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ABSTRACT 

 

 In this paper a method of enhancing the realism of certain computer game types, 

particularly First Person Shooter games, is explored by attempting to include intelligent neutral 

background characters to the game environment.  This method also requires that the inclusion of 

these background characters will not adversely affect the performance of a game by drastically 

increasing the computational complexity of the game.  A simulation was created to show how 

this can be done using a group of intelligent agents based in a simulated world, and a simplified 

system of norms designed to influence the agents’ behavior.  The agents are designed to interact 

with each other and other objects in their virtual world, in a fashion that could be considered 

human-like.  To show the validity of this method, the simulation was designed to be minimally 

resource intensive.  Furthermore, extensive tests were performed using a variety of initial starting 

values for various aspects of the simulation, to show that the simulation, and thus the method, 

can sustain itself long enough to provide an improvement to a gaming environment.  The results 

of the tests are discussed at length, as well as theories as to how this method could be used 

successfully in computer gaming.  
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CHAPTER I 

INTRODUCTION 

 

If the goal of any simulation is to provide the most accurate portrayal of its particular 

setting as possible, then any change that improves this accuracy is a step in the right direction.  

When a simulation represents a fantastical environment, where the laws of nature that govern our 

real environment may be altered, the task of creating an accurate simulation is considerably 

easier.  When the user of a simulation is not familiar with the constraints of the simulated 

environment, then any constraint, however fantastic, will be assumed to be normal for the 

simulation.  However, when creating a simulation that represents the natural environment in 

which we dwell, the task is much harder.  The user of a simulation that is grounded in reality is 

intimately acquainted with the rules that govern the natural world, if not through scientific 

knowledge, then at least through personal experience.  Thus the user can accurately identify 

where the simulation is unable to correctly depict reality.  When creating a simulation for a video 

game that is designed to represent the natural world, the inability to accurately depict reality can 

be a detriment.  Video games are primarily used as a means of entertainment and are supposedly 

designed to induce a feeling of enjoyment.  Thus, inaccuracy in a video game simulation will 

theoretically decrease the amount of enjoyment a user receives from the game.  By this it can be 

inferred that the value of a simulation that attempts to recreate a real world situation is directly 

tied to the accuracy of the simulation. 

It can be said that video game development is becoming an increasingly important 

discipline in the field of computer science.  It is also true that simulations are an effective means 

of researching specific situations in the natural world.  Because of this, it is not unrealistic to 
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expect that using a simulation designed to represent aspects of the natural world in a video game 

would serve to increase the realism of that video game.  There is also the added benefit that the 

same simulation might also be used to advance research in other areas of the field.  This paper 

reports findings that are directly involved with the development of better simulations for video 

games, but could indirectly be applied to other fields, such as swarm intelligence and agent-

based systems, since the simulation is constructed in a similar fashion to these. 

Many video games focus on the interaction of a human player with computer-controlled 

Non-Player Characters.  Non-Player Characters, typically called “NPCs” or “bots,” are 

characters within the game world that are controlled by an artificial intelligence (AI) rather than 

by a human player.  These bots come in two general forms: those that are designed to interact 

with a player and those that are placed into the game to add realism and atmosphere but don’t 

directly affect a player in any way.  The bots that interact with a player fall into two categories: 

those that are designed to help a player and those that are designed to hinder a player.   

An example of a bot that helps a player is the quest giver in a Role-Playing Game (RPG), 

such as The Legend of Zelda: Twilight Princess [13] or World of Warcraft [10].  Quest giving 

bots advanced the plotline of a game by instructing the player to complete a task, and then return 

to the quest giving bot to receive some sort of reward.  Another example of a bot helping a player 

is the teammate bot that can be found in many new First Person Shooters (FPSs), such as 

Brothers in Arms [11] or Third Person Shooters (TPSs), like Grand Theft Auto [12].  The 

teammate bot will assist a player by fighting against an opponent in tandem with the player.  In 

some games, teammate bots are also designed to respond to orders given by a human player, 

further adding to the realism. 

The most common example of a bot that is designed to hinder a player is the opponent 
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bot.  The opponent bot is the most basic kind of bot and can be found in video games since the 

first time an AI was used in place of a second human player.  The opponent bot is multifaceted 

and can be altered to suit any game genre that requires an opponent.  In some games, such as 

chess or checkers, there will be only one opponent bot, representing the computer player.  In a 

game such as Pac-Man [9], there are four opponent bots, each represented by a ghost avatar that 

navigated the maze, attempting to kill the human player.  In a modern game such as a FPS or 

RPG, there are multiple types of opponent bots, each with different configurations, depending on 

the game.  From these types, a nearly limitless number of different instances of the opponent bot 

can be created. 

Bots that are created for the purpose of adding atmosphere to a game could be classified 

as neutral bots.  These bots do not help or hinder a player in any way; they exist only to improve 

the realism of a game.  Neutral bots are found almost exclusively in RPGs.  For example, in the 

game World of Warcraft [10], when the player enters a town setting, there are some quest giving 

bots, but there are great number of bots that simply move around the town, designed to follow a 

set of actions that a nondescript townsperson would follow.  If a player attempts to interact with 

these bots, the neutral bot will say or do something that a nondescript townsperson would, but 

this action will not advance the plot for a player.  All modern RPGs contain neutral bots in some 

capacity, because a game where all the bots were either quest givers, or opponents, would be 

very sparsely populated and thus unrealistic.  Some RPGs have attempted to add another level to 

the neutral bot by changing the neutral bot/player interaction based on a player’s previous 

actions.  In the game Fable [14], a player may interact with the neutral bots in a town setting in 

either positive or negative ways.  When the player interacts with the townspeople negatively 

enough times, the townsfolk will flee when the player comes near them.  Conversely, if the 
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player interacts positively enough times, the townspeople will cheer whenever the player comes 

near them.  Fable adds even more realism by allowing the player to interact with a specific 

neutral bot in an attempt to turn the neutral bot into a love interest.  When this happens, the 

neutral bot becomes a quest-giving bot and will then act to advance the story line for the player.  

It could be said, however, that since only specific neutral bots in Fable can be turned into the 

player’s love interest, these bots are not truly neutral and represent a hybrid of the two classes of 

bots. Some non-RPG games have also added neutral parties.  In Grand Theft Auto [12], there are 

some bots that should be considered truly neutral as they cannot be converted to another type of 

bot, but there are also some bots that could be considered hybrid bots.  The Sims [4], by far, has 

the most advanced neutral bot system.  Some of the neutral bots such as those representing the 

postman, or various other characters that are not constantly present in the game world, are truly 

neutral and cannot be influenced by the player’s actions.  All of the other neutral bots are hybrids 

and are more complicated than any other hybrid bot.  Not only can they be turned into bots that 

affect the player positively, these bots can also be turned into bots that affect the player 

negatively.  A more in-depth analysis of The Sims can be found later in the paper. 

  Even though there have been great strides towards including neutral bots in the RPG 

genre, rarely will you see bots that are designed to have a neutral opinion of the human player in 

FPS games. This is especially true for FPS games that are found in a war setting.  The most 

common approach is to concentrate the bulk of the AI on creating opponent bots that react to and 

attack the player in a realistic fashion.  As previously mentioned, there has also been some focus 

on adding AI-controlled friendly bots.  In modern warfare, especially when it takes place in an 

urban setting, it is rarely the case that all the people at the site of a particular battle are aligned 

with any of the opposing forces that initiated the battle.  Usually in an urban area there will be an 
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innocent bystander contingent that is ambivalent toward any of the oppositional forces fighting 

around them.  These neutral parties are simply trying to continue their life in as normal a way as 

possible considering their surroundings.  Developers have, to date, largely ignored this part of 

the actual experience.  Grand Theft Auto [12] includes a neutral party, but it does not spend 

nearly as much time concentrating on the opponent AI as games that omit neutral parties.  The 

reasons behind the omission of the neutral party are numerous, but the main problem, in my 

opinion, is one of resources.  Most developers believe that to create an AI that can behave in a 

humanlike fashion requires a great deal of computer hardware resources.  Developers may 

believe that including neutral parties would not be cost effective in the long run and decide to 

focus their efforts on making the opponent AI as realistic as possible. 

In order to fulfill the true intent of all games that simulate a lifelike situation, some effort 

must be made to include a neutral party.  However, it must be an effort that is made so that the 

advances made in controlling the enemy AI are not counteracted by a lack of resources.  Thus, 

the problem that this study is trying to solve is: Can a simple simulation, representing a society, 

be created in a fashion such that this same simulation could be used in a video game setting?  

Furthermore, could this same simulation be created so that it does not have an adverse affect on 

the performance of a video game, but so that it improves the overall realism of that game?  To 

show how this can be done, this study will demonstrate a relatively simple artificial society that 

acts in a limited humanlike fashion but doesn’t increase the computational complexity of the 

simulation dramatically.  In this study, a simulation will be created that contains a small number 

of bots that are not designed to do anything except act as they were going through a simple daily 

routine.  This routine will incorporate simple human actions such as eating and drinking, as well 

as some more complex social interactions such as giving/stealing, violence, and mating.  This 



6 

 

study will also impose a simple norm system that will affect the bots’ behavior based on what the 

current norm system settings are.  A norm is defined as “a rule that is socially enforced,” [15] 

and a norm system is a collection of norms for a society. The definition of a norm can be 

simplified in that the word “norm” is short for normal behavior and represents whatever a society 

considers to be normal behavior.  By using a norm system, the possibility of whether one can 

show, simply, how humans would react by being placed in situations that are contrary to their 

ideas of how to act in the world, will be investigated.  The case of good people being put into a 

world where violence is the norm, and what their reactions are, will be of particular interest in 

this study.  The study should be considered successful if it can be shown that a simple AI can be 

constructed that will look somewhat humanlike and can be shown to run in a resource- and time-

efficient way.  From this the study can infer that a neutral party can be included into conflict-

simulating video games without reducing their playability or performance.  In adding this neutral 

party, the hope is to improve the realism of lifelike simulations in all game genres.  Chapter II 

contains a review of the main works referenced for this paper.  Chapter III is a review of the 

methodologies that went into setting up the experiment that is referenced in this paper.  Chapter 

IV contains a summary of the results obtained for the experiment.  Chapter V is a summary of 

the entire work. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

In order to create the simulation for this thesis, it was important to find other similar 

studies in the literature to base the simulation on.  IPD for Emotional NPC Societies in Games, 

by Chaplin and El-Rhalibi [1], centers on the creation of a simulation containing a group of 

NPCs or agents that interact with each other and their environment.  The agents use simulated 

emotional behavior to improve realism.  The authors believe that by using emotions in choosing 

agent behavior, the user of the simulation will receive a more rewarding experience.  The 

simulation uses a rule-based system to model the emotions, drives, and agent relationships.  A 

norm system, managed by an implementation of the Iterated Prisoner’s Dilemma, is used to 

determine the interactions between agents.  The norm system is very rudimentary and takes 

effect only when two agents are interacting with each other.  These interactions are characterized 

by honest and deceitful behavior.  Agents acting in an honest way are considered to be acting in 

line with the norm, whereas agents acting deceitfully are considered to be acting contrary to the 

norm. 

It was also important in the research for this thesis to study other instances of the use of 

norms. The Prisoner’s Dilemma refers to a study done in the 1950s in which people were posed a 

hypothetical situation and asked to make a decision.  Chaplin and El-Rhalibi relied heavily on a 

paper titled An Evolutionary Approach to Norms, by Robert Axelrod [2], for their information on 

this topic.  This study provided a foundation for a new track in the field of game theory.  In this 

situation two suspects, A and B, are arrested by the police.  The police don’t have enough 

evidence to convict either suspect with the facts at hand.  However, the testimony of one of the 
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suspects against the other would be sufficient to convict the other.  The prisoners are separated 

and given the same option of whether to stay silent or to betray the other prisoner.  They are also 

told that if they both stay silent they will both be sentenced to six months in jail, that if one 

betrays the other and the other stays silent then the betrayer will be freed while the other will 

sentenced to ten years, and that if they both betray each other they both receive five years.  The 

dilemma posed to each prisoner is what course they should take to receive the smallest prison 

sentence, without knowing what decision the other prisoner has made.  When applying the 

classic Prisoner’s Dilemma to game theory, it becomes a type of game where the player 

concentrates on maximizing his or her own payoff.  However, this doesn’t work well in video 

games because any rational player will choose to betray another player because it maximizes 

their gain.  The resulting time from betraying is either zero or five years, whereas the resulting 

time for not betraying is either six months or ten years.  Since the outcome of the other player is 

unknown, the obvious choice is to choose whatever results in the least amount of time.  In order 

to make this idea useful in game theory one can use the Iterated Prisoner’s Dilemma (IPD) [1].  

The main difference is that in the original, once the prisoner made their choice, the game ended.  

In the IPD, the game continues after the choice has been made, and there is an option for the 

offending player to be punished for betraying.  This alters the game in that the gain for betraying 

is not as high because of the possibility of punishment, thus making staying silent a more 

palatable option.  IPD can be expanded into a larger sense by replacing betrayal with one or more 

different rules.  This can be interpreted as a set of norms, in that players can be punished for not 

following the norms.  Thus players will be inclined to maximize their own gain by acting in line 

with whatever the norms are set to be. 
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Chaplin and El-Rhalibi define their emotional model of behavior as actions consisting of 

physiological reactions, cognitive states, and expressive behaviors.  They have devised this 

model using multiple resources from the field of behavioral psychology.  The cycle of emotional 

response in their system starts with an external input being applied to an agent.  The agent then 

has an internal cognitive reaction to the stimulus, and performs a corresponding external action.  

The set of emotions consists of fear, anger, sadness, and happiness. 

Beyond the norms and the emotional model of behavior, the authors have also included a 

set of drives.  These drives are social need, energy need, need for rest, and need for heat. Their 

agents have relationships with other agents, which can be either bad or good relationships.  

These relationships compose the social drive.  The other drives are physical drives and are 

representative of variables corresponding to the three remaining drives. 

Chaplin and El-Rhalibi use the Iterated Prisoner’s Dilemma to help shape the emotional 

response of their agents.  These agents use a matrix of drives and emotions to generate their 

responses.  Their norm system is based on IPD.  If an agent wishes to break a norm and do 

something that is not accepted, it is influenced by two factors that are a part of all agents.  First, 

they have an inherent boldness value that determines whether the agent is bold enough to 

perform an action despite the implied consequences.  There is also a vengefulness value that 

determines how intent other agents are on punishing an offending agent that is used in the action 

calculation.  Both of these values are affected by the results of breaking norms.  Succeeding in 

breaking a norm without being punished increases boldness.  Being punished for breaking a 

norm will decrease boldness and increase vengefulness.  A decision by an agent not to punish 

another agent acting contrary to the norm convention leads to the creation of meta-norms.  With 

these meta-norms, there is a chance that an agent will be punished for not punishing another 
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agent.  This creates an extra level of complexity in their norm system.  The authors also 

introduce a concept of noise to the decision-making process.  The noise they introduce basically 

effects a small enough change to random individuals that is just enough to change their decision 

making process from one conclusion to another.  The noise is based on an individual’s 

knowledge of the whole system and the past actions of the other agents in the simulation.  If one 

individual recognizes that another has a high level of boldness, then this knowledge will 

sometimes be applied to the first agent’s interactions with the other.  Roughly this means that if 

one agent shows a proclivity toward behavior that is contrary to the norm system, then other 

agents may be inclined to keep an eye on the offending agent, in anticipation of more anti-

normal behavior. 

 Chaplin and El-Rhalibi’s paper was the central motivation for this thesis.  It is evident 

that work has been done using norms for simulations and gaming but that these norms were 

always being explored to a depth that made them unsuitable for some applications.  The concept 

of “drives” is a particularly important aspect of this paper.  Using drives makes agents more 

humanlike in that their actions will be derived from their surroundings, rather than following 

some sort of fixed behavior;  agents will make decisions based on whatever drive is activated 

because of some need.  Combining drives with norms makes the simulation as a whole more like 

a functioning humanlike society.  This is because some drives will cause agents to act in ways 

that may or may not be contrary to the norm system.  When this happens, their behavior will be 

doubly affected: once by their own needs and again by the norm system determining what 

actions they can take to fulfill their needs. 

  In order to create a realistic simulation, it was important to find a way to automate the 

navigation of the agents in the simulation.  In this light, the information contained in A-Star 
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Pathfinding for Beginners [3] was integral in the design of the simulation.  This is a very 

complete webpage detailing exactly how the A-Star algorithm works.  The A-Star algorithm 

[3,17] is often abbreviated “A*.” It is a best-first, tree-searching algorithm similar to Dijkstra’s 

algorithm and is designed to find a path of least cost between a starting node and any one goal 

node.  It calculates a path by evaluating nodes using a distance function.  The distance function, 

f(x), is given as f(x) = g(x)+h(x), where g(x) is the distance already traveled and h(x) is a 

heuristic evaluation of the distance left to travel.  The process starts at any given node.  The node 

is “expanded” by taking all of the immediate descendents of the given node and adding them to a 

priority queue called the “open list.”  Then the algorithm calculates the f(x) value for every node 

in the open list and chooses the node that has the lowest value.  It places this node in a list called 

the “closed list,” expands the new node, and adds its descendants to the open list, and the process 

repeats.  During the expansion process, nodes that are already on the closed list or nodes that 

have been defined as impassible are ignored, and the algorithm keeps track of the parent node for 

any node that has been added to the open list.  The algorithm ends when there are no nodes left 

in the open list, or when a goal node has been added to the closed list.  The path can now be 

found working backwards from the goal node and using the recorded parent of each node until 

the initial node is reached.  The algorithm is very straightforward, and it works very well in 

game-like situations provided some key conditions are met.  Many FPS games use A* 

pathfinding for opponent bots when they attempt to find the shortest path to the player, or the 

shortest path to a line of fire to attack the player, or pretty much whenever the bot needs to 

traverse the game-playing area from one point to another. 

The heuristic, represented in the equation by h(x), is the most important part of the 

equation, because if it doesn’t correctly estimate the distance left to a goal node, the A-Star 



12 

 

algorithm will not be able to find the shortest path to a goal node.  A-Star works best when 

movement costs are discrete rather than continuous, such as with a grid.  In this case, one can 

treat each node as a square on the grid, and when that node is expanded, nodes that border that 

node are added to the open list.  Using this scenario, the importance of the heuristic in the 

algorithm can be shown.  The heuristic is basically just a question of movement in this case.  A 

very simple heuristic is known as the Manhattan Distance heuristic.  When using this heuristic, 

the path can only be found using the nodes directly north and south, and directly to the east and 

west of the current node.  Diagonal nodes are not counted in this heuristic, which was probably 

named for the way people must traverse through the large blocks of buildings in New York City.  

