showed higher activity in the secretion of cytokine. 
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  ClpB 

 ClpB was selected for study because it is a stress protein (heat shock) that is 

found in almost all  organisms studied to date (22).  Various studies have shown that 

ClpB, a molecular chaperone, is a highly conserved heat shock protein that is essential for 

thermotolerance in bacteria and eukaryotes (22).  In an in vitro study of ClpB in E. coli, 

close resemblance was found with another group of chaperones, like DnaK, DnaJ, and 

GrpE.  These proteins, along with ClpB, worked together in suppressing and reversing 

aggregation of proteins during heat shock (152).  Recently, work by Yuan et al. showed 

that the clpB gene from Porphyromonas gingivalis is involved with the capacity to invade 

human epithelial and endothelial cells and thus could play some key role in periodontal 

disease (73).   

 To assess the role of H. influenzae clpB gene in the stimulation of epithelial cell 

cytokine production, sets of E. coli strain JM109 were tested with and without the clpB 

gene inserts (Table 1).  The data for the IL-8 secretion obtained after ELISA is presented 

in Fig. 14. Compared to the unstimulated fraction, the epithelial cells stimulated with E. 

coli cells transformed with the plasmid having the clpB gene insert showed 

approximately a 24-fold increase, whereas epithelial cells stimulated with E. coli  

transformed with pGEM-T Easy plasmid with no inserts showed 11.46-fold more 

production of IL-8 over the untreated control.  The 9HTEo- cells treated with H. 

influenzae strain Rd whole cells demonstrated a 35-fold stimulation of IL-8 over the 

unstimulated control.  The results obtained after comparison of the unstimulated control 

fraction with that of recombinant E. coli containing H. influenzae strain Rd clpB gene 

were statistically significant (p < 0.05).  The comparison between IL-8 expression 
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responses from the recombinant E. coli cells with the clpB  gene and E. coli cells without 

the clpB gene was statistically significant (p < 0.03). 
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Fig. 14.   Experiment showing the role of clpB gene in IL-8 induction.  Cultured 

human respiratory epithelial cells (9HTEo-) were coincubated with 6 X 107  CFU of 

bacterial cells  (E. coli/H.influenzae strain Rd).  The number of epithelial cells  used was 

6 X 105  CFU/well.  This corresponds to a 100:1 bacterial to epithelial cell ratio; bacterial 

growth medium (LB and sBHI); bacterial growth medium supplemented with antibiotic 

(ampicillin), and tissue culture medium only (unstimulated).  Twenty nanograms per 

milliliter of IL-1β per milliliter was used as positive control (IL-8 production = 22,004.05 

pg/ml).   After coincubation time of 16 h, supernatant fluid was harvested to test the IL-8 

activity with a commercially available IL-8 kit.  This experiment is a representative from 

one of the three similarly performed experiments.  The difference found with comparison 

between IL-8 expression levels from the recombinant E. coli cells with the relA gene and 

E. coli without the relA gene was statistically significant (p < 0.003). 
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RelA  

 RelA is a protein that is expressed under the condition of starvation for amino 

acids or other compounds (21, 115, 117).  Activation of the relA gene further leads to the 

expression of other virulence genes (121).  Studies have shown the relA gene contributing 

toward pathogenesis in bacteria like Vibrio cholera Pseudomonas aeruginosa and 

Legionella pneumophila (38, 58, 60, 147, 148). 

 To assess the contribution of RelA in the stimulation of cytokine secretion from 

human respiratory epithelial cells, the relA gene from H. influenzae strain Rd was 

amplified and cloned into plasmid pGEM-T Easy and transformed into E. coli strain 

JM109.   The data showing the secretion pattern for IL-8 are presented in Fig. 15. 

