
Eastern Michigan University
DigitalCommons@EMU

Master's Theses and Doctoral Dissertations Master's Theses, and Doctoral Dissertations, and
Graduate Capstone Projects

2008

Adding simple simulations to video games to
improve realism
Leonard Kinnaird-Heether

Follow this and additional works at: http://commons.emich.edu/theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by the Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects
at DigitalCommons@EMU. It has been accepted for inclusion in Master's Theses and Doctoral Dissertations by an authorized administrator of
DigitalCommons@EMU. For more information, please contact lib-ir@emich.edu.

Recommended Citation
Kinnaird-Heether, Leonard, "Adding simple simulations to video games to improve realism" (2008). Master's Theses and Doctoral
Dissertations. 198.
http://commons.emich.edu/theses/198

http://commons.emich.edu?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses/198?utm_source=commons.emich.edu%2Ftheses%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@emich.edu

Adding Simple Simulations to Video Games to Improve Realism

by

Leonard Kinnaird-Heether

Thesis

Submitted to the Department of Computer Science

Eastern Michigan University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

Thesis Committee:

Matthew Evett, Ph.D., Chair

Susan Haynes, Ph.D.

William Sverdlik, Ph. D.

July 22, 2008

Ypsilanti, Michigan

ii

ABSTRACT

 In this paper a method of enhancing the realism of certain computer game types,

particularly First Person Shooter games, is explored by attempting to include intelligent neutral

background characters to the game environment. This method also requires that the inclusion of

these background characters will not adversely affect the performance of a game by drastically

increasing the computational complexity of the game. A simulation was created to show how

this can be done using a group of intelligent agents based in a simulated world, and a simplified

system of norms designed to influence the agents’ behavior. The agents are designed to interact

with each other and other objects in their virtual world, in a fashion that could be considered

human-like. To show the validity of this method, the simulation was designed to be minimally

resource intensive. Furthermore, extensive tests were performed using a variety of initial starting

values for various aspects of the simulation, to show that the simulation, and thus the method,

can sustain itself long enough to provide an improvement to a gaming environment. The results

of the tests are discussed at length, as well as theories as to how this method could be used

successfully in computer gaming.

Keywords: Artificial Intelligence, Computer Gaming, Norms, Intelligent Agents

iii

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………….. ii

LIST OF CHARTS………………………………………………………………………… v

CHAPTER

I. INTRODUCTION……………………………………………………... 1

II. REVIEW OF LITERATURE………………………………………….. 7

IPD for Emotional NPC Societies in Games…………………………... 7

A-Star Pathfinding for Beginners……………………………………… 10

The Sims: Under the Hood…………………………………………….. 13

III. DESIGN AND METHODOLOGY…………………………………… 17

Overview……………………………………………………………….. 17

Control Mechanism…………………………………………………….. 18

Resource Boxes………………………………………………………… 19

Units……………………………………………………………………. 20

Norm System…………………………………………………………... 22

Decision Making Process………………………………………………. 23

Formal Definitions……………………………………………………... 27

Design Summary……………………………………………………….. 36

Methodology………………………………………………………….... 36

IV. ANALYSIS OF RESULTS……………………………………………. 39

V. CONCLUSIONS AND RECOMMENDATIONS…………………….. 71

VI. REFERENCES………………………………………………………… 76

iv

APPENDICES

A. PROGRAM CODE………………………………………………… 78

v

LIST OF FIGURES

Figure 1: Screenshot of the Simulation During a Visualized Run…………………………. 38

Figure 2: Number of Turns, 0 Temperament, Violence Norm, Stealing Norm……………. 40

Figure 3: Number of Births over Turns Elapsed, 0 Temperament, Violence Norm, Stealing

Norm……………………………………………………………………………………….. 40

Figure 4: Number of Murders over Turns Elapsed, 0 Temperament, Violence Norm, Stealing

Norm……………………………………………………………………………………….. 41

Figure 5: Final Norm Values over Turns Elapsed, 0 Temperament, Violence Norm, Stealing

Norm……………………………………………………………………………………….. 42

Figure 6: Number of Turns, -25 Temperament, 0 Violence, 0 Stealing…………………… 43

Figure 7: Number of Turns, -50 Temperament, 0 Violence, 0 Stealing…………………… 44

Figure 8: Number of Turns, 0 Temperament, 0 Violence, -50 Stealing…………………… 46

Figure 9: Number of Turns, 0 Temperament, 0 Violence, -25 Stealing…………………… 46

Figure 10: Number of Turns, 0 Temperament, 0 Violence, 25 Stealing…………………... 47

Figure 11: Number of Turns, 0 Temperament, 0 Violence, 50 Stealing…………………... 47

Figure 12: Number of Turns, -50 Temperament, 0 Violence, -50 Stealing………………... 48

Figure 13: Number of Turns, -50 Temperament, 0 Violence, -25 Stealing………………... 49

Figure 14: Number of Turns, -50 Temperament, 0 Violence, 25 Stealing………………… 49

Figure 15: Number of Turns, -50 Temperament, 0 Violence, 50 Stealing………………… 50

Figure 16: Number of Turns, -25 Temperament, 0 Violence, -50 Stealing……………….. 50

Figure 17: Number of Turns, -25 Temperament, 0 Violence, -25 Stealing……………….. 51

Figure 18: Number of Turns, -25 Temperament, 0 Violence, 25 Stealing………………… 51

Figure 19: Number of Turns, -25 Temperament, 0 Violence, 50 Stealing………………… 52

vi

Figure 20: Number of Turns, 25 Temperament, 0 Violence, -50 Stealing………………… 53

Figure 21: Number of Turns, 25 Temperament, 0 Violence, -25 Stealing………………… 53

Figure 22: Number of Turns, 25 Temperament, 0 Violence, 25 Stealing…………………. 54

Figure 23: Number of Turns, 25 Temperament, 0 Violence, 50 Stealing…………………. 54

Figure 24: Number of Turns, 50 Temperament, 0 Violence, -50 Stealing………………… 55

Figure 25: Number of Turns, 50 Temperament, 0 Violence, -25 Stealing………………… 55

Figure 26: Number of Turns, 50 Temperament, 0 Violence, 25 Stealing…………………. 56

Figure 27: Number of Turns, 50 Temperament, 0 Violence, 50 Stealing…………………. 56

Figure 28: Number of Turns, 0 Temperament, -50 Violence, 0 Stealing………………….. 57

Figure 29: Number of Turns, 0 Temperament, -25 Violence, 0 Stealing………………….. 58

Figure 30: Number of Turns, 0 Temperament, 25 Violence, 0 Stealing…………………... 58

Figure 31: Number of Turns, 0 Temperament, 50 Violence, 0 Stealing…………………... 59

Figure 32: Number of Turns, -50 Temperament, -50 Violence, 0 Stealing………………... 60

Figure 33: Number of Turns, -50 Temperament, -25 Violence, 0 Stealing………………... 60

Figure 34: Number of Turns, -50 Temperament, 25 Violence, 0 Stealing………………… 61

Figure 35: Number of Turns, -50 Temperament, 50 Violence, 0 Stealing………………… 61

Figure 36: Number of Turns, -25 Temperament, -50 Violence, 0 Stealing……………….. 62

Figure 37: Number of Turns, -25 Temperament, -25 Violence, 0 Stealing………………... 62

Figure 38: Number of Turns, -25 Temperament, 25 Violence, 0 Stealing………………… 63

Figure 39: Number of Turns, -25 Temperament, 50 Violence, 0 Stealing………………… 63

Figure 40: Number of Turns, 25 Temperament, -50 Violence, 0 Stealing………………… 64

Figure 41: Number of Turns, 25 Temperament, -25 Violence, 0 Stealing………………… 65

Figure 42: Number of Turns, 25 Temperament, 25 Violence, 0 Stealing…………………. 65

vii

Figure 43: Number of Turns, 25 Temperament, 50 Violence, 0 Stealing…………………. 66

Figure 44: Number of Turns, 50 Temperament, -50 Violence, 0 Stealing………………… 66

Figure 45: Number of Turns, 50 Temperament, -25 Violence, 0 Stealing………………… 67

Figure 46: Number of Turns, 50 Temperament, 25 Violence, 0 Stealing…………………. 67

Figure 47: Number of Turns, 50 Temperament, 50 Violence, 0 Stealing…………………. 68

Figure 48: Number of Turns, -50 Temperament, 50 Violence, 50 Stealing……………….. 69

Figure 49: Number of Turns, 50 Temperament, -50 Violence, -50 Stealing………………. 69

CHAPTER I

INTRODUCTION

If the goal of any simulation is to provide the most accurate portrayal of its particular

setting as possible, then any change that improves this accuracy is a step in the right direction.

When a simulation represents a fantastical environment, where the laws of nature that govern our

real environment may be altered, the task of creating an accurate simulation is considerably

easier. When the user of a simulation is not familiar with the constraints of the simulated

environment, then any constraint, however fantastic, will be assumed to be normal for the

simulation. However, when creating a simulation that represents the natural environment in

which we dwell, the task is much harder. The user of a simulation that is grounded in reality is

intimately acquainted with the rules that govern the natural world, if not through scientific

knowledge, then at least through personal experience. Thus the user can accurately identify

where the simulation is unable to correctly depict reality. When creating a simulation for a video

game that is designed to represent the natural world, the inability to accurately depict reality can

be a detriment. Video games are primarily used as a means of entertainment and are supposedly

designed to induce a feeling of enjoyment. Thus, inaccuracy in a video game simulation will

theoretically decrease the amount of enjoyment a user receives from the game. By this it can be

inferred that the value of a simulation that attempts to recreate a real world situation is directly

tied to the accuracy of the simulation.

It can be said that video game development is becoming an increasingly important

discipline in the field of computer science. It is also true that simulations are an effective means

of researching specific situations in the natural world. Because of this, it is not unrealistic to

2

expect that using a simulation designed to represent aspects of the natural world in a video game

would serve to increase the realism of that video game. There is also the added benefit that the

same simulation might also be used to advance research in other areas of the field. This paper

reports findings that are directly involved with the development of better simulations for video

games, but could indirectly be applied to other fields, such as swarm intelligence and agent-

based systems, since the simulation is constructed in a similar fashion to these.

Many video games focus on the interaction of a human player with computer-controlled

Non-Player Characters. Non-Player Characters, typically called “NPCs” or “bots,” are

characters within the game world that are controlled by an artificial intelligence (AI) rather than

by a human player. These bots come in two general forms: those that are designed to interact

with a player and those that are placed into the game to add realism and atmosphere but don’t

directly affect a player in any way. The bots that interact with a player fall into two categories:

those that are designed to help a player and those that are designed to hinder a player.

An example of a bot that helps a player is the quest giver in a Role-Playing Game (RPG),

such as The Legend of Zelda: Twilight Princess [13] or World of Warcraft [10]. Quest giving

bots advanced the plotline of a game by instructing the player to complete a task, and then return

to the quest giving bot to receive some sort of reward. Another example of a bot helping a player

is the teammate bot that can be found in many new First Person Shooters (FPSs), such as

Brothers in Arms [11] or Third Person Shooters (TPSs), like Grand Theft Auto [12]. The

teammate bot will assist a player by fighting against an opponent in tandem with the player. In

some games, teammate bots are also designed to respond to orders given by a human player,

further adding to the realism.

The most common example of a bot that is designed to hinder a player is the opponent

3

bot. The opponent bot is the most basic kind of bot and can be found in video games since the

first time an AI was used in place of a second human player. The opponent bot is multifaceted

and can be altered to suit any game genre that requires an opponent. In some games, such as

chess or checkers, there will be only one opponent bot, representing the computer player. In a

game such as Pac-Man [9], there are four opponent bots, each represented by a ghost avatar that

navigated the maze, attempting to kill the human player. In a modern game such as a FPS or

RPG, there are multiple types of opponent bots, each with different configurations, depending on

the game. From these types, a nearly limitless number of different instances of the opponent bot

can be created.

Bots that are created for the purpose of adding atmosphere to a game could be classified

as neutral bots. These bots do not help or hinder a player in any way; they exist only to improve

the realism of a game. Neutral bots are found almost exclusively in RPGs. For example, in the

game World of Warcraft [10], when the player enters a town setting, there are some quest giving

bots, but there are great number of bots that simply move around the town, designed to follow a

set of actions that a nondescript townsperson would follow. If a player attempts to interact with

these bots, the neutral bot will say or do something that a nondescript townsperson would, but

this action will not advance the plot for a player. All modern RPGs contain neutral bots in some

capacity, because a game where all the bots were either quest givers, or opponents, would be

very sparsely populated and thus unrealistic. Some RPGs have attempted to add another level to

the neutral bot by changing the neutral bot/player interaction based on a player’s previous

actions. In the game Fable [14], a player may interact with the neutral bots in a town setting in

either positive or negative ways. When the player interacts with the townspeople negatively

enough times, the townsfolk will flee when the player comes near them. Conversely, if the

4

player interacts positively enough times, the townspeople will cheer whenever the player comes

near them. Fable adds even more realism by allowing the player to interact with a specific

neutral bot in an attempt to turn the neutral bot into a love interest. When this happens, the

neutral bot becomes a quest-giving bot and will then act to advance the story line for the player.

It could be said, however, that since only specific neutral bots in Fable can be turned into the

player’s love interest, these bots are not truly neutral and represent a hybrid of the two classes of

bots. Some non-RPG games have also added neutral parties. In Grand Theft Auto [12], there are

some bots that should be considered truly neutral as they cannot be converted to another type of

bot, but there are also some bots that could be considered hybrid bots. The Sims [4], by far, has

the most advanced neutral bot system. Some of the neutral bots such as those representing the

postman, or various other characters that are not constantly present in the game world, are truly

neutral and cannot be influenced by the player’s actions. All of the other neutral bots are hybrids

and are more complicated than any other hybrid bot. Not only can they be turned into bots that

affect the player positively, these bots can also be turned into bots that affect the player

negatively. A more in-depth analysis of The Sims can be found later in the paper.

 Even though there have been great strides towards including neutral bots in the RPG

genre, rarely will you see bots that are designed to have a neutral opinion of the human player in

FPS games. This is especially true for FPS games that are found in a war setting. The most

common approach is to concentrate the bulk of the AI on creating opponent bots that react to and

attack the player in a realistic fashion. As previously mentioned, there has also been some focus

on adding AI-controlled friendly bots. In modern warfare, especially when it takes place in an

urban setting, it is rarely the case that all the people at the site of a particular battle are aligned

with any of the opposing forces that initiated the battle. Usually in an urban area there will be an

5

innocent bystander contingent that is ambivalent toward any of the oppositional forces fighting

around them. These neutral parties are simply trying to continue their life in as normal a way as

possible considering their surroundings. Developers have, to date, largely ignored this part of

the actual experience. Grand Theft Auto [12] includes a neutral party, but it does not spend

nearly as much time concentrating on the opponent AI as games that omit neutral parties. The

reasons behind the omission of the neutral party are numerous, but the main problem, in my

opinion, is one of resources. Most developers believe that to create an AI that can behave in a

humanlike fashion requires a great deal of computer hardware resources. Developers may

believe that including neutral parties would not be cost effective in the long run and decide to

focus their efforts on making the opponent AI as realistic as possible.

In order to fulfill the true intent of all games that simulate a lifelike situation, some effort

must be made to include a neutral party. However, it must be an effort that is made so that the

advances made in controlling the enemy AI are not counteracted by a lack of resources. Thus,

the problem that this study is trying to solve is: Can a simple simulation, representing a society,

be created in a fashion such that this same simulation could be used in a video game setting?

Furthermore, could this same simulation be created so that it does not have an adverse affect on

the performance of a video game, but so that it improves the overall realism of that game? To

show how this can be done, this study will demonstrate a relatively simple artificial society that

acts in a limited humanlike fashion but doesn’t increase the computational complexity of the

simulation dramatically. In this study, a simulation will be created that contains a small number

of bots that are not designed to do anything except act as they were going through a simple daily

routine. This routine will incorporate simple human actions such as eating and drinking, as well

as some more complex social interactions such as giving/stealing, violence, and mating. This

6

study will also impose a simple norm system that will affect the bots’ behavior based on what the

current norm system settings are. A norm is defined as “a rule that is socially enforced,” [15]

and a norm system is a collection of norms for a society. The definition of a norm can be

simplified in that the word “norm” is short for normal behavior and represents whatever a society

considers to be normal behavior. By using a norm system, the possibility of whether one can

show, simply, how humans would react by being placed in situations that are contrary to their

ideas of how to act in the world, will be investigated. The case of good people being put into a

world where violence is the norm, and what their reactions are, will be of particular interest in

this study. The study should be considered successful if it can be shown that a simple AI can be

constructed that will look somewhat humanlike and can be shown to run in a resource- and time-

efficient way. From this the study can infer that a neutral party can be included into conflict-

simulating video games without reducing their playability or performance. In adding this neutral

party, the hope is to improve the realism of lifelike simulations in all game genres. Chapter II

contains a review of the main works referenced for this paper. Chapter III is a review of the

methodologies that went into setting up the experiment that is referenced in this paper. Chapter

IV contains a summary of the results obtained for the experiment. Chapter V is a summary of

the entire work.