Despite the fact that this heuristic seems very simple and good for find the shortest path, it is not.  

If the agent can only move north, south, east, and west, then The Manhattan Distance heuristic is 

“inadmissible.”  However, in a more realistic situation where the agent can also move 

diagonally, the Manhattan Distance heuristic becomes what is known as an “admissible” 

heuristic.  The term “inadmissible” is used to describe a heuristic that overestimates the 

remaining distance to the goal node.  If the heuristic is inadmissible, then it means that A-Star 

might not always find the shortest path
1
.  If including the nodes to the top-left, top-right, bottom-

left, and bottom-right of the current node in the Manhattan Distance heuristic is considered, then 

this new heuristic, called the Manhattan Distance plus Diagonals heuristic, is now admissible.  

The reasoning behind this can be seen by analyzing the grid representation.  A distance that is 

calculated using the diagonals would be similar to calculating a distance “as the crow flies,” 

which is obviously going to be better than calculating distance in the block-wise fashion initially 

discussed.  In the case where movement costs are fixed between the grid cells and the agent has 

the capability of moving north, south, east, west, and diagonally, then the Manhattan Distance 

                                                 
1
 More data on the definition of admissibility can be found in any Artificial Intelligence textbook. 
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plus Diagonals heuristic assures that the shortest path between two nodes will be found by the A-

Star algorithm.  

This page also provides some insight for making A-Star work efficiently.  Because A-

Star can require some serious time and space requirements, especially with large game boards, 

many people have made improvements in the actual implementation of A-Star in practice.  The 

most important improvement that was used in this work was the use of binary heaps to store the 

open list.  Because of the way a binary heap is constructed, the lowest f value node in the open 

list can be made to stay at the top of the heap, thus making costly searches for this node 

unnecessary.  The author suggests that in practice, using a binary heap to store the open list will 

result in a two- or three-fold speed increase, and this increase can be even greater for longer 

paths. 

  The Sims: Under the Hood [4] is a presentation slideshow from a lecture given at 

Northwestern University by Ken Forbus, with help from Maxis Software founder, Will Wright.  

This presentation is concisely describes of how the game The Sims works. 

Everything in The Sims is an object, whether it is things like desks and lamps, non-player 

characters (NPCs), or player characters.  All the objects have sound effects, graphics, and 

animations that correspond to them.  They also have routines that are associated with actions 

performed on or by the object.  In addition to the previous information, the character objects also 

contain the traits that make up the character.  These traits include needs, personality, skills, and 

relationships.  The needs are broken into two categories, physical and mental.  The physical 

needs are hunger, comfort, hygiene, and bladder.  The mental needs are energy, fun, social, and 

room.  These needs combine to form a character’s happiness level.  If a character’s needs are not 

met, then his or her happiness level will be lower.  The levels of happiness simulate emotion in a 
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character.   

The characters also have personalities.  These personalities define what kind of person 

the character is in general terms.  They are arranged in five pairs, with each pair consisting of 

two opposite types of personalities.  They are sloppy/neat, shy/outgoing, serious/playful, 

lazy/active, and mean/nice.  These personality traits form a kind of dichotomy in the system, 

such that in an ideal situation, both sides of the dichotomy would be equally represented and thus 

create a balance between the two.  Each character contains one type from of each of these pairs 

of traits.  So a character could be sloppy, shy, serious, lazy, and mean, but not sloppy, neat, shy, 

playful, and nice.  These personality traits are applied to what the author defines as a Motive 

Engine, which affects what needs are more important than others.  For instance, a character who 

is neat will have a higher need for the physical need hygiene.  Each character also has skills that 

are used for the “Employment” area of the game.  In addition to these things, a character has 

relationships with other characters in the game.  These relationships determine what kinds of 

interactions between characters are available.  They also determine how characters’ emotions 

change, based on interactions that they perform or are party to. 

 In The Sims the goal of Non-Player Characters (NPCs) is to maintain a high level of 

happiness.  All of the actions performed by an NPC are designed to fulfill needs, and thus raise 

their level of happiness.  The types of interactions are broken down into two types: social 

interactions and object interactions.  The social interactions are especially important, because 

they add a great deal to the realism of the game.  There are many types of social interactions, and 

the actions that can be performed between two characters are determined by the relationship 

value that the characters share.  These social interactions can either fail or succeed when 

performed.  The chance of success is based upon a calculation made concerning the current 
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needs and relationship values of the two characters involved.  A successful social interaction will 

increase the corresponding relationship values and the social need values for each character, 

whereas an unsuccessful one will lower them.  The object interactions are defined by three 

classifications: normal, pushed, and functional.  The normal interactions make up 90% of the 

interactions and involve actions that don’t directly complete any goal in the game world, and 

aren’t directly driven by any need.  An example of this would be walking from one part of the 

game world to another. The functional interactions, however, are the exact opposite.  These are 

goal-oriented actions driven by a need.   The functional interactions include things like cleaning, 

repairing, and cooking.  The third type of interactions, pushed interactions, are interactions that 

are given a higher priority than others.  Typically these interactions correspond to emergencies in 

the game, such as the need to flee from, or put out, a fire.  Another example is the need to arrive 

at work on time, part of the game’s “Employment” phase.  The pushed interactions take 

precedence over a character’s other interactions and prevent him or her from performing other 

interactions, unless directed to do so by the user.   

 The rest of the presentation talks about invisible objects, or objects that aren’t directly 

defined in the game, such as plumbing and phone lines.  More importantly, the presentation 

briefly shows how the Sims uses the A-Star algorithm for pathfinding.  The pathfinding is broken 

into two parts, room-to-room and within-room.  The room-to-room pathfinding still uses A-Star, 

but the goal states are different than with the within-room model.  The room-to-room method is 

more concerned about efficiently navigating through doorways and corridors, whereas the 

within-room method is more concerned with reaching the actual goal. 

 The simulation designed for the paper borrows a great deal from The Sims.  The use of a 

dichotomy of personality traits and the use of social interactions are the most obvious examples 
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of this.  The simulation also borrows the use of A* pathfinding from The Sims, and the concept 

of using an object as a source of food and water, rather than having resources scattered over the 

terrain. 
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CHAPTER III 

DESIGN AND METHODOLOGY 

 

Overview 

The simulation was designed to test whether or not a group of individuals could perform 

within a certain set of parameters defined by the norm structure given to the group.  The norm 

structure is defined as the group of norms that are applied to the simulation.  It is designed to be 

similar to a First Person Shooter (FPS) style video game, in that it contains a game map that bots 

traverse.  The video game model is greatly simplified, however, so that the focus can be directed 

toward the AI and not the video game itself.  Simplifying the video game model was part of a 

larger effort designed to make sure that the simulation was small and lightweight and that the 

computations it was performing were relatively simple. Much of the simulation was designed 

similarly to the simulation in the paper by Chaplin, but the Iterated Prisoner’s Dilemma concept 

was omitted.  While the Prisoner’s Dilemma is very accurate in depicting the development and 

enforcement of human-like norm systems, to depict it accurately requires resource allocation that 

is counter-productive to this study.  Therefore it was decided that a group could be maintained 

just by having a structure of norms for them to follow, and this method was included in the 

simulation.  By using this method, as opposed to the Prisoner’s Dilemma method, the entities do 

not perform all actions based on a “least cost to them” style of reasoning.  Instead, they only 

adhere to that way of thinking when they need something.  If they have a need for food or water, 

then they behave like an animal and attempt to obtain the desired resource, by any means 

necessary.  If they have no resource needs, then they behave like a human and attempt to interact 

with the units that share their environment.  In this they explore the dichotomy of norms that has 
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been imposed on them.  To attain a dichotomy, and thus realism, equal amounts of good actions 

and bad actions are possible in the simulation.  The theory was to design a system where neither 

good nor bad would dominate the world without direct human intervention. The main reasoning 

behind these design choices is that the experiment is attempting to show that a simple system 

could work, and being that it was lightweight in terms of size and computational overhead, it 

could easily be ported into a video game with complex graphics and AI without any serious 

reduction in playability. 

The simulation contains a square board that represents the world that the game is taking 

place in. The board is divided up into grid squares, or nodes, which can contain a game entity or 

nothing.  In this world two types of entities reside: the AI controlled units and the resource 

boxes. Both of these will be explained in depth shortly. The simulation is turn based, and the 

speed can be controlled by the user, up to the point where the simulation is running as fast as the 

computer it is on can handle. Running in the background, and not represented by an avatar of any 

kind, is a control mechanism that monitors and controls everything that happens in the 

simulation. This control mechanism is by far the most complex part of the simulation. 

 

Control Mechanism 

The most important part of the simulation is the control mechanism.  It is by far the most 

complex part of the whole program.  The control mechanism controls actions that take place in 

the simulation world.  The control mechanism consists of two multidimensional arrays keeping 

track of unit and resource box positions, a pathfinding function, and the norm system that was 

developed to guide the individual unit’s behavior.  The mechanism provides information that is 
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used by the units in their decision-making process.  In addition, the control mechanism updates 

the game world based on the actions of the units during a given turn. 

The pathfinding system uses the A-Star algorithm that employs the Manhattan Distance 

method with Diagonals to form paths.  The A-Star algorithm, as previously discussed, is a search 

algorithm that can be used to find the shortest distance between two points.  The simulation uses 

location arrays, and any unoccupied node, or grid position, has a traversing cost of one.  If that 

node contains either a unit or part of a resource box, then it was given a cost of 1000. This 

prevents paths from traveling into occupied nodes.  The simulation uses the Manhattan Distance 

heuristic with Diagonals, because it was the best heuristic that was admissible for the landscape 

of the simulation.  It is admissible because it never overestimates the remaining distance to the 

goal node, and thus will always find the shortest path to a goal node if one exists. 

 

Resource Boxes 

The resource boxes are an important part of the simulation, and they add to the realism of 

the system.  There are two resource boxes in every instance of the simulation.  One contains 

food, and the other contains water.  The user may set the size, in terms of area, of the boxes, and 

the initial starting amount of each resource.  The boxes are placed randomly around the 

simulation board during initialization.  When a unit desires a resource, the first place they look is 

to a resource box.  The units can obtain a resource by moving to any of the grid squares that 

border the resource box.  The resource boxes are not an infinite source of a resource and will run 

out after a certain amount of time.  To counter this, the user can have the resource box refilled 

with a set number of resource units after a certain number of turns have elapsed with the box 

being empty.  This is to simulate times of plenty and times of famine in the simulation.  By 
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setting the simulation to replenish the resource boxes infrequently, the user can simulate a time 

of famine to record the unit actions that will occur because of it. 

 

Units 

The AI controlled units are also relatively complex and are equipped to make their own 

decisions.  Each unit contains several pieces of information that help it make decisions.  These 

include the unit’s age, temperament, hunger, thirst, health, and an array containing data on the 

unit’s relationship with other units.  The unit also contains some variables to keep track of its 

position, its current velocity, and how much food or water it is carrying.  Each unit can carry 

with them up to three units of each resource.  There are also variables to store what action the 

unit is currently attempting to perform and what target it is currently trying to interact with.   

Each unit can perform a set of actions.  These include idling, eating, drinking, obtaining 

food, obtaining water, moving randomly, and interacting with other units.  When obtaining food 

or water, the units can get the resource from a resource box, request the resource from another 

unit, or steal the resource from another unit.  When interacting with other units the actions are 

talking, hugging, slapping, kissing, punching, mating, and killing. 

The age variable determines how old the unit is, in terms of simulation turns, and is used 

when calculating when the unit dies.  After the unit reaches a certain age, it is considered dead.   

The thirst and hunger variables determine what, if any, needs the unit has for water or 

food at the current time.  These variables start at zero and are incremented by one every turn.  

Not having access to food or water for long periods of time will affect the unit’s health.  Every 

turn the unit’s health and thirst variables are incremented by one. 
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If the unit’s hunger value rises above 99, its health value is decremented by one every 

turn that the hunger value is over 99.  The thirst value works similarly, except that the health 

value is decremented by two every turn.  This, theoretically, is more realistic since humans can 

last longer without food than they can without water [8].  The health variable determines the 

amount of health the unit has.  This variable ranges from zero to 100, and if the unit’s health 

reaches zero, then the unit dies.  Health can be affected by a variety of factors.  As previously 

mentioned, not eating or drinking for long periods of time will reduce the unit’s health.  Being 

attacked, either punched or slapped, by another unit, will cause the health to decrease by either 

ten or twenty, respectively.  The health variable can be increased by being hugged or kissed by 

another unit, which will increase the health value by either ten or twenty, respectively.  In early 

designs of the simulation, the health value was incremented every turn to simulate healing, but 

this was omitted from the final design because it wasn’t easy to accurately, and quickly, predict 

the many variables that compose the human body’s ability to regenerate itself.  This also keeps 

the dichotomy of good and evil in the simulation intact without having to design a way that the 

entities would suddenly start having their health variable decreased every turn. 

The temperament variable determines, along with the norm system and the unit’s 

relationships with other units, what actions a unit might take during a given turn.  The 

relationship array tracks how the unit feels about other units with values from -50 to 50.  Doing 

bad things to a unit will decrease that unit’s relationship status with the offending unit.  

Conversely, doing good things will increase the relationship status. 
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Norm System 

The norm system developed for the simulation was created with simplicity in mind.  

Rather than having rules for every action, actions were grouped into two classes, violence and 

theft.  Each norm value can range between -50 and 50.  They default to an initial setting of zero 

but can be set by the user at program startup.  Actions performed during a turn in the simulation 

will be applied to the current norm values, and then those updated values will be used to 

determine the actions for the next turn.  For every slap, punch, or killing that occurs, the violence 

norm will decrement by increasing values.  For every hug, kiss, and successful mating that 

occurs, the violence norm will increment by increasing values.  For every theft, the theft norm 

will decrement, and conversely for every donation it will increment. 

When deciding on what to do during a current turn when the unit has nothing to do, the 

unit chooses among six values.  If the unit’s hunger value is above 49 and the thirst value isn’t, 

then the unit will attempt to eat if it has food or obtain food if it doesn’t.  If the thirst value is 

above 49 and the hunger value isn’t, then the unit will attempt to drink if it has water or obtain 

water if it doesn’t.  If both values are above 49, then the unit will attempt to eat or drink if it has 

either resource.  If not it will try to obtain the resource corresponding to whatever is higher, 

hunger or thirst.  If the unit has resource needs, but that resource is absent in the game world, the 

unit reverts to the idle state.  If the unit has no current resource needs in a turn, then it chooses 

randomly between idling, eating, drinking, obtaining, moving randomly, or interacting with 

another unit.  The application of the norm system can be seen as applying fuzzy logic to the 

system.  Rather than just making decisions based on one extreme or another, the norm system 

provides a step-like appearance to the decision-making system. 
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Decision Making Process 

The decision-making process is partly handled by the simulation control mechanism.  As 

mentioned previously, the unit itself makes a decision of what kind of action to perform based on 

its current resource needs.  If the unit requests a resource-obtaining action, the control 

mechanism goes through a short process to find all the information needed and return it to the 

unit.  When asked to help the unit find a resource, the control mechanism first locates the closest 

source of food.  If the requested resource is in the resource box, then the control mechanism 

looks there first.  The mechanism first finds an empty grid space adjacent to the resource box.  It 

takes those data and passes that to the pathfinding function.  The pathfinding function finds the 

shortest path to the given point and returns the first step in the path.  This first step can be 

applied as a discrete velocity, with values of -1, 0, and 1, which can be applied in terms of an 

X/Y coordinate system.  The control mechanism then passes this velocity information back to the 

unit.  When the control mechanism updates the positions of all the units in the simulation, it 

applies these values to the unit’s current location to determine their new location.  In order to 

prevent collisions between units, this process of finding the closest empty spot, finding a path, 

and returning the data to the unit is performed every turn until the unit reaches its destination and 

obtains the resource or the resource box becomes empty. 

In the case that the requested resource is unavailable in the corresponding resource box, 

the control mechanism will find the closest unit that is carrying the requested resource and 

perform the same calculation as if the unit was a resource box.  The major difference in this 

action involves the theft norm and whether the unit requests the resource or steals it from the 

other.  In this case the control mechanism will return the location of the closest unit that 

possesses the desired resource.  Using the norm system, the unit will then determine how to 
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approach the target unit when attempting to obtain the resource.  If the sum of the unit’s 

temperament, the current value of the theft norm, and the unit’s opinion of the target unit is 

greater than or equal to zero, then the unit will choose to request the resource from the target.  If 

the same sum is less than zero, then the unit will attempt to steal the resource from the target.  

The process now is identical to the process of getting a resource from the resource box except at 

the final moment.  When the unit reaches the target, the unit will attempt to steal or request food 

from the target.  If the unit has requested the resource, then the theft norm will be incremented by 

one, and both the unit and the target will have their opinions of each other incremented by three.  

If the unit is stealing from the target, then the theft norm will be decremented by one, and both 

the unit and the target will have their opinions of each other decremented by seven.  In both 

cases the unit will gain an instance of the resource, and the target will lose an instance of the 

resource. 

If the unit chooses to move randomly around the simulation world, the control 

mechanism chooses a random point in the world and sets that as the unit’s target.  The pathfinder 

then finds the shortest path, and the unit is given a velocity.  The unit will continue doing this 

until it reaches the target point. 

If the unit chooses to interact with another unit, the procedure is similar to that of 

obtaining a resource from another unit.  The first step is to determine what action should be 

performed.  The control mechanism chooses a random target unit and passes it to the requesting 

unit.  If the sum of the unit’s temperament, the current value of the violence norm, and the unit’s 

opinion of the target is greater than 25 but less than or equal to 45, then the unit will hug the 

target.  When the unit reaches the target, the violence norm value will be incremented by one.  

The unit and the target will also have their opinions of each other incremented by five, and the 
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target will have its health incremented by ten.  If the sum of the unit’s temperament, the current 

value of the violence norm, and the unit’s opinion of the target is greater than 45, then the unit 

will kiss the target.  When the unit reaches the target, the violence norm value will be 

incremented by three.  The unit and target will also have their opinions of each other 

incremented by ten, and the target will have its health incremented by 20.  If the sum of the 

unit’s temperament, the current value of the violence norm, and the unit’s opinion of the target is 

less than -25 but greater than or equal to -45, then the unit will slap the target. When the unit 

reaches the target, the violence norm value will be decremented by one.  The unit and target will 

also have their opinions of each other decremented by five, and the target will have its health 

decremented by ten.  If the sum of the unit’s temperament, the current value of the violence 

norm, and the unit’s opinion of the target is less than -45, but greater than or equal to -65, then 

the unit will punch the target. When the unit reaches the target, the violence norm value will be 

decremented by three.  The unit and target will also have their opinions of each other 

decremented by ten, and the target will have its health decremented by 20.  If the sum of the 

unit’s temperament, the current value of the violence norm, and the unit’s opinion of the target is 

less than -65, then the unit will kill the target.  When the unit reaches the target, the violence 

norm will be decremented by five and the target unit will be considered dead. 

