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ABSTRACT 

 

Self-assembled monolayers (SAM) of dithiocarbamate ligands were formed on the 

Au surface of an interdigitated electrode (IDE) array by reaction of amines with CS2 in 

H2O/CH3OH solutions.  Impedance spectroscopy was used to probe for the presence of each 

SAM as they were individually applied to the surface of the IDE by examining differences in 

collected impedance data after each step of the chemical application sequence.  The 

impedance behavior of the SAM’s were then studied in the presence of aqueous Cu2+ and 

Mg2+ ions.  A treated IDE array would, in theory, be able to preferentially detect lower 

concentrations of Cu2+(aq) by complexing with that specific ion, thus concentrating it within 

the capacitance field.  Cupric ion chelating groups anchored to the gold surface by the 

dithiocarbamate group included morpholine or 5-amino-1,10-phenanthroline.  A sensitive 

determination of the amount of Cu2+ leaching from anti-fouling marine hull coatings into 

water would be a useful example of practical applications of impedance-based sensors for 

heavy metal ions. Results of this work indicate that the SAM-treated IDE arrays differed in 

their impedance behavior relative to untreated IDE arrays.  The SAM-treated IDE arrays 

detected 1.00 μM Cu2+ concentrations with confidence, while untreated IDE arrays only 

detected as low as 50.0 μM Cu2+ with confidence. 
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CHAPTER 1 – INTRODUCTION 

Resistance Behavior of AC Circuits 

Impedance is known as the measure of the total opposition to flow of a sinusoidal 

electric current when using AC circuitry.  To better understand what impedance actually is, 

one can use Ohms law to explain how it’s measured.  Ohm’s law applies directly to simple 

resistors (and conductors) in both DC and AC circuits. However, in more complex AC 

circuits, the form of the current-voltage relationship defined by Ohms law must be changed 

from I=V/R to I = V/Z.  Note that V is voltage, I is the resulting current, and R is resistance.  

The quantity Z for the modified formula is denoted as impedance, which is measured in 

ohms, and for a pure resistor Z = R. Impedance is commonly represented as Z = R + iX, 

where R is the ohmic resistance and X is the reactance.  

Circuit elements such as inductors and capacitors have a frequency dependent 

opposition to current flow and increase or decrease current opposition as AC frequency 

changes.  The opposition to current flow caused by inductance or capacitance is known as 

reactance. The term reactance refers to the imaginary part of the impedance measurement 

(iX) due to it being a function of the frequency.  Generally speaking, a capacitor would have 

an impedance measurement that would decrease with increasing frequency supplied to the 

circuit.  An inductor would have an impedance value that increases with increasing 

frequency.  Also, a pure resistor would have the same impedance measurement at any 

frequency applied to the circuit. 

When capacitors or inductors are involved in an AC circuit, the current and voltage 

do not peak at the same time. The period difference between the peaks, expressed in degrees, 

is known as the phase difference. The contributions of capacitors and inductors differ in 
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phase from resistive components by 90 degrees. For inductive circuits, this results in a 

positive phase because current lags behind the voltage while for a capacitive circuit, the 

current leads the voltage for a negative phase. A resistor does not cause a phase shift.   Since 

the C/V behavior of capacitors and inductors are 180o out-of-phase, the impedance in a given 

circuit using both elements will have a phase-angle dependence.1  

Impedance spectroscopy (IS) can provide accurate evaluation of material 

characteristics by measuring impedance values for a range of circuit elements whose 

capacitance or inductance characteristics depend in some way on their chemical environment.  

Impedance vs. frequency data for different electrode configurations is typically collected by 

connecting the electrode to an impedance analyzer and then graphically presenting the data 

as either a Bode or Nyquist plot.   The Bode graph plots absolute values of impedance (Z) or 

phase angle (degrees) vs. the frequency range used while Nyquist plots depict the imaginary 

number Z” (reactance) vs. the real number value Z’.  Examples can be viewed in Figs 1 & 2. 

 

     
Z’ 

               Figure 1: Typical Bode plot  (Z vs. Hz).               Figure 2: Typical Nyquist plot (Z” vs. Z’). 
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The majority of work in this area is based on using interdigitated electrode (IDE) arrays as 

the AC circuit element responsible for varying impedance.  Recent studies have shown that 

impedance measurements can be related to charge carriers in bulk or interfacial regions, 

proton/electron conductivity, dielectric constants, charge mobility, equilibrium concentration 

of charged species, interfacial capacitance, and diffusion coefficients.2 

Some applications of IDE-based impedance spectroscopy include biosensor 

development for targeted biomolecules, the study of the conduction of polymer films with 

varying thickness, corrosion degradation, analysis of proton exchange membranes, and self-

assembled monolayers. 

Interdigitated Electrode (IDE) Arrays for Impedance Spectroscopy 

The general design of an IDE device can be visualized as 2 metal combs lying flat 

and pushed together so that the teeth mesh without actually touching (Fig 3).  The metal 

leads then function as a surface parallel plate capacitor.3  The electrode consists of two 

contact points (cathode and anode), which allow wire connections from fixtures to be made 

to its leads and directed to an impedance analyzer.  Two leads from the contact points on the 

electrode travel to the array, which is generally the area of interest.  The array itself 

resembles two fine tooth combs pushed together when the effects of a capacitor are desired 

and the array is the site for measuring the capacitance effects of a sample.   Variation in the 

size of the array will lead to variations in impedance measurements.  The general 

development of micro capacitor arrays has been reported.4 Designs are currently being 

implemented for many sensor studies, and some examples are briefly described here to 

illustrate the general concept.   
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Figure 3: Drawing of an interdigitated electrode. Left side: Array.  Right side: Contact points. 

The electrodes array can vary in size depending on the experiment for which the 

electrode is used. The materials used in the design of the arrays are typically gold or platinum 

to help prevent unnecessary corrosion.   For proper impedance testing to be conducted, a 

suitable size for the array must be selected such that the effect of a sample’s impedance on 

the circuit differs significantly from the “baseline” impedance of the array alone.  This can be 

done by testing the electrode/array manually under experimental conditions followed by 

comparison of data collected when the IDE is not present in its test fixtures.  If a suitable 

difference can be ascertained from the noise reported by the fixtures vs. the IDEs own 

analysis, the IDE has the potential to be used for the desired experiment.   