  The E. coli strain carrying the H. influenzae relA gene showed 24.31-fold greater 

IL-8 secretion when compared to the unstimulated control (Fig. 15).  The E. coli strain 

lacking the H. influenzae relA gene showed only 11.46-fold greater IL-8 secretion over 

the unstimulated control.  The difference found with comparison between IL-8 expression 

levels from the recombinant E. coli cells with the relA gene and those of E. coli without  

the relA gene was statistically significant (p < 0.003).  The results obtained after each of 

the fractions (E. coli with and without H. influenzae relA gene) was compared with the 

unstimulated control were statistically significant (p < 0.003). 
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Fig. 15.   Experiment showing the role of  relA gene in IL-8 induction.  The same 

standard was followed as was mentioned in Fig. 14.  The data shown are from one 

experiment of three similar performed experiments. The difference found with 

comparison between IL-8 expression levels from the recombinant E. coli cells with relA 

gene and E. coli without relA gene was statistically significant (p < 0.003).   
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TonB 

 TonB plays a key role in H. influenzae heme transport.  Inactivation of the tonB 

gene restricts heme utilization and aerobic growth of  H. influenzae (77).  To assess the 

contribution of TonB  in the stimulation of cytokine secretion from human respiratory 

epithelial cells, the tonB gene from H. influenzae strain Rd was amplified and cloned into 

plasmid and transformed into E. coli strain JM109 pGEM-T Easy (Fig. 16). 

  Secretion of IL-8 from 9HTEo- cells after coincubation of 16 hrs followed by 

ELISA showed that this cytokine was 20-fold more stimulated from the E. coli strain 

JM109 carrying the relA gene and 11.46-fold more stimulated in the same strain deficient 

of tonB gene when compared to the unstimulated control.  The difference in the values 

obtained between IL-8 induction from the recombinant E. coli cells with tonB gene and 

E. coli cells without tonB gene was statistically significant (p < 0.005).  The results 

obtained after each of the fractions (E. coli with and without H. influenzae tonB gene) 

were compared with the unstimulated control were statistically significant (p < 0.003).   
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Fig. 16.   Experiment showing the role of tonB gene in IL-8 induction.  The same 

standard was followed as was mentioned in Fig. 14. The data shown are from one 

experiment of three similar performed experiments.  The difference in the values 

obtained between IL-8 induction from the recombinant E. coli cells with tonB gene and 

E. coli cells without tonB gene was statistically significant (p < 0.005).   
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FtsH 

 FtsH is an ATP-dependent protease that degrades other integral membrane 

proteins (44, 51).  Bacterial cells respond to the accumulation of proteins in both 

membranes and cytosol; FtsH degrades these accumulated membrane proteins (3).  The 

absence of the ftsH gene has shown many defects, namely, reduced viability under 

starvation conditions (91).  These defects include slower growth rates, sensitivity to stress 

conditions like salt and acids, and enhanced expression in the murine skin lesion model 

of pathogenecity (91).   In wild-type E. coli  cells,   FtsH has been found to exist as a 

large, complex holo-enzyme (136).    

 To analyze the contribution of the ftsH gene from H. influenzae to cytokine 

secretion, sets of  E. coli  strains (Table 1) were studied with and without this gene from 

H. influenzae strain Rd (Fig. 17).  No difference was seen between the E. coli strains 

containing the H. influenzae strain Rd ftsH gene and those lacking it.   All the results 

obtained after each of the fractions was compared with the unstimulated control were 

statistically significant (p < 0.05).  Also, the comparison between IL-8 secretion from the 

recombinant E. coli cells with the ftsH gene and E. coli cells lacking the ftsH gene were 

found to be statistically not significant. 
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Fig. 17.   Experiment showing the role of ftsH gene in IL-8 induction.  The same 

standard was followed as was mentioned in Fig. 14.  The comparison between IL-8 

secretion from the recombinant E. coli cells with the ftsH gene and E. coli cells lacking 

the ftsH gene were found to be statistically not significant.  The data shown are from one 

experiment of three similar performed experiments. 
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CHAPTER 4 

DISCUSSION 

 

 H. influenzae is a major respiratory pathogen associated with chronic obstructive 

pulmonary disease.  Better knowledge of how this bacteria causes pathogenesis will 

provide new insights into the development of new medicines and adjunct therapies to 

successfully treat the respiratory diseases caused by it.  In this study, we have identified 

several proteins that were associated with H. influenzae and initiated a systematic study 

of those putative modulins on respiratory epithelial cytokine stimulation. 