If the unit’s opinion of the target is greater than 15, then the unit will attempt to mate 

with the target.  When the unit reaches the target, the control mechanism will determine whether 

or not mating is feasible.  If there are less than 20 of each kind of resource in the resource boxes, 

or if other units surround the target unit, then the mating procedure will fail.  This part of the 

design represents an individual’s choice not to procreate when the population is overcrowded or 

when there is a resource shortage.  If the mating procedure succeeds based on these 
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requirements, then a fully functional unit is added to the population.  Including a childhood 

phase in a unit’s lifespan was deemed inconsequential, primarily because this would add 

unnecessary complexity to the simulation.  The new unit will be created in a free space next to 

the target unit.  It will have a temperament value equal to the integer value of the average of its 

parent units.  The new unit will also have an initial set of opinions.  The new unit will have a 

value of 50 as its opinion value for each of its parent units.  It will also have the combined 

opinions of both parents.  In the case where the two parents have differing opinions of a unit, the 

integer average will be used.  Additionally, each parent unit will have its opinion of the other set 

to 50, and each parent’s opinion of their offspring will also be 50.  To provide a way to 

counteract the killing action, the mating action will increment the violence norm by five.  Early 

versions of the simulation were designed such that mating had no effect on the violence norm, 

and it appeared that this lack of balance would cause the violence norm to tend toward the lower 

end of the range.  Including mating in the norm calculation is justified, by reasoning that births 

will have a mediating effect on a society and thus lower the society’s proclivity toward violence.  

This can be seen in among primates, particularly baboons, where fighting males will often grab 

an infant child in order to stop a conflict in progress [16].  If none of these conditions are met, 

then the unit will attempt to simply talk to the target.  This action has no effect on the norm 

system and merely stands to provide a way for units to modify their opinions of each other.  If 

the difference between the temperament of the unit and its target is less than 50, then the talking 

act is seen as successful.  If the talking act is successful, then each unit’s opinion of each other 

will be incremented by one.  If the talking act is unsuccessful, then each unit’s opinion of each 

other will be decremented by one.  This is justified by reasoning that two people with radical 
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differences in their personal predilection towards good or evil will invariably not be compatible, 

even in a simple social sense. 

 

Formal Definitions 

Definition 1: (Unit).  For all units, UX at time t, let TX be the unit’s temperament such that 

�50 �  �� � 50.  Let 	
�  be the unit’s age at time t, such that 0 � 	
�.  Let  �
� be the unit’s 

current health at time t where 0 � �
� � 99.  Let �
� be the unit’s desire for food (hunger) at 

time t where  0 � �
�,  �
� be the unit’s desire for water (thirst) at time t ����� 0 � �
� .  

Let �
� be the amount of food the unit is carrying at time t where 0 � �
� � 3, and �
� be the 

amount of water the unit is carrying at time t where 0 � �
� � 3 . 

 

Definition 2: (Opinions).  For all units, UX and UY at time t, let �
�,�
 be the opinion that UX has 

for UY at time t, such that �50 � �
�,� � 50, unless X=Y, in which case �
�,� � 50. 

 

Definition 3: (Norms).  Let St be the stealing norm for the simulation at time t where �50 �
 �
 � 50 , and Vt be the violence norm at time t where �50 �  �
 � 50. 

 

Definition 4: (Resource Containers).  Let �
�be the amount of food in the food resource box at 

time t where 0 � �
� , and let �
�be amount of water in the water resource box at time t where 

0 � �
� . 

 

Definition 5: (Actions).  For all units, UX at time t, Let �
�be the unit’s basic action at turn t 

such that �
�  !"#$�, %&'� ()*#&+$,, -)., �/*0, �1.)/* �&&#, �1.)/* �).��, "*.��)2.3.  
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Let (
�be the unit’s resource action at turn t, such that if  

�
�  !�1.)/* �&&#, �1.)/* �).��3 then 

(
�  !4�. �&&#, 4�. �).��, ��5 �&&#, ��5 �).��, �.�)$ �&&#, �.�)$ �).��3 and 

(
� � 6 &.����/7�.  Let  "
�be the unit’s inter-unit interaction at time t such that if �
� �
"*.��)2., then  "
�  !�)$0, �85, 9/77, %).�, �$):, ;8*2�, 9/$$3 and  "
� � < otherwise. 

 

Definition 6: (Unit age). 

	
=>� � 	
� ? 1 
 

Definition 7: (Hunger). 

�
=>�  � A0 B /� .�� 8*/. �).7 #8�/*5 .8�* . &� /� . � �1  �
� ? 1 B  &.����/7� C 
 

Definition 8: (Thirst). 

�
=>�  � A0 B /� .�� 8*/. #�/*07 #8�/*5 .8�* . &� /� . � �1 �
� ? 1 B  &.����/7� C 
 

Definition 9: (Health). 
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�
=>� �  

DE
EEE
EF
EEE
EE
G 0 B  /� . � �1�$7� �
� � 1 B  /� �
� H 99 )*# �
� I 99�$7� �
� � 2 B  /� �
� I 99 )*# �
� H 99�$7� �
� � 3 B  /� �
� H 99 )*# �
� H 99�$7� �
� �  10 B  /� .�� 8*/. �)7 7$)::�# #8�/*5 .8�* .�$7� �
� ?  10 B /� .�� 8*/. �)7 �855�# #8�/*5 .8�* .�$7� �
� �  20 B /� .�� 8*/. �)7 :8*2��# #8�/*5 .8�* .�$7� �
� ?  20 B /� .�� 8*/. �)7 0/77�# #8�/*5 .8�* .�$7� �
� �  30 B /� .�� 8*/. �)7 7$)::�# )*# 18*2� #8�/*5 .8�* .�$7� �
� ?  30 B /� .�� 8*/. �)7 �855�# )*# 0/77�# #8�/*5 .8�* �$7� �
� B  &.����/7� KE

EEE
EL
EEE
EE
M

 

 

 

Definition 10: (Basic Action Determination). 

�
� �

DE
EE
F
EE
EG -). B /� �
� H 0 )*# �
� H 49 )*# �
� � 49�$7� -). B /� �
� H 0 )*# �
� � 0 )*# �
� H 49 )*# �
� H 49�$7� �/*0 B  /� �
� H 0 )*# �
� H 49 )*# �
� � 49�$7� �/*0 B /� �
� � 0 )*# �
� H 0 )*# �
� H 49 )*# �
� H 49�$7� �1.)/* �&&# B /� �
� � 0 )*# �
� H 49 )*# �
� � 49�$7� �1.)/* �&&# B /� �
� � 0 )*# �
� H 49 )*# �
� H 49 )*# �
� H  �
��$7� �1.)/* �).�� B /� �
� � 0 )*# �
� H 49 )*# �
� � 49�$7� �1.)/* �).�� B /� �
� � 0 )*# �
� H 49 )*# �
� H 49 )*# �
� H  �
��$7� ()*#&+ 	2./&* B &.����/7� KE

EE
L
EE
EM

 

 

Definition 11: (Food Resource Interaction).  If �
� � 0  then it becomes possible that O a UY 

that has been targeted by UX for a resource action and UY possesses food.  Then 

(
� � P 4�. �&&# B /� �
� � �1.)/* �&&# )*# �
� H 0��5 �&&# B /� �
� � �1.)/* �&&# )*# �
� � 0 )*# �� ? �
�,� ? �
 Q 0�.�)$ �&&# B /� �
� � �1.)/* �&&# )*# �
� � 0 )*# �� ? �
�,� ? �
 I 0R 

 

Definition 11a: (Get Food).  Thus if (
� � 4�. �&&#, then the following will also be true. 

�
=>� � �
� ? 1 
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And 

�
=>� �  �
� � 1 

 

 

Definition 11b: (Beg Food).  If (
� � ��5 �&&# then, 

�
=>� � �
� ? 1 

And 

�
=>� � �
� � 1 

And 

�
=>�,� � �
�,� ? 3 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� ? 3 

The stealing norm will also be affected: 

�
=> � �
 ? 1 

 

Definition 11c: (Steal Food).  If (
� � �.�)$ �&&# then, 

�
=>� � �
� ? 1 

And 

�
=>� � �
� � 1 

And 

�
=>�,� � �
�,� � 7 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� � 7 
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The stealing norm will also be affected: 

�
=> � �
 � 1 

 

Definition 12: (Water Resource Interaction).  If �
� � 0  then it becomes possible that O a UY 

that has been targeted by UX for a resource action and UY possesses water.  Then 

(
� � P 4�. �).�� B /� �
� � �1.)/* �).�� )*# �
� H 0��5 �).�� B /� �
� � �1.)/* �).�� )*# �
� � 0 )*# �� ? �
�,� ? �
 Q 0�.�)$ �).�� B /� �
� � �1.)/* �).�� )*# �
� � 0 )*# �� ? �
�,� ? �
 I 0R 

 

Definition 12a: (Get Water).  Thus if (
� � 4�. �).��, then the following will also be true. 

�
=>� � �
� ? 1 

And 

�
=>� �  �
� � 1 

 

Definition 12b: (Beg Water).  If (
� � ��5 �).�� then, 

�
=>� � �
� ? 1 

And 

�
=>� � �
� � 1 

And 

�
=>�,� � �
�,� ? 3 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� ? 3 

The stealing norm will also be affected: 
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�
=> � �
 ? 1 

 

Definition 12c: (Steal Water).  If (
� � �.�)$ �).�� then, 

�
=>� � �
� ? 1 

And 

�
=>� � �
� � 1 

And 

�
=>�,� � �
�,� � 7 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� � 7 

The stealing norm will also be affected: 

�
=> � �
 � 1 

 

Definition 13: (Inter-unit Interaction Decision).  �
� � "*.��)2., and UY is the current 

interaction target of UX.  Then 
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Definition 13a: (Talking Interaction). 
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�
=>�,� � U�
�,� ? 1 B /� |�� � ��| I 50�
�,� � 1 B &.����/7� W 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � U�
�,� ? 1 B /� |�� � ��| I 50�
�,� � 1 B &.����/7� W 

 

Definition 13b: (Hug Interaction).  If "
� � �85, then 

�
=>�,� � �
�,� ? 5 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� ? 5 

The health of UY will be affected: 

�
=>� � �
� ? 10  
The violence norm will also be affected: 

�
=> � �
 ? 1 

 

Definition 13c: (Slap Interaction).  If "
� � �$):, then 

�
=>�,� � �
�,� � 5 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� � 5 

The health of UY will be affected: 

�
=>� � �
� � 10  
The violence norm will also be affected: 

�
=> � �
 � 1 
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Definition 13d: (Kiss Interaction).  If "
� � 9/77, then 

�
=>�,� � �
�,� ? 10 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� ? 10 

The health of UY will be affected: 

�
=>� � �
� ? 20  
The violence norm will also be affected: 

�
=> � �
 ? 3 

 

Definition 13e: (Punch Interaction).  If "
� � ;8*2   �     , then 
�
=>�,� � �
�,� � 10 

Similarly, �
=>�,�
  will be affected: 

�
=>�,� � �
�,� � 10 

The health of UY will be affected: 

�
=>� � �
� � 20  
The violence norm will also be affected: 

�
=> � �
 � 3 

 

Definition 13f: (Mating Interaction).  If "
� � %).�, and �
� Q 20, �
� Q 20, )*# UY is not 

surrounded by other units.  Then 

�
=> �  �
 ? 5 



35 

 

Furthermore, a new unit, UZ, will be created next to unit UY.  Let �
Xbe the set of all opinions 

belonging to UZ.  Let TZ be the temperament of UZ.  Thus 

�
X � �
� Y �
� 

And 

�X � �� ? ��2  

And 

�
=>X,� � 50 

And 

�
=>X,� � 50 

And  

�
=>�,� � 50 

And 

�
=>�,X � 50 

And  

�
=>�,� � 50 

And 

�
=>�,X � 50 

 

Definition 13g: (Kill Interaction).  If "
� � 9/$$     , then 

;
=> � ;
 � 1 

And UY will be considered dead: 

Z� � 6 
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Furthermore the violence norm will be decremented: 

�
=> �  �
 � 5 

 

Design Summary 

Overall the concept was to create a representation of a very simple human society or, at 

the very least, a representation of the society of organized primates.  To fulfill this goal, a 

simulation was created to mimic society where the most basic of human needs, food and water, 

are represented.  It could be said that human interaction is a basic human need, but the inclusion 

of the norm system, as well as the system of entity interaction, more than adequately represent 

this need.  Despite the fact that the simulation did not quantify the need for interaction, as was 

done with hunger and thirst, the belief is that this representation is still valid.  In this simulation, 

the units seek interaction only when their resource needs are met, and when they do seek 

interaction, they do it rather randomly.  However, in the most basic sense, this is how humans 

behave in the real world.  If the sociological complexity is removed from the equation, it can be 

theorized that humans are not inclined to search for interaction when they are starving or dying 

of thirst.  Only when these baser needs are fulfilled do humans seek interaction, and that is only 

if something else doesn’t pique our interest first.  A simulation has been created with actions that 

are representative of basic human interaction, and such that life and death are an integral part. 

 

Methodology 

When running the simulation, the user has two options.  The user can choose either a 

graphical mode or a faster mode that has no graphical output.  The user’s input can be conferred 

via either the graphical interface or the command line.  Using the graphical interface to input the 
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initial values doesn’t limit the user to using the graphical mode, nor does using the command line 

for input restrict the user from using that mode.  The simulation also has the option of outputting 

the final action log from a simulation run to a text file.  The user provides several variables that 

determine the initial starting configuration of the simulation.  These variables include a grid size, 

a starting unit count, a maximum unit count, a starting amount for food in the food resource box, 

a starting amount for water in the water resource box, a median temperament for the units, an 

initial value for the theft norm, an initial value for the violence norm, and a maximum number of 

turns for the simulation.  If the user chooses to run the simulation in graphical mode, then they 

will be able to see the location of each unit during every turn.  These units will be color coded by 

temperament.  Units with a temperament value less than -25 will be red, units with a 

temperament value above 25 will be green, and all other units will be yellow.  The graphical 

interface also shows what actions have been performed during the current turn, what the current 

status of the resource boxes and norm system values are, the current turn number, and the current 

number of units.  The user can control, via the graphical interface, the speed of the simulation 

and the amount of resources in the resource boxes. 

This experiment was designed to test varying levels of average temperament, violence 

norm, and theft norm for a set period of time.  The simulation was set to start with 5 units, have a 

maximum unit count of 15, have 1000 of each food and water in the resource boxes, have a 25-

turn wait for refilling an empty resource box, and have a 30,000 turn limit.  The primary tests 

performed focused on the average temperament setting. The values used for this setting were -50, 

-25, 0, 25, and 50 for the average temperament, and zero for the theft and violence norms.  These 

were intended to act as a baseline for the other tests that were performed and as a way to limit the 

number of tests that needed to be performed in the other areas.  By using these as a baseline, data 
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can be extrapolated from these, when the data from tests involving the norm system settings were 

analyzed.  Further tests were performed on a smaller basis and involved setting the violence 

norm to -50, -25, 0, 25, and 50 with the average temperament values detailed above for each of 

the norm system settings.  A similar test was performed using the same values for the theft norm, 

with the same average temperament values.  Both of these tests were done in smaller quantities 

than the initial average temperament tests. 

 

Figure 0 - Screenshot of the Simulation During a Visualized Run
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CHAPTER IV 

ANALYSIS OF RESULTS 

 

 As detailed previously, all the simulations were run with an initial population of five and 

a population cap of fifteen.  The simulation board is a 20 x 20 grid.  The resource boxes are filled 

with 1000 units each to begin and refill after 25 turns of being empty.  All the simulations are set 

to end at turn 30,000.  First, the simulation was set to test multiple configurations of the average 

temperament value.  The values used were -50, -25, 0, 25, and 50, and 500 instances of each of 

these configurations were run.  Beyond this, tests on different configurations of the stealing and 

violence norm with the previously defined average temperament values were also run, but with 

only 200 instances. 

The first test performed was a base case where the average temperament, stealing norm, 

and violence norm values were set at zero.  In the graphic, one can see that the simulation 

duration in turns was either ended at turn 10,001 or made it to the 30,000-turn limit that was set, 

with very few cases falling between the two.  This can be attributed to a lack of reproduction in 

the simulation.  If the units in the simulation failed to reproduce, then the simulation ends at turn 

10,001 after the initial generation has died off.  Another problem can occur if the simulation has 

a high murder rate.  If four of the five initial units are murdered before any reproduction can 

occur, then the sole unit left will simply while away the last few remaining turns alone.  Once 

they die, the simulation ends. 



 

Figure 1 - Number of Tests that Completed a Certain Num

0 Temperament, 

If the number of births as a function of the number of turns elapsed

evidence that the birth rate definitely contributes to the longevity of the simulation
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Equally, when graphing the number of murders as a function of the number of turns 

elapsed, the fact that the murder rate also has an effect on the longevity of the simulation can be 

seen (Fig. 3.) 

 

Figure 3 - Number of Murders as a Function of Turns Elapsed, 0 Temperament, Violence 

Norm, Stealing Norm 

 

 It is not just the murders and births that affect the simulation, since these are just side-

effects of the larger sense of harmony or discord that permeates the simulation.  This sense can 

be seen in the final values of the stealing and violence norm. 
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Figure 4 - Final Norm Values over Turns Elapsed using the settings 0 Temperament, 0 

Violence Norm, and 0 Stealing Norm 

 

 Figure 4 shows how the norms affect the longevity of the simulation.  One can see that in 

the shortest-lived simulations, the violence norm is well below zero.  However, as the length of 

the simulations’ life increases, the violence norm levels increase dramatically.  One can also see 

that the stealing norm appears to have some effect on the simulations’ longevity but not nearly as 

much as the violence norm. 

 Overall, this initial test on the base case shows that basically the success of the simulation 

depends on the units that inhabit it.  If the randomly generated denizens of each simulation tend 

to be more violent than the norm, the simulation will fail.  However, if the denizens choose to 

live in harmony with one another, then the simulation will succeed.  This is fortunate, because it 

means the simulation is doing a good job representing the real world.  One can easily see how 

the results of the base case are representative of what would happen in a real world simulation.  

Obviously a society that cannot live together peacefully will not survive long.  Conversely a 
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society that can live in harmony may survive for a long time.  Note that when 

discussed, this is simply referring to 

one another, and not a more complex definition of a society.

 To reinforce the findings mad

average temperament values -25 

testing the base case.  The lower the average temperament value, the less likely the simulation is 

to reach the 30,000 turn limit. As one would expect, the final norm values support this.