Sensor Applications Utilizing Impedance Spectroscopy 

Impedance spectroscopy has contributed to the development and testing of biosensors 

over the past few years 5-9 because it can be specific in detecting a given material of interest 

rather quickly with little sample preparation.  This requires a surface that can selectively bind 

the target molecule from solution with a corresponding change in impedance with varying 

concentration.  One such way to accomplish this is by electrochemically polymerizing films 
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directly onto the electrode array, which can physically entrap enzymes and other biological 

materials for selective binding of the target molecule. 5  

Impedance measurements of conducting polymer films can be used to determine a 

sensor’s baseline impedance signature for comparison to the impedance behavior when the 

IDE is exposed to an analyte solution. 6 Specific immune binding reactions that take place on 

a surface of a p-Si chip can produce impedance results significantly different from the 

uncoated IDE.7 It can also be used to detect DNA hybridization using coatings of polypyrrole 

on the array as a way to immobilize the DNA to study complementary and non-

complementary DNA targets.8-9   

Impedance spectroscopy can be used to measure the mechanism of degradation for 

polymers deposited on the surface of an electrode.  Double layer capacitance, membrane pore 

resistance, charge resistance, and doping onto polymers using bulky cations and/or anions 

and deactivation by overoxidative degradation of Pt can be evaluated.10 Inorganic salts 

deposited on platinum electrodes have been found to be good candidates for developing 

electrochemical sensors for inorganic environments because of their greater resistance to 

overall degradation as compared to sensors using organics.11  

Impedance spectroscopy has been used to examine the corrosion of complex 3D 

titanium foams used for biomedical purposes.12 It has also been used to study the corrosive 

degradation of metal barriers by determining changes in the porosity and degradation of 

applied coatings, specifically polarization and double-layer capacitance, which were used to 

analyze the delamination of top coatings and the onset of corrosion.13 

A unique technique for simulating taste has been developed based on impedance 

spectroscopy where nanostructured films of conductive polymers over an IDE array function 

 5 
 



as an ‘‘electronic tongue.’’14 This sensor detected trace organics at levels less than that 

detected by a human tongue, using gold interdigitated electrodes coated with polypyrrole and 

stearic acid.  Wine has also been studied utilizing the “tongue.”15   

AC impedance spectroscopy has been used to measure the proton conductivity of 

many different proton exchange membranes (PEM) including Nafion, where it was 

determined that a combination of H2O/HSO3
- ratio and [H+] gave useful parameters for 

detecting trends in proton conductivity. 16 The dielectric and electrical behaviors of Nafion 

have also been examined using impedance spectroscopy as a function of time to determine 

the water retention of Nafion and other composites at high temperatures.17 Charge transfer 

resistance for carbon nanotube based electrodes used for the membrane assembly of proton 

exchange membranes has also been measured by utilizing impedance spectroscopy.18   

Self-Assembled Monolayers (SAMs) 

Experimental design of specific sensors can require a monolayer treated surface to be 

employed when used in aqueous environments.  The monolayers provide the ability of an 

IDE to interact selectively with a substance of interest in the aqueous environment.  Although 

molecular monolayers may be deposited on solid surfaces electrochemically, as with 

conductive polymers, a simpler method relies on spontaneous self-assembly using organic 

molecules with a particularly strong affinity for the surface. SAMs can be formed by 

submerging a solid material (like Au) into a solution of another material (such as CS2) which 

adsorbs onto the surface.  Since the process is quite easy to implement, it makes the process 

attractive for quick fabrication of monolayer treated surfaces.19, 21 Outcomes using SAMs 

have been very favorable due to their ability to have a high level of specificity for various 

chemical structures, molecular size relationships, and interfacial phenomena.19-20  
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Specifically, they offer great insight onto interactions at interfaces due to their great ability to 

produce order and unique orientation for adsorbed molecules in applications for chemical and 

bio chemical sensor development. 20-21  

Such organic derivitized metal surfaces are commonly used in surface science, 

nanomaterials and chemotherapeutic research.22   Self-assembled monolayers of thiols 

attached to gold surfaces are an example of a common use of SAMs.  It has been reported 

that CS2 groups possess high chemisorption properties due to sulfur-to-sulfur bond distances, 

which are ideal for adsorption onto gold.23 This is made even more advantageous due to the 

ability of CS2 to react with a secondary amine forming dithiocarbamates, which then bind 

onto the Au spontaneously.  The secondary amine/CS2 reaction with subsequent Au 

adsorption has been demonstrated for a variety of amines.22 These could be used to aid the 

analysis of certain samples that require chelators in order to concentrate the analyte of 

interest near the electrode surface.  A logical extension of this concept uses the 

dithiocarbamate to anchor a Cu2+- specific chelator to the gold IDE surface.    

Impedance Behavior of IDE in the Presence of Mobile Ions 
 

A capacitor stores energy in an electric field between its conducting plates, with the 

magnitude of stored charges directly related to the dielectric constant of the insulating 

medium between the plates.  This electric field can be altered by the interaction of metal ions 

entering the field, changing the dielectric constant and thus altering capacitance, and hence, 

the impedance as well.  Presumably, at very low concentrations, there would be too few ions 

to have a significant effect, but if a suitable chelating agent is part of a self-assembled 

monolayer attached to the metal surface, it should concentrate the metal ion inside the 

capacitance field and cause a change in the measured impedance. The magnitude and 
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frequency behavior of this expected impedance change is difficult to predict since the 

mechanism is subject to many variables.  When the IDE is charged, each electrode will have 

its fluid double layer with opposite ion orientation (see Fig.4).  

 

 

Figure 4:  Charged IDE illustrating electrodes fluid double layer with opposite ion orientation. 

Reversing the charges during the AC cycle would require extensive ion reorientation in the 

double layers, introducing time and ion mobility dependence factors.  Concentrating the 

metal ions close to the surface by chelating of the SAM will undoubtedly alter these effects 

significantly.  This thesis project explores the effect on impedance of an IDE with surface-

anchored chelating groups in the presence of aqueous metal ions as a potential method for 

detection and quantitation of such ions. 
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CHAPTER 2 – EXPERIMENTAL PROCEDURES 

All experimental data were collected using an Agilent HP 4192A LF impedance 

analyzer with an HP 16047A test fixture.  All data were acquired by a 6-minute frequency 

sweep from 5 Hz to 13 MHz at a constant 0.02 V applied to the IDE chip arrays.  Laboratory 

temperature was between 19oC to 21oC during all testing.  Small fluctuations in temperature 

caused no change in reproducibility of the data collected.  Electrical connections to the IDE 

chips relied primarily on spring loaded clips pressed securely onto surface contact pads at the 

chip edge, with the chip oriented to allow immersion of the array surface in test solutions as 

shown in Figs. 5 & 6.  
 