7

CHAPTER II

REVIEW OF LITERATURE

In order to create the simulation for this thesis, it was important to find other similar

studies in the literature to base the simulation on. IPD for Emotional NPC Societies in Games,

by Chaplin and El-Rhalibi [1], centers on the creation of a simulation containing a group of

NPCs or agents that interact with each other and their environment. The agents use simulated

emotional behavior to improve realism. The authors believe that by using emotions in choosing

agent behavior, the user of the simulation will receive a more rewarding experience. The

simulation uses a rule-based system to model the emotions, drives, and agent relationships. A

norm system, managed by an implementation of the Iterated Prisoner’s Dilemma, is used to

determine the interactions between agents. The norm system is very rudimentary and takes

effect only when two agents are interacting with each other. These interactions are characterized

by honest and deceitful behavior. Agents acting in an honest way are considered to be acting in

line with the norm, whereas agents acting deceitfully are considered to be acting contrary to the

norm.

It was also important in the research for this thesis to study other instances of the use of

norms. The Prisoner’s Dilemma refers to a study done in the 1950s in which people were posed a

hypothetical situation and asked to make a decision. Chaplin and El-Rhalibi relied heavily on a

paper titled An Evolutionary Approach to Norms, by Robert Axelrod [2], for their information on

this topic. This study provided a foundation for a new track in the field of game theory. In this

situation two suspects, A and B, are arrested by the police. The police don’t have enough

evidence to convict either suspect with the facts at hand. However, the testimony of one of the

8

suspects against the other would be sufficient to convict the other. The prisoners are separated

and given the same option of whether to stay silent or to betray the other prisoner. They are also

told that if they both stay silent they will both be sentenced to six months in jail, that if one

betrays the other and the other stays silent then the betrayer will be freed while the other will

sentenced to ten years, and that if they both betray each other they both receive five years. The

dilemma posed to each prisoner is what course they should take to receive the smallest prison

sentence, without knowing what decision the other prisoner has made. When applying the

classic Prisoner’s Dilemma to game theory, it becomes a type of game where the player

concentrates on maximizing his or her own payoff. However, this doesn’t work well in video

games because any rational player will choose to betray another player because it maximizes

their gain. The resulting time from betraying is either zero or five years, whereas the resulting

time for not betraying is either six months or ten years. Since the outcome of the other player is

unknown, the obvious choice is to choose whatever results in the least amount of time. In order

to make this idea useful in game theory one can use the Iterated Prisoner’s Dilemma (IPD) [1].

The main difference is that in the original, once the prisoner made their choice, the game ended.

In the IPD, the game continues after the choice has been made, and there is an option for the

offending player to be punished for betraying. This alters the game in that the gain for betraying

is not as high because of the possibility of punishment, thus making staying silent a more

palatable option. IPD can be expanded into a larger sense by replacing betrayal with one or more

different rules. This can be interpreted as a set of norms, in that players can be punished for not

following the norms. Thus players will be inclined to maximize their own gain by acting in line

with whatever the norms are set to be.

9

Chaplin and El-Rhalibi define their emotional model of behavior as actions consisting of

physiological reactions, cognitive states, and expressive behaviors. They have devised this

model using multiple resources from the field of behavioral psychology. The cycle of emotional

response in their system starts with an external input being applied to an agent. The agent then

has an internal cognitive reaction to the stimulus, and performs a corresponding external action.

The set of emotions consists of fear, anger, sadness, and happiness.

Beyond the norms and the emotional model of behavior, the authors have also included a

set of drives. These drives are social need, energy need, need for rest, and need for heat. Their

agents have relationships with other agents, which can be either bad or good relationships.

These relationships compose the social drive. The other drives are physical drives and are

representative of variables corresponding to the three remaining drives.

Chaplin and El-Rhalibi use the Iterated Prisoner’s Dilemma to help shape the emotional

response of their agents. These agents use a matrix of drives and emotions to generate their

responses. Their norm system is based on IPD. If an agent wishes to break a norm and do

something that is not accepted, it is influenced by two factors that are a part of all agents. First,

they have an inherent boldness value that determines whether the agent is bold enough to

perform an action despite the implied consequences. There is also a vengefulness value that

determines how intent other agents are on punishing an offending agent that is used in the action

calculation. Both of these values are affected by the results of breaking norms. Succeeding in

breaking a norm without being punished increases boldness. Being punished for breaking a

norm will decrease boldness and increase vengefulness. A decision by an agent not to punish

another agent acting contrary to the norm convention leads to the creation of meta-norms. With

these meta-norms, there is a chance that an agent will be punished for not punishing another

10

agent. This creates an extra level of complexity in their norm system. The authors also

introduce a concept of noise to the decision-making process. The noise they introduce basically

effects a small enough change to random individuals that is just enough to change their decision

making process from one conclusion to another. The noise is based on an individual’s

knowledge of the whole system and the past actions of the other agents in the simulation. If one

individual recognizes that another has a high level of boldness, then this knowledge will

sometimes be applied to the first agent’s interactions with the other. Roughly this means that if

one agent shows a proclivity toward behavior that is contrary to the norm system, then other

agents may be inclined to keep an eye on the offending agent, in anticipation of more anti-

normal behavior.

 Chaplin and El-Rhalibi’s paper was the central motivation for this thesis. It is evident

that work has been done using norms for simulations and gaming but that these norms were

always being explored to a depth that made them unsuitable for some applications. The concept

of “drives” is a particularly important aspect of this paper. Using drives makes agents more

humanlike in that their actions will be derived from their surroundings, rather than following

some sort of fixed behavior; agents will make decisions based on whatever drive is activated

because of some need. Combining drives with norms makes the simulation as a whole more like

a functioning humanlike society. This is because some drives will cause agents to act in ways

that may or may not be contrary to the norm system. When this happens, their behavior will be

doubly affected: once by their own needs and again by the norm system determining what

actions they can take to fulfill their needs.

 In order to create a realistic simulation, it was important to find a way to automate the

navigation of the agents in the simulation. In this light, the information contained in A-Star

11

Pathfinding for Beginners [3] was integral in the design of the simulation. This is a very

complete webpage detailing exactly how the A-Star algorithm works. The A-Star algorithm

[3,17] is often abbreviated “A*.” It is a best-first, tree-searching algorithm similar to Dijkstra’s

algorithm and is designed to find a path of least cost between a starting node and any one goal

node. It calculates a path by evaluating nodes using a distance function. The distance function,

f(x), is given as f(x) = g(x)+h(x), where g(x) is the distance already traveled and h(x) is a

heuristic evaluation of the distance left to travel. The process starts at any given node. The node

is “expanded” by taking all of the immediate descendents of the given node and adding them to a

priority queue called the “open list.” Then the algorithm calculates the f(x) value for every node

in the open list and chooses the node that has the lowest value. It places this node in a list called

the “closed list,” expands the new node, and adds its descendants to the open list, and the process

repeats. During the expansion process, nodes that are already on the closed list or nodes that

have been defined as impassible are ignored, and the algorithm keeps track of the parent node for

any node that has been added to the open list. The algorithm ends when there are no nodes left

in the open list, or when a goal node has been added to the closed list. The path can now be

found working backwards from the goal node and using the recorded parent of each node until

the initial node is reached. The algorithm is very straightforward, and it works very well in

game-like situations provided some key conditions are met. Many FPS games use A*

pathfinding for opponent bots when they attempt to find the shortest path to the player, or the

shortest path to a line of fire to attack the player, or pretty much whenever the bot needs to

traverse the game-playing area from one point to another.

The heuristic, represented in the equation by h(x), is the most important part of the

equation, because if it doesn’t correctly estimate the distance left to a goal node, the A-Star

12

algorithm will not be able to find the shortest path to a goal node. A-Star works best when

movement costs are discrete rather than continuous, such as with a grid. In this case, one can

treat each node as a square on the grid, and when that node is expanded, nodes that border that

node are added to the open list. Using this scenario, the importance of the heuristic in the

algorithm can be shown. The heuristic is basically just a question of movement in this case. A

very simple heuristic is known as the Manhattan Distance heuristic. When using this heuristic,

the path can only be found using the nodes directly north and south, and directly to the east and

west of the current node. Diagonal nodes are not counted in this heuristic, which was probably

named for the way people must traverse through the large blocks of buildings in New York City.

Despite the fact that this heuristic seems very simple and good for find the shortest path, it is not.

If the agent can only move north, south, east, and west, then The Manhattan Distance heuristic is

“inadmissible.” However, in a more realistic situation where the agent can also move

diagonally, the Manhattan Distance heuristic becomes what is known as an “admissible”

heuristic. The term “inadmissible” is used to describe a heuristic that overestimates the

remaining distance to the goal node. If the heuristic is inadmissible, then it means that A-Star

might not always find the shortest path
1
. If including the nodes to the top-left, top-right, bottom-

left, and bottom-right of the current node in the Manhattan Distance heuristic is considered, then

this new heuristic, called the Manhattan Distance plus Diagonals heuristic, is now admissible.

The reasoning behind this can be seen by analyzing the grid representation. A distance that is

calculated using the diagonals would be similar to calculating a distance “as the crow flies,”

which is obviously going to be better than calculating distance in the block-wise fashion initially

discussed. In the case where movement costs are fixed between the grid cells and the agent has

the capability of moving north, south, east, west, and diagonally, then the Manhattan Distance

1
 More data on the definition of admissibility can be found in any Artificial Intelligence textbook.

13

plus Diagonals heuristic assures that the shortest path between two nodes will be found by the A-

Star algorithm.

This page also provides some insight for making A-Star work efficiently. Because A-

Star can require some serious time and space requirements, especially with large game boards,

many people have made improvements in the actual implementation of A-Star in practice. The

most important improvement that was used in this work was the use of binary heaps to store the

open list. Because of the way a binary heap is constructed, the lowest f value node in the open

list can be made to stay at the top of the heap, thus making costly searches for this node

unnecessary. The author suggests that in practice, using a binary heap to store the open list will

result in a two- or three-fold speed increase, and this increase can be even greater for longer

paths.

 The Sims: Under the Hood [4] is a presentation slideshow from a lecture given at

Northwestern University by Ken Forbus, with help from Maxis Software founder, Will Wright.

This presentation is concisely describes of how the game The Sims works.

Everything in The Sims is an object, whether it is things like desks and lamps, non-player

characters (NPCs), or player characters. All the objects have sound effects, graphics, and

animations that correspond to them. They also have routines that are associated with actions

performed on or by the object. In addition to the previous information, the character objects also

contain the traits that make up the character. These traits include needs, personality, skills, and

relationships. The needs are broken into two categories, physical and mental. The physical

needs are hunger, comfort, hygiene, and bladder. The mental needs are energy, fun, social, and

room. These needs combine to form a character’s happiness level. If a character’s needs are not

met, then his or her happiness level will be lower. The levels of happiness simulate emotion in a

14

character.

The characters also have personalities. These personalities define what kind of person

the character is in general terms. They are arranged in five pairs, with each pair consisting of

two opposite types of personalities. They are sloppy/neat, shy/outgoing, serious/playful,

lazy/active, and mean/nice. These personality traits form a kind of dichotomy in the system,

such that in an ideal situation, both sides of the dichotomy would be equally represented and thus

create a balance between the two. Each character contains one type from of each of these pairs

of traits. So a character could be sloppy, shy, serious, lazy, and mean, but not sloppy, neat, shy,

playful, and nice. These personality traits are applied to what the author defines as a Motive

Engine, which affects what needs are more important than others. For instance, a character who

is neat will have a higher need for the physical need hygiene. Each character also has skills that

are used for the “Employment” area of the game. In addition to these things, a character has

relationships with other characters in the game. These relationships determine what kinds of

interactions between characters are available. They also determine how characters’ emotions

change, based on interactions that they perform or are party to.

 In The Sims the goal of Non-Player Characters (NPCs) is to maintain a high level of

happiness. All of the actions performed by an NPC are designed to fulfill needs, and thus raise

their level of happiness. The types of interactions are broken down into two types: social

interactions and object interactions. The social interactions are especially important, because

they add a great deal to the realism of the game. There are many types of social interactions, and

the actions that can be performed between two characters are determined by the relationship

value that the characters share. These social interactions can either fail or succeed when

performed. The chance of success is based upon a calculation made concerning the current

15

needs and relationship values of the two characters involved. A successful social interaction will

increase the corresponding relationship values and the social need values for each character,

whereas an unsuccessful one will lower them. The object interactions are defined by three

classifications: normal, pushed, and functional. The normal interactions make up 90% of the

interactions and involve actions that don’t directly complete any goal in the game world, and

aren’t directly driven by any need. An example of this would be walking from one part of the

game world to another. The functional interactions, however, are the exact opposite. These are

goal-oriented actions driven by a need. The functional interactions include things like cleaning,

repairing, and cooking. The third type of interactions, pushed interactions, are interactions that

are given a higher priority than others. Typically these interactions correspond to emergencies in

the game, such as the need to flee from, or put out, a fire. Another example is the need to arrive

at work on time, part of the game’s “Employment” phase. The pushed interactions take

precedence over a character’s other interactions and prevent him or her from performing other

interactions, unless directed to do so by the user.

 The rest of the presentation talks about invisible objects, or objects that aren’t directly

defined in the game, such as plumbing and phone lines. More importantly, the presentation

briefly shows how the Sims uses the A-Star algorithm for pathfinding. The pathfinding is broken

into two parts, room-to-room and within-room. The room-to-room pathfinding still uses A-Star,

but the goal states are different than with the within-room model. The room-to-room method is

more concerned about efficiently navigating through doorways and corridors, whereas the

within-room method is more concerned with reaching the actual goal.

 The simulation designed for the paper borrows a great deal from The Sims. The use of a

dichotomy of personality traits and the use of social interactions are the most obvious examples

16

of this. The simulation also borrows the use of A* pathfinding from The Sims, and the concept

of using an object as a source of food and water, rather than having resources scattered over the

terrain.

17

CHAPTER III

DESIGN AND METHODOLOGY

Overview

The simulation was designed to test whether or not a group of individuals could perform

within a certain set of parameters defined by the norm structure given to the group. The norm

structure is defined as the group of norms that are applied to the simulation. It is designed to be

similar to a First Person Shooter (FPS) style video game, in that it contains a game map that bots

traverse. The video game model is greatly simplified, however, so that the focus can be directed

toward the AI and not the video game itself. Simplifying the video game model was part of a

larger effort designed to make sure that the simulation was small and lightweight and that the

computations it was performing were relatively simple. Much of the simulation was designed

similarly to the simulation in the paper by Chaplin, but the Iterated Prisoner’s Dilemma concept

was omitted. While the Prisoner’s Dilemma is very accurate in depicting the development and

enforcement of human-like norm systems, to depict it accurately requires resource allocation that

is counter-productive to this study. Therefore it was decided that a group could be maintained

just by having a structure of norms for them to follow, and this method was included in the

simulation. By using this method, as opposed to the Prisoner’s Dilemma method, the entities do

not perform all actions based on a “least cost to them” style of reasoning. Instead, they only

adhere to that way of thinking when they need something. If they have a need for food or water,

then they behave like an animal and attempt to obtain the desired resource, by any means

necessary. If they have no resource needs, then they behave like a human and attempt to interact

with the units that share their environment. In this they explore the dichotomy of norms that has

18

been imposed on them. To attain a dichotomy, and thus realism, equal amounts of good actions

and bad actions are possible in the simulation. The theory was to design a system where neither

good nor bad would dominate the world without direct human intervention. The main reasoning

behind these design choices is that the experiment is attempting to show that a simple system

could work, and being that it was lightweight in terms of size and computational overhead, it

could easily be ported into a video game with complex graphics and AI without any serious

reduction in playability.

The simulation contains a square board that represents the world that the game is taking

place in. The board is divided up into grid squares, or nodes, which can contain a game entity or

nothing. In this world two types of entities reside: the AI controlled units and the resource

boxes. Both of these will be explained in depth shortly. The simulation is turn based, and the

speed can be controlled by the user, up to the point where the simulation is running as fast as the

computer it is on can handle. Running in the background, and not represented by an avatar of any

kind, is a control mechanism that monitors and controls everything that happens in the

simulation. This control mechanism is by far the most complex part of the simulation.

Control Mechanism

The most important part of the simulation is the control mechanism. It is by far the most

complex part of the whole program. The control mechanism controls actions that take place in

the simulation world. The control mechanism consists of two multidimensional arrays keeping

track of unit and resource box positions, a pathfinding function, and the norm system that was

developed to guide the individual unit’s behavior. The mechanism provides information that is

19

used by the units in their decision-making process. In addition, the control mechanism updates

the game world based on the actions of the units during a given turn.