 

Figure 5 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, 
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may survive for a long time.  Note that when a society

referring to a group of individuals who inhabit an area and interact with 

one another, and not a more complex definition of a society. 

To reinforce the findings made in the base case, the simulation was tested 

 and -50.  The results are concurrent with what was

testing the base case.  The lower the average temperament value, the less likely the simulation is 

000 turn limit. As one would expect, the final norm values support this.
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Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and 0 Stealing 

 

the corresponding positive average temperament values of 25 and 50

the results were concurrent with the pattern that has developed regarding the average 

temperament value.  In this case, the higher the average temperament, the more likely the 

000 turn limit.  This too is also supported by the final norm 

The previous tests show that when all norms are set to zero at the starting point, the 

simulation basically depends on the temperament of its inhabitants to determine it

is supported by the observation that if a norm starts to drift toward one extreme, 

 should also be noted that the lower the individual’s 

temperament, the more likely the individual is to partake in actions that reduce the norm values

the higher the temperament, the higher the proclivity toward actions that increase 

norm values. With that in mind, since the only thing affecting the norms is the actions of the 
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individuals in the society, then whatever actions those individuals partake in will determine the 

norms. 

When this simulation was created, there was particular interest in learning how a group of 

individuals would react to being placed under the influence of a norm system that reinforced 

actions counter to those the individuals would choose without the norm system.  To test this, 

values of -50, -25, 25, and 50 were applied separately to each of the norms.  For each of the norm 

values, the average temperament is set to -50, -25, 0, 25, and 50.  All other settings are set to the 

same as the previous tests.  The number of instances of each test was shortened, from 500 to 200.  

Since it was already established how the simulation will act based on the average temperament, it 

can be assumed that the same will be true for the smaller set of instances in these tests. 

First, the stealing norm was tested with the various values of average temperament.  

Starting with pure, or zero value, the results show some interesting yet rather expected results.  

Since it has already been shown that both the number of murders and birth and the final norm 

values support the findings regarding the length of a simulation, henceforth this paper will only 

discuss the total number of turns elapsed for each test. 

 

 



 

Figure 7 - Number of Tests that Completed a Certain Number of Turns using the settings 

Temperament, 0 Violence, 

 

Figure 8 - Number of Tests that Completed a Certain Number of Turns using the settings 

Temperament, 0 Violence, 
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Number of Tests that Completed a Certain Number of Turns using the settings 

Temperament, 0 Violence, and -50 Stealing 

Number of Tests that Completed a Certain Number of Turns using the settings 

Temperament, 0 Violence, and -25 Stealing 

 

 

Number of Tests that Completed a Certain Number of Turns using the settings 0 

 

Number of Tests that Completed a Certain Number of Turns using the settings 0 



 

Figure 9 - Number of Tests that Completed a Certain Number of Turns using the settings 

Temperament, 0 Violence, 

Figure 10 - Number of Tests that Completed a Certain Number of Turns using the settings 

0 Temperament, 0 Violence, 
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Number of Tests that Completed a Certain Number of Turns using the settings 

Temperament, 0 Violence, and 25 Stealing 

 

Number of Tests that Completed a Certain Number of Turns using the settings 

0 Temperament, 0 Violence, and 50 Stealing 

 

 

Number of Tests that Completed a Certain Number of Turns using the settings 0 

 

Number of Tests that Completed a Certain Number of Turns using the settings 



 

Recalling the results shown in Figure 1

the stealing norm have a great deal of effect on the longevity of the

tests showed that there was a nearly equal distribution of the two extremes, failing at turn 10

and continuing on to turn 30,000.  When a

new tests show that very few simulations last to the 30

applying the positive norm values; 

the turn limit. 

 If, as the previous tests show, the stealing norm has an effect on the longevity of a 

simulation, then its ability to do so should be either helped or hindered

simulations average temperament.  The next tests performed were the same 

except they were done using the negative average temperament values.

Figure 11 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 0 Violence, 
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shown in Figure 1, the new tests show that the differing

a great deal of effect on the longevity of the simulation.  The original 

showed that there was a nearly equal distribution of the two extremes, failing at turn 10

000.  When applying the negative values for the stealing norm, 

that very few simulations last to the 30,000-turn limit.  Conversely, when 

the positive norm values; the new tests show that almost all the simulations make it to 

as the previous tests show, the stealing norm has an effect on the longevity of a 

o so should be either helped or hindered by differing values of the 

simulations average temperament.  The next tests performed were the same as the previous 

the negative average temperament values. 

 

Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, and -50 Stealing 

that the differing values of 

simulation.  The original 

showed that there was a nearly equal distribution of the two extremes, failing at turn 10,001 

the negative values for the stealing norm, the 

turn limit.  Conversely, when 

that almost all the simulations make it to 

as the previous tests show, the stealing norm has an effect on the longevity of a 

by differing values of the 

as the previous set, 

 

Number of Tests that Completed a Certain Number of Turns using the settings 



 

Figure 12 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 0 Violence,

 

Figure 13 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 0 Violence, 
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s that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, and -25 Stealing 

Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, and 25 Stealing 

 

s that Completed a Certain Number of Turns using the settings 

 

Number of Tests that Completed a Certain Number of Turns using the settings 



 

Figure 14 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 0 Violence, 

 

Figure 15 - Number of Tests that Completed a Certain Number of Turns using the settings 

-25 Temperament, 0 Violence, 
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Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, and 50 Stealing 

Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 0 Violence, and -50 Stealing 

 

Number of Tests that Completed a Certain Number of Turns using the settings 

 

Number of Tests that Completed a Certain Number of Turns using the settings 



 

Figure 16 - Number of Tests that Completed a Certain Number of Turns using the settings 

-25 Temperament, 0 Violence, 

 

Figure 17 - Number of Tests that Completed a Certain Number of Turns using the settings 

-25 Temperament, 0 Viol
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Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 0 Violence, and -25 Stealing 

Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 0 Violence, and 25 Stealing 

 

Number of Tests that Completed a Certain Number of Turns using the settings 

 

Number of Tests that Completed a Certain Number of Turns using the settings 



 

Figure 18 - Number of Tests that Completed a Certain Number of Turns using the settings 

-25 Temperament, 0 Violence, 

From these results one can clearly see that the stealing norm has a great deal to do with 

the longevity of the simulation.  Upon comparing these results to the initial results done on the 

stealing norm, it is apparent that the stealing norm will make an impact on the final resu

the stealing norm and average temperament value are both negative, then the longevity of the 

simulation is pushed toward the negative extreme of 10

uniformity of the final result, in that all the final long

to the original tests done on the negative temperament values shows that these original tests were 

unlikely to reach the 30,000-turn limit.  Surprisingly,

applied, the simulation is almost guaranteed to reach the 30000

stealing norm has a large effect on the simulation’s longevity.

 In order to conclusively show that the stealing norm has a large effect on the longevity of 

the simulation, it should be shown that the same things that hold for negative temperament 
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Number of Tests that Completed a Certain Number of Turns using the settings 
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can clearly see that the stealing norm has a great deal to do with 

the longevity of the simulation.  Upon comparing these results to the initial results done on the 

stealing norm, it is apparent that the stealing norm will make an impact on the final resu

the stealing norm and average temperament value are both negative, then the longevity of the 

simulation is pushed toward the negative extreme of 10,001.  In some cases the tests achieved a 

uniformity of the final result, in that all the final longevity results were the same.  Looking back 

to the original tests done on the negative temperament values shows that these original tests were 

turn limit.  Surprisingly, when positive stealing norm values are 
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Figure 19 - Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 0 Violence, 

Figure 20 - Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 0 Violence, 
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Figure 21 - Number of Tests that Completed a Certain Number of Turns using the

25 Temperament, 0 Violence, 

 

Figure 22 - Number of Tests that Completed a Certain Number of Turns using the settings 
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Figure 23 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, 

 

Figure 24 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence,
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Figure 25 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, 

Figure 26 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 0 Violence, 
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These results also show that the stealing norm has an effect on the longevity of the 

simulation.  However, they are not nearly as convincing as the previous set.  They do sh

the convergent values increase the number of simulations 

other hand, the divergent values appear to only slightly affect the longevity of the simulations.  

For the negative temperament values, the application of positive stealing norms resulted in a 

large shift toward the positive extreme.  In the opposite case, only little more than half of the 

results showed the same large shift.  Regardless, it is still evident that the stealing norm can have 

a great effect on the longevity of the simulation.

Next, the violence norm was a

the simulation as the stealing norm.  
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with the violence norm.  The tests were done with violence norm values of 

and temperament values of -50, -

Figure 27 - Number of Tests that Completed a Certain Number of Turns using the settings 

0 Temperament, 
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Figure 28 - Number of Tests that Completed a Certain Number of Turns using the settings 

0 Temperament, 

Figure 29 - Number of Tests that Completed a Certain Number of Turns using the settings 

0 Temperament, 
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Figure 30 - Number of Tests that Completed a Certain Number of Turns using the settings 

0 Temperament, 50 Violence, 

This result is surprising because it shows that the violence norm has almost no effect on 

the longevity of the simulation.  The original test done upon the totally pure simulation showed 

an almost identical distribution.  This 

norm would have the most effect on the simulation’s longevity. 

with the violence norm on the negative temperament values to see if the results 

strange trend. 
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Figure 32 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 
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Figure 33 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 25 Violence, 

 

Figure 34 - Number of Tests that Completed a Certain Number of Turns using the settings 

-50 Temperament, 50 Violence, 
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Figure 35 - Number of Tests that Completed a Certain Number of Turns usi
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Figure 36 - Number of Tests that Completed a Certain Number of Turns using the settings 

-25 Temperament, 
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Figure 37 - Number of Tests that Completed a Certain N

-25 Temperament, 25 Violence,

 

Figure 38 - Number of Tests that Completed a Certain Number of Turns using the settings 

-25 Temperament, 50 Violence, 
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original results on the pure violence norm tests.  The positive violence norm values
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Figure 40 - Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 

 

Figure 41 - Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 25 Violence, 

 

65 

Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, -25 Violence, and 0 Stealing 

Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 25 Violence, and 0 Stealing 

 

Number of Tests that Completed a Certain Number of Turns using the settings 

 

Number of Tests that Completed a Certain Number of Turns using the settings 



 

Figure 42 - Number of Tests that Completed a Certain Number of Turns using the settings 

25 Temperament, 50 Violence, 

 

Figure 43 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 
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Figure 44 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 

 

Figure 45 - Number of Tests that Completed a Certain Number of Turns usi

50 Temperament, 25 Violence, 
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Figure 46 - Number of Tests that Completed a Certain Number of Turns using the settings 

50 Temperament, 50 Violence, 
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 Both results are concurrent with the other tests that were performed previously.  In a 

small way it shows that this simulation was programmed to act in a very lifelike fashion.  It 

could be said that societies that are inherently violent are more likely to be convinced to act in a 

peaceful manner than an inherently peaceful society would be to act violently.  In these cases, 

human nature plays the most important role, particularly in the fact that humans will adapt to 

very difficult circumstances. 

 The tests repeated in this section show conclusively that norms, as they were developed 

for this simulation, can be used to control the overall behavior of the units in the simulation, in a 

deterministic way.  The tests showed initially that when the simulation was run with all starting 

parameters initialized to zero, the number of test cases that reached the 30,000-turn limit was 

nearly equal to the number that did not.  Also shown was the fact that simulations that made it to 

the 30,000-turn limit typically had higher birth rates and lower murder rates than simulations that 

did not.  Because the tests were run with a wide range of stating parameters, it can be said that 

this experiment has conclusively shown that the stealing norm, and to a lesser extent the violence 

norm, has an effect on the probability of a specific run of the simulation reaching the 30,000-turn 

limit.  Thus it can be assumed, since there is a direct correlation between types of behavior and 

the 30,000-turn limit, that the norms also have an effect on behavior. 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

 

 This experiment should be considered a partial success.  While it failed to show that all 

societies could be forced by a controlling norm system to run until they reached a certain turn 

limit, it did show that norms are effective in manipulating the way societies work.  This 

experiment also showed that it is not required for the norm systems to be vast and complex.  

Norm systems are useful outside of the context of the Prisoner’s Dilemma, and relatively simple 

calculations can produce relatively complex and realistic results. 

Moreover, because these calculations can be accomplished so quickly, it is feasible to 

include a small simulation, which includes a simple norm system, into complex First Person 

Shooter style games or other non-simulation style games. 

 In terms of the results that were gained, the fact that the stealing norm had such a large 

impact on the simulation was particularly surprising.   Almost as surprising was the fact that the 

violence norm had little effect.  These results can be explained by analyzing the way that certain 

events trigger changes in the norm system and the entities themselves.  For example, as the 

simulation reaches a point where food becomes scarce, having a positive stealing norm induces 

entities to donate food to others.  These donations improve inter-entity relations in the simulation 

and thus improve the chance that two entities will successfully mate.  Thus the increase in good 

behavior leads to an increase in mating, thereby making the simulation more resistant to rogue 

entities going around killing everyone, or other disasters.  One might ask that why, if the good 

vibes being passed around by the stealing norm are increasing mating, and thus enhancing the 

possibility of the simulation reaching the turn limit, then why doesn’t the violence norm do the 
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same thing?  One could theorize that the answer to that lies in the fact that the stealing norm is 

directly tied to resource acquisition.  This resource acquisition is primary to an entities survival 

and represents a basic need of the entity.  So in the case where food is lacking, the entity will be 

forced into performing an action that deals with the stealing norm because of its basic need for 

resources.  The positive, or negative, influence of the stealing norm value is secondary, whereas 

with the violence norm, actions performed dealing with this norm are only done after an entity 

has resolved any resource issues that it may have.  Thus the actions of the entity dealing with the 

violence norm are not as likely to occur; therefore, they will not have nearly as much effect. 

The results of the tests of how societies react to being placed in a norm system that acts 

counter to the societies’ inherent beliefs were also very pleasing.  This was a test that had a bit of 

personal interest in it.  These tests are important in terms of using this simulation to represent a 

neutral third party in a first-person-shooter-based war game.  The experiment found that a 

simulation with good inhabitants could indeed survive in a world where the norm system 

indirectly “pressured” them to behave badly.  While not all the test simulations reached the turn 

limit, with some alteration of the rules governing the simulation, all simulations could be made 

to reach the turn limit.   

If the representation of the simulation is applied in the game world, then the actions being 

performed look realistic.  To prove this, assume that one turn in the game world represents the 

time it takes an entity to move 5 feet.   This is a convenient measurement since if it is also 

assumed that one game turn represents one second in game time, then that means that the entity 

moves at approximately 3.5 miles per hour.  Coincidentally, this is precisely the average walking 

speed for a human
2
.  In actuality, using the one-turn-per-second measurement may be a gross 

overestimate, since the most hardware-intensive settings of the simulation still produce several 

                                                 
2
 http://www.runeed.com/health/228-2-health-4.html 
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turns per second.  However, it would be prudent to assume that any modern video game would 

employ graphical content vastly more complex than what was used in the simulation.  This, 

combined with the fact that there would also be many other resource demands in a modern video 

game, suggests that the one-turn-per-second may be accurate.  If one chooses to use the one-turn-

per-second measurement, then 30,000 seconds, or approximately 8.3 hours, is equivalent to 

30,000 turns.  This is far longer than most people will play a video game in one sitting.  The fact 

that the 10,000-turn maximum lifetime of an entity would most likely have to be increased 

greatly, probably to a near infinite value to make things seem realistic, adds further credence to 

the notion that this simulation could be used to represent a realistic gameplay environment.   

 The results found in this experiment have implications in other fields, particularly those 

that involve swarm intelligence [18].  Swarm intelligence is a discipline in the field of artificial 

intelligence that deals with swarms, groups of decentralized, self-organized, autonomous agents,  

and the collective intelligent behavior that such swarms exhibit.  Typically the agents are very 

simple in design and are programmed to interact with other agents in a group setting.  The agents 

are also designed to follow a set of simple rules, the caveat to this being that the rules must be 

self-imposed as there is no centralized control structure to speak of.  Despite the lack of central 

control determining how the agents behave, the inter-agent interaction usually leads to the 

emergence of complex behavior in the swarm.  Some examples of swarm intelligence in the 

natural world include colonies of ants, flocks of birds, packs of wolves, or schools of fish.  In 

implementing swarms, typically a group of agents are placed in a world.  This world represents a 

search space, or the domain of the problem.  The search space is objectified into a multi-

dimensional representation of the problem, and the agents occupy a specific position in the 

space.  The position that the agent holds in the search space represents variables that equate to a 
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solution for the problem the swarm is trying to solve.  These agents also, typically, have a fitness 

value associated with the accuracy of their solution to the problem.  How the agents in the swarm 

behave is up to the designer and can be tailored to the problem being analyzed.  Typically the 

agents’ behavior will be implemented in such a way that solutions with higher fitness will 

dominate the swarm.  In this way, through cooperation, the agents in the swarm will develop an 

accurate solution to the given problem. 

In order to describe how this experiment relates to swarm intelligence, it is necessary to 

completely drop most of the trappings of the simulation that was created.  The concepts of 

stealing, violence, and agents acting like humans must be left behind.  Focusing solely on the 

norms and the entities, the corresponding connection is very clear.  Suppose in some scenario, a 

swarm of agents is created to solve a problem.  The agents apply a brand of un-normed 

knowledge and, for some reason, continually produce a result that is infeasible.  To prevent these 

agents from continually repeating this mistake, a human overseer, or perhaps even an artificial 

one, could inform these agents, via a norm, that they should be less inclined to explore this 

option.  Conversely, if a solution is thought to be in one area of a search space, the agents could 

be induced, again via a norm, to actively comb this area of the search space for a solution.  

However, in applying a system of norms, it could be said that one of the basic tenets of swarm 

intelligence, the lack of a centralized control structure, has been violated.  So an attempt to apply 

norms to swarm intelligence would actually be creating a hybrid system rather than enhancing 

the study of swarm intelligence. 