 

 

                 

Figure 5: J-hook attached & submerged IDE array.                    Figure 6:  Impedance analyzer setup. 

 

The interdigitated electrode arrays were manufactured by photolithography with a 

spacing of 10 microns between 10 micron panel leads, with a thickness of approximately 

1000 Å.  Note that three different types of capacitor arrays were tested during the 

experiments, all of which had varying surface area for their arrays.  Below are descriptions of 

the arrays used: 
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PTI Array:  Commercial SiO2 passivated silicon wafer coated with gold with an array surface 

area size of 6.30 mm2.  These arrays were extensively tested but eventually discarded due to 

the poor electrical characteristics related to the manufacturing process, as well as their 

excessive brittleness.  

Abtech 1050.5 Array:  Made of gold on glass manufactured by photolithography.  A given 

array surface area is 9.58 mm2. A smaller Abtech array (designated 1025) was also tested. 

Their overall design was durable and the array was well made, consistent, and produced 

impedance data with a favorable difference in values from that of an empty test clip, but due 

to their very high cost not enough of them could be obtained for the entire research project. 

U of M Array:  Made of gold on glass with an array surface area of 19.6 mm2.  These arrays 

were manufactured at the University of Michigan photolithography lab and were used for the 

bulk of the experimental work of this research.  Their array was the largest, which made them 

the most sensitive to alterations of their electric field. The array area was composed of leads 

10 microns thick, which alternated with 10 micron spaces. Approximately 500 total leads are 

present in the array. 

HP Impedance Analyzer Data Collection 

Customized labview software titled “SWEEPER” was used to control the HP 

analyzer and collect data.   This software was originally developed at the IRC Institute for 

Biomedical Materials Queen Mary-University of London and was used with their permission.  

Data included impedance values and signal phase angle as a function of frequency with an 

AC voltage of 0.02 V from 5 Hz to13 MHz.  Raw data from SWEEPER were collected and 

placed in an EXCEL file and converted into graphical plots for either Z (impedance) vs. Hz, 

phase angle vs. Hz, or a combination of the two when needed.   
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Copper and Magnesium Samples 

 Cu2+ & Mg2+ solutions were prepared from CuSO4*5H2O and anhydrous MgSO4.  

Both were dissolved in deionized H2O to produce 50.00 ml samples in appropriate 

volumetric glassware.  The concentrations used for both ions were 25mM, 5mM, 1mM, 

0.5mM, 0.1mM, 0.05mM, 0.01mM, 0.005mM, and 0.001mM.   

SAM Samples 

For treatment of the U of M arrays, pure HPLC grade CS2 was applied first for 

assurance that the array would be fully coated with a base monolayer, followed by a 100mM 

sample of morpholine or 5-amino-1,10-phenanthroline in CH3OH.  Their structures can be 

viewed in Figs. 7 & 8, respectively.    

                                         

          Figure 7: Morpholine (C4H9NO).         Figure 8:  5-Amino-1,10-Phenanthroline (C12H9N3). 
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Figure 9: Illustration of SAM formation. 

The IDE array areas were submerged into the chemical solutions described above to 

form the SAMs.  Carbon disulfide was used first to create a layer favorable for a second 

compound to be added that would bind to the carbon in CS2 along with a second group, 

which had lone pairs of electrons to interact with a metal ion in solution (R1 & R2 in Fig. 9).  

Treatment was done by submerging the array of the IDE for 20 minutes in pure CS2 followed 

by a minimum of a 10 minute dry time.  After CS2 treatment, the array was submerged in 

either 100mM morpholine or phenanthroline for building the desired SAM for analysis of 

metal ions. Examples of various other secondary amine/CS2 reactions with subsequent Au 

adsorption have been conducted.22 
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CHAPTER 3 – RESULTS & DISCUSSION 

1. Empty Test Clip 

Initial work began by determining the background impedance and phase angle values 

produced by the standard sweep conditions on the wiring set-up without the IDE chip in the 

circuit. The test fixture was an alligator type clip with four metal contact points located at 

intervals across the square jaw front such that clamping the edge of the IDE chip in the jaw 

tip pressed the connectors onto the chip contact pads.  Standard J-hook clips were then placed 

on the appropriate leads to connect the chip array to the impedance analyzer. 

A number of standard runs were made on the empty test clip, and all sets of raw data 

obtained were identical in impedance and phase angle vs. Hz sweep collected, as shown in 

the log-log plot of Fig. 10. 

 Empty Test Clip

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06
1.0E+07

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08

log.frequency (Hz)

lo
g.

Z 
(O

hm
s)

-140
-120
-100
-80
-60
-40
-20
0

ph
as

e 
an

gl
e 

(d
eg

re
es

)

Impedance (Z) Phase Angle
 

Figure 10: Typical data collection of Z & phase angle vs. Hz for empty test clips. 
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2. Selection of IDE Array 
 

Combined Z Plot-Various Arrays Used (Z vs Hz)
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Figure 11: Combined plot of impedance vs. Hz for blank arrays and empty test wire 

When the new IDE arrays were obtained, they were examined microscopically to 

ensure that their dimensions were correct (10 micron spacing).  Analysis began by comparing 

the Z data obtained by a standard frequency sweep for each array.  Fig. 11 shows that the 

new UM array with its larger array surface area produced the lowest Z data at a given Hz 

point and also produced the greatest difference from the empty test wires, being about 600 

ohms less.  The greater magnitude in ohms difference was expected to aid in the ability to 

detect smaller amounts of metal ions in solution when in contact with the array’s electric 

field since this IDE was more conductive (lower Z) than previous ones.  With its larger array 

area and lower cost, the UM IDE chip was chosen for all subsequent experiments. 
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3. Alternate IDE Chip Connection Method 

Since the impedance behavior of the test system is a function of the capacitance of 

both the IDE and the connecting wires, an alternate method of connecting the chip to the HP 

4182A unit was tested in an effort to minimize the extraneous capacitance of the alligator 

clip.  For this test, standard J-hook connectors were clipped directly to the contact pads on 

the IDE chip edge and a standard sweep run for comparison.  The wires were found to 

provide slightly overall lower Z data than that of the test clip (Fig. 12) although the 

difference in parasitic capacitance was very small.  The more secure connections of the J-

hook wire assembly were deemed valuable to experimental reproducibility and to achieving 

minimum parasitic capacitance, hence removing the need for the alligator clip.   