The pathfinding system uses the A-Star algorithm that employs the Manhattan Distance

method with Diagonals to form paths. The A-Star algorithm, as previously discussed, is a search

algorithm that can be used to find the shortest distance between two points. The simulation uses

location arrays, and any unoccupied node, or grid position, has a traversing cost of one. If that

node contains either a unit or part of a resource box, then it was given a cost of 1000. This

prevents paths from traveling into occupied nodes. The simulation uses the Manhattan Distance

heuristic with Diagonals, because it was the best heuristic that was admissible for the landscape

of the simulation. It is admissible because it never overestimates the remaining distance to the

goal node, and thus will always find the shortest path to a goal node if one exists.

Resource Boxes

The resource boxes are an important part of the simulation, and they add to the realism of

the system. There are two resource boxes in every instance of the simulation. One contains

food, and the other contains water. The user may set the size, in terms of area, of the boxes, and

the initial starting amount of each resource. The boxes are placed randomly around the

simulation board during initialization. When a unit desires a resource, the first place they look is

to a resource box. The units can obtain a resource by moving to any of the grid squares that

border the resource box. The resource boxes are not an infinite source of a resource and will run

out after a certain amount of time. To counter this, the user can have the resource box refilled

with a set number of resource units after a certain number of turns have elapsed with the box

being empty. This is to simulate times of plenty and times of famine in the simulation. By

20

setting the simulation to replenish the resource boxes infrequently, the user can simulate a time

of famine to record the unit actions that will occur because of it.

Units

The AI controlled units are also relatively complex and are equipped to make their own

decisions. Each unit contains several pieces of information that help it make decisions. These

include the unit’s age, temperament, hunger, thirst, health, and an array containing data on the

unit’s relationship with other units. The unit also contains some variables to keep track of its

position, its current velocity, and how much food or water it is carrying. Each unit can carry

with them up to three units of each resource. There are also variables to store what action the

unit is currently attempting to perform and what target it is currently trying to interact with.

Each unit can perform a set of actions. These include idling, eating, drinking, obtaining

food, obtaining water, moving randomly, and interacting with other units. When obtaining food

or water, the units can get the resource from a resource box, request the resource from another

unit, or steal the resource from another unit. When interacting with other units the actions are

talking, hugging, slapping, kissing, punching, mating, and killing.

The age variable determines how old the unit is, in terms of simulation turns, and is used

when calculating when the unit dies. After the unit reaches a certain age, it is considered dead.

The thirst and hunger variables determine what, if any, needs the unit has for water or

food at the current time. These variables start at zero and are incremented by one every turn.

Not having access to food or water for long periods of time will affect the unit’s health. Every

turn the unit’s health and thirst variables are incremented by one.

21

If the unit’s hunger value rises above 99, its health value is decremented by one every

turn that the hunger value is over 99. The thirst value works similarly, except that the health

value is decremented by two every turn. This, theoretically, is more realistic since humans can

last longer without food than they can without water [8]. The health variable determines the

amount of health the unit has. This variable ranges from zero to 100, and if the unit’s health

reaches zero, then the unit dies. Health can be affected by a variety of factors. As previously

mentioned, not eating or drinking for long periods of time will reduce the unit’s health. Being

attacked, either punched or slapped, by another unit, will cause the health to decrease by either

ten or twenty, respectively. The health variable can be increased by being hugged or kissed by

another unit, which will increase the health value by either ten or twenty, respectively. In early

designs of the simulation, the health value was incremented every turn to simulate healing, but

this was omitted from the final design because it wasn’t easy to accurately, and quickly, predict

the many variables that compose the human body’s ability to regenerate itself. This also keeps

the dichotomy of good and evil in the simulation intact without having to design a way that the

entities would suddenly start having their health variable decreased every turn.

The temperament variable determines, along with the norm system and the unit’s

relationships with other units, what actions a unit might take during a given turn. The

relationship array tracks how the unit feels about other units with values from -50 to 50. Doing

bad things to a unit will decrease that unit’s relationship status with the offending unit.

Conversely, doing good things will increase the relationship status.

22

Norm System

The norm system developed for the simulation was created with simplicity in mind.

Rather than having rules for every action, actions were grouped into two classes, violence and

theft. Each norm value can range between -50 and 50. They default to an initial setting of zero

but can be set by the user at program startup. Actions performed during a turn in the simulation

will be applied to the current norm values, and then those updated values will be used to

determine the actions for the next turn. For every slap, punch, or killing that occurs, the violence

norm will decrement by increasing values. For every hug, kiss, and successful mating that

occurs, the violence norm will increment by increasing values. For every theft, the theft norm

will decrement, and conversely for every donation it will increment.

When deciding on what to do during a current turn when the unit has nothing to do, the

unit chooses among six values. If the unit’s hunger value is above 49 and the thirst value isn’t,

then the unit will attempt to eat if it has food or obtain food if it doesn’t. If the thirst value is

above 49 and the hunger value isn’t, then the unit will attempt to drink if it has water or obtain

water if it doesn’t. If both values are above 49, then the unit will attempt to eat or drink if it has

either resource. If not it will try to obtain the resource corresponding to whatever is higher,

hunger or thirst. If the unit has resource needs, but that resource is absent in the game world, the

unit reverts to the idle state. If the unit has no current resource needs in a turn, then it chooses

randomly between idling, eating, drinking, obtaining, moving randomly, or interacting with

another unit. The application of the norm system can be seen as applying fuzzy logic to the

system. Rather than just making decisions based on one extreme or another, the norm system

provides a step-like appearance to the decision-making system.

23

Decision Making Process

The decision-making process is partly handled by the simulation control mechanism. As

mentioned previously, the unit itself makes a decision of what kind of action to perform based on

its current resource needs. If the unit requests a resource-obtaining action, the control

mechanism goes through a short process to find all the information needed and return it to the

unit. When asked to help the unit find a resource, the control mechanism first locates the closest

source of food. If the requested resource is in the resource box, then the control mechanism

looks there first. The mechanism first finds an empty grid space adjacent to the resource box. It

takes those data and passes that to the pathfinding function. The pathfinding function finds the

shortest path to the given point and returns the first step in the path. This first step can be

applied as a discrete velocity, with values of -1, 0, and 1, which can be applied in terms of an

X/Y coordinate system. The control mechanism then passes this velocity information back to the

unit. When the control mechanism updates the positions of all the units in the simulation, it

applies these values to the unit’s current location to determine their new location. In order to

prevent collisions between units, this process of finding the closest empty spot, finding a path,

and returning the data to the unit is performed every turn until the unit reaches its destination and

obtains the resource or the resource box becomes empty.

In the case that the requested resource is unavailable in the corresponding resource box,

the control mechanism will find the closest unit that is carrying the requested resource and

perform the same calculation as if the unit was a resource box. The major difference in this

action involves the theft norm and whether the unit requests the resource or steals it from the

other. In this case the control mechanism will return the location of the closest unit that

possesses the desired resource. Using the norm system, the unit will then determine how to

24

approach the target unit when attempting to obtain the resource. If the sum of the unit’s

temperament, the current value of the theft norm, and the unit’s opinion of the target unit is

greater than or equal to zero, then the unit will choose to request the resource from the target. If

the same sum is less than zero, then the unit will attempt to steal the resource from the target.

The process now is identical to the process of getting a resource from the resource box except at

the final moment. When the unit reaches the target, the unit will attempt to steal or request food

from the target. If the unit has requested the resource, then the theft norm will be incremented by

one, and both the unit and the target will have their opinions of each other incremented by three.

If the unit is stealing from the target, then the theft norm will be decremented by one, and both

the unit and the target will have their opinions of each other decremented by seven. In both

cases the unit will gain an instance of the resource, and the target will lose an instance of the

resource.

If the unit chooses to move randomly around the simulation world, the control

mechanism chooses a random point in the world and sets that as the unit’s target. The pathfinder

then finds the shortest path, and the unit is given a velocity. The unit will continue doing this

until it reaches the target point.

If the unit chooses to interact with another unit, the procedure is similar to that of

obtaining a resource from another unit. The first step is to determine what action should be

performed. The control mechanism chooses a random target unit and passes it to the requesting

unit. If the sum of the unit’s temperament, the current value of the violence norm, and the unit’s

opinion of the target is greater than 25 but less than or equal to 45, then the unit will hug the

target. When the unit reaches the target, the violence norm value will be incremented by one.

The unit and the target will also have their opinions of each other incremented by five, and the

25

target will have its health incremented by ten. If the sum of the unit’s temperament, the current

value of the violence norm, and the unit’s opinion of the target is greater than 45, then the unit

will kiss the target. When the unit reaches the target, the violence norm value will be

incremented by three. The unit and target will also have their opinions of each other

incremented by ten, and the target will have its health incremented by 20. If the sum of the

unit’s temperament, the current value of the violence norm, and the unit’s opinion of the target is

less than -25 but greater than or equal to -45, then the unit will slap the target. When the unit

reaches the target, the violence norm value will be decremented by one. The unit and target will

also have their opinions of each other decremented by five, and the target will have its health

decremented by ten. If the sum of the unit’s temperament, the current value of the violence

norm, and the unit’s opinion of the target is less than -45, but greater than or equal to -65, then

the unit will punch the target. When the unit reaches the target, the violence norm value will be

decremented by three. The unit and target will also have their opinions of each other

decremented by ten, and the target will have its health decremented by 20. If the sum of the

unit’s temperament, the current value of the violence norm, and the unit’s opinion of the target is

less than -65, then the unit will kill the target. When the unit reaches the target, the violence

norm will be decremented by five and the target unit will be considered dead.

If the unit’s opinion of the target is greater than 15, then the unit will attempt to mate

with the target. When the unit reaches the target, the control mechanism will determine whether

or not mating is feasible. If there are less than 20 of each kind of resource in the resource boxes,

or if other units surround the target unit, then the mating procedure will fail. This part of the

design represents an individual’s choice not to procreate when the population is overcrowded or

when there is a resource shortage. If the mating procedure succeeds based on these

26

requirements, then a fully functional unit is added to the population. Including a childhood

phase in a unit’s lifespan was deemed inconsequential, primarily because this would add

unnecessary complexity to the simulation. The new unit will be created in a free space next to

the target unit. It will have a temperament value equal to the integer value of the average of its

parent units. The new unit will also have an initial set of opinions. The new unit will have a

value of 50 as its opinion value for each of its parent units. It will also have the combined

opinions of both parents. In the case where the two parents have differing opinions of a unit, the

integer average will be used. Additionally, each parent unit will have its opinion of the other set

to 50, and each parent’s opinion of their offspring will also be 50. To provide a way to

counteract the killing action, the mating action will increment the violence norm by five. Early

versions of the simulation were designed such that mating had no effect on the violence norm,

and it appeared that this lack of balance would cause the violence norm to tend toward the lower

end of the range. Including mating in the norm calculation is justified, by reasoning that births

will have a mediating effect on a society and thus lower the society’s proclivity toward violence.

This can be seen in among primates, particularly baboons, where fighting males will often grab

an infant child in order to stop a conflict in progress [16]. If none of these conditions are met,

then the unit will attempt to simply talk to the target. This action has no effect on the norm

system and merely stands to provide a way for units to modify their opinions of each other. If

the difference between the temperament of the unit and its target is less than 50, then the talking

act is seen as successful. If the talking act is successful, then each unit’s opinion of each other

will be incremented by one. If the talking act is unsuccessful, then each unit’s opinion of each

other will be decremented by one. This is justified by reasoning that two people with radical

27

differences in their personal predilection towards good or evil will invariably not be compatible,

even in a simple social sense.

Formal Definitions

Definition 1: (Unit). For all units, UX at time t, let TX be the unit’s temperament such that

�50 � �� � 50. Let 	
� be the unit’s age at time t, such that 0 � 	
�. Let �
� be the unit’s

current health at time t where 0 � �
� � 99. Let �
� be the unit’s desire for food (hunger) at

time t where 0 � �
�, �
� be the unit’s desire for water (thirst) at time t ����� 0 � �
� .

Let �
� be the amount of food the unit is carrying at time t where 0 � �
� � 3, and �
� be the

amount of water the unit is carrying at time t where 0 � �
� � 3 .

Definition 2: (Opinions). For all units, UX and UY at time t, let �
�,�
 be the opinion that UX has

for UY at time t, such that �50 � �
�,� � 50, unless X=Y, in which case �
�,� � 50.

Definition 3: (Norms). Let St be the stealing norm for the simulation at time t where �50 �
 �
 � 50 , and Vt be the violence norm at time t where �50 � �
 � 50.

Definition 4: (Resource Containers). Let �
�be the amount of food in the food resource box at

time t where 0 � �
� , and let �
�be amount of water in the water resource box at time t where

0 � �
� .

Definition 5: (Actions). For all units, UX at time t, Let �
�be the unit’s basic action at turn t

such that �
� !"#$�, %&'� ()*#&+$,, -)., �/*0, �1.)/* �&&#, �1.)/* �).��, "*.��)2.3.

28

Let (
�be the unit’s resource action at turn t, such that if

�
� !�1.)/* �&&#, �1.)/* �).��3 then

(
� !4�. �&&#, 4�. �).��, ��5 �&&#, ��5 �).��, �.�)$ �&&#, �.�)$ �).��3 and

(
� � 6 &.����/7�. Let "
�be the unit’s inter-unit interaction at time t such that if �
� �
"*.��)2., then "
� !�)$0, �85, 9/77, %).�, �$):, ;8*2�, 9/$$3 and "
� � < otherwise.

Definition 6: (Unit age).

	
=>� � 	
� ? 1

Definition 7: (Hunger).

�
=>� � A0 B /� .�� 8*/. �).7 #8�/*5 .8�* . &� /� . � �1 �
� ? 1 B &.����/7� C

Definition 8: (Thirst).

�
=>� � A0 B /� .�� 8*/. #�/*07 #8�/*5 .8�* . &� /� . � �1 �
� ? 1 B &.����/7� C

Definition 9: (Health).

29

�
=>� �

DE
EEE
EF
EEE
EE
G 0 B /� . � �1�$7� �
� � 1 B /� �
� H 99)*# �
� I 99�$7� �
� � 2 B /� �
� I 99)*# �
� H 99�$7� �
� � 3 B /� �
� H 99)*# �
� H 99�$7� �
� � 10 B /� .�� 8*/. �)7 7$)::�# #8�/*5 .8�* .�$7� �
� ? 10 B /� .�� 8*/. �)7 �855�# #8�/*5 .8�* .�$7� �
� � 20 B /� .�� 8*/. �)7 :8*2��# #8�/*5 .8�* .�$7� �
� ? 20 B /� .�� 8*/. �)7 0/77�# #8�/*5 .8�* .�$7� �
� � 30 B /� .�� 8*/. �)7 7$)::�#)*# 18*2� #8�/*5 .8�* .�$7� �
� ? 30 B /� .�� 8*/. �)7 �855�#)*# 0/77�# #8�/*5 .8�* �$7� �
� B &.����/7� KE

EEE
EL
EEE
EE
M

Definition 10: (Basic Action Determination).

�
� �

DE
EE
F
EE
EG -). B /� �
� H 0)*# �
� H 49)*# �
� � 49�$7� -). B /� �
� H 0)*# �
� � 0)*# �
� H 49)*# �
� H 49�$7� �/*0 B /� �
� H 0)*# �
� H 49)*# �
� � 49�$7� �/*0 B /� �
� � 0)*# �
� H 0)*# �
� H 49)*# �
� H 49�$7� �1.)/* �&&# B /� �
� � 0)*# �
� H 49)*# �
� � 49�$7� �1.)/* �&&# B /� �
� � 0)*# �
� H 49)*# �
� H 49)*# �
� H �
��$7� �1.)/* �).�� B /� �
� � 0)*# �
� H 49)*# �
� � 49�$7� �1.)/* �).�� B /� �
� � 0)*# �
� H 49)*# �
� H 49)*# �
� H �
��$7� ()*#&+ 	2./&* B &.����/7� KE

EE
L
EE
EM

Definition 11: (Food Resource Interaction). If �
� � 0 then it becomes possible that O a UY

that has been targeted by UX for a resource action and UY possesses food. Then

(
� � P 4�. �&&# B /� �
� � �1.)/* �&&#)*# �
� H 0��5 �&&# B /� �
� � �1.)/* �&&#)*# �
� � 0)*# �� ? �
�,� ? �
 Q 0�.�)$ �&&# B /� �
� � �1.)/* �&&#)*# �
� � 0)*# �� ? �
�,� ? �
 I 0R

Definition 11a: (Get Food). Thus if (
� � 4�. �&&#, then the following will also be true.