 Studies by Clemans et al. have shown that NTHi LOS is responsible for 

approximately 50% of the proinflammatory cytokine stimulation from human respiratory 

epithelial cells and also that bacterial adherence did not play any specific role in cytokine 

production (23).   Further studies suggested that in H. inflluenzae strain Rd modulin 

activity was greater than 100-kDa in size and had a pI < 8.5 (74, 112).  MALDI-TOF 

mass spectrometry was used to identify 27 putative H. influenzae modulins ranging in 

size from 25.3-kDa to 110-kDa.  The putative modulins were represented by proteins 

from all parts of the bacterial cell, including those from membrane fractions, cytoplasm, 

and periplasm (Table 3).  Seventeen proteins were obtained from the searches in which 

MIc liquid medium was used for culturing H. influenzae. Six and 16 proteins were 

recovered from a growth medium containing sBHI and UF sBHI. These data further 

refine the initial studies with  the >100-kDa fraction and suggest that proteins other than  

secreted proteins participate toward induction of IL-8 secretion from respiratory epithelial 
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cells.   Another reason for the presence of cytoplasmic proteins in the secretory fraction 

could be that as cells grow old and lyse, the cytoplamic proteins might be released in the 

supernatant fluid (Table 3).   A recent study has shown that a soluble cytoplasmic fraction 

(SCF) from NTHi stimulated higher cytokine IL-8 induction from human epithelial cells 

than did LOS and other envelope proteins from NTHi (143).  Therefore, the high activity 

from the supernantant fraction in the ultracentrifugation experiment could be related to 

the fact that it consisted of cytoplasmic proteins (Fig. 11).    

 Furthermore, the cell walls of H. influenzae release outer-membrane vesicles (50-

250 nm in diameter and spherical, bilayered and membranous structure) from their cell 

surfaces during growth  (16, 79, 149).  These membrane vesicles, while blebbing from 

the outer membrane, carry with them small parts of Gram-negative cell wall consisting of 

LPS, periplasmic constituents, phospholipids, cytoplasmic components, and membrane 

proteins (149).   This could be one of the reasons that the pellet fraction obtained after 

ultracentifugation at 100,000 xg showed such high IL-8 value (Fig. 11);  it could have 

contained membrane-associated proteins like Omp P2, Omp P5, and Omp P6, all of 

which have shown high IL-8 activity from macrophages (14, 45).  

 Outer-membrane proteins play an important role in the establishment of bacteria 

in the host environment (90).  Omp P2 is the most abundant outer-membrane protein in 

H. influenzae and varies in molecular weight from 36-kDa to 42-kDa (99).  In addition, 

Omp P2 is associated with binding of bacterial cells to human nasopharyngeal mucin 

(93).  Our studies showed that the omp P2 mutant from strain 13P24HI (isolated from 

COPD patient) showed lower IL-8 stimulation when compared to the wild-type strain of 

13P24HI.  This result suggests that Omp P2 plays a role in IL-8 stimulation. 
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  In contrast, however, the omp P2 mutant from strain Rd showed higher IL-8 

activity when compared to wild-type strain Rd (Fig. 13).  One possibility behind the 

higher IL-8 activity from the strain Rd mutant compared to the wild type is that in 

absence of Omp P2, other proteins, like Omp P5 and Omp P6, become dominant and are 

overexpressed.   Both Omp P5 and Omp P6 have been shown to stimulate epithelial 

cytokine secretion (14, 45).  Studies have also found that IL-8 produced by Omp P6 is 

comparable to the IL-8 induced by total Omps and LOS.  This induction was many-fold 

higher than the IL-8 stimulated by Omp P2 (14).   

 Another reason behind the differences in the pattern of IL-8 activity from one 

strain to another could be the fact that the amino acid sequences of Omp P2 vary 

considerably from one strain to another because of accumulation of point mutations in 

specific loops of the protein structure (5).  In H. influenzae, the variations due to 

mutations were clustered in the surface-exposed amino acid chains or loops (13).   During 

the occurrence of chronic bronchitis, these amino acid changes were found for the coding 

region for loops 5 and 6 of the protein, which resulted in antigenic drift (35, 127).  Apart 

from this, variation in the clonal population has also been seen during the time of an 

existing infection (35).  Depending upon the strain, it might either upregulate or down-

regulate the IL-8 stimulation mechanism from the respiratory epithelial cells.  Studies in 

the past have shown that under in vitro conditions, omp P2 mutants are living but 

attenuated when dealing with the animal models, therefore suggesting an important role 

for bacterial physiology and infection during  in vivo conditions (140).  Recent study by 