Impedance Comparison of Empty Test Clip & Empty 
Wire Leads 
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Figure 12: Impedance analysis of empty test clip vs. wire leads. 
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4. Initial Tests on Z Behavior of IDE Array in Aqueous Environment 

a.   Deionized (DI) H2O Sample Application Methods 
 
Two methods were tested for exposing the IDE array to test solutions.  The 

first was surface application via microsyringe of a 2 µl droplet over the horizontal 

array area surface (Fig. 13).   

 

 

Figure 13: Application of 2 μl H2O sample onto array surface using a micro syringe. 

The second was vertical immersion of the chip end into a small volume of the 

solution.  The surface application technique was found to have reproducibility 

problems, which appeared to be related to evaporation of the 2 ul droplet during the 

6-minute run time.   

Figs. 14 & 15 contrast impedance plots for application vs. immersion of the 

IDE array with DI H2O.  These were also generally similar in profile but had 

noticeable differences in both Z values and phase angle over the frequency range.   
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Figure 14: Analysis of array submerged in DI H2O. 

   2ul Sample of DI H2O
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Figure 15:  Analysis of array applied with 2ul sample of DI H2O. 

In comparison to the runs in which a 2µl sample was placed on the array (Fig. 

15), submerged arrays (Fig. 14) produced a Z data plot with a deeper valley between 

6-7 MHz when analyzed and a smaller max for phase angle between 3-5 MHz.  The 

data collected by submersion were reproducible, and repeated runs gave identical 

impedance plots each time. 
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It is apparent that reversing the potential during the alternating current cycle 

on the IDE must create a constant changing of the H2O molecular orientation at the 

metal surface.  A comparison of Figs.11 & 14 clearly demonstrates that the effect of a 

polar liquid like water on the impedance response of the IDE is pronounced.  As with 

any capacitor, the polar liquid between the array leads (the plate equivalents) 

increases charge storage capability by increasing the dielectric constant.  Within the 

electric fields adjacent to the metal leads, the dipole moment of the water molecules 

orients in the appropriate direction to stabilize the alternating charges, as shown in 

Fig.16.  

 

Figure 16: Charged IDE illustrating AC interaction/attraction of H2O using dipole moments. 

Reversing the lead potentials during the AC current cycle requires that the water 

dipoles reorient to the opposite alignment.  The decrease in impedance over the sweep 

range indicates that this induced rotation of the water molecules becomes more 

efficient as the AC frequency increases, reaching a maximum (minimum Z) between 

5-6 MHz.  While it is tempting to equate this to a matching of the quantized rotational 

frequency of gas-phase H2O molecules, the fact that the process is occurring in a 

condensed phase renders such a view overly simplistic.    
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b.   Cu2+ and Mg2+ mM Samples Using Untreated UM IDE’s 
 

A comparison of 25mM Cu2+ and Mg2+ show impedance plots between 

1.0E+2 and 1.0E+7 Hz, which are significantly different from deionized H2O (Fig 

17). 

Combined Impedance Plot for DI H2O vs. 25mM Cu2+& Mg2+
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Figure 17: Comparison of 0.025M Cu2+ & Mg2+ samples vs. DI H2O. 

The H2O plot shows higher Z values relative to the dilute aqueous Cu2+ & Mg2+ 

solutions from the initial sweep frequency up to 6 MHz. This is consistent with the 

theory that charged species should decrease measured impedance values over a broad 

frequency range by increasing the dielectric constant of the medium.  

 Since the Z vs. frequency plots for pure H2O and metal ion solutions have 

different curvature, the numerical relationship between Z and ion concentrations will 

depend on the exact frequency chosen for comparison.  In the absence of other 

specific criteria, the choice of frequency must be, to some extent, arbitrary.  The 

impedance signal for the aqueous metal ion solutions is a function of both the pure 

H2O baseline and the added effect of the dissolved ions.  In order to look for small 
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changes in Z with [M+], it was decided to use the frequency (6-7 MHz) at which the 

background impedance due to pure H2O was at its minimum (highest conductivity). 

c.   Limit of Detection for Metal Ions Using Blank Arrays 
 

Analysis of DI H2O was conducted using three different IDE arrays to obtain 

9 data plots for Z vs. Hz by using them on alternating days along with removal and 

reconnection of the arrays before analysis.  Examination of the impedance plots while 

analyzing the Cu2+ samples had shown that between 5 & 6 MHz the Z data formed a 

local minimum.  The bottom of the Z data valley can be clearly seen at 5623413 Hz.  

As concentration of Cu2+ decreased, the Z data valleys for untreated or treated arrays 

decreased to approach a DI H2O Z data plot (Fig. 18).  

From the nine samples of H2O analyzed, the average Z at the given point was 

9.82 ohms.  The limit of detection (LOD) was calculated using the program Excel to 

determine the standard deviation from the data collected and gave a value of +1.30.  

The LOD obtained (1.30 ohms) was then used as a guide to determine how dilute a 

metal ion concentration could be when approaching the DI H2O Z data at 5623413 Hz 

and still show a distinguishable reading.  For example, if Z data for DI H2O at 

5623413 Hz was 8.6 ohms, the data point for the Cu2+solution would have to exceed 

9.9 ohms to be considered detectable.  Anything below 9.9 ohms would be  

 indistinguishable from DI H2O.  The Z values at the minimum for the nine plots from 

the nine sets of data can be seen in Table 1. 

   Array 1a  1b  1c  Array 2a  2b  2c  Array 3a  3b  3c 

Impedance (Ohms)  9.9  9.4  9.1  9.71  9.44  10.1  10.25  10.3  10.21 
 

Table 1: Z data from DI H2O samples used for determining LOD for treated arrays. 
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Additional impedance runs with immersion in Cu2+ (aq) solutions of varying 

concentration showed a distinct effect on the Z value at that frequency (5623413 Hz) 

that could be correlated with concentration, as seen in Figs. 18 & 19. 

d.  Correlation of [Cu2+] & [Mg2+] with Z 
 

Array 
Design 

Array 
Area  Substrate  Sample  Metal  Concentration (mM) of Metal Analyzed 

U of M   19.6 mm  None  DI H2O  Cu2+   1, 0.5, 0.1, 0.05,0.01,0.001 & DI H2O 
 

Table 2: Experimental conditions for an untreated array with Cu2+ samples. 

Combined Impedance Data for an Untreated Array in 
Various (aq) Cu2+ Concentrations
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Figure 18:  Comparison of Z curves as a function of [Cu2+]. 