�
=>� � �
� ? 1

30

And

�
=>� � �
� � 1

Definition 11b: (Beg Food). If (
� � ��5 �&&# then,

�
=>� � �
� ? 1

And

�
=>� � �
� � 1

And

�
=>�,� � �
�,� ? 3

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� ? 3

The stealing norm will also be affected:

�
=> � �
 ? 1

Definition 11c: (Steal Food). If (
� � �.�)$ �&&# then,

�
=>� � �
� ? 1

And

�
=>� � �
� � 1

And

�
=>�,� � �
�,� � 7

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� � 7

31

The stealing norm will also be affected:

�
=> � �
 � 1

Definition 12: (Water Resource Interaction). If �
� � 0 then it becomes possible that O a UY

that has been targeted by UX for a resource action and UY possesses water. Then

(
� � P 4�. �).�� B /� �
� � �1.)/* �).��)*# �
� H 0��5 �).�� B /� �
� � �1.)/* �).��)*# �
� � 0)*# �� ? �
�,� ? �
 Q 0�.�)$ �).�� B /� �
� � �1.)/* �).��)*# �
� � 0)*# �� ? �
�,� ? �
 I 0R

Definition 12a: (Get Water). Thus if (
� � 4�. �).��, then the following will also be true.

�
=>� � �
� ? 1

And

�
=>� � �
� � 1

Definition 12b: (Beg Water). If (
� � ��5 �).�� then,

�
=>� � �
� ? 1

And

�
=>� � �
� � 1

And

�
=>�,� � �
�,� ? 3

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� ? 3

The stealing norm will also be affected:

32

�
=> � �
 ? 1

Definition 12c: (Steal Water). If (
� � �.�)$ �).�� then,

�
=>� � �
� ? 1

And

�
=>� � �
� � 1

And

�
=>�,� � �
�,� � 7

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� � 7

The stealing norm will also be affected:

�
=> � �
 � 1

Definition 13: (Inter-unit Interaction Decision). �
� � "*.��)2., and UY is the current

interaction target of UX. Then

 "
� �
DEE
EF
EEE
G �85 B /� �� ? �
�,� ? �
 H 25)*# �� ? �
�,� ? �
 � 45�$): B /� �� ? �
�,� ? �
 I �25)*# �� ? �
�,� ? �
 Q �459/77 B /� �� ? �
�,� ? �
 H 45 ;8*2� B /� �� ? �
�,� ? �
 I �45)*# �� ? �
�,� ? �
 Q �65%).� B /� �
�,� H 159/$$ B /��� ? �
�,� ? �
 I �65 �)$0 B &.����/7� KEE

EL
EEE
M

Definition 13a: (Talking Interaction).

33

�
=>�,� � U�
�,� ? 1 B /� |�� � ��| I 50�
�,� � 1 B &.����/7� W

Similarly, �
=>�,�
 will be affected:

�
=>�,� � U�
�,� ? 1 B /� |�� � ��| I 50�
�,� � 1 B &.����/7� W

Definition 13b: (Hug Interaction). If "
� � �85, then

�
=>�,� � �
�,� ? 5

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� ? 5

The health of UY will be affected:

�
=>� � �
� ? 10
The violence norm will also be affected:

�
=> � �
 ? 1

Definition 13c: (Slap Interaction). If "
� � �$):, then

�
=>�,� � �
�,� � 5

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� � 5

The health of UY will be affected:

�
=>� � �
� � 10
The violence norm will also be affected:

�
=> � �
 � 1

34

Definition 13d: (Kiss Interaction). If "
� � 9/77, then

�
=>�,� � �
�,� ? 10

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� ? 10

The health of UY will be affected:

�
=>� � �
� ? 20
The violence norm will also be affected:

�
=> � �
 ? 3

Definition 13e: (Punch Interaction). If "
� � ;8*2 � , then
�
=>�,� � �
�,� � 10

Similarly, �
=>�,�
 will be affected:

�
=>�,� � �
�,� � 10

The health of UY will be affected:

�
=>� � �
� � 20
The violence norm will also be affected:

�
=> � �
 � 3

Definition 13f: (Mating Interaction). If "
� � %).�, and �
� Q 20, �
� Q 20,)*# UY is not

surrounded by other units. Then

�
=> � �
 ? 5

35

Furthermore, a new unit, UZ, will be created next to unit UY. Let �
Xbe the set of all opinions

belonging to UZ. Let TZ be the temperament of UZ. Thus

�
X � �
� Y �
�

And

�X � �� ? ��2

And

�
=>X,� � 50

And

�
=>X,� � 50

And

�
=>�,� � 50

And

�
=>�,X � 50

And

�
=>�,� � 50

And

�
=>�,X � 50

Definition 13g: (Kill Interaction). If "
� � 9/$$, then

;
=> � ;
 � 1

And UY will be considered dead:

Z� � 6

36

Furthermore the violence norm will be decremented:

�
=> � �
 � 5

Design Summary

Overall the concept was to create a representation of a very simple human society or, at

the very least, a representation of the society of organized primates. To fulfill this goal, a

simulation was created to mimic society where the most basic of human needs, food and water,

are represented. It could be said that human interaction is a basic human need, but the inclusion

of the norm system, as well as the system of entity interaction, more than adequately represent

this need. Despite the fact that the simulation did not quantify the need for interaction, as was

done with hunger and thirst, the belief is that this representation is still valid. In this simulation,

the units seek interaction only when their resource needs are met, and when they do seek

interaction, they do it rather randomly. However, in the most basic sense, this is how humans

behave in the real world. If the sociological complexity is removed from the equation, it can be

theorized that humans are not inclined to search for interaction when they are starving or dying

of thirst. Only when these baser needs are fulfilled do humans seek interaction, and that is only

if something else doesn’t pique our interest first. A simulation has been created with actions that

are representative of basic human interaction, and such that life and death are an integral part.

Methodology

When running the simulation, the user has two options. The user can choose either a

graphical mode or a faster mode that has no graphical output. The user’s input can be conferred

via either the graphical interface or the command line. Using the graphical interface to input the

37

initial values doesn’t limit the user to using the graphical mode, nor does using the command line

for input restrict the user from using that mode. The simulation also has the option of outputting

the final action log from a simulation run to a text file. The user provides several variables that

determine the initial starting configuration of the simulation. These variables include a grid size,

a starting unit count, a maximum unit count, a starting amount for food in the food resource box,

a starting amount for water in the water resource box, a median temperament for the units, an

initial value for the theft norm, an initial value for the violence norm, and a maximum number of

turns for the simulation. If the user chooses to run the simulation in graphical mode, then they

will be able to see the location of each unit during every turn. These units will be color coded by

temperament. Units with a temperament value less than -25 will be red, units with a

temperament value above 25 will be green, and all other units will be yellow. The graphical

interface also shows what actions have been performed during the current turn, what the current

status of the resource boxes and norm system values are, the current turn number, and the current

number of units. The user can control, via the graphical interface, the speed of the simulation

and the amount of resources in the resource boxes.

This experiment was designed to test varying levels of average temperament, violence

norm, and theft norm for a set period of time. The simulation was set to start with 5 units, have a

maximum unit count of 15, have 1000 of each food and water in the resource boxes, have a 25-

turn wait for refilling an empty resource box, and have a 30,000 turn limit. The primary tests

performed focused on the average temperament setting. The values used for this setting were -50,

-25, 0, 25, and 50 for the average temperament, and zero for the theft and violence norms. These

were intended to act as a baseline for the other tests that were performed and as a way to limit the

number of tests that needed to be performed in the other areas. By using these as a baseline, data

38

can be extrapolated from these, when the data from tests involving the norm system settings were

analyzed. Further tests were performed on a smaller basis and involved setting the violence

norm to -50, -25, 0, 25, and 50 with the average temperament values detailed above for each of

the norm system settings. A similar test was performed using the same values for the theft norm,

with the same average temperament values. Both of these tests were done in smaller quantities

than the initial average temperament tests.

Figure 0 - Screenshot of the Simulation During a Visualized Run

39

CHAPTER IV

ANALYSIS OF RESULTS

 As detailed previously, all the simulations were run with an initial population of five and

a population cap of fifteen. The simulation board is a 20 x 20 grid. The resource boxes are filled

with 1000 units each to begin and refill after 25 turns of being empty. All the simulations are set

to end at turn 30,000. First, the simulation was set to test multiple configurations of the average

temperament value. The values used were -50, -25, 0, 25, and 50, and 500 instances of each of

these configurations were run. Beyond this, tests on different configurations of the stealing and

violence norm with the previously defined average temperament values were also run, but with

only 200 instances.

The first test performed was a base case where the average temperament, stealing norm,

and violence norm values were set at zero. In the graphic, one can see that the simulation

duration in turns was either ended at turn 10,001 or made it to the 30,000-turn limit that was set,

with very few cases falling between the two. This can be attributed to a lack of reproduction in

the simulation. If the units in the simulation failed to reproduce, then the simulation ends at turn

10,001 after the initial generation has died off. Another problem can occur if the simulation has

a high murder rate. If four of the five initial units are murdered before any reproduction can

occur, then the sole unit left will simply while away the last few remaining turns alone. Once

they die, the simulation ends.

Figure 1 - Number of Tests that Completed a Certain Num

0 Temperament,

If the number of births as a function of the number of turns elapsed

evidence that the birth rate definitely contributes to the longevity of the simulation

2.)

Figure 2 - Number of Births over Turns Elapsed using the settings

Violence Norm,

0

10

20

30

40

50

60

70

80

90

10000

40

Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, 0 Violence Norm, and 0 Stealing Norm

If the number of births as a function of the number of turns elapsed is graphed

that the birth rate definitely contributes to the longevity of the simulation

er of Births over Turns Elapsed using the settings 0 Temperament,

Violence Norm, and 0 Stealing Norm

Births/Turns

15000 20000 25000 30000

Turns

Births

ber of Turns using the settings

is graphed, the

that the birth rate definitely contributes to the longevity of the simulation is shown (Fig.

0 Temperament, 0

41

Equally, when graphing the number of murders as a function of the number of turns

elapsed, the fact that the murder rate also has an effect on the longevity of the simulation can be

seen (Fig. 3.)

Figure 3 - Number of Murders as a Function of Turns Elapsed, 0 Temperament, Violence

Norm, Stealing Norm

 It is not just the murders and births that affect the simulation, since these are just side-

effects of the larger sense of harmony or discord that permeates the simulation. This sense can

be seen in the final values of the stealing and violence norm.

Murders/Turns

0

2

4

6

8

10

12

14

10000 15000 20000 25000 30000

Turns

Murders

42

Figure 4 - Final Norm Values over Turns Elapsed using the settings 0 Temperament, 0

Violence Norm, and 0 Stealing Norm

 Figure 4 shows how the norms affect the longevity of the simulation. One can see that in

the shortest-lived simulations, the violence norm is well below zero. However, as the length of

the simulations’ life increases, the violence norm levels increase dramatically. One can also see

that the stealing norm appears to have some effect on the simulations’ longevity but not nearly as

much as the violence norm.

 Overall, this initial test on the base case shows that basically the success of the simulation

depends on the units that inhabit it. If the randomly generated denizens of each simulation tend

to be more violent than the norm, the simulation will fail. However, if the denizens choose to

live in harmony with one another, then the simulation will succeed. This is fortunate, because it

means the simulation is doing a good job representing the real world. One can easily see how

the results of the base case are representative of what would happen in a real world simulation.

Obviously a society that cannot live together peacefully will not survive long. Conversely a

Norms/Turns

-60

-40

-20

0

20

40

60

10000 15000 20000 25000 30000

Turns

Stealing Norm

Violence Norm

society that can live in harmony may survive for a long time. Note that when

discussed, this is simply referring to

one another, and not a more complex definition of a society.

 To reinforce the findings mad

average temperament values -25

testing the base case. The lower the average temperament value, the less likely the simulation is

to reach the 30,000 turn limit. As one would expect, the final norm values support this.

Figure 5 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence,

43

may survive for a long time. Note that when a society

referring to a group of individuals who inhabit an area and interact with

one another, and not a more complex definition of a society.

To reinforce the findings made in the base case, the simulation was tested

 and -50. The results are concurrent with what was

testing the base case. The lower the average temperament value, the less likely the simulation is

000 turn limit. As one would expect, the final norm values support this.

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and 0 Stealing

society is

a and interact with

was tested with the lower

was found in

testing the base case. The lower the average temperament value, the less likely the simulation is

000 turn limit. As one would expect, the final norm values support this.

Number of Tests that Completed a Certain Number of Turns using the settings -

Figure 6 - Number of Tests that

50 Temperament, 0 Violence,

When the corresponding pos

the results were concurrent with the pattern that has developed regardi

temperament value. In this case, the higher the average temperament, the more likely the

simulation is to reach the 30,000 turn limit. This too is also supported by the final norm

readings.

The previous tests show that when

simulation basically depends on the temperament of i

is supported by the observation that if a norm starts to drift toward one extreme

continue toward that extreme. It

temperament, the more likely the individual is to partake in acti

conversely, the higher the temperament

norm values. With that in mind, since the only thing affecting the norms is the actions of the

44

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and 0 Stealing

the corresponding positive average temperament values of 25 and 50

the results were concurrent with the pattern that has developed regarding the average

temperament value. In this case, the higher the average temperament, the more likely the

000 turn limit. This too is also supported by the final norm

The previous tests show that when all norms are set to zero at the starting point, the

simulation basically depends on the temperament of its inhabitants to determine it

is supported by the observation that if a norm starts to drift toward one extreme,

 should also be noted that the lower the individual’s

temperament, the more likely the individual is to partake in actions that reduce the norm values

the higher the temperament, the higher the proclivity toward actions that increase

norm values. With that in mind, since the only thing affecting the norms is the actions of the

Completed a Certain Number of Turns using the settings -

25 and 50 were tested,

ng the average

temperament value. In this case, the higher the average temperament, the more likely the

000 turn limit. This too is also supported by the final norm

et to zero at the starting point, the

ts inhabitants to determine its success. This

 it tends to

that the lower the individual’s

ons that reduce the norm values;

the higher the proclivity toward actions that increase

norm values. With that in mind, since the only thing affecting the norms is the actions of the

45

individuals in the society, then whatever actions those individuals partake in will determine the

norms.

When this simulation was created, there was particular interest in learning how a group of

individuals would react to being placed under the influence of a norm system that reinforced

actions counter to those the individuals would choose without the norm system. To test this,

values of -50, -25, 25, and 50 were applied separately to each of the norms. For each of the norm

values, the average temperament is set to -50, -25, 0, 25, and 50. All other settings are set to the

same as the previous tests. The number of instances of each test was shortened, from 500 to 200.

Since it was already established how the simulation will act based on the average temperament, it

can be assumed that the same will be true for the smaller set of instances in these tests.

First, the stealing norm was tested with the various values of average temperament.

Starting with pure, or zero value, the results show some interesting yet rather expected results.

Since it has already been shown that both the number of murders and birth and the final norm

values support the findings regarding the length of a simulation, henceforth this paper will only

discuss the total number of turns elapsed for each test.

Figure 7 - Number of Tests that Completed a Certain Number of Turns using the settings

Temperament, 0 Violence,

Figure 8 - Number of Tests that Completed a Certain Number of Turns using the settings

Temperament, 0 Violence,

46

Number of Tests that Completed a Certain Number of Turns using the settings

Temperament, 0 Violence, and -50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Temperament, 0 Violence, and -25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings 0

Number of Tests that Completed a Certain Number of Turns using the settings 0

Figure 9 - Number of Tests that Completed a Certain Number of Turns using the settings

Temperament, 0 Violence,

Figure 10 - Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, 0 Violence,

47

Number of Tests that Completed a Certain Number of Turns using the settings

Temperament, 0 Violence, and 25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, 0 Violence, and 50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings 0

Number of Tests that Completed a Certain Number of Turns using the settings

Recalling the results shown in Figure 1

the stealing norm have a great deal of effect on the longevity of the

tests showed that there was a nearly equal distribution of the two extremes, failing at turn 10

and continuing on to turn 30,000. When a

new tests show that very few simulations last to the 30

applying the positive norm values;

the turn limit.

 If, as the previous tests show, the stealing norm has an effect on the longevity of a

simulation, then its ability to do so should be either helped or hindered

simulations average temperament. The next tests performed were the same

except they were done using the negative average temperament values.

Figure 11 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 0 Violence,

48

shown in Figure 1, the new tests show that the differing

a great deal of effect on the longevity of the simulation. The original

showed that there was a nearly equal distribution of the two extremes, failing at turn 10

000. When applying the negative values for the stealing norm,

that very few simulations last to the 30,000-turn limit. Conversely, when

the positive norm values; the new tests show that almost all the simulations make it to

as the previous tests show, the stealing norm has an effect on the longevity of a

o so should be either helped or hindered by differing values of the

simulations average temperament. The next tests performed were the same as the previous

the negative average temperament values.