 To conclude, the behavior of human-like agents can be controlled using a norm system, 

and under certain conditions the norm system can control the longevity of a simulation that 

mimics some aspects of human society.  Therefore, norms can be used to cause a system of 
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independent agents to exhibit communal behavior.  This experiment also showed that it would 

not be unrealistic to use a similar simulation in an FPS-style video game.  This simulation could 

be used to represent a group of third-party agents designed to interact with the player and with 

other agents.  Because of these reasons, it is evident that further study in this field is warranted. 
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APPENDIX A 

PROGRAM SOURCE CODE 

 

DrawingFrame.java 

import java.awt.*; 
import javax.swing.*; 
import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 
 
public class DrawingFrame extends JFrame implements ActionListener { 
   Simulation s = new Simulation(); 
   DrawingPanel mapPanel = new DrawingPanel(); 
   private long speed; 
   private boolean go; 
   private boolean step; 
   private boolean done; 
    
   //info panel stuff 
   JPanel infoPanel = new JPanel(); 
   JTextArea foodText = new JTextArea(1,5); 
   JTextArea waterText = new JTextArea(1,5); 
   JTextArea turnText = new JTextArea(1,5); 
   JTextArea speedText = new JTextArea(1,5); 
   JTextArea popText = new JTextArea(1,5); 
   JTextArea sText = new JTextArea(1,5); 
   JTextArea vText = new JTextArea(1,5); 
    
   //log panel stuff 
   JScrollPane logPanel = new JScrollPane(); 
   JTextArea logText = new JTextArea(5,30); 
    
   //toolbar stuff 
   JToolBar toolBar = new JToolBar(); 
    
   //panel for the info and the toolbar 
   JPanel eastPanel = new JPanel(); 
    
   static final private String SPEEDUP = "Speed Up"; 
   static final private String SPEEDDOWN = "Slow Down"; 
   static final private String START = "Start"; 
   static final private String STOP = "Stop"; 
   static final private String STEP = "Step Forward"; 
   static final private String INCFOOD = "Add food"; 
   static final private String DECFOOD = "Remove food"; 
   static final private String INCWATER = "Add Water"; 
   static final private String DECWATER = "Remove Water"; 
   static final private String QUIT = "Quit"; 
 
   public DrawingFrame(Simulation sim) { 
      go = true; 
      step = false; 
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      speed = 100; 
      done = false; 
      s = sim; 
      try { 
         myInit(); 
      }catch(Exception ex) { 
         ex.printStackTrace(); 
      } 
   } 
    
   void myInit() throws Exception { 
 
      this.setResizable(false); 
      this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
      this.setTitle("Thesis"); 
      this.getContentPane().setLayout(new BorderLayout()); 
    
      mapPanel.setSimulation(s); 
      mapPanel.setDoubleBuffered(true); 
      mapPanel.setPreferredSize(new Dimension(605,605)); 
      mapPanel.setBackground(Color.BLACK); 
       
      infoPanel.setPreferredSize(new Dimension(150,150)); 
      infoPanel.setLayout(new GridLayout(7,2,1,1)); 
      infoPanel.add(new JLabel("Food: ")); 
      infoPanel.add(foodText); 
      infoPanel.add(new JLabel("Water: ")); 
      infoPanel.add(waterText); 
      infoPanel.add(new JLabel("Turn: ")); 
      infoPanel.add(turnText); 
      infoPanel.add(new JLabel("Speed: ")); 
      infoPanel.add(speedText); 
      infoPanel.add(new JLabel("Population: ")); 
      infoPanel.add(popText); 
      infoPanel.add(new JLabel("Stealing: ")); 
      infoPanel.add(sText); 
      infoPanel.add(new JLabel("Violence: ")); 
      infoPanel.add(vText); 
      foodText.setEditable(false); 
      waterText.setEditable(false); 
      turnText.setEditable(false); 
      speedText.setEditable(false); 
      popText.setEditable(false); 
      sText.setEditable(false); 
      vText.setEditable(false); 
       
      foodText.setText(Integer.toString(s.getBoxQuantity(0))); 
      waterText.setText(Integer.toString(s.getBoxQuantity(1))); 
      turnText.setText(Integer.toString(s.getTurn())); 
      speedText.setText(Integer.toString((int)speed)); 
      popText.setText(Integer.toString(s.getPopulation())); 
      sText.setText(Integer.toString(s.getNorms().getS())); 
      vText.setText(Integer.toString(s.getNorms().getV())); 
      toolBar.setPreferredSize(new Dimension(150,455)); 
      toolBar.setBorderPainted(false); 
      toolBar.setFloatable(false); 
      toolBar.setLayout(new GridLayout(11,0,0,0)); 



80 

 

      addButtons(toolBar); 
 
      logText.setEditable(false); 
      logText.setText("Information will be displayed here"); 
      logText.setTabSize(8); 
      logPanel.getViewport().add(logText, null); 
 
      eastPanel.setPreferredSize(new Dimension(150,605)); 
      eastPanel.add(infoPanel); 
      eastPanel.add(toolBar); 
       
      this.getContentPane().add(mapPanel, BorderLayout.CENTER); 
      this.getContentPane().add(eastPanel, BorderLayout.EAST); 
      this.getContentPane().add(logPanel, BorderLayout.SOUTH); 
       
      this.pack(); 
      this.setVisible(true); 
   } 
      
   public void setSimulation(Simulation s1) { 
      mapPanel.setSimulation(s1); 
   } 
 
   public void repaintStuff() { 
      mapPanel.repaint(); 
      foodText.setText(Integer.toString(s.getBoxQuantity(0))); 
      waterText.setText(Integer.toString(s.getBoxQuantity(1))); 
      turnText.setText(Integer.toString(s.getTurn())); 
      logText.setText(s.getLog()); 
      speedText.setText(Integer.toString((int)speed)); 
      popText.setText(Integer.toString(s.getPopulation())); 
      sText.setText(Integer.toString(s.getNorms().getS())); 
      vText.setText(Integer.toString(s.getNorms().getV())); 
   } 
      
   protected void addButtons(JToolBar toolBar) { 
      //Add all the tool bar buttons 
      JButton button = null; 
      button = makeNavigationButton(SPEEDUP, SPEEDUP, SPEEDUP); 
      toolBar.add(button); 
      button = makeNavigationButton(SPEEDDOWN, SPEEDDOWN, SPEEDDOWN); 
      toolBar.add(button); 
      button = makeNavigationButton(START, START, START); 
      toolBar.add(button); 
      button = makeNavigationButton(STOP, STOP, STOP); 
      toolBar.add(button); 
      button = makeNavigationButton(STEP, STEP, STEP); 
      toolBar.add(button); 
      toolBar.add(new JLabel("")); 
      button = makeNavigationButton(INCFOOD, INCFOOD, INCFOOD); 
      toolBar.add(button); 
      button = makeNavigationButton(DECFOOD, DECFOOD, DECFOOD); 
      toolBar.add(button); 
      button = makeNavigationButton(INCWATER, INCWATER, INCWATER); 
      toolBar.add(button); 
      button = makeNavigationButton(DECWATER, DECWATER, DECWATER); 
      toolBar.add(button); 
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      button = makeNavigationButton(QUIT, QUIT, QUIT); 
      toolBar.add(button); 
   } 
      
   protected JButton makeNavigationButton(String actionCommand, String 
toolTipText, String altText) { 
      //Create and initialize the button. 
      JButton button = new JButton(); 
      button.setActionCommand(actionCommand); 
      button.setToolTipText(toolTipText); 
      button.addActionListener(this); 
      button.setText(altText); 
      return button; 
   } 
      
   public void actionPerformed(ActionEvent e) { 
      String cmd = e.getActionCommand(); 
      // Handle each button. 
      if (SPEEDUP.equals(cmd)) { 
         speed -= 25; 
         if(speed < 0) { 
            speed = 0; 
         } 
      }else if(SPEEDDOWN.equals(cmd)) { 
         speed += 25; 
         if(speed > 1000) { 
            speed = 1000; 
         } 
      }else if(START.equals(cmd)) { 
         go = true; 
      }else if(STOP.equals(cmd)) { 
         go = false; 
      }else if(STEP.equals(cmd)) { 
         if(!go) { 
            step = true; 
         } 
      }else if(INCFOOD.equals(cmd)) { 
         s.editBoxQuantity(0, true); 
      }else if(DECFOOD.equals(cmd)) { 
         s.editBoxQuantity(0, false);          
      }else if(INCWATER.equals(cmd)) { 
         s.editBoxQuantity(1, true); 
      }else if(DECWATER.equals(cmd)) { 
         s.editBoxQuantity(1, false); 
      }else if(QUIT.equals(cmd)) { 
         done = true; 
      } 
   } 
 
   long getspeed() { 
      return speed; 
   } 
    
   boolean going() { 
      return go; 
   } 
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   boolean done() { 
      return done; 
   } 
    
   boolean step() { 
      return step; 
   } 
    
   void stepped() { 
      step = false; 
   } 
} 

 

DrawingPanel.java 

import java.awt.Color; 
import java.awt.Graphics; 
import javax.swing.JPanel; 
 
public class DrawingPanel extends JPanel { 
   Simulation s; 
   public DrawingPanel () { 
      s = new Simulation(); 
   } 
    
   public void paintComponent(Graphics g)   { 
      // Paint background 
      super.paintComponent(g); 
       
      // Get the drawing area 
      //OBSOLETE 
      //int[] xpos = s.getallxpos(); 
      //int[] ypos = s.getallypos(); 
      for(int i=0; i<s.getDenziensCount(); i++) { 
         if(s.isEntityAlive(i)) { 
            
drawUnit(g,i,s.getEntityXpos(i),s.getEntityYpos(i),s.getEntityWidth(i), 
s.getEntityColor(i)); 
         } 
      } 
      drawBox(g, s.getBoxXpos(0), s.getBoxYpos(0), s.getBoxWidth(0), 0); 
      drawBox(g, s.getBoxXpos(1), s.getBoxYpos(1), s.getBoxWidth(1), 1); 
 
   } // paintComponent 
    
   private void drawUnit(Graphics g, int i, int x, int y, int width, Color 
thecolor) { 
      g.setColor(thecolor); 
      g.fillOval(x, y, width, width); 
      g.setColor(Color.BLACK); 
      g.drawString(Integer.toString(i), x+5, y+15); 
   } 
    
   private void drawBox(Graphics g, int x, int y, int width, int type) { 
      String label = ""; 
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      switch(type) { 
         case 0: 
            g.setColor(Color.GRAY); 
            label = "F"; 
            break; 
         case 1: 
            g.setColor(Color.BLUE); 
            label = "W"; 
            break; 
      } 
      g.fillRect(x, y, width, width); 
      g.setColor(Color.BLACK); 
      g.drawString(label, x+10, y+20); 
   } 
    
   public void setSimulation(Simulation s1) { 
      s = s1; 
   } 
 
} // class DrawingPanel 

 

import java.awt.Color; 
import java.util.Random; 
import java.util.ArrayList; 
 
public class Entity { 
   private int xpos; 
   private int ypos; 
   private int xvel; 
   private int yvel; 
   private int width; 
   private int dob; 
   private boolean alive; 
   private Color mycolor; 
   private int hunger; 
   private int thirst; 
   private int health; 
   private int foodcount; 
   private int watercount; 
   private int minpos; 
   private int maxpos; 
   private int interactiontarget; 
   private int[] positiontarget; 
   private int action; 
   //private int number; 
   //0:   idle 
   //1:   eat food 
   //2:   drink water 
   //3:   obtain food 
   //4:   obtain water 
   //5:   move randomly 
   //6:   interact 
   private int resourceaction; 
   //0:   get food 
   //1:   request food 
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   //2:   steal food 
   private int interaction; 
   //0:   talk 
   //1:   hug 
   //2:   slap 
   //3:   kiss 
   //4:   punch 
   //5:   mate 
   //6:   kill 
   private int temperment; 
   private ArrayList<int[]> opinions; 
   private boolean gotTarget; 
    
   public Entity(Random r, int max, int min, int turn, int grid, int num, int 
mt) { 
      minpos = min; 
      maxpos = max; 
      xpos = minpos+r.nextInt(maxpos); 
      ypos = minpos+r.nextInt(maxpos); 
      xvel = 0; 
      yvel = 0; 
      health = 100; 
      thirst = r.nextInt(100); 
      hunger = r.nextInt(100); 
      foodcount = 0; 
      watercount = 0; 
      width = grid; 
      dob = turn; 
      alive = true; 
      gotTarget = false; 
      temperment = -50+r.nextInt(101)+mt; 
      if(temperment<-50) { 
         temperment = -50; 
      } 
      if(temperment>50) { 
         temperment = 50; 
      } 
      if(temperment<=-25) { 
         mycolor = Color.red; 
          
      }else if(temperment>=25) { 
         mycolor = Color.green; 
      }else{ 
         mycolor = Color.yellow; 
      } 
      action = 0; 
      resourceaction = 0; 
      positiontarget = new int[2]; 
      interactiontarget = -1; 
      opinions = new ArrayList<int[]>(); 
   } 
 
   void setxpos(int pos) { 
      xpos = pos; 
   } 
   void setypos(int pos) { 
      ypos = pos; 
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   } 
   int getxpos() { 
      return xpos; 
   } 
   int getypos() { 
      return ypos; 
   } 
   int getwidth() { 
      return width; 
   } 
    
   Color getColor() { 
      return mycolor; 
   } 
 
   String move() { 
      String temp = ""; 
      temp = " moved from " + xpos + ":" + ypos + " to "; 
      xpos += xvel; 
      ypos += yvel; 
      temp += xpos + ":" + ypos; 
      return temp; 
   } 
    
   int[] premove() { 
      int[] temp = new int[2]; 
      temp[0] = xpos+xvel; 
      temp[1] = ypos+yvel; 
      return temp; 
   } 
 
   void incFood() { 
      if(foodcount<3) { 
         foodcount++; 
      } 
   } 
    
   void incWater() { 
      if(watercount<3) { 
         watercount++; 
      } 
   } 
    
   void decFood() { 
      if(foodcount>0) { 
         foodcount--; 
      } 
   } 
 
   void decWater() { 
      if(watercount>0) { 
         watercount--; 
      } 
   } 
    
   void updateVitals(int t, int m) { 
      hunger++; 
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      thirst++; 
      if(hunger>99) { 
         health--; 
      } 
      if(thirst>99) { 
         health -= 2; 
      } 
      if(health<=0) { 
         alive = false; 
      } 
      if(t-dob>m) { 
         alive = false; 
      } 
   } 
    
   boolean isAlive() { 
      return alive; 
   } 
    
   int getFoodCount() { 
      return foodcount; 
   } 
    
   int getWaterCount() { 
      return watercount; 
   } 
 
   void zeroVel() { 
      xvel = 0; 
      yvel = 0; 
   } 
    
   void reversevel() { 
      xvel = -xvel; 
      yvel = -yvel; 
   } 
    
   void setVel(int[] v) { 
      xvel = v[0]-xpos; 
      yvel = v[1]-ypos; 
   } 
    
   int getage(int turn) { 
      return (turn-dob); 
   } 
    
   void chooseAction(Random r, int p) { 
      if(hunger>49&&thirst<=49) { 
         if(foodcount>0) { 
            action = 1; 
         }else{ 
            action = 3; 
         } 
      }else if(hunger<=49&&thirst>49) { 
         if(watercount>0) { 
            action = 2; 
         }else{ 
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            action = 4; 
         } 
      }else if(hunger>49&&thirst>49) { 
         if((foodcount>0)&&(watercount==0)) { 
            action = 1; 
         }else if((foodcount==0)&&(watercount>0)) { 
            action = 2; 
         }else if((foodcount>0)&&(watercount>0)){ 
            if(hunger>thirst) { 
               action = 1; 
            }else{ 
               action = 2; 
            } 
         }else{ 
            if(hunger>thirst) { 
               action = 3; 
            }else{ 
               action = 4; 
            } 
         } 
      }else{ 
         if(p>1) { 
            action = 1+r.nextInt(6); 
         }else{ 
            action = 1+r.nextInt(5); 
         } 
      } 
   } 
    
   int getAction() { 
      return action; 
   } 
    
   void randomVel(Random r) { 
      xvel = -1+r.nextInt(3); 
      yvel = -1+r.nextInt(3); 
   } 
    
   void eat() { 
      foodcount--; 
      hunger = 0; 
   } 
    
   void drink() { 
      watercount--; 
      thirst = 0; 
   } 
    
   void setTarget(int x, int y) { 
      positiontarget[0] = x; 
      positiontarget[1] = y; 
   } 
    
   int[] getTarget() { 
      return positiontarget; 
   } 
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   void setInteractionTarget(int t) { 
      interactiontarget = t; 
   } 
    
   void setHasTarget() { 
      gotTarget = true; 
   } 
 
   int getInteractionTarget() { 
      return interactiontarget; 
   } 
    
   void setInteraction(Norms n) { 
      int o = 0; 
      for(int i=0; i<opinions.size(); i++) { 
         if(opinions.get(i)[0] == interactiontarget) { 
            o = opinions.get(i)[1]; 
         } 
      } 
      //System.out.println("Opinion of " + interactiontarget + ": " + o); 
      if(o>15) { 
         interaction = 5; 
      }else if((temperment+n.getV()+o) < -25) { 
         if((temperment+n.getV()+o) < -45) { 
            if((temperment+n.getV()+o) < -65) { 
               interaction = 6; 
            }else{ 
               interaction = 4; 
            } 
         }else{ 
            interaction = 2; 
         } 
      }else if((temperment+n.getV()+o) > 25) { 
         if((temperment+n.getV()+o) > 45) { 
            interaction = 3; 
         }else{ 
            interaction = 1; 
         }          
      }else{ 
         interaction = 0; 
      } 
   } 
    
   int getInteraction() { 
      return interaction; 
   } 
    
   boolean atTarget() { 
      if(positiontarget[0]==xpos&&positiontarget[1]==ypos) { 
         return true; 
      }else{ 
         return false; 
      } 
   } 
    
   int getResourceAction() { 
      return resourceaction; 
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   } 
    
   void setResourceAction(Norms n, ResourceBox f, int p) { 
      if(f.getQuantity()>0) { 
         resourceaction = 0; 
      }else{ 
         if(p>1) { 
            if(interactiontarget == -1) { 
               resourceaction = -1; 
               action = 0; 
            }else{ 
               if(temperment+n.getS()+getOpinion(interactiontarget)>=0) { 
                  resourceaction = 1; 
               }else{ 
                  resourceaction = 2; 
               } 
            } 
         }else{ 
            resourceaction = -1; 
            action = 0; 
         } 
      } 
   } 
    
   void setAction(int i) { 
      action = i; 
   } 
    
   void noTarget() { 
      positiontarget[0] = -1; 
      positiontarget[1] = -1; 
      interactiontarget = -1; 
      gotTarget = false; 
   } 
    
   boolean hasTarget() { 
      return gotTarget; 
   } 
    
   int getTemperment() { 
      return temperment; 
   } 
    
   void die() { 
      alive = false; 
   } 
    
   void updateOpinion(int e, int a) { 
      boolean done = false; 
      int[] t = new int[2]; 
      for(int i=0; i<opinions.size(); i++) { 
         if(opinions.get(i)[0] == e) { 
            opinions.get(i)[1] += a; 
            if(opinions.get(i)[1]>50) { 
               opinions.get(i)[1] = 50; 
            } 
            if(opinions.get(i)[1]<-50) { 
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               opinions.get(i)[1] = -50; 
            } 
            done = true; 
         } 
      } 
      if(!done) { 
         t[0] = e; 
         t[1] = a; 
         opinions.add(t); 
      } 
   } 
    
   int getOpinion(int e) { 
      for(int i=0; i<opinions.size(); i++) { 
         if(opinions.get(i)[0] == e) { 
            return opinions.get(i)[1]; 
         } 
      } 
      return 0; 
   } 
    