Fig. 18 shows Z decreasing as concentration decreases the for 0.1mM and 

0.05mM Cu2+ samples; however, samples 0.001mM, 0.01mM, and 0.005mM are not 

in a decreasing order as they approached the DI H2O plot.  It was expected that as 

concentration decreased the plots would approach that of DI H2O, but repeated trials 

with untreated arrays often gave plots that failed to correlate with decreasing 

concentration of Cu2+. The 0.001mM data plots were often found at a higher Z than 
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0.01mM samples, and in some cases entire plots had been shifted to the right to fall 

between 6-7 MHz instead of the normal location of 5-6 MHz.   

 
Array 
Design 

Array 
Area  Substrate  Sample  Metal  Concentration (mM) of Metal Analyzed 

U of M   19.6 mm  None  DI H2O  Mg2+  0.1, 0.05,0.01,0.001 & DI H2O 

Table 3: Experimental conditions for an untreated array with Mg2+ samples 
 

Combined Z Data for Untreated Array Analysis of 
Various (aq) Mg2+ Concentration vs. DI H2O
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Figure 19: Impedance analysis of Mg2+ samples with an untreated array. 

Combined Phase Angle Data for an Untreated Array 
Analysis of Various (aq) Mg2+ Conc. vs. DI H2O
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Figure 20: Phase angle analysis for Mg2+ samples with an untreated array. 
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The phase angle vs. Hz plot (Fig. 20) was produced to show that the Z & 

phase angle data plots gave similar correlations; the difference being that the phase 

angle vs. Hz curves for each [Mg2+] showed a consistent increase instead of the valley 

minimum seen in prior graphs.  The phase angles vs. Hz plots were not generated for 

every experiment because they were repetitive to what impedance vs. Hz plots 

revealed by way of plots approaching the DI H2O data collected for comparison to the 

LOD.  

5. Z Behavior of SAM Treated IDE Arrays in Aqueous Environment 
 
a.  SAM formation using CS2, Morpholine, & Phenanthroline 

 
The chemical treatment for developing the self-assembled monolayer was 

used in order to create a surface that would bind to the gold that made up the array 

and also bind selectively to the metal ions in solution which, in turn, would allow 

smaller concentrations of Cu2+ to influence the IDE electric field and alter the 

impedance response.  The initial set of experiments using the treatment was done to 

determine if the chosen chemicals would indeed bind to the array and would change 

the Z & phase vs. Hz behavior in some consistent manner relative to the untreated 

blank array.  

The first step of the treatment in building the SAM used CS2 alone.  Thiols 

and other oganosulfur species are well known to adsorb onto gold surfaces very 

strongly just from solution contact.  Pure CS2 was used to insure full coverage of the 

Au leads. The starting array was first washed with acetone and allowed to air dry, 

then attached to the test clip.  The test clip was held in place by a clamp that was used 

to hold the array so that it could be held upright and completely submerged in a liquid 
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sample.  A small glass plate with small wells was used to house the liquid samples for 

treatment.  The CS2 sample was used to fill the glass well, and the array was 

submerged until it touched to bottom of the well plate.  The array end of the chip was 

submerged in the sample for 2 minutes and then removed and allowed to air dry for 5 

minutes.   

  The second step used morpholine, so that its amine nitrogen would attach to 

the monolayer of CS2 while the oxygen on the opposite side of its ring could then be 

used to interact with metal ions in solution due to the lone pair electrons on the O 

(Fig. 21). The Z behavior of the array was determined after each step in the process to 

determine any changes due to the adsorbed species.   The thin film made by the SAM 

that had been adsorbed onto the surface of the IDE could be anchored and detected 

repeatedly with success.  The following material describes this in detail (Fig. 21). 

 

Figure 21: Formation of a SAM using pure CS2 & 100mM morpholine. 

The morpholine/CS2 treated array was then submerged in a 5mM Cu2+ 

solution and a standard impedance sweep performed.  An overall comparison of plots, 

treated and untreated, can be seen in Fig. 22. 
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Figure 22: Analysis of building a SAM followed by analysis of a Cu2+ sample. 

Fig. 22 demonstrates that using the SAM of morpholine generated a 

significant difference in the impedance plot when exposed to dilute Cu2+ (aq) relative 

to the blank or untreated IDE array.  The effect of the CS2 alone, and after 

combination with morpholine, was very small.  This suggests that a single monolayer 

of either CS2 or the dithiocarbamate species has only a minor influence on the array 

capacitance.  However, the Cu2+ test using the CS2 plus morpholine array is very 

clearly distinguishable from the untreated array under the same conditions, producing 

indirect evidence for the presence of the dithiocarbamate surface monolayer.  Similar 

stepwise experiments on SAM formation were done for the other amine to look for 

evidence of the presence of adsorbed dithiocarbamates.       

  Figs. 23 & 24 compare a blank array vs. an array treated with CS2 and either 

morpholine or 5-amino-1,10-phenanthroline.  Expanding the Z scheme magnifies the 

small differences between treated and untreated arrays, but in both cases, the amine-

treated final species consistently had a larger effect than the adsorbed CS2 alone. Note 
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that the frequency range is not the same for Figs. 23 & 24. The best Hz range chosen 

for the graphs in both cases was that which gave the most defined Z difference. 
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Figure 23: Z analysis morpholine treated vs. non-treated array for evidence of SAM. 
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Figure 24: Z analysis phenanthroline treated vs. untreated array for evidence of SAM. 
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b. Effect of Cu2+ (aq) on SAM of CS2 & 100mM  Morpholine   
 

Array 
Design 

Array 
Area  Substrate  Metal  Concentration (mM) of Metal Analyzed 

U of M  19.6 mm2   Morpholine  Cu2+   0.1, 0.05,0.01,0.001 & DI H2O 

 
Table 4:  Experimental conditions for morpholine treated array with Cu2+ samples. 

 

Combined Impedance Data for the Treated Array 
Analysis of Various (aq) Cu2+ Conc. vs. DI H2O
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Figure 25:  Cu2+ samples analyzed with a treated array (CS2 & Morpholine). 