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and -50 Stealing

that the differing values of

simulation. The original

showed that there was a nearly equal distribution of the two extremes, failing at turn 10,001

the negative values for the stealing norm, the

turn limit. Conversely, when

that almost all the simulations make it to

as the previous tests show, the stealing norm has an effect on the longevity of a

by differing values of the

as the previous set,

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 12 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 0 Violence,

Figure 13 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 0 Violence,

49

s that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and -25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and 25 Stealing

s that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 14 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 0 Violence,

Figure 15 - Number of Tests that Completed a Certain Number of Turns using the settings

-25 Temperament, 0 Violence,

50

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and 50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and -50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 16 - Number of Tests that Completed a Certain Number of Turns using the settings

-25 Temperament, 0 Violence,

Figure 17 - Number of Tests that Completed a Certain Number of Turns using the settings

-25 Temperament, 0 Viol

51

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and -25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and 25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 18 - Number of Tests that Completed a Certain Number of Turns using the settings

-25 Temperament, 0 Violence,

From these results one can clearly see that the stealing norm has a great deal to do with

the longevity of the simulation. Upon comparing these results to the initial results done on the

stealing norm, it is apparent that the stealing norm will make an impact on the final resu

the stealing norm and average temperament value are both negative, then the longevity of the

simulation is pushed toward the negative extreme of 10

uniformity of the final result, in that all the final long

to the original tests done on the negative temperament values shows that these original tests were

unlikely to reach the 30,000-turn limit. Surprisingly,

applied, the simulation is almost guaranteed to reach the 30000

stealing norm has a large effect on the simulation’s longevity.

 In order to conclusively show that the stealing norm has a large effect on the longevity of

the simulation, it should be shown that the same things that hold for negative temperament

52

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and 50 Stealing

can clearly see that the stealing norm has a great deal to do with

the longevity of the simulation. Upon comparing these results to the initial results done on the

stealing norm, it is apparent that the stealing norm will make an impact on the final resu

the stealing norm and average temperament value are both negative, then the longevity of the

simulation is pushed toward the negative extreme of 10,001. In some cases the tests achieved a

uniformity of the final result, in that all the final longevity results were the same. Looking back

to the original tests done on the negative temperament values shows that these original tests were

turn limit. Surprisingly, when positive stealing norm values are

tion is almost guaranteed to reach the 30000-turn limit. This shows that the

stealing norm has a large effect on the simulation’s longevity.

In order to conclusively show that the stealing norm has a large effect on the longevity of

ould be shown that the same things that hold for negative temperament

Number of Tests that Completed a Certain Number of Turns using the settings

can clearly see that the stealing norm has a great deal to do with

the longevity of the simulation. Upon comparing these results to the initial results done on the

stealing norm, it is apparent that the stealing norm will make an impact on the final results. If

the stealing norm and average temperament value are both negative, then the longevity of the

001. In some cases the tests achieved a

evity results were the same. Looking back

to the original tests done on the negative temperament values shows that these original tests were

stealing norm values are

turn limit. This shows that the

In order to conclusively show that the stealing norm has a large effect on the longevity of

ould be shown that the same things that hold for negative temperament

values also hold for positive values. The next tests made were designed to do just that.

Figure 19 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence,

Figure 20 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence,

53

values also hold for positive values. The next tests made were designed to do just that.

Number of Tests that Completed a Certain Number of Turns using the settings

mperament, 0 Violence, and -50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and -25 Stealing

values also hold for positive values. The next tests made were designed to do just that.

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 21 - Number of Tests that Completed a Certain Number of Turns using the

25 Temperament, 0 Violence,

Figure 22 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence,

54

Number of Tests that Completed a Certain Number of Turns using the

25 Temperament, 0 Violence, and 25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 0 Violence, and 50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 23 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence,

Figure 24 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence,

55

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and -50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and -25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 25 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence,

Figure 26 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence,

56

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and 25 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 0 Violence, and 50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

These results also show that the stealing norm has an effect on the longevity of the

simulation. However, they are not nearly as convincing as the previous set. They do sh

the convergent values increase the number of simulations

other hand, the divergent values appear to only slightly affect the longevity of the simulations.

For the negative temperament values, the application of positive stealing norms resulted in a

large shift toward the positive extreme. In the opposite case, only little more than half of the

results showed the same large shift. Regardless, it is still evident that the stealing norm can have

a great effect on the longevity of the simulation.

Next, the violence norm was a

the simulation as the stealing norm.

the tests done on the stealing norm, with the obvious exception of replacing the stealing norm

with the violence norm. The tests were done with violence norm values of

and temperament values of -50, -

Figure 27 - Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament,

57

These results also show that the stealing norm has an effect on the longevity of the

they are not nearly as convincing as the previous set. They do sh

increase the number of simulations reaching the positive extreme.

other hand, the divergent values appear to only slightly affect the longevity of the simulations.

For the negative temperament values, the application of positive stealing norms resulted in a

ositive extreme. In the opposite case, only little more than half of the

results showed the same large shift. Regardless, it is still evident that the stealing norm can have

a great effect on the longevity of the simulation.

was analyzed to see if it had the same effect on the longevity of

norm. These tests were performed in exactly the same manner as

the tests done on the stealing norm, with the obvious exception of replacing the stealing norm

the violence norm. The tests were done with violence norm values of -50, -

-25, 25, and 50.

Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, -50 Violence, and 0 Stealing

These results also show that the stealing norm has an effect on the longevity of the

they are not nearly as convincing as the previous set. They do show that

reaching the positive extreme. On the

other hand, the divergent values appear to only slightly affect the longevity of the simulations.

For the negative temperament values, the application of positive stealing norms resulted in a

ositive extreme. In the opposite case, only little more than half of the

results showed the same large shift. Regardless, it is still evident that the stealing norm can have

to see if it had the same effect on the longevity of

in exactly the same manner as

the tests done on the stealing norm, with the obvious exception of replacing the stealing norm

-25, 0, 25, 50,

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 28 - Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament,

Figure 29 - Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament,

58

Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, -25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, 25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 30 - Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, 50 Violence,

This result is surprising because it shows that the violence norm has almost no effect on

the longevity of the simulation. The original test done upon the totally pure simulation showed

an almost identical distribution. This

norm would have the most effect on the simulation’s longevity.

with the violence norm on the negative temperament values to see if the results

strange trend.

59

Number of Tests that Completed a Certain Number of Turns using the settings

0 Temperament, 50 Violence, and 0 Stealing

This result is surprising because it shows that the violence norm has almost no effect on

longevity of the simulation. The original test done upon the totally pure simulation showed

an almost identical distribution. This was unexpected since it was assumed that the violence

norm would have the most effect on the simulation’s longevity. The next tests were performed

the violence norm on the negative temperament values to see if the results showed the same

Number of Tests that Completed a Certain Number of Turns using the settings

This result is surprising because it shows that the violence norm has almost no effect on

longevity of the simulation. The original test done upon the totally pure simulation showed

assumed that the violence

were performed

showed the same

Figure 31 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament,

Figure 32 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament,

60

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, -50 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, -25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 33 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 25 Violence,

Figure 34 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 50 Violence,

61

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 50 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 35 - Number of Tests that Completed a Certain Number of Turns usi

-25 Temperament,

Figure 36 - Number of Tests that Completed a Certain Number of Turns using the settings

-25 Temperament,

62

Number of Tests that Completed a Certain Number of Turns usi

25 Temperament, -50 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, -25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 37 - Number of Tests that Completed a Certain N

-25 Temperament, 25 Violence,

Figure 38 - Number of Tests that Completed a Certain Number of Turns using the settings

-25 Temperament, 50 Violence,

63

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 50 Violence, and 0 Stealing

umber of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

This shows again that the violence norm has very little effect on the longevity of the

simulation. Neither the convergent or divergent results show a great deal of change from the

original results on the pure violence norm tests.

tested to see if they too had little

Figure 39 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament,

64

This shows again that the violence norm has very little effect on the longevity of the

simulation. Neither the convergent or divergent results show a great deal of change from the

original results on the pure violence norm tests. The positive violence norm values

 meaningful effect on the longevity of the simulation

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, -50 Violence, and 0 Stealing

This shows again that the violence norm has very little effect on the longevity of the

simulation. Neither the convergent or divergent results show a great deal of change from the

rm values were also

simulation.

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 40 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament,

Figure 41 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 25 Violence,

65

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, -25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 42 - Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 50 Violence,

Figure 43 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament,

66

Number of Tests that Completed a Certain Number of Turns using the settings

25 Temperament, 50 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, -50 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 44 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament,

Figure 45 - Number of Tests that Completed a Certain Number of Turns usi

50 Temperament, 25 Violence,

67

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, -25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns usi

50 Temperament, 25 Violence, and 0 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

Figure 46 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 50 Violence,

 As with the negative values of the violence norm, the positi

effect on the longevity of the simulati

on the simulation, whereas the stealing norm has such a large effect

went into designing the simulation

premium would be placed on violent behavior

in the simulation.

The final test run in this experiment

normally on one extreme of the temperament value

the opposite extremes in the norm values. To test this,

with a value of 50 for the stealing and vio

temperament value, with a value of

These tests are the culmination of the entire pro

were desired from the beginning.

68

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 50 Violence, and 0 Stealing

As with the negative values of the violence norm, the positive values have very little

effect on the longevity of the simulation. The fact that the violence norm has such a small effect

whereas the stealing norm has such a large effect, was counter to the ideas that

ation. It was theorized when the simulation was created

d be placed on violent behavior and that this behavior would be the guiding force

in this experiment was designed to see how well a society

xtreme of the temperament value would operate in a norm system representing

site extremes in the norm values. To test this, the -50 temperament value

with a value of 50 for the stealing and violence norms. For completeness, the opposite

temperament value, with a value of -50 for the stealing and violence norm, was also tested

These tests are the culmination of the entire project, and the results of these tests were those that

the beginning.

Number of Tests that Completed a Certain Number of Turns using the settings

ve values have very little

that the violence norm has such a small effect

, was counter to the ideas that

was created that a

the guiding force

to see how well a society that operated

would operate in a norm system representing

50 temperament value was tested

the opposite case, a 50

, was also tested.

the results of these tests were those that

Figure 47 - Number of Tests that Completed a Certain Number of Turns using the settings

-50 Temperament, 50 Violence,

Figure 48 - Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament,

69

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, 50 Violence, and 50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

50 Temperament, -50 Violence, and -50 Stealing

Number of Tests that Completed a Certain Number of Turns using the settings

Number of Tests that Completed a Certain Number of Turns using the settings

70

 Both results are concurrent with the other tests that were performed previously. In a

small way it shows that this simulation was programmed to act in a very lifelike fashion. It

could be said that societies that are inherently violent are more likely to be convinced to act in a

peaceful manner than an inherently peaceful society would be to act violently. In these cases,

human nature plays the most important role, particularly in the fact that humans will adapt to

very difficult circumstances.

 The tests repeated in this section show conclusively that norms, as they were developed

for this simulation, can be used to control the overall behavior of the units in the simulation, in a

deterministic way. The tests showed initially that when the simulation was run with all starting

parameters initialized to zero, the number of test cases that reached the 30,000-turn limit was

nearly equal to the number that did not. Also shown was the fact that simulations that made it to

the 30,000-turn limit typically had higher birth rates and lower murder rates than simulations that

did not. Because the tests were run with a wide range of stating parameters, it can be said that

this experiment has conclusively shown that the stealing norm, and to a lesser extent the violence

norm, has an effect on the probability of a specific run of the simulation reaching the 30,000-turn

limit. Thus it can be assumed, since there is a direct correlation between types of behavior and

the 30,000-turn limit, that the norms also have an effect on behavior.

71

CHAPTER V

CONCLUSION AND RECOMMENDATIONS

 This experiment should be considered a partial success. While it failed to show that all

societies could be forced by a controlling norm system to run until they reached a certain turn

limit, it did show that norms are effective in manipulating the way societies work. This

experiment also showed that it is not required for the norm systems to be vast and complex.

Norm systems are useful outside of the context of the Prisoner’s Dilemma, and relatively simple

calculations can produce relatively complex and realistic results.

Moreover, because these calculations can be accomplished so quickly, it is feasible to

include a small simulation, which includes a simple norm system, into complex First Person

Shooter style games or other non-simulation style games.

 In terms of the results that were gained, the fact that the stealing norm had such a large

impact on the simulation was particularly surprising. Almost as surprising was the fact that the

violence norm had little effect. These results can be explained by analyzing the way that certain

events trigger changes in the norm system and the entities themselves. For example, as the

simulation reaches a point where food becomes scarce, having a positive stealing norm induces

entities to donate food to others. These donations improve inter-entity relations in the simulation

and thus improve the chance that two entities will successfully mate. Thus the increase in good

behavior leads to an increase in mating, thereby making the simulation more resistant to rogue

entities going around killing everyone, or other disasters. One might ask that why, if the good

vibes being passed around by the stealing norm are increasing mating, and thus enhancing the

possibility of the simulation reaching the turn limit, then why doesn’t the violence norm do the

72

same thing? One could theorize that the answer to that lies in the fact that the stealing norm is

directly tied to resource acquisition. This resource acquisition is primary to an entities survival

and represents a basic need of the entity. So in the case where food is lacking, the entity will be

forced into performing an action that deals with the stealing norm because of its basic need for

resources. The positive, or negative, influence of the stealing norm value is secondary, whereas

with the violence norm, actions performed dealing with this norm are only done after an entity

has resolved any resource issues that it may have. Thus the actions of the entity dealing with the

violence norm are not as likely to occur; therefore, they will not have nearly as much effect.

The results of the tests of how societies react to being placed in a norm system that acts

counter to the societies’ inherent beliefs were also very pleasing. This was a test that had a bit of

personal interest in it. These tests are important in terms of using this simulation to represent a

neutral third party in a first-person-shooter-based war game. The experiment found that a

simulation with good inhabitants could indeed survive in a world where the norm system

indirectly “pressured” them to behave badly. While not all the test simulations reached the turn

limit, with some alteration of the rules governing the simulation, all simulations could be made

to reach the turn limit.

If the representation of the simulation is applied in the game world, then the actions being

performed look realistic. To prove this, assume that one turn in the game world represents the

time it takes an entity to move 5 feet. This is a convenient measurement since if it is also

assumed that one game turn represents one second in game time, then that means that the entity

moves at approximately 3.5 miles per hour. Coincidentally, this is precisely the average walking

speed for a human
2
. In actuality, using the one-turn-per-second measurement may be a gross

overestimate, since the most hardware-intensive settings of the simulation still produce several

2
 http://www.runeed.com/health/228-2-health-4.html

73

turns per second. However, it would be prudent to assume that any modern video game would

employ graphical content vastly more complex than what was used in the simulation. This,

combined with the fact that there would also be many other resource demands in a modern video

game, suggests that the one-turn-per-second may be accurate. If one chooses to use the one-turn-

per-second measurement, then 30,000 seconds, or approximately 8.3 hours, is equivalent to

30,000 turns. This is far longer than most people will play a video game in one sitting. The fact

that the 10,000-turn maximum lifetime of an entity would most likely have to be increased

greatly, probably to a near infinite value to make things seem realistic, adds further credence to

the notion that this simulation could be used to represent a realistic gameplay environment.

 The results found in this experiment have implications in other fields, particularly those

that involve swarm intelligence [18]. Swarm intelligence is a discipline in the field of artificial

intelligence that deals with swarms, groups of decentralized, self-organized, autonomous agents,

and the collective intelligent behavior that such swarms exhibit. Typically the agents are very

simple in design and are programmed to interact with other agents in a group setting. The agents

are also designed to follow a set of simple rules, the caveat to this being that the rules must be

self-imposed as there is no centralized control structure to speak of. Despite the lack of central

control determining how the agents behave, the inter-agent interaction usually leads to the

emergence of complex behavior in the swarm. Some examples of swarm intelligence in the

natural world include colonies of ants, flocks of birds, packs of wolves, or schools of fish. In

implementing swarms, typically a group of agents are placed in a world. This world represents a

search space, or the domain of the problem. The search space is objectified into a multi-

dimensional representation of the problem, and the agents occupy a specific position in the

space. The position that the agent holds in the search space represents variables that equate to a

74

solution for the problem the swarm is trying to solve. These agents also, typically, have a fitness

value associated with the accuracy of their solution to the problem. How the agents in the swarm

behave is up to the designer and can be tailored to the problem being analyzed. Typically the

agents’ behavior will be implemented in such a way that solutions with higher fitness will

dominate the swarm. In this way, through cooperation, the agents in the swarm will develop an

accurate solution to the given problem.

In order to describe how this experiment relates to swarm intelligence, it is necessary to

completely drop most of the trappings of the simulation that was created. The concepts of

stealing, violence, and agents acting like humans must be left behind. Focusing solely on the

norms and the entities, the corresponding connection is very clear. Suppose in some scenario, a

swarm of agents is created to solve a problem. The agents apply a brand of un-normed

knowledge and, for some reason, continually produce a result that is infeasible. To prevent these

agents from continually repeating this mistake, a human overseer, or perhaps even an artificial

one, could inform these agents, via a norm, that they should be less inclined to explore this

option. Conversely, if a solution is thought to be in one area of a search space, the agents could

be induced, again via a norm, to actively comb this area of the search space for a solution.