   ArrayList<int[]> getOpinions() { 
      return opinions; 
   } 
 
   void punched() { 
      health -= 20; 
   } 
    
   void slapped() { 
      health -= 10; 
   } 
    
   void hugged() { 
      health += 10; 
      if(health>100) { 
         health = 100; 
      } 
   } 
    
   void kissed() { 
      health += 20; 
      if(health>100) { 
         health = 100; 
      } 
   } 
} 

 

Entity.java 

import java.awt.Color; 
import java.util.Random; 
import java.util.ArrayList; 
 
public class Entity { 
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   private int xpos; 
   private int ypos; 
   private int xvel; 
   private int yvel; 
   private int width; 
   private int dob; 
   private boolean alive; 
   private Color mycolor; 
   private int hunger; 
   private int thirst; 
   private int health; 
   private int foodcount; 
   private int watercount; 
   private int minpos; 
   private int maxpos; 
   private int interactiontarget; 
   private int[] positiontarget; 
   private int action; 
   //private int number; 
   //0:   idle 
   //1:   eat food 
   //2:   drink water 
   //3:   obtain food 
   //4:   obtain water 
   //5:   move randomly 
   //6:   interact 
   private int resourceaction; 
   //0:   get food 
   //1:   request food 
   //2:   steal food 
   private int interaction; 
   //0:   talk 
   //1:   hug 
   //2:   slap 
   //3:   kiss 
   //4:   punch 
   //5:   mate 
   //6:   kill 
   private int temperment; 
   private ArrayList<int[]> opinions; 
   private boolean gotTarget; 
    
   public Entity(Random r, int max, int min, int turn, int grid, int num, int 
mt) { 
      minpos = min; 
      maxpos = max; 
      xpos = minpos+r.nextInt(maxpos); 
      ypos = minpos+r.nextInt(maxpos); 
      xvel = 0; 
      yvel = 0; 
      health = 100; 
      thirst = r.nextInt(100); 
      hunger = r.nextInt(100); 
      foodcount = 0; 
      watercount = 0; 
      width = grid; 
      dob = turn; 
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      alive = true; 
      gotTarget = false; 
      temperment = -50+r.nextInt(101)+mt; 
      if(temperment<-50) { 
         temperment = -50; 
      } 
      if(temperment>50) { 
         temperment = 50; 
      } 
      if(temperment<=-25) { 
         mycolor = Color.red; 
          
      }else if(temperment>=25) { 
         mycolor = Color.green; 
      }else{ 
         mycolor = Color.yellow; 
      } 
      action = 0; 
      resourceaction = 0; 
      positiontarget = new int[2]; 
      interactiontarget = -1; 
      opinions = new ArrayList<int[]>(); 
   } 
 
   void setxpos(int pos) { 
      xpos = pos; 
   } 
   void setypos(int pos) { 
      ypos = pos; 
   } 
   int getxpos() { 
      return xpos; 
   } 
   int getypos() { 
      return ypos; 
   } 
   int getwidth() { 
      return width; 
   } 
    
   Color getColor() { 
      return mycolor; 
   } 
 
   String move() { 
      String temp = ""; 
      temp = " moved from " + xpos + ":" + ypos + " to "; 
      xpos += xvel; 
      ypos += yvel; 
      temp += xpos + ":" + ypos; 
      return temp; 
   } 
    
   int[] premove() { 
      int[] temp = new int[2]; 
      temp[0] = xpos+xvel; 
      temp[1] = ypos+yvel; 
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      return temp; 
   } 
 
   void incFood() { 
      if(foodcount<3) { 
         foodcount++; 
      } 
   } 
    
   void incWater() { 
      if(watercount<3) { 
         watercount++; 
      } 
   } 
    
   void decFood() { 
      if(foodcount>0) { 
         foodcount--; 
      } 
   } 
 
   void decWater() { 
      if(watercount>0) { 
         watercount--; 
      } 
   } 
    
   void updateVitals(int t, int m) { 
      hunger++; 
      thirst++; 
      if(hunger>99) { 
         health--; 
      } 
      if(thirst>99) { 
         health -= 2; 
      } 
      if(health<=0) { 
         alive = false; 
      } 
      if(t-dob>m) { 
         alive = false; 
      } 
   } 
    
   boolean isAlive() { 
      return alive; 
   } 
    
   int getFoodCount() { 
      return foodcount; 
   } 
    
   int getWaterCount() { 
      return watercount; 
   } 
 
   void zeroVel() { 
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      xvel = 0; 
      yvel = 0; 
   } 
    
   void reversevel() { 
      xvel = -xvel; 
      yvel = -yvel; 
   } 
    
   void setVel(int[] v) { 
      xvel = v[0]-xpos; 
      yvel = v[1]-ypos; 
   } 
    
   int getage(int turn) { 
      return (turn-dob); 
   } 
    
   void chooseAction(Random r, int p) { 
      if(hunger>49&&thirst<=49) { 
         if(foodcount>0) { 
            action = 1; 
         }else{ 
            action = 3; 
         } 
      }else if(hunger<=49&&thirst>49) { 
         if(watercount>0) { 
            action = 2; 
         }else{ 
            action = 4; 
         } 
      }else if(hunger>49&&thirst>49) { 
         if((foodcount>0)&&(watercount==0)) { 
            action = 1; 
         }else if((foodcount==0)&&(watercount>0)) { 
            action = 2; 
         }else if((foodcount>0)&&(watercount>0)){ 
            if(hunger>thirst) { 
               action = 1; 
            }else{ 
               action = 2; 
            } 
         }else{ 
            if(hunger>thirst) { 
               action = 3; 
            }else{ 
               action = 4; 
            } 
         } 
      }else{ 
         if(p>1) { 
            action = 1+r.nextInt(6); 
         }else{ 
            action = 1+r.nextInt(5); 
         } 
      } 
   } 
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   int getAction() { 
      return action; 
   } 
    
   void randomVel(Random r) { 
      xvel = -1+r.nextInt(3); 
      yvel = -1+r.nextInt(3); 
   } 
    
   void eat() { 
      foodcount--; 
      hunger = 0; 
   } 
    
   void drink() { 
      watercount--; 
      thirst = 0; 
   } 
    
   void setTarget(int x, int y) { 
      positiontarget[0] = x; 
      positiontarget[1] = y; 
   } 
    
   int[] getTarget() { 
      return positiontarget; 
   } 
    
   void setInteractionTarget(int t) { 
      interactiontarget = t; 
   } 
    
   void setHasTarget() { 
      gotTarget = true; 
   } 
 
   int getInteractionTarget() { 
      return interactiontarget; 
   } 
    
   void setInteraction(Norms n) { 
      int o = 0; 
      for(int i=0; i<opinions.size(); i++) { 
         if(opinions.get(i)[0] == interactiontarget) { 
            o = opinions.get(i)[1]; 
         } 
      } 
      //System.out.println("Opinion of " + interactiontarget + ": " + o); 
      if(o>15) { 
         interaction = 5; 
      }else if((temperment+n.getV()+o) < -25) { 
         if((temperment+n.getV()+o) < -45) { 
            if((temperment+n.getV()+o) < -65) { 
               interaction = 6; 
            }else{ 
               interaction = 4; 
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            } 
         }else{ 
            interaction = 2; 
         } 
      }else if((temperment+n.getV()+o) > 25) { 
         if((temperment+n.getV()+o) > 45) { 
            interaction = 3; 
         }else{ 
            interaction = 1; 
         }          
      }else{ 
         interaction = 0; 
      } 
   } 
    
   int getInteraction() { 
      return interaction; 
   } 
    
   boolean atTarget() { 
      if(positiontarget[0]==xpos&&positiontarget[1]==ypos) { 
         return true; 
      }else{ 
         return false; 
      } 
   } 
    
   int getResourceAction() { 
      return resourceaction; 
   } 
    
   void setResourceAction(Norms n, ResourceBox f, int p) { 
      if(f.getQuantity()>0) { 
         resourceaction = 0; 
      }else{ 
         if(p>1) { 
            if(interactiontarget == -1) { 
               resourceaction = -1; 
               action = 0; 
            }else{ 
               if(temperment+n.getS()+getOpinion(interactiontarget)>=0) { 
                  resourceaction = 1; 
               }else{ 
                  resourceaction = 2; 
               } 
            } 
         }else{ 
            resourceaction = -1; 
            action = 0; 
         } 
      } 
   } 
    
   void setAction(int i) { 
      action = i; 
   } 
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   void noTarget() { 
      positiontarget[0] = -1; 
      positiontarget[1] = -1; 
      interactiontarget = -1; 
      gotTarget = false; 
   } 
    
   boolean hasTarget() { 
      return gotTarget; 
   } 
    
   int getTemperment() { 
      return temperment; 
   } 
    
   void die() { 
      alive = false; 
   } 
    
   void updateOpinion(int e, int a) { 
      boolean done = false; 
      int[] t = new int[2]; 
      for(int i=0; i<opinions.size(); i++) { 
         if(opinions.get(i)[0] == e) { 
            opinions.get(i)[1] += a; 
            if(opinions.get(i)[1]>50) { 
               opinions.get(i)[1] = 50; 
            } 
            if(opinions.get(i)[1]<-50) { 
               opinions.get(i)[1] = -50; 
            } 
            done = true; 
         } 
      } 
      if(!done) { 
         t[0] = e; 
         t[1] = a; 
         opinions.add(t); 
      } 
   } 
    
   int getOpinion(int e) { 
      for(int i=0; i<opinions.size(); i++) { 
         if(opinions.get(i)[0] == e) { 
            return opinions.get(i)[1]; 
         } 
      } 
      return 0; 
   } 
    
   ArrayList<int[]> getOpinions() { 
      return opinions; 
   } 
 
   void punched() { 
      health -= 20; 
   } 
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   void slapped() { 
      health -= 10; 
   } 
    
   void hugged() { 
      health += 10; 
      if(health>100) { 
         health = 100; 
      } 
   } 
    
   void kissed() { 
      health += 20; 
      if(health>100) { 
         health = 100; 
      } 
   } 
} 

 

InitPanel.java 

import java.awt.BorderLayout; 
import java.awt.GridLayout; 
import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 
 
//import javax.swing.BorderFactory; 
import javax.swing.JButton; 
import javax.swing.JCheckBox; 
import javax.swing.JFrame; 
import javax.swing.JLabel; 
import javax.swing.JPanel; 
//import javax.swing.JSlider; 
import javax.swing.JSpinner; 
import javax.swing.SpinnerListModel; 
import javax.swing.SpinnerNumberModel; 
 
public class InitFrame extends JFrame implements ActionListener { 
   private boolean initialized; 
   private boolean uservars; 
   private JPanel initPanel = new JPanel(); 
   private JPanel buttonPanel = new JPanel(); 
   private String[] gList = { "10", "12", "15", "20", "24", "25", "30", "40", 
"50", "60" }; 
   private JSpinner gSpin = new JSpinner(); 
   private JSpinner eSpin = new JSpinner(); 
   private JSpinner meSpin = new JSpinner(); 
   private JSpinner fSpin = new JSpinner(); 
   private JSpinner wSpin = new JSpinner(); 
   private JSpinner tSpin = new JSpinner(); 
   private JSpinner sSpin = new JSpinner(); 
   private JSpinner vSpin = new JSpinner(); 
   private JSpinner twfSpin = new JSpinner(); 
   private JSpinner twwSpin = new JSpinner(); 
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   private JSpinner maxtSpin = new JSpinner(); 
   private JCheckBox vCheck= new JCheckBox("Visualize?"); 
   private JCheckBox lCheck = new JCheckBox("Log Results?"); 
   private JButton okbutton = new JButton(); 
   private JButton canbutton = new JButton(); 
    
   public InitFrame(boolean yn) { 
      if(yn) { 
         initialized = false; 
         uservars = true; 
         try { 
            this.setTitle("Initialize Variables"); 
            this.setResizable(false); 
            this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
            this.getContentPane().setLayout(new BorderLayout()); 
             
            initPanel.setLayout(new GridLayout(12,2,10,10)); 
            initPanel.add(new JLabel("Gridsize: ")); 
            gSpin.setModel(new SpinnerListModel(gList)); 
            gSpin.setValue("20"); 
            gSpin.setAlignmentY(1); 
            initPanel.add(gSpin); 
            initPanel.add(new JLabel("Entities:")); 
            eSpin.setModel(new SpinnerNumberModel(10, 1, 20, 1)); 
            initPanel.add(eSpin); 
            initPanel.add(new JLabel("Max Entities:")); 
            meSpin.setModel(new SpinnerNumberModel(20, 1, 20, 1)); 
            initPanel.add(meSpin); 
            initPanel.add(new JLabel("Food Quantity:")); 
            fSpin.setModel(new SpinnerNumberModel(100, 0, 100000, 1)); 
            initPanel.add(fSpin); 
            initPanel.add(new JLabel("Water Quantity:")); 
            wSpin.setModel(new SpinnerNumberModel(100, 0, 100000, 1)); 
            initPanel.add(wSpin); 
            initPanel.add(new JLabel("Median Temperment:")); 
            tSpin.setModel(new SpinnerNumberModel(0,-50,50,1)); 
            initPanel.add(tSpin); 
            initPanel.add(new JLabel("Stealing Norm:")); 
            sSpin.setModel(new SpinnerNumberModel(0,-50,50,1)); 
            initPanel.add(sSpin); 
            initPanel.add(new JLabel("Violence Norm:")); 
            vSpin.setModel(new SpinnerNumberModel(0,-50,50,1)); 
            initPanel.add(vSpin); 
            initPanel.add(new JLabel("Turns W/O Food: ")); 
            twfSpin.setModel(new SpinnerNumberModel(50,0,100,1)); 
            initPanel.add(twfSpin); 
            initPanel.add(new JLabel("Turns W/O Water: ")); 
            twwSpin.setModel(new SpinnerNumberModel(50,0,100,1)); 
            initPanel.add(twwSpin); 
            initPanel.add(new JLabel("Max Turns: ")); 
            maxtSpin.setModel(new SpinnerNumberModel(50000,1,100000,1)); 
            initPanel.add(maxtSpin); 
            vCheck.setSelected(true); 
            initPanel.add(vCheck); 
            lCheck.setSelected(false); 
            initPanel.add(lCheck); 
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            buttonPanel.setLayout(new GridLayout(1,2,10,10)); 
            okbutton.setActionCommand("OK"); 
            okbutton.setToolTipText("OK"); 
            okbutton.setText("OK"); 
            okbutton.addActionListener(this); 
            buttonPanel.add(okbutton); 
            canbutton.setActionCommand("CANCEL"); 
            canbutton.setToolTipText("CANCEL"); 
            canbutton.setText("CANCEL"); 
            canbutton.addActionListener(this); 
            buttonPanel.add(canbutton); 
 
            this.getContentPane().add(initPanel, BorderLayout.NORTH); 
            this.getContentPane().add(buttonPanel, BorderLayout.SOUTH); 
            this.pack(); 
            this.setVisible(true); 
 
         }catch(Exception ex) { 
            ex.printStackTrace(); 
         } 
      }else{ 
         initialized = true; 
         uservars = false; 
      } 
   } 
 
   public void actionPerformed(ActionEvent e) { 
        String cmd = e.getActionCommand(); 
        if(cmd.equals("OK")) { 
           initialized = true; 
        } 
        if(cmd.equals("CANCEL")) { 
           System.exit(0); 
        } 
   } 
    
   public boolean initialized() { 
      return initialized; 
   } 
    
   public boolean printLog() { 
      return lCheck.isSelected(); 
   } 
    
   public int getGrid() { 
      return Integer.parseInt(gSpin.getValue().toString()); 
   } 
    
   public int getEntity() { 
      return Integer.parseInt(eSpin.getValue().toString()); 
   } 
    
   public int getMaxE() { 
      return Integer.parseInt(meSpin.getValue().toString()); 
   } 
    
   public int getFood() { 
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      return Integer.parseInt(fSpin.getValue().toString()); 
   } 
    
   public int getWater() { 
      return Integer.parseInt(wSpin.getValue().toString()); 
   } 
    
   public int getMT() { 
      return Integer.parseInt(tSpin.getValue().toString()); 
   } 
 
   public int getS() { 
      return Integer.parseInt(sSpin.getValue().toString()); 
   } 
    
   public int getV() { 
      return Integer.parseInt(vSpin.getValue().toString()); 
   } 
    
   public int getTWF() { 
      return Integer.parseInt(twfSpin.getValue().toString()); 
   } 
    
   public int getTWW() { 
      return Integer.parseInt(twwSpin.getValue().toString()); 
   } 
    
   public int getMaxT() { 
      return Integer.parseInt(maxtSpin.getValue().toString()); 
   } 
    
   public boolean getVisualize() { 
      return vCheck.isSelected(); 
   } 
    
   public boolean getVars() { 
      return uservars; 
   } 
} 

 

Norms.java 

public class Norms { 
   private int[] norms; 
   public Norms() { 
      norms = new int[2]; 
      norms[0] = 0; 
      norms[1] = 0; 
   } 
    
   public Norms(int violence, int stealing) { 
      norms = new int[3]; 
      norms[0] = violence; 
      norms[1] = stealing; 
   } 
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   public void updateNorms(int i, int a) { 
      norms[i] += a; 
      if(norms[i]>50) { 
         norms[i] = 50; 
      } 
      if(norms[i]<-50) { 
         norms[i] = -50; 
      } 
   } 
    
   int getV() { 
      return norms[0]; 
   } 
    
   int getS() { 
      return norms[1]; 
   } 
} 
 

 

Pathfinder.java  
 
import java.util.ArrayList; 
import java.io.*; 
public class Pathfinder { 
   private int sx; 
   private int sy; 
   private int ex; 
   private int ey; 
   private int[][] map; 
   //new 
   private int min; 
   private int max; 
    