With the morpholine/CS2 treated array, the Z values decreased as Cu2+ 

concentration decreased for all samples tested (Fig. 25).  The smallest Cu2+ sample 

detected with success and reproducibility was 0.001mM, due to the data point at 

5623413 Hz being 1.30 ohms (LOD) greater in value from the H2O Z data obtained 

while using the same array.  While using the untreated arrays, 0.01 and 0.001 mM 

samples were either out of the order of smaller concentration approaching the H2O 

plot or the data plots were found to be randomly placed lower or higher in Hz than 

what was normally detected.  The data from Fig. 18 show the disorganization of the 

data plots.   
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c. Effects of Mg2+ (aq) on SAM of CS2 & 100 Mm Morpholine 

Array 
Design 

Array 
Area  Substrate  Sample  Metal  Concentration (mM) of Metal Analyzed 

U of M  19.6 mm   Morpholine  DI H2O  Mg2+  0.1, 0.05,0.01,0.001 & DI H2O 
 

Table 5: Experimental conditions for a treated array with Mg2+ samples. 
 

Combined Impedance Data for the Treated Array 
Analysis of Various (aq) Mg2+ Conc. vs. DI H2O
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         Figure 26:  Mg2+ impedance analysis with a treated array (CS2 & Morpholine). 

The lowest concentration for Mg2+ analyzed was 0.001mM, and its plot (Fig. 

26) was found under the limit of detection while using the SAM consisting of CS2 and 

morpholine, so detection was considered to be unsuccessful for 0.001mM Mg2+.    

d.   Effect of Cu2+ on SAM of CS2 & 100mM Phenanthroline 
 

Array 
Design 

Array 
Area  Substrate  Sample  Metal  Concentration (mM) of Metal Analyzed 

U of M  19.6 mm   Phenanthroline  DI H2O  Cu2+  0.1, 0.05,0.01,0.001 & DI H2O 
 

Table 6: Experimental conditions for phenanthroline treated array with Cu2+ samples. 
 

Fig. 27 revealed that treatment allowed the Cu+2 sample of 0.001mM to be 

detected while analysis with an untreated array using the 0.001mM sample was 
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unsuccessfully analyzed because the data point at 5623413 Hz was not greater than 

1.30 ohms from the data obtained for DI H2O.  

 Impedance Data using a Treated Array 
(Phenanthroline)  on Various (aq) Cu2+ Conc. vs. DI 

H2O
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Figure 27:  Treated array (Phenanthroline) impedance analysis of Cu2+ samples. 

Special attention was noted because the phenanthroline-treated array seemed 

to have increased the magnitude between 0.001mM sample and H2O by more than 

1ohm than when using morpholine, therefore allowing a greater distance from Cu2+ 

sample data vs. DI H2O data favoring the LOD (1.30 ohm difference).  

e. Effect of Mg2+ on SAM of CS2 & 100mM Phenanthroline 

For Mg2+ samples (Fig. 28), the phenanthroline treatment did not allow the 

Mg2+ sample of 0.001mM to be detected with confidence due to the data point being 

less than 1.30 ohm from the DI H2O plot.  
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 Impedance Data for the Treated Array 
(Penanthroline) Analysis of Mg2+ Samples vs. DI H2O
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Figure 28: Treated array (Phenanthroline) impedance analysis of Mg2+ samples. 

The data of 0.001mM Mg2+ fell under the LOD at 5623413 Hz.  The 

phenanthroline did not increase Z data for the sample of 0.001mM and H2O.  Table 7 

summarizes the raw impedance data at frequency point 5623413 Hz for Cu2+ and 

Mg2+ samples, which has then been compared to the impedance data of DI H2O 

collected during the same experiment.  The difference in ohms between the metal ion 

samples and that of DI H2O revealed which sample and treatment allowed a 

successful detection of metal ions by being above (successful) or below 

(unsuccessful) the LOD.  

  
Morpholine 
(ohms) 

Phenanthroline 
(ohms)    

Morpholine 
(ohms) 

Phenanthroline 
(ohms) 

Cu2+  10.48  10.62  Mg2+  10.90  10.26 

DI H2O  9.14  8.82  DI H2O  10.00  9.12 

Difference  1.34  11..8800   Difference  00..9900   1.14 

LOD (1.30)  Above  Above (Highest)  LOD (1.30) 
Below 
(Lowest)  Below 

 

Table 7: Z comparison of 0.001mM Cu2+ & Mg2+ vs. DI H2O at 5623413Hz. 
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6.  Impedance vs. Concentration Comparison 

a. Cu2+ Samples 

Fig. 29 showing morpholine data and Fig. 30 using phenanthroline plot the 

impedance values versus the concentration of the samples used by selecting Z values 

at a fixed Hz point.   

 

Impedance vs. Conc. of Cu2+ for the Treated vs. 
Untreated Array Analysis at 5623413 Hz
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Figure 29: Z vs. conc. analyzing Cu2+ with treated (morpholine) & untreated arrays. 

 

 

 

 31 
 



Impedance vs.Conc. of Cu2+ for the Treated vs. 
Untreated Array Analysis at 5623413 Hz
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Figure 30: Z vs. conc. analyzing Cu2+ with treated (phenanthroline) & untreated arrays. 

The frequency used was 5623413 Hz where the greatest change was visually 

found in the raw Z data.  Using phenanthroline to form the SAM used for analysis of 

Cu2+ samples increased the impedance values obtained, hence decreasing overall 

conductivity of the capacitor.  Data from the treatment of morpholine had a minimal 

impact on increasing Z, so more conductivity was found. 

b. Mg2+ Samples 

Data found in Fig. 31 using morpholine and Fig. 32 when using 

phenanthroline show specific characteristics after plotting the impedance values vs. 

the concentration of the samples used by selecting Z values at the fixed Hz point of 

5623413 Hz.   

 

 32 
 



Impedance vs. Conc.of Mg2+ for the Treated vs. 
Untreated Array Analysis at 5623413 Hz
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Figure 31: Z vs. conc. analyzing Mg2+ with a treated (morpholine) & untreated array 

Impedance vs Conc. of Mg2+ for the Treated vs. 
Untreated Array Analysis at 5623413 Hz
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Figure 32: Z vs. conc. analyzing Mg2+ with a treated (phenanthroline) & untreated array 

When investigating Mg2+ samples, it was determined that using morpholine to 

form the SAM used for analysis decreased the impedance values obtained (Fig. 31), 

hence increasing reported conductivity of the IDE, making it act more like an 

insulator.  The data from the treatment of 5-amino-1,10-phenanthroline (Fig. 32) 
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reported a slight increase to the treated Z plot in comparison to the morpholine treated 

Z analysis (Fig. 31), which reported lower Z values at the same frequencies.   