However, in applying a system of norms, it could be said that one of the basic tenets of swarm

intelligence, the lack of a centralized control structure, has been violated. So an attempt to apply

norms to swarm intelligence would actually be creating a hybrid system rather than enhancing

the study of swarm intelligence.

 To conclude, the behavior of human-like agents can be controlled using a norm system,

and under certain conditions the norm system can control the longevity of a simulation that

mimics some aspects of human society. Therefore, norms can be used to cause a system of

75

independent agents to exhibit communal behavior. This experiment also showed that it would

not be unrealistic to use a similar simulation in an FPS-style video game. This simulation could

be used to represent a group of third-party agents designed to interact with the player and with

other agents. Because of these reasons, it is evident that further study in this field is warranted.

76

REFERENCES

[1] Chaplin, D. J. and Rhalibi, A. E. 2004. IPD for emotional NPC societies in games. In

Proceedings of the 2004 ACM SIGCHI international Conference on Advances in

Computer Entertainment Technology (Singapore, June 03 - 05, 2005). ACE '04, vol. 74.

ACM, New York, NY, 51-60.

[2] Axelrod, R, “An Evolutionary Approach to Norms”, The Complexity of Cooperation,

Robert Axelrod, p 44-68,Princeton University Press, Chichester,England

[3] Lester, P. (2005.) “A* Pathfinding for Beginners.” policyalmanac.org. 17 July 2008.

http://www.policyalmanac.org/games/aStarTutorial.htm

[4] Will Wright (Maxis Software), Ken Forbus (Northwestern University) 2001, “Under the

hood of The Sims”, Presentation of The Sims at Northwestern University. (03/03).

http://www.cs.northwestern.edu/~forbus/c95-

gd/lectures/The_Sims_Under_the_Hood.htm

[5] Bates, J., Loyall, A. B., and Reilly, W. S. 1998. An architecture for action, emotion, and

social behavior. In Readings in Agents, M. N. Huhns and M. P. Singh, Eds. Morgan

Kaufmann Publishers, San Francisco, CA, 225-231.

[6] Davis, D.N. (2000). Minds have personalities - Emotion is the core. In Symposium on

How to Design a Functioning Mind, AISB2000, University of Birmingham.

[7] El Rhalibi, A., Baker, N., and Merabti, M. 2005. Emotional agent model and architecture

for NPCs group control and interaction to facilitate leadership roles in computer

entertainment. In Proceedings of the 2005 ACM SIGCHI international Conference on

Advances in Computer Entertainment Technology (Valencia, Spain, June 15 - 17, 2005).

ACE '05, vol. 265. ACM, New York, NY, 156-163.

[8] Survival: The Last Laugh. Chapter 1- The Beginning. (1998). In Survival.com. Retrieved

April 29, 2008, from http://www.survival.com/bookch1a.htm

[9] Pac-Man. (2006). In The Dot Eaters. Retrieved April 29, 2008, from

http://www.thedoteaters.com/p2_stage4.php

[10] World of Warcraft. (2008, April 28). In Wikipedia, the free encyclopedia. Retrieved April

29, 2008, from http://en.wikipedia.org/wiki/World_of_Warcraft

[11] Brothers in Arms: Road to Hill 30. (2008, March 29). In Wikipedia, the free

encyclopedia. Retrieved April 29, 2008, from

http://en.wikipedia.org/wiki/Brothers_in_Arms:_Road_to_Hill_30

[12] Grand Theft Auto series. (2008, April 29). In Wikipedia, the free encyclopedia. Retrieved

April 29, 2008, from http://en.wikipedia.org/wiki/Grand_Theft_Auto_(series)

77

[13] The Legend of Zelda: Twilight Princess. (2008, April 28). In Wikipedia, the free

encyclopedia. Retrieved April 29, 2008, from

http://en.wikipedia.org/wiki/The_Legend_of_Zelda:_Twilight_Princess

[14] Fable (video game). (2008, April 28). In Wikipedia, the free encyclopedia. Retrieved

April 29, 2008, from http://en.wikipedia.org/wiki/Fable_(video_game)

[15] Online Dictionary of Social Sciences. (2008, April 17). In The Online Dictionary of

Social Sciences. Retrieved April 29, 2008, from

http://bitbucket.icaap.org/dict.pl?term=NORMS

[16] Busse, C. and Hamilton, W.J. 1981. Infant Carrying by Male Chacma Baboons. In

Science: New Series, June 12, 1981. Science, vol. 212. AAAS, Washington D.C., 1281-

1283.

[17] Hart, P.E., Nilsson, N.J., and Raphael, B. 1972. Correction to “A formal basis for the

heuristic determination of minimum cost paths.” SIGART Newsletter, no. 37, December,

pp. 28-29.

[18] Hinchey, Michael G.; Sterritt, Roy; Rouff, Chris, "Swarms and Swarm Intelligence,"

Computer , vol.40, no.4, pp.111-113, April 2007.

78

APPENDIX A

PROGRAM SOURCE CODE

DrawingFrame.java

import java.awt.*;
import javax.swing.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class DrawingFrame extends JFrame implements ActionListener {
 Simulation s = new Simulation();
 DrawingPanel mapPanel = new DrawingPanel();
 private long speed;
 private boolean go;
 private boolean step;
 private boolean done;

 //info panel stuff
 JPanel infoPanel = new JPanel();
 JTextArea foodText = new JTextArea(1,5);
 JTextArea waterText = new JTextArea(1,5);
 JTextArea turnText = new JTextArea(1,5);
 JTextArea speedText = new JTextArea(1,5);
 JTextArea popText = new JTextArea(1,5);
 JTextArea sText = new JTextArea(1,5);
 JTextArea vText = new JTextArea(1,5);

 //log panel stuff
 JScrollPane logPanel = new JScrollPane();
 JTextArea logText = new JTextArea(5,30);

 //toolbar stuff
 JToolBar toolBar = new JToolBar();

 //panel for the info and the toolbar
 JPanel eastPanel = new JPanel();

 static final private String SPEEDUP = "Speed Up";
 static final private String SPEEDDOWN = "Slow Down";
 static final private String START = "Start";
 static final private String STOP = "Stop";
 static final private String STEP = "Step Forward";
 static final private String INCFOOD = "Add food";
 static final private String DECFOOD = "Remove food";
 static final private String INCWATER = "Add Water";
 static final private String DECWATER = "Remove Water";
 static final private String QUIT = "Quit";

 public DrawingFrame(Simulation sim) {
 go = true;
 step = false;

79

 speed = 100;
 done = false;
 s = sim;
 try {
 myInit();
 }catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 void myInit() throws Exception {

 this.setResizable(false);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setTitle("Thesis");
 this.getContentPane().setLayout(new BorderLayout());

 mapPanel.setSimulation(s);
 mapPanel.setDoubleBuffered(true);
 mapPanel.setPreferredSize(new Dimension(605,605));
 mapPanel.setBackground(Color.BLACK);

 infoPanel.setPreferredSize(new Dimension(150,150));
 infoPanel.setLayout(new GridLayout(7,2,1,1));
 infoPanel.add(new JLabel("Food: "));
 infoPanel.add(foodText);
 infoPanel.add(new JLabel("Water: "));
 infoPanel.add(waterText);
 infoPanel.add(new JLabel("Turn: "));
 infoPanel.add(turnText);
 infoPanel.add(new JLabel("Speed: "));
 infoPanel.add(speedText);
 infoPanel.add(new JLabel("Population: "));
 infoPanel.add(popText);
 infoPanel.add(new JLabel("Stealing: "));
 infoPanel.add(sText);
 infoPanel.add(new JLabel("Violence: "));
 infoPanel.add(vText);
 foodText.setEditable(false);
 waterText.setEditable(false);
 turnText.setEditable(false);
 speedText.setEditable(false);
 popText.setEditable(false);
 sText.setEditable(false);
 vText.setEditable(false);

 foodText.setText(Integer.toString(s.getBoxQuantity(0)));
 waterText.setText(Integer.toString(s.getBoxQuantity(1)));
 turnText.setText(Integer.toString(s.getTurn()));
 speedText.setText(Integer.toString((int)speed));
 popText.setText(Integer.toString(s.getPopulation()));
 sText.setText(Integer.toString(s.getNorms().getS()));
 vText.setText(Integer.toString(s.getNorms().getV()));
 toolBar.setPreferredSize(new Dimension(150,455));
 toolBar.setBorderPainted(false);
 toolBar.setFloatable(false);
 toolBar.setLayout(new GridLayout(11,0,0,0));

80

 addButtons(toolBar);

 logText.setEditable(false);
 logText.setText("Information will be displayed here");
 logText.setTabSize(8);
 logPanel.getViewport().add(logText, null);

 eastPanel.setPreferredSize(new Dimension(150,605));
 eastPanel.add(infoPanel);
 eastPanel.add(toolBar);

 this.getContentPane().add(mapPanel, BorderLayout.CENTER);
 this.getContentPane().add(eastPanel, BorderLayout.EAST);
 this.getContentPane().add(logPanel, BorderLayout.SOUTH);

 this.pack();
 this.setVisible(true);
 }

 public void setSimulation(Simulation s1) {
 mapPanel.setSimulation(s1);
 }

 public void repaintStuff() {
 mapPanel.repaint();
 foodText.setText(Integer.toString(s.getBoxQuantity(0)));
 waterText.setText(Integer.toString(s.getBoxQuantity(1)));
 turnText.setText(Integer.toString(s.getTurn()));
 logText.setText(s.getLog());
 speedText.setText(Integer.toString((int)speed));
 popText.setText(Integer.toString(s.getPopulation()));
 sText.setText(Integer.toString(s.getNorms().getS()));
 vText.setText(Integer.toString(s.getNorms().getV()));
 }

 protected void addButtons(JToolBar toolBar) {
 //Add all the tool bar buttons
 JButton button = null;
 button = makeNavigationButton(SPEEDUP, SPEEDUP, SPEEDUP);
 toolBar.add(button);
 button = makeNavigationButton(SPEEDDOWN, SPEEDDOWN, SPEEDDOWN);
 toolBar.add(button);
 button = makeNavigationButton(START, START, START);
 toolBar.add(button);
 button = makeNavigationButton(STOP, STOP, STOP);
 toolBar.add(button);
 button = makeNavigationButton(STEP, STEP, STEP);
 toolBar.add(button);
 toolBar.add(new JLabel(""));
 button = makeNavigationButton(INCFOOD, INCFOOD, INCFOOD);
 toolBar.add(button);
 button = makeNavigationButton(DECFOOD, DECFOOD, DECFOOD);
 toolBar.add(button);
 button = makeNavigationButton(INCWATER, INCWATER, INCWATER);
 toolBar.add(button);
 button = makeNavigationButton(DECWATER, DECWATER, DECWATER);
 toolBar.add(button);

81

 button = makeNavigationButton(QUIT, QUIT, QUIT);
 toolBar.add(button);
 }

 protected JButton makeNavigationButton(String actionCommand, String
toolTipText, String altText) {
 //Create and initialize the button.
 JButton button = new JButton();
 button.setActionCommand(actionCommand);
 button.setToolTipText(toolTipText);
 button.addActionListener(this);
 button.setText(altText);
 return button;
 }

 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 // Handle each button.
 if (SPEEDUP.equals(cmd)) {
 speed -= 25;
 if(speed < 0) {
 speed = 0;
 }
 }else if(SPEEDDOWN.equals(cmd)) {
 speed += 25;
 if(speed > 1000) {
 speed = 1000;
 }
 }else if(START.equals(cmd)) {
 go = true;
 }else if(STOP.equals(cmd)) {
 go = false;
 }else if(STEP.equals(cmd)) {
 if(!go) {
 step = true;
 }
 }else if(INCFOOD.equals(cmd)) {
 s.editBoxQuantity(0, true);
 }else if(DECFOOD.equals(cmd)) {
 s.editBoxQuantity(0, false);
 }else if(INCWATER.equals(cmd)) {
 s.editBoxQuantity(1, true);
 }else if(DECWATER.equals(cmd)) {
 s.editBoxQuantity(1, false);
 }else if(QUIT.equals(cmd)) {
 done = true;
 }
 }

 long getspeed() {
 return speed;
 }

 boolean going() {
 return go;
 }

82

 boolean done() {
 return done;
 }

 boolean step() {
 return step;
 }

 void stepped() {
 step = false;
 }
}

DrawingPanel.java

import java.awt.Color;
import java.awt.Graphics;
import javax.swing.JPanel;

public class DrawingPanel extends JPanel {
 Simulation s;
 public DrawingPanel () {
 s = new Simulation();
 }

 public void paintComponent(Graphics g) {
 // Paint background
 super.paintComponent(g);

 // Get the drawing area
 //OBSOLETE
 //int[] xpos = s.getallxpos();
 //int[] ypos = s.getallypos();
 for(int i=0; i<s.getDenziensCount(); i++) {
 if(s.isEntityAlive(i)) {

drawUnit(g,i,s.getEntityXpos(i),s.getEntityYpos(i),s.getEntityWidth(i),
s.getEntityColor(i));
 }
 }
 drawBox(g, s.getBoxXpos(0), s.getBoxYpos(0), s.getBoxWidth(0), 0);
 drawBox(g, s.getBoxXpos(1), s.getBoxYpos(1), s.getBoxWidth(1), 1);

 } // paintComponent

 private void drawUnit(Graphics g, int i, int x, int y, int width, Color
thecolor) {
 g.setColor(thecolor);
 g.fillOval(x, y, width, width);
 g.setColor(Color.BLACK);
 g.drawString(Integer.toString(i), x+5, y+15);
 }

 private void drawBox(Graphics g, int x, int y, int width, int type) {
 String label = "";

83

 switch(type) {
 case 0:
 g.setColor(Color.GRAY);
 label = "F";
 break;
 case 1:
 g.setColor(Color.BLUE);
 label = "W";
 break;
 }
 g.fillRect(x, y, width, width);
 g.setColor(Color.BLACK);
 g.drawString(label, x+10, y+20);
 }

 public void setSimulation(Simulation s1) {
 s = s1;
 }

} // class DrawingPanel

import java.awt.Color;
import java.util.Random;
import java.util.ArrayList;

public class Entity {
 private int xpos;
 private int ypos;
 private int xvel;
 private int yvel;
 private int width;
 private int dob;
 private boolean alive;
 private Color mycolor;
 private int hunger;
 private int thirst;
 private int health;
 private int foodcount;
 private int watercount;
 private int minpos;
 private int maxpos;
 private int interactiontarget;
 private int[] positiontarget;
 private int action;
 //private int number;
 //0: idle
 //1: eat food
 //2: drink water
 //3: obtain food
 //4: obtain water
 //5: move randomly
 //6: interact
 private int resourceaction;
 //0: get food
 //1: request food

84

 //2: steal food
 private int interaction;
 //0: talk
 //1: hug
 //2: slap
 //3: kiss
 //4: punch
 //5: mate
 //6: kill
 private int temperment;
 private ArrayList<int[]> opinions;
 private boolean gotTarget;

 public Entity(Random r, int max, int min, int turn, int grid, int num, int
mt) {
 minpos = min;
 maxpos = max;
 xpos = minpos+r.nextInt(maxpos);
 ypos = minpos+r.nextInt(maxpos);
 xvel = 0;
 yvel = 0;
 health = 100;
 thirst = r.nextInt(100);
 hunger = r.nextInt(100);
 foodcount = 0;
 watercount = 0;
 width = grid;
 dob = turn;
 alive = true;
 gotTarget = false;
 temperment = -50+r.nextInt(101)+mt;
 if(temperment<-50) {
 temperment = -50;
 }
 if(temperment>50) {
 temperment = 50;
 }
 if(temperment<=-25) {
 mycolor = Color.red;

 }else if(temperment>=25) {
 mycolor = Color.green;
 }else{
 mycolor = Color.yellow;
 }
 action = 0;
 resourceaction = 0;
 positiontarget = new int[2];
 interactiontarget = -1;
 opinions = new ArrayList<int[]>();
 }

 void setxpos(int pos) {
 xpos = pos;
 }
 void setypos(int pos) {
 ypos = pos;

85

 }
 int getxpos() {
 return xpos;
 }
 int getypos() {
 return ypos;
 }
 int getwidth() {
 return width;
 }

 Color getColor() {
 return mycolor;
 }

 String move() {
 String temp = "";
 temp = " moved from " + xpos + ":" + ypos + " to ";
 xpos += xvel;
 ypos += yvel;
 temp += xpos + ":" + ypos;
 return temp;
 }

 int[] premove() {
 int[] temp = new int[2];
 temp[0] = xpos+xvel;
 temp[1] = ypos+yvel;
 return temp;
 }

 void incFood() {
 if(foodcount<3) {
 foodcount++;
 }
 }

 void incWater() {
 if(watercount<3) {
 watercount++;
 }
 }

 void decFood() {
 if(foodcount>0) {
 foodcount--;
 }
 }

 void decWater() {
 if(watercount>0) {
 watercount--;
 }
 }

 void updateVitals(int t, int m) {
 hunger++;