   //added max 
   public Pathfinder(int x1, int y1, int[] target, int[][] m, int min2, int 
max2) { 
      sx = x1; 
      sy = y1; 
      ex = target[0]; 
      ey = target[1]; 
      map = m; 
      //new 
      min = min2; 
      max = max2; 
   } 
 
   public int getDistance(int cx, int cy, int tx, int ty) { 
      int x = Math.abs(cx-tx); 
      int y = Math.abs(cy-ty); 
      int h = 0; 
      if(x>y) { 
         h = 14*y + 10*(x-y); 
      }else{ 
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         h = 14*x + 10*(y-x); 
      } 
      return h; 
   } 
 
   public void openNodes(Node n, NodeList o, NodeList c) { 
      Node n2; 
      int g = 0; 
      int h = 0; 
      for(int i=-1; i<2; i++) { 
         for(int j=-1; j<2; j++) { 
            g = getDistance(n.x, n.y, n.x+i, n.y+j) + n.g; 
            h = getDistance(ex, ey, n.x+i, n.y+j); 
            n2 = new Node(n.x+i, n.y+j, n.x, n.y, g+h, g, h); 
            //new 
            if((n.x+i>=min)&&(n.y+j>=min)&&(n.x+i<max)&&(n.y+j<max)) { 
               //changed this to make it work 
               if(!(i==0&&j==0)&&(map[n.x+i][n.y+j] == 0)&&(c.exists(n2)==-
1)) { 
                  if(o.exists(n2)>=0) { 
                     o.replaceIfBetterG(n2, o.exists(n2)); 
                  }else{ 
                     //System.out.println("Added " + n2.x + "," + n2.y + " to 
the open list"); 
                     o.add(n2); 
                  } 
               } 
            } 
         } 
      } 
   } 
 
   public int[] findPath() { 
      NodeList open = new NodeList(); 
      NodeList closed = new NodeList(); 
      NodeList path = new NodeList(); 
      Node n = new Node(sx, sy, 0, 0, 0, 0, 0); 
      Node start = n; 
      Node n2; 
      Node end = new Node(ex, ey, 0,0,0,0,0); 
      int result[] = new int[2]; 
      open.add(n); 
      while((closed.exists(end)<0)&&(open.size()>0)) { 
         n = open.getBestF(); 
          
         //System.out.println("Checking " + n.x + "," + n.y); 
         open.remove(n); 
         closed.add(n); 
         openNodes(n, open, closed); 
         /* 
         System.out.println("*********************************"); 
         System.out.println("Open Contents"); 
         open.printContents(); 
         System.out.println("Closed Contents"); 
         closed.printContents(); 
         /* 
         try { 
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            System.in.read(); 
         }catch(IOException e) { 
             
         } 
         */ 
      } 
      n2 = closed.get(closed.size()-1); 
      while(n2!=start) { 
         path.add(n2); 
         n2 = closed.get(closed.findParent(n2)); 
      } 
      path.add(n); 
      //System.out.println("\n*********************************"); 
      /*System.out.println("Final Path"); 
      for(int i=path.size()-2; i>=0; i--) { 
         System.out.println(path.get(i).x +","+path.get(i).y); 
      } 
      */ 
      if(path.size()>1) { 
         result[0] = path.get(path.size()-2).x; 
         result[1] = path.get(path.size()-2).y; 
      }else{ 
         result[0] = path.get(path.size()-1).x; 
         result[1] = path.get(path.size()-1).y; 
      } 
      return result; 
       
   } 
} 
 
class Node { 
   public int x; 
   public int y; 
   public int px; 
   public int py; 
   public int f; 
   public int g; 
   public int h; 
    
   public Node(int x1, int y1, int px1, int py1, int f1, int g1, int h1) { 
      x = x1; 
      y = y1; 
      px = px1; 
      py = py1; 
      f = f1; 
      g = g1; 
      h = h1; 
   } 
} 
 
class NodeList { 
   ArrayList<Node> nodes; 
    
   public NodeList() { 
      nodes = new ArrayList<Node>(); 
   } 
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   void add(Node n) { 
      nodes.add(n); 
   } 
    
   void replaceIfBetterG(Node n, int i) { 
      if(n.g<nodes.get(i).g) { 
         //new 
         //System.out.println("Replacing " + n.x + "," + n.y + " G value " + 
nodes.get(i).g + " with " + n.g);  
         nodes.set(i,n); 
      } 
   } 
    
   int size() { 
      return nodes.size(); 
   } 
    
   Node get(int i) { 
      return nodes.get(i); 
   } 
    
   void remove(Node n) { 
      nodes.remove(n); 
   } 
    
   Node getBestF() { 
      Node n = nodes.get(0); 
      for(int i=1; i<nodes.size(); i++) { 
         if(nodes.get(i).f<n.f) { 
            n = nodes.get(i); 
         } 
      } 
      return n; 
   } 
    
   int exists(Node n) { 
      int i=-1; 
      for(int j=0; j<nodes.size(); j++) { 
         if((n.x==nodes.get(j).x)&&(n.y==nodes.get(j).y)) { 
            i = j; 
         } 
      } 
      return i; 
   } 
    
   void printContents() { 
      for(int i=0; i<nodes.size(); i++) { 
         //System.out.println(i+": "+nodes.get(i).x+","+nodes.get(i).y + " 
Parent: " + nodes.get(i).px +"," + nodes.get(i).py + " F: " + nodes.get(i).f 
+ " G: " + nodes.get(i).g + " H: " + nodes.get(i).h); 
      } 
   } 
    
   int findParent(Node n) { 
      int h=-1; 
      for(int i=0; i<nodes.size(); i++) { 
         if((n.px==nodes.get(i).x)&&(n.py==nodes.get(i).y)) { 
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            //System.out.println(i); 
            h = i; 
         } 
      } 
      return h; 
   } 
} 

 

ResourceBox.java 

import java.util.Random; 
 
public class ResourceBox { 
   private int resetq; 
   private int quantity; 
   private int xpos; 
   private int ypos; 
   private int width; 
   private int type; 
    
   public ResourceBox(Random r, int q, int maxpos, int minpos, int t, int 
grid, int[][] cm) { 
      quantity = q; 
      resetq = q; 
      width = 4*grid; 
      xpos = r.nextInt(maxpos-4)+minpos; 
      ypos = r.nextInt(maxpos-4)+minpos; 
      while(cm[xpos/grid][ypos/grid] != 0) { 
         xpos = r.nextInt(maxpos-4)+minpos; 
         ypos = r.nextInt(maxpos-4)+minpos;          
      } 
      type = t; 
   } 
    
   public void setQuantity(int n) { 
      quantity = n;       
   } 
    
   public int getQuantity() { 
      return quantity; 
   } 
    
   void decQuantity() { 
      quantity--; 
   } 
    
   public int getxpos() { 
      return xpos; 
   } 
    
   public int getypos() { 
      return ypos; 
   } 
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   public int getwidth() { 
      return width; 
   } 
    
   public int getType() { 
      return type; 
   } 
    
   public void reset() { 
      quantity = resetq; 
   } 
} 

 

Simulation.java 

import java.awt.Color; 
import java.util.Random; 
import java.util.ArrayList; 
 
public class Simulation { 
   static final Random r = new Random(); 
   private static final int maxage = 10000; 
   private ArrayList<Entity> denziens; 
   private Norms normsystem; 
   private ResourceBox foodbox; 
   private ResourceBox waterbox; 
   private Pathfinder pf; 
   private int[][] collisionmap; 
   private int[][] positionmap; 
   private int turn; 
   private String log; 
   private int maxpop; 
   private int minpos; 
   private int maxpos; 
   private int gridsize; 
   private int births; 
   private int murders; 
   private int slaps; 
   private int punches; 
   private int hugs; 
   private int kisses; 
   private int donations; 
   private int thefts; 
   private int twf; 
   private int tww; 
   private int maxtwf; 
   private int maxtww; 
    
    
   public Simulation(int entitycount, int maxecount, int foodcount, int 
watercount, int maxsize, int grid, int mt, int v, int s, int mtwf, int mtww) 
{ 
      r.setSeed(System.currentTimeMillis()); 
      maxpop = maxecount; 
      minpos = 0; 
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      maxpos = maxsize; 
      gridsize = grid; 
      collisionmap = new int [maxpos+1][maxpos+1]; 
      positionmap = new int[maxpos+1][maxpos+1]; 
      denziens = new ArrayList<Entity>(); 
      normsystem = new Norms(v, s); 
      foodbox = new ResourceBox(r, foodcount, maxpos, minpos,1, gridsize, 
collisionmap); 
      loadBoxToMap(foodbox); 
      waterbox = new ResourceBox(r, watercount, maxpos, minpos, 2, gridsize, 
collisionmap); 
      loadBoxToMap(waterbox); 
      turn = 0; 
      log = ""; 
      births = 0; 
      murders = 0; 
      slaps = 0; 
      punches = 0; 
      hugs = 0; 
      kisses = 0; 
      donations = 0; 
      thefts = 0; 
      maxtwf = mtwf; 
      maxtww = mtww; 
      twf = 0; 
      tww = 0; 
 
      for(int i=0; i<entitycount; i++) { 
         denziens.add(new Entity(r, maxpos, minpos, turn, gridsize, i, mt)); 
         
while(collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] != 
0) { 
            denziens.set(i, new Entity(r, maxpos, minpos, turn, gridsize, i, 
mt)); 
         } 
         collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 
1; 
         positionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 
i; 
      } 
   } 
    
   public Simulation() { 
      denziens = null; 
   } 
    
   private int collision(int[] e) { 
      if(e[0]<minpos||e[0]>maxpos||e[1]<minpos||e[1]>maxpos) { 
         return -10; 
      }else{ 
         return collisionmap[e[0]][e[1]]; 
      } 
   } 
 
   public int distanceTo(int cx, int tx, int cy, int ty) { 
      int x = Math.abs(cx-tx); 
      int y = Math.abs(cy-ty); 
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      int h = 0; 
      if(x>y) { 
         h = 14*y + 10*(x-y); 
      }else{ 
         h = 14*x + 10*(y-x); 
      } 
      return h; 
   } 
 
   private void closestBoxSpot(Entity e, ResourceBox r) { 
      int ex = e.getxpos(); 
      int ey = e.getypos(); 
      int rx = r.getxpos(); 
      int ry = r.getypos(); 
      int distance = 100000; 
 
      for(int i=-1; i<5; i++) { 
         for(int j=-1; j<5; j++) { 
            if((rx+i>=minpos)&&(ry+j>=minpos)&&(rx+i<maxpos)&&(ry+j<maxpos)) 
{ 
               if((distanceTo(ex, rx+i, ey, 
ry+j)<distance)&&(collisionmap[rx+i][ry+j]==0)) { 
                  e.setTarget(rx+i, ry+j); 
                  distance = distanceTo(ex, rx+i, ey, ry+j); 
               } 
            } 
         } 
      } 
   } 
 
   private void closestEntitySpot(Entity e) { 
      int ex = e.getxpos(); 
      int ey = e.getypos(); 
      Entity t = denziens.get(e.getInteractionTarget()); 
      int tx = t.getxpos(); 
      int ty = t.getypos(); 
      int distance = 1000000; 
      for(int i=-1; i<2; i++) { 
         for(int j=-1; j<2; j++) { 
            if((tx+i>=minpos)&&(ty+j>=minpos)&&(tx+i<maxpos)&&(ty+j<maxpos)) 
{ 
               if((distanceTo(ex, tx+i, ey, 
ty+j)<distance)&&(collisionmap[tx+i][ty+j]==0)) { 
                  e.setTarget(tx+i, ty+j); 
                  distance = distanceTo(ex, tx+i, ey, ty+j); 
               } 
            } 
         } 
      } 
   } 
 
   private int[] freeSurroundingSpot(Entity e) { 
      int ex = e.getxpos(); 
      int ey = e.getypos(); 
      int a[] = new int[2]; 
      a[0] = -1; 
      a[1] = -1; 
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      for(int i=-1; i<2; i++) { 
         for(int j=-1; j<2; j++) { 
            if((ex+i>=minpos)&&(ey+j>=minpos)&&(ex+i<maxpos)&&(ey+j<maxpos)) 
{ 
               if(collisionmap[ex+i][ey+j]==0) { 
                  a[0] = ex+i; 
                  a[1] = ey+j; 
               } 
            } 
         } 
      } 
      return a; 
   } 
    
   private void combineOpinions(Entity s1, Entity s2, Entity t) { 
      ArrayList<int[]> o1 = s1.getOpinions(); 
      ArrayList<int[]> o2 = s2.getOpinions(); 
      ArrayList<int[]> opinions = new ArrayList<int[]>(); 
      int[] temp = new int[2]; 
      for(int i=0; i<o1.size(); i++) { 
         opinions.add(o1.get(i)); 
      } 
      for(int j=0; j<o2.size(); j++) { 
         for(int k=0; k<opinions.size(); k++) { 
            if(o2.get(j)[0]==opinions.get(k)[0]) { 
               temp[0] = o2.get(j)[0]; 
               temp[1] = (o2.get(j)[1]+opinions.get(k)[1])/2; 
               opinions.set(k, temp); 
            }else{ 
               opinions.add(o2.get(j)); 
            } 
         } 
      } 
   } 
    
   private int randomEntity(int e) { 
      int t = r.nextInt(denziens.size()); 
      while((t == e)||(!denziens.get(t).isAlive())) { 
         t = r.nextInt(denziens.size()); 
      } 
      return t; 
   } 
 
   private String doTalk(int e, int t) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      String l = ""; 
      if(Math.abs(a.getTemperment()-b.getTemperment())<50) { 
         l = " succeeded.\n"; 
         a.updateOpinion(t,1); 
         b.updateOpinion(e,1); 
      }else{ 
         l = " failed.\n"; 
         a.updateOpinion(t,-1); 
         b.updateOpinion(e,-1); 
      } 
      return l; 
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   } 
 
   private void doHug(int e, int t) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      normsystem.updateNorms(0,1); 
      a.updateOpinion(t, 5); 
      b.updateOpinion(e, 5); 
      hugs++; 
   } 
 
   private void doSlap(int e, int t) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      normsystem.updateNorms(0,-1); 
      a.updateOpinion(t, -5); 
      b.updateOpinion(e, -5); 
      b.slapped(); 
      slaps++; 
   } 
 
   private void doKiss(int e, int t) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      normsystem.updateNorms(0,3); 
      a.updateOpinion(t, 10); 
      b.updateOpinion(e, 10); 
      kisses++; 
   } 
    
   private void doPunch(int e, int t) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      normsystem.updateNorms(0,-3); 
      a.updateOpinion(t, -10); 
      b.updateOpinion(e, -10); 
      kisses++;       
   } 
    
   private void doKill(int e, int t) { 
      normsystem.updateNorms(0,-5); 
      denziens.get(t).die(); 
      murders++; 
   } 
 
   private void doGive(int e, int t, boolean what) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      if(what) { 
         a.incFood(); 
         b.decFood(); 
      }else{ 
         a.incWater(); 
         b.decWater(); 
      } 
      normsystem.updateNorms(1,1); 
      a.updateOpinion(t, 3); 
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      b.updateOpinion(e, 3); 
      donations++; 
   } 
    
   private void doSteal(int e, int t, boolean what) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      if(what) { 
         a.incFood(); 
         b.decFood(); 
      }else{ 
         a.incWater(); 
         b.decWater(); 
      } 
      normsystem.updateNorms(1,-1); 
      a.updateOpinion(t, -7); 
      b.updateOpinion(e, -7); 
      thefts++; 
   } 
    
   private void doMate(int e, int t) { 
      Entity a = denziens.get(e); 
      Entity b = denziens.get(t); 
      int mt = (a.getTemperment()+b.getTemperment())/2; 
      Entity c = new Entity(r, maxpos, minpos, turn, gridsize, 
denziens.size(), mt); 
      int[] pos = freeSurroundingSpot(b); 
      c.setxpos(pos[0]); 
      c.setypos(pos[1]); 
      denziens.add(c); 
      a.updateOpinion(t,50); 
      b.updateOpinion(e,50); 
      combineOpinions(a,b,c); 
      //logic behind this: 
      //need to balance norm changes so that things don't spiral out of 
control 
      //births will soften a society and make it less prone to violence? 
      normsystem.updateNorms(0,5); 
      births++; 
   } 
    
   private int closestEntityWith(int type, Entity e) { 
      int x = e.getxpos(); 
      int y = e.getypos(); 
      int x2; 
      int y2; 
      int distance = 1000000; 
      int target = -1; 
      for(int i=0; i<denziens.size(); i++) { 
         x2 = denziens.get(i).getxpos(); 
         y2 = denziens.get(i).getypos(); 
         if(!((x==x2)&&(y==y2))&&(distanceTo(x,x2,y,y2)<distance)) { 
            switch(type) { 
               case 0: 
                  if(denziens.get(i).getFoodCount()>0) { 
                     target = i; 
                  } 
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                  break; 
               case 1: 
                  if(denziens.get(i).getWaterCount()>0) { 
                     target = i; 
                  }                   
            } 
         } 
      } 
      return target; 
   } 
 
   private void randomTarget(Entity e) { 
      int x = minpos + (r.nextInt(maxpos-minpos)); 
      int y = minpos + (r.nextInt(maxpos-minpos)); 
      while(collisionmap[x][y] != 0) { 
         x = minpos + (r.nextInt(maxpos-minpos)); 
         y = minpos + (r.nextInt(maxpos-minpos)); 
      } 
      e.setTarget(x, y); 
   } 
 
   private boolean surrounded(Entity e) { 
      int x = 0; 
      int y = 0; 
      boolean result = true; 
      for(int i=-1; i<=1; i++) { 
         for(int j=-1; j<=1; j++) { 
            x = e.getxpos() + i; 
            y = e.getypos() + j; 
            if(x>=minpos&&y>=minpos&&x<=maxpos&&y<=maxpos) { 
               if(collisionmap[x][y] == 0) { 
                  result = false; 
               } 
            } 
         } 
      } 
      return result; 
   } 
    
   void loadBoxToMap(ResourceBox b) { 
      int x = b.getxpos(); 
      int y = b.getypos(); 
      for(int i=0; i<4; i++) { 
         for(int j=0; j<4; j++) { 
            collisionmap[x+i][y+j] = 1; 
         } 
      } 
   } 
 
   void nextTurn() { 
      if(maxtwf <= twf) { 
         foodbox.reset(); 
         twf=0; 
      } 
      if(maxtww <= tww) { 
         waterbox.reset(); 
         tww=0; 
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      } 
      turn++; 
      /*System.out.println(turn); 
      for(int k=0; k<maxpos; k++) { 
         for(int l=0; l<maxpos; l++) { 
            System.out.print(collisionmap[k][l]); 
         } 
         System.out.println(); 
      } 
      System.out.println("\n");*/ 
      for(int i=0; i<denziens.size(); i++) { 
         denziens.get(i).updateVitals(turn, maxage); 
         if(denziens.get(i).isAlive()) { 
            if(surrounded(denziens.get(i))) { 
               denziens.get(i).zeroVel(); 
            }else{ 
               switch(denziens.get(i).getAction()) { 
                  case 0: 
                     denziens.get(i).chooseAction(r, getPopulation()); 
                     break; 
                  case 1: 
                     denziens.get(i).zeroVel(); 
                     if(denziens.get(i).getFoodCount()>0) { 
                        denziens.get(i).eat(); 
                        log += "Entity " + i + " ate.  Now has " + 
denziens.get(i).getFoodCount() + ".\n"; 
                        denziens.get(i).setAction(0); 
                     }else{ 
                        denziens.get(i).setAction(3); 
                     } 
                     break; 
                  case 2: 
                     denziens.get(i).zeroVel(); 
                     if(denziens.get(i).getWaterCount()>0) { 
                        denziens.get(i).drink(); 
                        log += "Entity " + i + " drank.  Now has " + 
denziens.get(i).getWaterCount() + ".\n"; 
                        denziens.get(i).setAction(0); 
                     }else{ 
                        denziens.get(i).setAction(4); 
                     } 
                     break; 
                  case 3: 
                     if(!denziens.get(i).hasTarget()) { 
                        