The SAMs anchored on the IDE interacted with Cu2+ to alter the Z data in a 

consistent manner related to which SAM was used.  Phenanthroline increased the Z of 

Cu2+ by several ohms vs. using an untreated IDE, while morpholine caused a much 

smaller increase.  Using either SAM increased the overall Z data with increasing 

concentration of Cu2+ when compared to an untreated IDE.  Mg2+ samples had little 

interaction to alter the Z when using both types of SAMs since Z data were 

indistinguishable between the SAMs used. Various concentrations of Mg2+ samples 

analyzed using either SAM were found to be consistently lower than using untreated 

IDEs.  
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CHAPTER 4 – SUMMARY & CONCLUSIONS 
 

Changes in the impedance spectra of gold micro-IDE arrays can be correlated with 

the formation of dithiocarbamate species from the combination of functionalized amines and 

carbon disulfide.  Adsorption of these molecules on to the metal surface through specific 

interaction of the dithiocarbamate sulfurs with the exposed gold atoms results in significant 

changes in the impedance and phase angle curves relative to the untreated starting array.  The 

overall change can be followed in a two-step process, which presumably forms a self-

assembled monolayer.  

 The first application of pure CS2 to the gold IDE array gave a small drop in 

impedance after drying.  Additional application of selected amines (morpholine or 5-amino-

1,10- phenanthroline) provided further downward shifts in the plotted impedance vs. 

frequency curves, as shown in Figs. 22-24.  It was clear that the addition of CS2 lowered the 

overall Z, and either morpholine or phenanthroline decreased the overall impedance of the 

array further.  These results are consistent with the expected general decrease in Z as the CS2 

binds to the surface as a neutral species.  The polarizability of the surface monolayer should 

increase the dielectric constant of the interfacial region, increasing the charge-storage 

capacity of the metal and hence lowering the impedance relative to the bare metal.   

In the second step, reaction of the amine with the surface-adsorbed CS2 to form the 

zwitterionic dithiocarbamate would give an even larger increase in the surface region 

dielectric constant to further decrease Z.  The concentrations of the CS2 and amine solutions 

were theoretically sufficient to insure saturation of the gold surface, but a detailed 

investigation of the actual surface coverage was not undertaken.  With impedance data 

supporting the formation of stable dithiocarbamate monolayers on the gold array surface, the 
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impedance behavior of the derivatized IDE chips was then studied as a function of aqueous 

Cu2+ and Mg2+ concentration. 

In order to accurately assess the effect of surface-anchored chelating groups on the 

impedance behavior of IDE arrays exposed to aqueous solutions of metal ions, the interaction 

of bare gold leads (without the organic monolayers) with such solutions was studied to 

determine a baseline for comparison.  Standard impedance spectra, plotting both Z and phase 

angle as a function of frequency, were acquired for multiple dilutions of stock Cu2+ and Mg2+ 

solutions.  In both systems, the impedance and phase angle curves converged in a 

reproducible manner toward the curves for pure water, clearly indicating that the effects of 

the aqueous metal ions were additive with the background effect of the water alone.   With 

the bare gold surface, equivalent concentrations of the two divalent cations showed little 

significant difference in their impedance plots, indicating that the interaction of the cations 

with the metal surface in the interfacial boundary layer is primarily nonselective, i.e., more a 

function of simple charge than the nature of the charged atoms.   Repeated tests showed that 

the lowest concentration of metal ions that could be reliably differentiated from pure water 

using the blank (underivatized) array was approximately 0.1 mM.  Impedance spectra from 

the same set of sample dilutions were then acquired using the morpholine and 

phenanthroline-based dithiocarbamate-derivatized IDEs to determine if the presence of 

suitable chelating groups would increase the detectability limit of the aqueous ions.  In order 

to maintain consistency between the various experimental series, comparison of solution Z 

values was made at a single, arbitrarily-selected frequency of 5623413 Hz, corresponding to 

the point at which the impedance of pure water reached its minimum value.  This was done to 
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determine how readily small differences in Z due to varying ion concentrations could be 

distinguished when the background dielectric effect of water was at its strongest.  

The IDE array was used for determining the smallest possible ion concentration that 

could be reliably analyzed using self-assembled monolayers.  A limit of detection was found 

(1.30 ohms) from using multiple data analysis of deionized H2O, the same water used to 

make aqueous metal ion samples, which meant that any impedance data collected for Cu2+ or 

Mg2+ samples at the selected frequency of 5623413 Hz had to be 1.30 ohms greater in value 

than that of the smallest DI H2O data point at that same Hz, otherwise the sample would be 

considered deionized H2O due to data points being so close in proximity (Table 1).   

Ion Analysis Using SAM CS2 & Morpholine  

Cu2+ samples (0.1, 0.05, 0.01, 0.005 & 0.001) mM were analyzed using the IDE array 

treated with pure CS2 & 100mM morpholine.  Fig. 25 shows the common trend in how all 

Cu2+ samples produced organized data plots in relation to a sample’s concentration when 

analyzed using the SAM treated array.  The untreated arrays produced unorganized data plots 

that followed no pattern in relation to sample concentration (Fig. 18).  For treated arrays in 

the frequency range of 5–6 MHz, the Z decreased as concentration of the tested samples 

decreased.  The smallest Cu2+ sample detected with success was 0.001mM.  The data were 

found to be reproducible, showing where plots had become uniform with smaller 

concentrations of sample approaching the deionized H2O plot.  

Mg2+ samples were analyzed using an untreated array for Z and phase angle data vs. 

Hz (Figs. 19 & 20).  The lowest concentration analyzed for Mg2+ was 0.001mM, and its data 

was found under the limit of detection (1.30 ohms) as compared to that of the DI H2O data 

while examining the Z vs. Hz plot.  The smallest concentration analyzed for Mg2+ was 0.001 
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mM, and its plot was found under the limit of detection while using the treated array (values 

found under the LOD were considered undetectable, see Table 7).  The smallest 

concentration determined with certainty was the 0.01mM Mg2+ sample while using the 

treated array with morpholine (Fig 26). 

Morpholine reported the lowest Z difference at 5623413 Hz between DI H2O and 

0.001 mM Mg2+ with a difference of 0.9 ohms, well below the LOD of 1.30 ohms.  When 

analysis of trace ion concentration in a sample was sought after, a treated array made of 

morpholine did not allow successful detection of  0.001mM Mg2+ samples above the LOD 

while analysis of Cu2+ using a morpholine treated IDE successfully detected the Cu2+ by 

providing data above the LOD at the same frequency and concentration (Table 7) . 