86

 thirst++;
 if(hunger>99) {
 health--;
 }
 if(thirst>99) {
 health -= 2;
 }
 if(health<=0) {
 alive = false;
 }
 if(t-dob>m) {
 alive = false;
 }
 }

 boolean isAlive() {
 return alive;
 }

 int getFoodCount() {
 return foodcount;
 }

 int getWaterCount() {
 return watercount;
 }

 void zeroVel() {
 xvel = 0;
 yvel = 0;
 }

 void reversevel() {
 xvel = -xvel;
 yvel = -yvel;
 }

 void setVel(int[] v) {
 xvel = v[0]-xpos;
 yvel = v[1]-ypos;
 }

 int getage(int turn) {
 return (turn-dob);
 }

 void chooseAction(Random r, int p) {
 if(hunger>49&&thirst<=49) {
 if(foodcount>0) {
 action = 1;
 }else{
 action = 3;
 }
 }else if(hunger<=49&&thirst>49) {
 if(watercount>0) {
 action = 2;
 }else{

87

 action = 4;
 }
 }else if(hunger>49&&thirst>49) {
 if((foodcount>0)&&(watercount==0)) {
 action = 1;
 }else if((foodcount==0)&&(watercount>0)) {
 action = 2;
 }else if((foodcount>0)&&(watercount>0)){
 if(hunger>thirst) {
 action = 1;
 }else{
 action = 2;
 }
 }else{
 if(hunger>thirst) {
 action = 3;
 }else{
 action = 4;
 }
 }
 }else{
 if(p>1) {
 action = 1+r.nextInt(6);
 }else{
 action = 1+r.nextInt(5);
 }
 }
 }

 int getAction() {
 return action;
 }

 void randomVel(Random r) {
 xvel = -1+r.nextInt(3);
 yvel = -1+r.nextInt(3);
 }

 void eat() {
 foodcount--;
 hunger = 0;
 }

 void drink() {
 watercount--;
 thirst = 0;
 }

 void setTarget(int x, int y) {
 positiontarget[0] = x;
 positiontarget[1] = y;
 }

 int[] getTarget() {
 return positiontarget;
 }

88

 void setInteractionTarget(int t) {
 interactiontarget = t;
 }

 void setHasTarget() {
 gotTarget = true;
 }

 int getInteractionTarget() {
 return interactiontarget;
 }

 void setInteraction(Norms n) {
 int o = 0;
 for(int i=0; i<opinions.size(); i++) {
 if(opinions.get(i)[0] == interactiontarget) {
 o = opinions.get(i)[1];
 }
 }
 //System.out.println("Opinion of " + interactiontarget + ": " + o);
 if(o>15) {
 interaction = 5;
 }else if((temperment+n.getV()+o) < -25) {
 if((temperment+n.getV()+o) < -45) {
 if((temperment+n.getV()+o) < -65) {
 interaction = 6;
 }else{
 interaction = 4;
 }
 }else{
 interaction = 2;
 }
 }else if((temperment+n.getV()+o) > 25) {
 if((temperment+n.getV()+o) > 45) {
 interaction = 3;
 }else{
 interaction = 1;
 }
 }else{
 interaction = 0;
 }
 }

 int getInteraction() {
 return interaction;
 }

 boolean atTarget() {
 if(positiontarget[0]==xpos&&positiontarget[1]==ypos) {
 return true;
 }else{
 return false;
 }
 }

 int getResourceAction() {
 return resourceaction;

89

 }

 void setResourceAction(Norms n, ResourceBox f, int p) {
 if(f.getQuantity()>0) {
 resourceaction = 0;
 }else{
 if(p>1) {
 if(interactiontarget == -1) {
 resourceaction = -1;
 action = 0;
 }else{
 if(temperment+n.getS()+getOpinion(interactiontarget)>=0) {
 resourceaction = 1;
 }else{
 resourceaction = 2;
 }
 }
 }else{
 resourceaction = -1;
 action = 0;
 }
 }
 }

 void setAction(int i) {
 action = i;
 }

 void noTarget() {
 positiontarget[0] = -1;
 positiontarget[1] = -1;
 interactiontarget = -1;
 gotTarget = false;
 }

 boolean hasTarget() {
 return gotTarget;
 }

 int getTemperment() {
 return temperment;
 }

 void die() {
 alive = false;
 }

 void updateOpinion(int e, int a) {
 boolean done = false;
 int[] t = new int[2];
 for(int i=0; i<opinions.size(); i++) {
 if(opinions.get(i)[0] == e) {
 opinions.get(i)[1] += a;
 if(opinions.get(i)[1]>50) {
 opinions.get(i)[1] = 50;
 }
 if(opinions.get(i)[1]<-50) {

90

 opinions.get(i)[1] = -50;
 }
 done = true;
 }
 }
 if(!done) {
 t[0] = e;
 t[1] = a;
 opinions.add(t);
 }
 }

 int getOpinion(int e) {
 for(int i=0; i<opinions.size(); i++) {
 if(opinions.get(i)[0] == e) {
 return opinions.get(i)[1];
 }
 }
 return 0;
 }

 ArrayList<int[]> getOpinions() {
 return opinions;
 }

 void punched() {
 health -= 20;
 }

 void slapped() {
 health -= 10;
 }

 void hugged() {
 health += 10;
 if(health>100) {
 health = 100;
 }
 }

 void kissed() {
 health += 20;
 if(health>100) {
 health = 100;
 }
 }
}

Entity.java

import java.awt.Color;
import java.util.Random;
import java.util.ArrayList;

public class Entity {

91

 private int xpos;
 private int ypos;
 private int xvel;
 private int yvel;
 private int width;
 private int dob;
 private boolean alive;
 private Color mycolor;
 private int hunger;
 private int thirst;
 private int health;
 private int foodcount;
 private int watercount;
 private int minpos;
 private int maxpos;
 private int interactiontarget;
 private int[] positiontarget;
 private int action;
 //private int number;
 //0: idle
 //1: eat food
 //2: drink water
 //3: obtain food
 //4: obtain water
 //5: move randomly
 //6: interact
 private int resourceaction;
 //0: get food
 //1: request food
 //2: steal food
 private int interaction;
 //0: talk
 //1: hug
 //2: slap
 //3: kiss
 //4: punch
 //5: mate
 //6: kill
 private int temperment;
 private ArrayList<int[]> opinions;
 private boolean gotTarget;

 public Entity(Random r, int max, int min, int turn, int grid, int num, int
mt) {
 minpos = min;
 maxpos = max;
 xpos = minpos+r.nextInt(maxpos);
 ypos = minpos+r.nextInt(maxpos);
 xvel = 0;
 yvel = 0;
 health = 100;
 thirst = r.nextInt(100);
 hunger = r.nextInt(100);
 foodcount = 0;
 watercount = 0;
 width = grid;
 dob = turn;

92

 alive = true;
 gotTarget = false;
 temperment = -50+r.nextInt(101)+mt;
 if(temperment<-50) {
 temperment = -50;
 }
 if(temperment>50) {
 temperment = 50;
 }
 if(temperment<=-25) {
 mycolor = Color.red;

 }else if(temperment>=25) {
 mycolor = Color.green;
 }else{
 mycolor = Color.yellow;
 }
 action = 0;
 resourceaction = 0;
 positiontarget = new int[2];
 interactiontarget = -1;
 opinions = new ArrayList<int[]>();
 }

 void setxpos(int pos) {
 xpos = pos;
 }
 void setypos(int pos) {
 ypos = pos;
 }
 int getxpos() {
 return xpos;
 }
 int getypos() {
 return ypos;
 }
 int getwidth() {
 return width;
 }

 Color getColor() {
 return mycolor;
 }

 String move() {
 String temp = "";
 temp = " moved from " + xpos + ":" + ypos + " to ";
 xpos += xvel;
 ypos += yvel;
 temp += xpos + ":" + ypos;
 return temp;
 }

 int[] premove() {
 int[] temp = new int[2];
 temp[0] = xpos+xvel;
 temp[1] = ypos+yvel;

93

 return temp;
 }

 void incFood() {
 if(foodcount<3) {
 foodcount++;
 }
 }

 void incWater() {
 if(watercount<3) {
 watercount++;
 }
 }

 void decFood() {
 if(foodcount>0) {
 foodcount--;
 }
 }

 void decWater() {
 if(watercount>0) {
 watercount--;
 }
 }

 void updateVitals(int t, int m) {
 hunger++;
 thirst++;
 if(hunger>99) {
 health--;
 }
 if(thirst>99) {
 health -= 2;
 }
 if(health<=0) {
 alive = false;
 }
 if(t-dob>m) {
 alive = false;
 }
 }

 boolean isAlive() {
 return alive;
 }

 int getFoodCount() {
 return foodcount;
 }

 int getWaterCount() {
 return watercount;
 }

 void zeroVel() {

94

 xvel = 0;
 yvel = 0;
 }

 void reversevel() {
 xvel = -xvel;
 yvel = -yvel;
 }

 void setVel(int[] v) {
 xvel = v[0]-xpos;
 yvel = v[1]-ypos;
 }

 int getage(int turn) {
 return (turn-dob);
 }

 void chooseAction(Random r, int p) {
 if(hunger>49&&thirst<=49) {
 if(foodcount>0) {
 action = 1;
 }else{
 action = 3;
 }
 }else if(hunger<=49&&thirst>49) {
 if(watercount>0) {
 action = 2;
 }else{
 action = 4;
 }
 }else if(hunger>49&&thirst>49) {
 if((foodcount>0)&&(watercount==0)) {
 action = 1;
 }else if((foodcount==0)&&(watercount>0)) {
 action = 2;
 }else if((foodcount>0)&&(watercount>0)){
 if(hunger>thirst) {
 action = 1;
 }else{
 action = 2;
 }
 }else{
 if(hunger>thirst) {
 action = 3;
 }else{
 action = 4;
 }
 }
 }else{
 if(p>1) {
 action = 1+r.nextInt(6);
 }else{
 action = 1+r.nextInt(5);
 }
 }
 }

95

 int getAction() {
 return action;
 }

 void randomVel(Random r) {
 xvel = -1+r.nextInt(3);
 yvel = -1+r.nextInt(3);
 }

 void eat() {
 foodcount--;
 hunger = 0;
 }

 void drink() {
 watercount--;
 thirst = 0;
 }

 void setTarget(int x, int y) {
 positiontarget[0] = x;
 positiontarget[1] = y;
 }

 int[] getTarget() {
 return positiontarget;
 }

 void setInteractionTarget(int t) {
 interactiontarget = t;
 }

 void setHasTarget() {
 gotTarget = true;
 }

 int getInteractionTarget() {
 return interactiontarget;
 }

 void setInteraction(Norms n) {
 int o = 0;
 for(int i=0; i<opinions.size(); i++) {
 if(opinions.get(i)[0] == interactiontarget) {
 o = opinions.get(i)[1];
 }
 }
 //System.out.println("Opinion of " + interactiontarget + ": " + o);
 if(o>15) {
 interaction = 5;
 }else if((temperment+n.getV()+o) < -25) {
 if((temperment+n.getV()+o) < -45) {
 if((temperment+n.getV()+o) < -65) {
 interaction = 6;
 }else{
 interaction = 4;

96

 }
 }else{
 interaction = 2;
 }
 }else if((temperment+n.getV()+o) > 25) {
 if((temperment+n.getV()+o) > 45) {
 interaction = 3;
 }else{
 interaction = 1;
 }
 }else{
 interaction = 0;
 }
 }

 int getInteraction() {
 return interaction;
 }

 boolean atTarget() {
 if(positiontarget[0]==xpos&&positiontarget[1]==ypos) {
 return true;
 }else{
 return false;
 }
 }

 int getResourceAction() {
 return resourceaction;
 }

 void setResourceAction(Norms n, ResourceBox f, int p) {
 if(f.getQuantity()>0) {
 resourceaction = 0;
 }else{
 if(p>1) {
 if(interactiontarget == -1) {
 resourceaction = -1;
 action = 0;
 }else{
 if(temperment+n.getS()+getOpinion(interactiontarget)>=0) {
 resourceaction = 1;
 }else{
 resourceaction = 2;
 }
 }
 }else{
 resourceaction = -1;
 action = 0;
 }
 }
 }

 void setAction(int i) {
 action = i;
 }

97

 void noTarget() {
 positiontarget[0] = -1;
 positiontarget[1] = -1;
 interactiontarget = -1;
 gotTarget = false;
 }

 boolean hasTarget() {
 return gotTarget;
 }

 int getTemperment() {
 return temperment;
 }

 void die() {
 alive = false;
 }

 void updateOpinion(int e, int a) {
 boolean done = false;
 int[] t = new int[2];
 for(int i=0; i<opinions.size(); i++) {
 if(opinions.get(i)[0] == e) {
 opinions.get(i)[1] += a;
 if(opinions.get(i)[1]>50) {
 opinions.get(i)[1] = 50;
 }
 if(opinions.get(i)[1]<-50) {
 opinions.get(i)[1] = -50;
 }
 done = true;
 }
 }
 if(!done) {
 t[0] = e;
 t[1] = a;
 opinions.add(t);
 }
 }

 int getOpinion(int e) {
 for(int i=0; i<opinions.size(); i++) {
 if(opinions.get(i)[0] == e) {
 return opinions.get(i)[1];
 }
 }
 return 0;
 }

 ArrayList<int[]> getOpinions() {
 return opinions;
 }

 void punched() {
 health -= 20;
 }

98

 void slapped() {
 health -= 10;
 }

 void hugged() {
 health += 10;
 if(health>100) {
 health = 100;
 }
 }

 void kissed() {
 health += 20;
 if(health>100) {
 health = 100;
 }
 }
}

InitPanel.java

import java.awt.BorderLayout;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

//import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JCheckBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
//import javax.swing.JSlider;
import javax.swing.JSpinner;
import javax.swing.SpinnerListModel;
import javax.swing.SpinnerNumberModel;

public class InitFrame extends JFrame implements ActionListener {
 private boolean initialized;
 private boolean uservars;
 private JPanel initPanel = new JPanel();
 private JPanel buttonPanel = new JPanel();
 private String[] gList = { "10", "12", "15", "20", "24", "25", "30", "40",
"50", "60" };
 private JSpinner gSpin = new JSpinner();
 private JSpinner eSpin = new JSpinner();
 private JSpinner meSpin = new JSpinner();
 private JSpinner fSpin = new JSpinner();
 private JSpinner wSpin = new JSpinner();
 private JSpinner tSpin = new JSpinner();
 private JSpinner sSpin = new JSpinner();
 private JSpinner vSpin = new JSpinner();
 private JSpinner twfSpin = new JSpinner();
 private JSpinner twwSpin = new JSpinner();

99

 private JSpinner maxtSpin = new JSpinner();
 private JCheckBox vCheck= new JCheckBox("Visualize?");
 private JCheckBox lCheck = new JCheckBox("Log Results?");
 private JButton okbutton = new JButton();
 private JButton canbutton = new JButton();

 public InitFrame(boolean yn) {
 if(yn) {
 initialized = false;
 uservars = true;
 try {
 this.setTitle("Initialize Variables");
 this.setResizable(false);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.getContentPane().setLayout(new BorderLayout());

 initPanel.setLayout(new GridLayout(12,2,10,10));
 initPanel.add(new JLabel("Gridsize: "));
 gSpin.setModel(new SpinnerListModel(gList));
 gSpin.setValue("20");
 gSpin.setAlignmentY(1);
 initPanel.add(gSpin);
 initPanel.add(new JLabel("Entities:"));
 eSpin.setModel(new SpinnerNumberModel(10, 1, 20, 1));
 initPanel.add(eSpin);
 initPanel.add(new JLabel("Max Entities:"));
 meSpin.setModel(new SpinnerNumberModel(20, 1, 20, 1));
 initPanel.add(meSpin);
 initPanel.add(new JLabel("Food Quantity:"));
 fSpin.setModel(new SpinnerNumberModel(100, 0, 100000, 1));
 initPanel.add(fSpin);
 initPanel.add(new JLabel("Water Quantity:"));
 wSpin.setModel(new SpinnerNumberModel(100, 0, 100000, 1));
 initPanel.add(wSpin);
 initPanel.add(new JLabel("Median Temperment:"));
 tSpin.setModel(new SpinnerNumberModel(0,-50,50,1));
 initPanel.add(tSpin);
 initPanel.add(new JLabel("Stealing Norm:"));
 sSpin.setModel(new SpinnerNumberModel(0,-50,50,1));
 initPanel.add(sSpin);
 initPanel.add(new JLabel("Violence Norm:"));
 vSpin.setModel(new SpinnerNumberModel(0,-50,50,1));
 initPanel.add(vSpin);
 initPanel.add(new JLabel("Turns W/O Food: "));
 twfSpin.setModel(new SpinnerNumberModel(50,0,100,1));
 initPanel.add(twfSpin);
 initPanel.add(new JLabel("Turns W/O Water: "));
 twwSpin.setModel(new SpinnerNumberModel(50,0,100,1));
 initPanel.add(twwSpin);
 initPanel.add(new JLabel("Max Turns: "));
 maxtSpin.setModel(new SpinnerNumberModel(50000,1,100000,1));
 initPanel.add(maxtSpin);
 vCheck.setSelected(true);
 initPanel.add(vCheck);
 lCheck.setSelected(false);
 initPanel.add(lCheck);