denziens.get(i).setInteractionTarget(closestEntityWith(0,denziens.get(i))); 
                        denziens.get(i).setResourceAction(normsystem, 
foodbox, getPopulation()); 
                        
if(denziens.get(i).getResourceAction()!=0&&denziens.get(i).getInteractionTarg
et()==-1){ 
                           denziens.get(i).setAction(5); 
                        }else{ 
                           denziens.get(i).setHasTarget(); 
                        } 
                     }else{ 
                        if(denziens.get(i).atTarget()) { 
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                           switch(denziens.get(i).getResourceAction()) { 
                              case 0: 
                                 if(foodbox.getQuantity()>0) { 
                                    denziens.get(i).incFood(); 
                                    foodbox.decQuantity(); 
                                    log += "Entity " + i + " got food.  Food 
Count: " + denziens.get(i).getFoodCount() + ".\n"; 
                                 }else{ 
                                    denziens.get(i).noTarget(); 
                                 } 
                                 break; 
                              case 1: 
                                 
if(denziens.get(denziens.get(i).getInteractionTarget()).getFoodCount()>0) { 
                                    
doGive(i,denziens.get(i).getInteractionTarget(), true); 
                                 }else{ 
                                    denziens.get(i).noTarget(); 
                                 } 
                                 break; 
                              case 2: 
                                 
if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) { 
                                    
doSteal(i,denziens.get(i).getInteractionTarget(), true); 
                                 }else{ 
                                    denziens.get(i).noTarget(); 
                                 } 
                                 break; 
                           } 
                           denziens.get(i).noTarget(); 
                           denziens.get(i).setAction(0); 
                        }else{ 
                           if(denziens.get(i).getResourceAction() == 0) { 
                              if(foodbox.getQuantity()>0) { 
                                 closestBoxSpot(denziens.get(i), foodbox); 
                                 pf = new 
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(), 
denziens.get(i).getTarget(), collisionmap, minpos, maxpos); 
                                 denziens.get(i).setVel(pf.findPath()); 
                              }else{ 
                                 denziens.get(i).noTarget(); 
                              } 
                           }else{ 
                              
if(denziens.get(denziens.get(i).getInteractionTarget()).getFoodCount()>0) { 
                                 closestEntitySpot(denziens.get(i)); 
                                 pf = new 
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(), 
denziens.get(i).getTarget(), collisionmap, minpos, maxpos); 
                                 denziens.get(i).setVel(pf.findPath()); 
                              }else{ 
                                 denziens.get(i).noTarget(); 
                              } 
                           } 
                        } 
                     } 
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                     break; 
                  case 4: 
                     if(!denziens.get(i).hasTarget()) { 
                        
denziens.get(i).setInteractionTarget(closestEntityWith(0,denziens.get(i))); 
                        denziens.get(i).setResourceAction(normsystem, 
waterbox, getPopulation()); 
                        
if(denziens.get(i).getResourceAction()!=0&&denziens.get(i).getInteractionTarg
et()==-1){ 
                           denziens.get(i).setAction(5); 
                        }else{ 
                           denziens.get(i).setHasTarget(); 
                        } 
                     }else{ 
                        if(denziens.get(i).atTarget()) { 
                           switch(denziens.get(i).getResourceAction()) { 
                              case 0: 
                                 if(waterbox.getQuantity()>0) { 
                                    denziens.get(i).incWater(); 
                                    waterbox.decQuantity(); 
                                    log += "Entity " + i + " got water.  
Water Count: " + denziens.get(i).getWaterCount() + ".\n"; 
                                 }else{ 
                                    denziens.get(i).noTarget(); 
                                 } 
                                 break; 
                              case 1: 
                                 
if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) { 
                                    
doGive(i,denziens.get(i).getInteractionTarget(), true); 
                                 }else{ 
                                    denziens.get(i).noTarget(); 
                                 } 
                                 break; 
                              case 2: 
                                 
if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) { 
                                    
doSteal(i,denziens.get(i).getInteractionTarget(), true); 
                                 }else{ 
                                    denziens.get(i).noTarget(); 
                                 } 
                                 break; 
                           } 
                           denziens.get(i).noTarget(); 
                           denziens.get(i).setAction(0); 
                        }else{ 
                           if(denziens.get(i).getResourceAction() == 0) { 
                              if(foodbox.getQuantity()>0) { 
                                 closestBoxSpot(denziens.get(i), waterbox); 
                                 pf = new 
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(), 
denziens.get(i).getTarget(), collisionmap, minpos, maxpos); 
                                 denziens.get(i).setVel(pf.findPath()); 
                              }else{ 
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                                 denziens.get(i).noTarget(); 
                              } 
                           }else{ 
                              
if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) { 
                                 closestEntitySpot(denziens.get(i)); 
                                 pf = new 
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(), 
denziens.get(i).getTarget(), collisionmap, minpos, maxpos); 
                                 denziens.get(i).setVel(pf.findPath()); 
                              }else{ 
                                 denziens.get(i).noTarget(); 
                              } 
                           } 
                        } 
                     } 
                     break; 
                  case 5: 
                     if(!denziens.get(i).hasTarget()) { 
                        randomTarget(denziens.get(i)); 
                        denziens.get(i).setHasTarget(); 
                     }else{ 
                        if(denziens.get(i).atTarget()) { 
                           denziens.get(i).noTarget(); 
                           denziens.get(i).setAction(0); 
                        }else{ 
                           pf = new Pathfinder(denziens.get(i).getxpos(), 
denziens.get(i).getypos(), denziens.get(i).getTarget(), collisionmap, minpos, 
maxpos); 
                           denziens.get(i).setVel(pf.findPath()); 
                        } 
                     } 
                     break; 
                  case 6:    
                     if(!denziens.get(i).hasTarget()) { 
                        
denziens.get(i).setInteractionTarget(randomEntity(i)); 
                        denziens.get(i).setInteraction(normsystem); 
                        denziens.get(i).setHasTarget(); 
                     }else{ 
                        
if(denziens.get(denziens.get(i).getInteractionTarget()).isAlive()) { 
                           if(denziens.get(i).atTarget()) {    
                              switch(denziens.get(i).getInteraction()) { 
                                 case 0: 
                                    log += "Entity " + i + " attempted to 
talk to Entity " + denziens.get(i).getInteractionTarget() + ".  It"; 
                                    log += doTalk(i, 
denziens.get(i).getInteractionTarget()); 
                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0); 
                                    break; 
                                 case 1: 
                                    log += "Entity " + i + " attempted to hug 
Entity " + denziens.get(i).getInteractionTarget() + ".\n"; 
                                    doHug(i, 
denziens.get(i).getInteractionTarget()); 



118 

 

                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0);          
                                    break; 
                                 case 2: 
                                    log += "Entity " + i + " slapped Entity " 
+ denziens.get(i).getInteractionTarget() + ".\n"; 
                                    doSlap(i, 
denziens.get(i).getInteractionTarget()); 
                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0); 
                                    break; 
                                 case 3: 
                                    log += "Entity " + i + " kissed Entity " 
+ denziens.get(i).getInteractionTarget() + ".\n"; 
                                    doKiss(i, 
denziens.get(i).getInteractionTarget()); 
                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0);          
                                    break; 
                                 case 4: 
                                    log += "Entity " + i + " punched Entity " 
+ denziens.get(i).getInteractionTarget() + ".\n"; 
                                    doPunch(i, 
denziens.get(i).getInteractionTarget()); 
                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0);    
                                    break; 
                                 case 5: 
                                    log += "Entity " + i + " attempted to 
mate with Entity " + denziens.get(i).getInteractionTarget(); 
                                    
if(foodbox.getQuantity()<20&&waterbox.getQuantity()<20) { 
                                       log += " but decided against it due to 
lack of resources.\n"; 
                                    }else 
if(surrounded(denziens.get(denziens.get(i).getInteractionTarget()))||getPopul
ation()>=maxpop) { 
                                       log += " but decided against it 
because it's too crowded.\n"; 
                                    }else{ 
                                       doMate(i, 
denziens.get(i).getInteractionTarget()); 
                                       log += " and a bouncing fully 
functional adult was born.\n"; 
                                    } 
                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0);    
                                    break; 
                                 case 6: 
                                    log += "Entity " + i + " killed Entity " 
+ denziens.get(i).getInteractionTarget() + ".\n"; 
                                    doKill(i, 
denziens.get(i).getInteractionTarget()); 
                                    denziens.get(i).noTarget(); 
                                    denziens.get(i).setAction(0);    
                                    break; 
                              } 
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                           }else{ 
                              closestEntitySpot(denziens.get(i)); 
                              pf = new Pathfinder(denziens.get(i).getxpos(), 
denziens.get(i).getypos(), denziens.get(i).getTarget(), collisionmap, minpos, 
maxpos); 
                              denziens.get(i).setVel(pf.findPath());                                 
                           } 
                        }else{ 
                           denziens.get(i).noTarget(); 
                           denziens.get(i).setAction(0); 
                        } 
                     } 
                     break; 
               } 
               
collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 0; 
               
positionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 0; 
               if(collision(denziens.get(i).premove())==0) { 
                  denziens.get(i).move(); 
               } 
               
collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 1; 
               
positionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = i; 
            } 
         } 
      } 
      if(foodbox.getQuantity()==0) { 
         twf++; 
      } 
      if(waterbox.getQuantity()==0) { 
         tww++; 
      } 
   } 
 
   //Start stuff for drawing 
   int getDenziensCount() { 
      return denziens.size(); 
   } 
    
   int getPopulation() { 
      int p = 0; 
      for(int i=0; i<denziens.size(); i++) { 
         if(denziens.get(i).isAlive()) { 
            p++; 
         } 
      } 
      return p; 
   } 
    
   int getEntityXpos(int i) { 
      return denziens.get(i).getxpos()*gridsize; 
   } 
    
   int getEntityYpos(int i) { 
      return denziens.get(i).getypos()*gridsize; 
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   } 
    
   int getEntityWidth(int i) { 
      return denziens.get(i).getwidth(); 
   } 
    
   Color getEntityColor(int i) { 
      return denziens.get(i).getColor(); 
   } 
    
   int getBoxXpos(int i) { 
      int n = 0; 
      switch(i) { 
         case 0: 
            n = foodbox.getxpos()*gridsize; 
            break; 
         case 1: 
            n = waterbox.getxpos()*gridsize; 
            break; 
      } 
      return n; 
   }    
 
   int getBoxYpos(int i) { 
      int n = 0; 
      switch(i) { 
         case 0: 
            n = foodbox.getypos()*gridsize; 
            break; 
         case 1: 
            n = waterbox.getypos()*gridsize; 
            break; 
      } 
      return n; 
   } 
    
   int getBoxWidth(int i) { 
      int n = 0; 
      switch(i) { 
         case 0: 
            n = foodbox.getwidth(); 
            break; 
         case 1: 
            n = waterbox.getwidth(); 
            break; 
      } 
      return n; 
   } 
    
   boolean isEntityAlive(int i) { 
      return denziens.get(i).isAlive(); 
   } 
    
   //End Stuff for drawing 
    
   //Start Stuff for menus 
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   int getBoxQuantity(int i) { 
      int n = 0; 
      switch(i) { 
         case 0: 
            n = foodbox.getQuantity(); 
            break; 
         case 1: 
            n = waterbox.getQuantity(); 
            break; 
      } 
      return n; 
   } 
 
   void editBoxQuantity(int i, boolean add) { 
      int n = 0; 
      if(add) { 
         n = 10; 
      }else{ 
         n = -10; 
      } 
      switch(i) { 
         case 0: 
            foodbox.setQuantity(foodbox.getQuantity()+n); 
            if(add) { 
               if(foodbox.getQuantity()>200) { 
                  foodbox.setQuantity(200); 
               } 
            }else{ 
               if(foodbox.getQuantity()<0) { 
                  foodbox.setQuantity(0); 
               }                
            } 
            break; 
         case 1: 
            waterbox.setQuantity(waterbox.getQuantity()+n); 
            if(add) { 
               if(waterbox.getQuantity()>200) { 
                  waterbox.setQuantity(200); 
               } 
            }else{ 
               if(waterbox.getQuantity()<0) { 
                  waterbox.setQuantity(0); 
               }                
            } 
            break; 
      } 
   } 
 
   //End stuff for menus 
 
   int getTurn() { 
      return turn; 
   } 
 
   String getLog() { 
      return log; 
   } 
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   String getResults() { 
      String r = ""; 
      /* 
      r += "Number of turns: " + Integer.toString(turn) + "\n"; 
      r += "Final Population: " + getPopulation() + "\n"; 
      r += "Give/Steal: " + normsystem.getGS() + "\n"; 
      r += "Donations: " + donations + "\n"; 
      r += "Thefts: " + thefts + "\n"; 
      r += "Hug/Hit: " + normsystem.getHH() + "\n"; 
      r += "Hugs: " + hugs + "\n"; 
      r += "Assaults: " + assaults + "\n"; 
      r += "Kiss/Kill: " + normsystem.getKK() + "\n"; 
      r += "Kisses: " + kisses + "\n"; 
      r += "Murders: " + murders + "\n"; 
      r += "Births: " + births + "\n"; 
      */ 
      r = Integer.toString(turn) + "," + getPopulation() + "," + 
normsystem.getS() + "," + donations + "," + thefts + "," +normsystem.getV() + 
"," + hugs + "," + slaps + "," + kisses + "," + punches + "," + murders + "," 
+ births; 
      return r; 
   } 
    
   Norms getNorms() { 
      return normsystem; 
   } 
} 

 

Thesis.java 

import java.lang.Thread; 
import java.io.*; 
 
import javax.swing.*; 
 
public class Thesis { 
 
    public static void main(String[] args) { 
       try { 
         UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel"); 
      } catch (ClassNotFoundException e1) { 
         e1.printStackTrace(); 
      } catch (InstantiationException e1) { 
         e1.printStackTrace(); 
      } catch (IllegalAccessException e1) { 
         e1.printStackTrace(); 
      } catch (UnsupportedLookAndFeelException e1) { 
         e1.printStackTrace(); 
      } 
       InitFrame startFrame; 
       int gridsize = 20; 
       int ecount = 10; 
       int maxecount = 20; 
       int foodcount = 100; 
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       int watercount = 100; 
       int mediantemperment = 0; 
       int steal = 0; 
       int violence = 0; 
       int twf = 0; 
       int tww = 0; 
       int maxt = 0; 
       boolean visualize = true; 
       boolean showFinal = true; 
       boolean printLog = false; 
        
        
       Simulation s; 
       DrawingFrame ThesisFrame; 
       JFrame finalFrame; 
       JPanel finalPanel; 
       JTextArea finalText; 
        
       try{ 
           FileOutputStream fos = new FileOutputStream("output.txt"); 
           PrintStream ps = new PrintStream(fos); 
           System.setOut(ps); 
       }catch(IOException e) { 
           
       } 
 
       if(args.length > 0) { 
          gridsize = Integer.parseInt(args[0]); 
          ecount = Integer.parseInt(args[1]); 
          maxecount = Integer.parseInt(args[2]); 
          foodcount = Integer.parseInt(args[3]); 
          watercount = Integer.parseInt(args[4]); 
          mediantemperment = Integer.parseInt(args[5]); 
          steal = Integer.parseInt(args[6]); 
          violence = Integer.parseInt(args[7]); 
          twf = Integer.parseInt(args[8]); 
          tww = Integer.parseInt(args[9]); 
          maxt = Integer.parseInt(args[10]); 
          visualize = Boolean.parseBoolean(args[11]); 
          printLog = Boolean.parseBoolean(args[12]); 
          showFinal = false; 
       }else{ 
          startFrame = new InitFrame(true); 
         while(!startFrame.initialized()) { 
            startFrame.repaint(); 
         } 
         startFrame.setVisible(false); 
         startFrame.removeAll(); 
         if(startFrame.getVars()) { 
            gridsize = startFrame.getGrid(); 
             ecount = startFrame.getEntity(); 
             maxecount = startFrame.getMaxE(); 
             foodcount = startFrame.getFood(); 
             watercount = startFrame.getWater(); 
             mediantemperment = startFrame.getMT(); 
             steal = startFrame.getS(); 
             violence = startFrame.getV(); 
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             twf = startFrame.getTWF(); 
             tww = startFrame.getTWW(); 
             maxt = startFrame.getMaxT(); 
             visualize = startFrame.getVisualize(); 
             printLog = startFrame.printLog(); 
          } 
         showFinal = true; 
       } 
 
       s = new Simulation(ecount, maxecount, foodcount, watercount, 
600/gridsize-1, gridsize, mediantemperment, steal, violence, twf, tww); 
        
      if(visualize) { 
         ThesisFrame = new DrawingFrame(s); 
          while(!ThesisFrame.done()&&s.getPopulation()>0&&s.getTurn()<maxt) { 
             if(ThesisFrame.going()) { 
                s.nextTurn(); 
                try { 
                   Thread.sleep(ThesisFrame.getspeed()); 
                }catch(InterruptedException e){ 
                   System.out.println(e); 
                } 
             }else if(ThesisFrame.step()) { 
                s.nextTurn(); 
                ThesisFrame.stepped(); 
             } 
            ThesisFrame.setSimulation(s); 
            ThesisFrame.repaintStuff(); 
          } 
          ThesisFrame.setVisible(false); 
      }else{ 
         while(s.getPopulation()>0&&s.getTurn()<maxt) { 
            s.nextTurn(); 
         } 
      } 
      if(printLog) { 
         System.out.println(s.getResults()+s.getLog()); 
       }else{ 
          System.out.println(s.getResults()); 
       } 
      if(showFinal) { 
         finalFrame = new JFrame(); 
         finalPanel = new JPanel(); 
         finalText = new JTextArea(8,20); 
          finalText.setText(s.getResults()); 
         //finalText.setEditable(false); 
         finalPanel.add(finalText); 
         finalFrame.getContentPane().add(finalPanel); 
         finalFrame.pack(); 
         finalFrame.setTitle("Results"); 
         finalFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
         finalFrame.setResizable(false); 
         finalFrame.setVisible(true); 
      }else{ 
         System.exit(0); 
      } 
    } 
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