Ion Analysis Using SAM CS2 & Phenanthroline 

Cu2+ samples (Fig. 27) revealed that SAM treatment allowed the Cu+2 sample of 

0.001mM to be detected while analysis with an untreated array did not allow the 0.001mM 

sample to be successfully analyzed because it fell under the LOD (1.30 ohms) from DI H2O 

data.  In particular, it was noted that the phenanthroline increased the distance between the Z 

data points for the 0.001mM sample and DI H2O as compared to when using morpholine, 

allowing for possible greater sensitivity in detecting Cu2+ (Table 7).    

For Mg2+ samples (Fig. 28), the treatment did not successfully detect 0.001mM Mg2+  

because it fell under the LOD, just as the untreated array analysis of Mg2+ 0.001mM was 

undetectable since it too fell under the LOD.  All impedance data used for comparison to 

deionized H2O using the LOD can be viewed for Mg2+ & Cu2+ 0.001mM samples in Table 7. 
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Ion Concentration vs. Impedance 

When comparing impedance data vs. ion concentration, Cu2+ samples using 

phenanthroline in the SAM increased the impedance values obtained, which decreased 

overall conductivity of the capacitor (Fig. 30).  The treatment of morpholine (Fig. 29) 

impacted the reported Z less than when using phenanthroline. Both morpholine and 

phenanthroline reported higher impedance data vs. untreated data when comparing Z vs. 

concentration.  When comparing the two SAMs used, Phenanthroline caused the greatest 

increase in the overall Z when compared to using an untreated IDE to analyze Cu2+ samples.   

Using morpholine to form the SAM used for analysis of Mg2+ samples decreased the 

impedance values obtained when comparing Mg2+ samples vs. the collected untreated Z data, 

hence increasing conductivity. The data from the treatment of 5-amino-1,10-phenanthroline 

(Fig. 32) reported only a very slight Z increase in comparison to the morpholine treated Z 

analysis (Fig. 31), which reported lower Z values at the same frequencies.  Both morpholine 

and phenanthroline reported impedance data below the untreated plots when analyzing Mg2+ 

samples, the direct opposite to what was found when using Cu2+ samples, and Z differences 

between each SAM used was miniscule. 

Trends Related to Ion Concentration vs. Impedance  

 As noted previously (p. 8), it had originally been anticipated that the presence of 

metal ions such as Cu2+ would decrease the impedance (i.e. increase conductivity) of the IDE 

array by enhancing the ion double-layer at the Au surface, increasing charge storage 

capacity.  This behavior was observed at frequencies from 5 Hz up to ~ 1 MHz.  The Z curve 

minimum between 5-6 MHz for Cu2+ solutions of varying concentration, however, 

demonstrated the opposite effect.  Instead of decreasing Cu2+ concentration causing Z to rise 
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until it reached the pure water value, the decreasing Cu2+ concentration resulted in lowering 

of the Z until it matched the pure water value.  It seems probable that the effect of dissolved 

metal ions (with their substantial hydration spheres) in this high frequency range could result 

from ion-mobility effects in the boundary layer since this would be consistent with a time-

dependence of the double-layer reorientation as electrode polarity is alternated.  If the 

electrode charging/discharging rate is at a frequency exceeding ion mobility, double layer 

charge reorientation would lag behind the sweep frequency and, if sufficiently out-of-phase, 

tend to hinder electron movement in the Au leads, thus increasing the reactive resistance. 

Results of Primary Interest 

1. Impedance spectroscopy could be successfully utilized to detect the presence of a 

monolayer of dithiocarbamate-anchored species on the surface of a gold electrode 

from CS2/amines, which were reliably detected from their effect on Z of the IDE 

arrays. 

2. For both the untreated and dithiocarbamate-functionalized IDE arrays, the 

background impedance of pure water showed the same curves, consisting of a 

general, non-linear decrease from 5 Hz to a minimum Z at approximately 5.6 MHz, 

and then a general increase up to the maximum sweep frequency of 13 MHz.  The 

localized minimum is most likely related to an optimum rotational frequency of 

liquid-phase water molecules allowing for a maximum dipole reorientation rate under 

the experimental conditions. 

3. While impedance plots for aqueous metal ion solutions have consistently lower Z 

values than pure water for both the untreated and dithiocarbamate-functionalized IDE 

arrays, the overall curves run roughly parallel until the frequency approaches the 5.6 
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MHz minimum for pure water.  The metal-ion solution Z curves bottom out at 

approximately 1.0 MHz and then rise slowly until they cross the pure water Z curve at 

approximately 4 MHz and remain above the pure water curve to the end of the sweep 

range.  The reason for this behavior at higher frequencies is unclear, but speculation 

centers on limited mobility of the metal ions due to their extensive hydration spheres.  

4. In both frequency regimes the effect on Z was primarily non-selective, with the Cu2+ 

and Mg2+ at equivalent concentrations showing little difference. 

5. SAM and Cu2+ interaction was significant with the IDE seen from the increase in Z 

with increasing concentration of Cu2+ while SAM and Mg2+ interaction was minimal 

with the IDE from the lowering of Z with increasing concentration of Mg2+. 

6. The success of anchoring SAMs onto UofM IDEs brought about the detection of 

metal ion samples in smaller concentrations than without the use of SAMs.  Mg2+ 

0.001mM samples could not be detected with confidence since the impedance data 

for Mg2+ fell under the LOD (+1.30 ohms from the Z data point for DI H2O at 

5623413 Hz) while Cu2+ 0.001mM impedance data was found to be above the LOD, 

which represented a successful detection of sample.   

7. For Mg2+ the smallest concentration successfully analyzed was 0.01mM, and for Cu2+ 

the smallest concentration successfully analyzed was 0.001mM when using treated 

arrays made from pure CS2 & 100mM morpholine treatments.   When using the 

treatment of pure CS2 and phenanthroline, the 0.001mM samples of Cu2+ were 

detectable above the LOD, while the 0.001mM samples of Mg2+ still were not.  The 

smallest concentration for Mg2+ successfully analyzed was 0.01mM and for Cu2+ the 
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smallest concentration successfully analyzed was 0.001mM using treated arrays made 

from pure CS2 & 100mM phenanthroline (Table 7).   

Future experiments are needed to determine if any other SAM formations or capacitor 

array designs could be implemented to improve the detection of smaller concentrations of 

metal ions present in solution, to find a favorable SAM that could selectively weed through 

and detect a specific ion while in the presence of several other heavy metal ions and/or 

contaminants, and to determine the cause of the unexpected conductivity trend possibly 

related to double layer charge reorientation and ion mobility. 
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	Impedance is known as the measure of the total opposition to a sinusoidal electric current