Berenson et al. showed Omp P2 purified from NTHi 1479 only marginally induced the 

IL-8 activity in human macrophages (14).    
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 Even though H. influenzae shows dissimilarities in the IL-8 induction pattern in 

the culture fluid and whole cells fraction in both the clinical isolate strain 13P24HI and 

strain Rd, the supernatant fractions continued to generate almost the same level of  IL-8 

activity from human respiratory epithelial cells.  This could be because Omp P2 is not 

secreted but is a membrane-associated protein (99).  Therefore, this might be the factor 

for which the graph does not demonstrate much difference in the IL-8 activity in the 

secreted fraction devoid of whole cells in both types of strains, including their mutants.  

Further fractionation experiments can be performed in order to understand the 

distribution of Omp P2 in the cell. 

 In future, in vitro studies can be performed with other cell lines to study the IL-8 

pattern generated upon stimulation with Omp P2 protein.  Purified Omp P2 from different 

NTHi strains can also be used to study the stimulation pattern of proinflammatory 

cytokines from various strains.  Further in vivo studies can be performed to detect 

cytokine response by raising anti-Omp P2 antibodies.  These experiments will shed new 

light on how Omp P2 plays a role in inflammation and cytokine regulation in the animal- 

model system. 

 Like P2, another protein obtained after mass spectral analysis, called ClpB, was 

also studied to determine its activity toward stimulation of IL-8 from human respiratory 

epithelial cells.  But unlike the Omp P2 gene, which was inactivated in H. influenzae 

itself, the clpB gene from H. influenzae was cloned in E. coli strain JM109.  Many studies 

have been performed in which H. influenzae genes were overexpressed in E. coli cells 

(89).  Several studies have been performed to determine the activity of this ATP-

dependent molecular chaperone in rescuing proteins that were damaged by heat-shock.  
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No work has been performed yet to understand whether ClpB plays any role in epithelial 

cytokine production (103, 105, 106, 118, 141).   Apart from stress tolerance, in many 

Gram-negative bacteria, proteins secreted from a type III secretion system (a factor 

involved in pathogenesis) have been shown to require small cytosolic chaperones to 

maintain the level of secreted substrates in a secretion-competent state (32).  Clp-

mediated proteolysis has been shown to be involved in the virulence of several bacterial 

pathogens by helping survival inside the host environment or turning the activity of 

virulence-causing factors (137).  For example, studies have found ClpB responsible for 

regulation of virulence in pathogens like Yersinia enterocolitica, in which it affects 

bacterial invasiveness  and motility (8).  In the bacterium Salmonella enterica serovar 

Typhimurium, the inactivation of the clpP gene (belonging to the same family as the clpB 

gene) showed inhibition of growth and survival inside macrophages (70, 150).    

 In our study, we transformed E. coli with the plasmid containing the clpB gene 

amplified from H. influenzae strain Rd to study the role of this gene in cytokine IL-8 

production.  One advantage in choosing E. coli was that this bacterium possesses two 

small heat-shock proteins (IbpA and IbpB) that aid in the production and stability of 

recombinant proteins (94).  Our studies suggested that the ClpB from H. influenzae strain 

Rd played a positive role in IL-8 stimulation.  The presence of this gene almost doubled 

the amount of cytokine IL-8 production when 9HTEo- monolayers were stimulated with 

the recombinant bacterial strain.   

 The interpretation of these results is based on the premise that the H. influenzae 

clpB gene is expressed in E. coli.  Care was taken to clone the entire gene with its 

promoter, but confirmation of the expression of this gene in E. coli has yet to be done. 
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 The study of RelA also brought some interesting information in regard to cytokine 

IL-8 induction that was previously unknown to us.  RelA stimulates the production of the 

nucleotide guanosine tetraphosphate (ppGpp) during the condition of amino acid 

starvation or other forms of nutrient limitation that cause arrest in the growth (21).   RelA 

plays an important role during this type of stringent response by associating itself with 

ribosome to further produce ppGpp (21).  Studies have also shown that ppGpp plays a 

vital role in controlling different virulence features in several bacteria (49).    

 This study demonstrated that the E. coli strain carrying the H. influenzae strain Rd 

relA gene showed a little over two times more cytokine production compared to the strain 

that carries no relA gene.  This suggests that RelA plays a positive role in cytokine 

stimulation from human respiratory epithelial cells monolayers.   As with ClpB, the 

reasoning behind this result supporting the contribution of RelA in IL-8 induction is 

based upon the premise that the relA gene is expressed in E. coli, as care was taken to 

include the promoter sequence.  Further experiments are needed in order to verify the 

expression of the H. influenzae relA gene in E. coli cells.  Also, because were using a   

high-copy-number plasmid, the relA gene might be overexpressed when compared to 

normal in vivo conditions.  Therefore, future in vivo studies are required in order to 

understand the specific role of this gene in cytokine stimulation in COPD patients. 

 NTHi has a strict requirement for heme when cultured under aerobic conditions 

(40).  Studies have shown the lack of the ability to utilize heme after inactivation of the 

tonB gene in NTHi (77).  A functional H. influenzae tonB gene is required for this 

bacterium to grow with transferrin as the sole source of iron (76).  TonB   is considered a 

potent virulence factor in H. influenzae
 because of its role in the uptake of iron, heme, 
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hemoglobin, transferrin, and various other vital metabolites (25, 76, 77, 149).  Beyond 

these roles of the TonB in the utilization of heme and other metabolites, our study 

suggested that TonB also played a role in the induction of cytokine IL-8 from human 

respiratory epithelial cells.  This addresses the fact that TonB has some contribution in 

the overall ability of H. influenzae to stimulate proinflammatory responses.  This 

evaluation is based upon the fact that the tonB gene from H. influenzae is expressed 

inside the E. coli cells.  Further analysis is required in order to confirm the expression. 

 Further study can be performed to understand the role of this protein in induction 

of other cytokines that are involved during the pathogenesis caused by NTHi.  

Stimulation of human respiratory epithelial cells with purified TonB can also be done to 

quantitate the level of IL-8 induction by this protein.  In vivo analysis can be perfomed 

with anti-TonB antibodies in rabbit or rat models to study the inflammation during the 

course of an infection. 

 Unlike ClpB, RelA, and TonB, FtsH showed no similar contribution to induction 

of IL-8 from human repiratory epithelial cells.  Though several studies have shown the 

expression of H. influenzae genes in E. coli cells (36) and care was taken to include the 

promoter sequences from this gene, experiments need to be performed to verify its 

expression.  Further experiments must be performed with FtsH in human monocytes and 

macrophages to analyze any IL-8 induction from them.  This protein moreover can be 

purified with methods that retain its antigenic reactivity to further study the 

proinflammatory cytokine induction. 

 This overall study dealt with the important aspect of identifying and 

understanding the roles of selected protein molecules that play a role in stimulating an 
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elevated inflammatory response from human respiratory epithelial cells.  Further 

experiments must be performed to understand the other components that might be present 

in the secreted fraction that could be responsible for such high IL-8 activity after 

stimulation of epithelial cells with that fraction.  The other proteins found from proteome 

analysis (Table 3) can also be studied to understand their contributions to induction of 

various cytokines and other mediators.  These potential proteins can also be studied to 

find out if they play any role in activating various signaling pathways that could play 

critical roles in regulating the gene expression of various cytokines and chemokines. 

Further, in vivo analysis will help us to understand how these proteins affect the host and 

could prove to be very important in our understanding of severe  respiratory diseases like 

COPD. 
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CHAPTER 5 

CONCLUSION 

 

 This study throws light on the fact that there are many proteins that are or could 

be involved in the process of stimulation of IL-8 from human respiratory epithelial cells.  

Roles of some specific proteins that show contributions to elevation of IL-8 activity were 

recognized in this study.  Our findings support the fact that many factors are involved in 

the complicated cellular interaction between the host and NTHi.  Identifying the role(s) 

played by the proteins associated with NTHi in inflammatory response will futher help 

studies involved with the development of new drugs and treatments for the patients 

suffering with severe respiratory diseases caused by NTHi. 
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