100

 buttonPanel.setLayout(new GridLayout(1,2,10,10));
 okbutton.setActionCommand("OK");
 okbutton.setToolTipText("OK");
 okbutton.setText("OK");
 okbutton.addActionListener(this);
 buttonPanel.add(okbutton);
 canbutton.setActionCommand("CANCEL");
 canbutton.setToolTipText("CANCEL");
 canbutton.setText("CANCEL");
 canbutton.addActionListener(this);
 buttonPanel.add(canbutton);

 this.getContentPane().add(initPanel, BorderLayout.NORTH);
 this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
 this.pack();
 this.setVisible(true);

 }catch(Exception ex) {
 ex.printStackTrace();
 }
 }else{
 initialized = true;
 uservars = false;
 }
 }

 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if(cmd.equals("OK")) {
 initialized = true;
 }
 if(cmd.equals("CANCEL")) {
 System.exit(0);
 }
 }

 public boolean initialized() {
 return initialized;
 }

 public boolean printLog() {
 return lCheck.isSelected();
 }

 public int getGrid() {
 return Integer.parseInt(gSpin.getValue().toString());
 }

 public int getEntity() {
 return Integer.parseInt(eSpin.getValue().toString());
 }

 public int getMaxE() {
 return Integer.parseInt(meSpin.getValue().toString());
 }

 public int getFood() {

101

 return Integer.parseInt(fSpin.getValue().toString());
 }

 public int getWater() {
 return Integer.parseInt(wSpin.getValue().toString());
 }

 public int getMT() {
 return Integer.parseInt(tSpin.getValue().toString());
 }

 public int getS() {
 return Integer.parseInt(sSpin.getValue().toString());
 }

 public int getV() {
 return Integer.parseInt(vSpin.getValue().toString());
 }

 public int getTWF() {
 return Integer.parseInt(twfSpin.getValue().toString());
 }

 public int getTWW() {
 return Integer.parseInt(twwSpin.getValue().toString());
 }

 public int getMaxT() {
 return Integer.parseInt(maxtSpin.getValue().toString());
 }

 public boolean getVisualize() {
 return vCheck.isSelected();
 }

 public boolean getVars() {
 return uservars;
 }
}

Norms.java

public class Norms {
 private int[] norms;
 public Norms() {
 norms = new int[2];
 norms[0] = 0;
 norms[1] = 0;
 }

 public Norms(int violence, int stealing) {
 norms = new int[3];
 norms[0] = violence;
 norms[1] = stealing;
 }

102

 public void updateNorms(int i, int a) {
 norms[i] += a;
 if(norms[i]>50) {
 norms[i] = 50;
 }
 if(norms[i]<-50) {
 norms[i] = -50;
 }
 }

 int getV() {
 return norms[0];
 }

 int getS() {
 return norms[1];
 }
}

Pathfinder.java

import java.util.ArrayList;
import java.io.*;
public class Pathfinder {
 private int sx;
 private int sy;
 private int ex;
 private int ey;
 private int[][] map;
 //new
 private int min;
 private int max;

 //added max
 public Pathfinder(int x1, int y1, int[] target, int[][] m, int min2, int
max2) {
 sx = x1;
 sy = y1;
 ex = target[0];
 ey = target[1];
 map = m;
 //new
 min = min2;
 max = max2;
 }

 public int getDistance(int cx, int cy, int tx, int ty) {
 int x = Math.abs(cx-tx);
 int y = Math.abs(cy-ty);
 int h = 0;
 if(x>y) {
 h = 14*y + 10*(x-y);
 }else{

103

 h = 14*x + 10*(y-x);
 }
 return h;
 }

 public void openNodes(Node n, NodeList o, NodeList c) {
 Node n2;
 int g = 0;
 int h = 0;
 for(int i=-1; i<2; i++) {
 for(int j=-1; j<2; j++) {
 g = getDistance(n.x, n.y, n.x+i, n.y+j) + n.g;
 h = getDistance(ex, ey, n.x+i, n.y+j);
 n2 = new Node(n.x+i, n.y+j, n.x, n.y, g+h, g, h);
 //new
 if((n.x+i>=min)&&(n.y+j>=min)&&(n.x+i<max)&&(n.y+j<max)) {
 //changed this to make it work
 if(!(i==0&&j==0)&&(map[n.x+i][n.y+j] == 0)&&(c.exists(n2)==-
1)) {
 if(o.exists(n2)>=0) {
 o.replaceIfBetterG(n2, o.exists(n2));
 }else{
 //System.out.println("Added " + n2.x + "," + n2.y + " to
the open list");
 o.add(n2);
 }
 }
 }
 }
 }
 }

 public int[] findPath() {
 NodeList open = new NodeList();
 NodeList closed = new NodeList();
 NodeList path = new NodeList();
 Node n = new Node(sx, sy, 0, 0, 0, 0, 0);
 Node start = n;
 Node n2;
 Node end = new Node(ex, ey, 0,0,0,0,0);
 int result[] = new int[2];
 open.add(n);
 while((closed.exists(end)<0)&&(open.size()>0)) {
 n = open.getBestF();

 //System.out.println("Checking " + n.x + "," + n.y);
 open.remove(n);
 closed.add(n);
 openNodes(n, open, closed);
 /*
 System.out.println("*********************************");
 System.out.println("Open Contents");
 open.printContents();
 System.out.println("Closed Contents");
 closed.printContents();
 /*
 try {

104

 System.in.read();
 }catch(IOException e) {

 }
 */
 }
 n2 = closed.get(closed.size()-1);
 while(n2!=start) {
 path.add(n2);
 n2 = closed.get(closed.findParent(n2));
 }
 path.add(n);
 //System.out.println("\n*********************************");
 /*System.out.println("Final Path");
 for(int i=path.size()-2; i>=0; i--) {
 System.out.println(path.get(i).x +","+path.get(i).y);
 }
 */
 if(path.size()>1) {
 result[0] = path.get(path.size()-2).x;
 result[1] = path.get(path.size()-2).y;
 }else{
 result[0] = path.get(path.size()-1).x;
 result[1] = path.get(path.size()-1).y;
 }
 return result;

 }
}

class Node {
 public int x;
 public int y;
 public int px;
 public int py;
 public int f;
 public int g;
 public int h;

 public Node(int x1, int y1, int px1, int py1, int f1, int g1, int h1) {
 x = x1;
 y = y1;
 px = px1;
 py = py1;
 f = f1;
 g = g1;
 h = h1;
 }
}

class NodeList {
 ArrayList<Node> nodes;

 public NodeList() {
 nodes = new ArrayList<Node>();
 }

105

 void add(Node n) {
 nodes.add(n);
 }

 void replaceIfBetterG(Node n, int i) {
 if(n.g<nodes.get(i).g) {
 //new
 //System.out.println("Replacing " + n.x + "," + n.y + " G value " +
nodes.get(i).g + " with " + n.g);
 nodes.set(i,n);
 }
 }

 int size() {
 return nodes.size();
 }

 Node get(int i) {
 return nodes.get(i);
 }

 void remove(Node n) {
 nodes.remove(n);
 }

 Node getBestF() {
 Node n = nodes.get(0);
 for(int i=1; i<nodes.size(); i++) {
 if(nodes.get(i).f<n.f) {
 n = nodes.get(i);
 }
 }
 return n;
 }

 int exists(Node n) {
 int i=-1;
 for(int j=0; j<nodes.size(); j++) {
 if((n.x==nodes.get(j).x)&&(n.y==nodes.get(j).y)) {
 i = j;
 }
 }
 return i;
 }

 void printContents() {
 for(int i=0; i<nodes.size(); i++) {
 //System.out.println(i+": "+nodes.get(i).x+","+nodes.get(i).y + "
Parent: " + nodes.get(i).px +"," + nodes.get(i).py + " F: " + nodes.get(i).f
+ " G: " + nodes.get(i).g + " H: " + nodes.get(i).h);
 }
 }

 int findParent(Node n) {
 int h=-1;
 for(int i=0; i<nodes.size(); i++) {
 if((n.px==nodes.get(i).x)&&(n.py==nodes.get(i).y)) {

106

 //System.out.println(i);
 h = i;
 }
 }
 return h;
 }
}

ResourceBox.java

import java.util.Random;

public class ResourceBox {
 private int resetq;
 private int quantity;
 private int xpos;
 private int ypos;
 private int width;
 private int type;

 public ResourceBox(Random r, int q, int maxpos, int minpos, int t, int
grid, int[][] cm) {
 quantity = q;
 resetq = q;
 width = 4*grid;
 xpos = r.nextInt(maxpos-4)+minpos;
 ypos = r.nextInt(maxpos-4)+minpos;
 while(cm[xpos/grid][ypos/grid] != 0) {
 xpos = r.nextInt(maxpos-4)+minpos;
 ypos = r.nextInt(maxpos-4)+minpos;
 }
 type = t;
 }

 public void setQuantity(int n) {
 quantity = n;
 }

 public int getQuantity() {
 return quantity;
 }

 void decQuantity() {
 quantity--;
 }

 public int getxpos() {
 return xpos;
 }

 public int getypos() {
 return ypos;
 }

107

 public int getwidth() {
 return width;
 }

 public int getType() {
 return type;
 }

 public void reset() {
 quantity = resetq;
 }
}

Simulation.java

import java.awt.Color;
import java.util.Random;
import java.util.ArrayList;

public class Simulation {
 static final Random r = new Random();
 private static final int maxage = 10000;
 private ArrayList<Entity> denziens;
 private Norms normsystem;
 private ResourceBox foodbox;
 private ResourceBox waterbox;
 private Pathfinder pf;
 private int[][] collisionmap;
 private int[][] positionmap;
 private int turn;
 private String log;
 private int maxpop;
 private int minpos;
 private int maxpos;
 private int gridsize;
 private int births;
 private int murders;
 private int slaps;
 private int punches;
 private int hugs;
 private int kisses;
 private int donations;
 private int thefts;
 private int twf;
 private int tww;
 private int maxtwf;
 private int maxtww;

 public Simulation(int entitycount, int maxecount, int foodcount, int
watercount, int maxsize, int grid, int mt, int v, int s, int mtwf, int mtww)
{
 r.setSeed(System.currentTimeMillis());
 maxpop = maxecount;
 minpos = 0;

108

 maxpos = maxsize;
 gridsize = grid;
 collisionmap = new int [maxpos+1][maxpos+1];
 positionmap = new int[maxpos+1][maxpos+1];
 denziens = new ArrayList<Entity>();
 normsystem = new Norms(v, s);
 foodbox = new ResourceBox(r, foodcount, maxpos, minpos,1, gridsize,
collisionmap);
 loadBoxToMap(foodbox);
 waterbox = new ResourceBox(r, watercount, maxpos, minpos, 2, gridsize,
collisionmap);
 loadBoxToMap(waterbox);
 turn = 0;
 log = "";
 births = 0;
 murders = 0;
 slaps = 0;
 punches = 0;
 hugs = 0;
 kisses = 0;
 donations = 0;
 thefts = 0;
 maxtwf = mtwf;
 maxtww = mtww;
 twf = 0;
 tww = 0;

 for(int i=0; i<entitycount; i++) {
 denziens.add(new Entity(r, maxpos, minpos, turn, gridsize, i, mt));

while(collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] !=
0) {
 denziens.set(i, new Entity(r, maxpos, minpos, turn, gridsize, i,
mt));
 }
 collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] =
1;
 positionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] =
i;
 }
 }

 public Simulation() {
 denziens = null;
 }

 private int collision(int[] e) {
 if(e[0]<minpos||e[0]>maxpos||e[1]<minpos||e[1]>maxpos) {
 return -10;
 }else{
 return collisionmap[e[0]][e[1]];
 }
 }

 public int distanceTo(int cx, int tx, int cy, int ty) {
 int x = Math.abs(cx-tx);
 int y = Math.abs(cy-ty);

109

 int h = 0;
 if(x>y) {
 h = 14*y + 10*(x-y);
 }else{
 h = 14*x + 10*(y-x);
 }
 return h;
 }

 private void closestBoxSpot(Entity e, ResourceBox r) {
 int ex = e.getxpos();
 int ey = e.getypos();
 int rx = r.getxpos();
 int ry = r.getypos();
 int distance = 100000;

 for(int i=-1; i<5; i++) {
 for(int j=-1; j<5; j++) {
 if((rx+i>=minpos)&&(ry+j>=minpos)&&(rx+i<maxpos)&&(ry+j<maxpos))
{
 if((distanceTo(ex, rx+i, ey,
ry+j)<distance)&&(collisionmap[rx+i][ry+j]==0)) {
 e.setTarget(rx+i, ry+j);
 distance = distanceTo(ex, rx+i, ey, ry+j);
 }
 }
 }
 }
 }

 private void closestEntitySpot(Entity e) {
 int ex = e.getxpos();
 int ey = e.getypos();
 Entity t = denziens.get(e.getInteractionTarget());
 int tx = t.getxpos();
 int ty = t.getypos();
 int distance = 1000000;
 for(int i=-1; i<2; i++) {
 for(int j=-1; j<2; j++) {
 if((tx+i>=minpos)&&(ty+j>=minpos)&&(tx+i<maxpos)&&(ty+j<maxpos))
{
 if((distanceTo(ex, tx+i, ey,
ty+j)<distance)&&(collisionmap[tx+i][ty+j]==0)) {
 e.setTarget(tx+i, ty+j);
 distance = distanceTo(ex, tx+i, ey, ty+j);
 }
 }
 }
 }
 }

 private int[] freeSurroundingSpot(Entity e) {
 int ex = e.getxpos();
 int ey = e.getypos();
 int a[] = new int[2];
 a[0] = -1;
 a[1] = -1;

110

 for(int i=-1; i<2; i++) {
 for(int j=-1; j<2; j++) {
 if((ex+i>=minpos)&&(ey+j>=minpos)&&(ex+i<maxpos)&&(ey+j<maxpos))
{
 if(collisionmap[ex+i][ey+j]==0) {
 a[0] = ex+i;
 a[1] = ey+j;
 }
 }
 }
 }
 return a;
 }

 private void combineOpinions(Entity s1, Entity s2, Entity t) {
 ArrayList<int[]> o1 = s1.getOpinions();
 ArrayList<int[]> o2 = s2.getOpinions();
 ArrayList<int[]> opinions = new ArrayList<int[]>();
 int[] temp = new int[2];
 for(int i=0; i<o1.size(); i++) {
 opinions.add(o1.get(i));
 }
 for(int j=0; j<o2.size(); j++) {
 for(int k=0; k<opinions.size(); k++) {
 if(o2.get(j)[0]==opinions.get(k)[0]) {
 temp[0] = o2.get(j)[0];
 temp[1] = (o2.get(j)[1]+opinions.get(k)[1])/2;
 opinions.set(k, temp);
 }else{
 opinions.add(o2.get(j));
 }
 }
 }
 }

 private int randomEntity(int e) {
 int t = r.nextInt(denziens.size());
 while((t == e)||(!denziens.get(t).isAlive())) {
 t = r.nextInt(denziens.size());
 }
 return t;
 }

 private String doTalk(int e, int t) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 String l = "";
 if(Math.abs(a.getTemperment()-b.getTemperment())<50) {
 l = " succeeded.\n";
 a.updateOpinion(t,1);
 b.updateOpinion(e,1);
 }else{
 l = " failed.\n";
 a.updateOpinion(t,-1);
 b.updateOpinion(e,-1);
 }
 return l;

111

 }

 private void doHug(int e, int t) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 normsystem.updateNorms(0,1);
 a.updateOpinion(t, 5);
 b.updateOpinion(e, 5);
 hugs++;
 }

 private void doSlap(int e, int t) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 normsystem.updateNorms(0,-1);
 a.updateOpinion(t, -5);
 b.updateOpinion(e, -5);
 b.slapped();
 slaps++;
 }

 private void doKiss(int e, int t) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 normsystem.updateNorms(0,3);
 a.updateOpinion(t, 10);
 b.updateOpinion(e, 10);
 kisses++;
 }

 private void doPunch(int e, int t) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 normsystem.updateNorms(0,-3);
 a.updateOpinion(t, -10);
 b.updateOpinion(e, -10);
 kisses++;
 }

 private void doKill(int e, int t) {
 normsystem.updateNorms(0,-5);
 denziens.get(t).die();
 murders++;
 }

 private void doGive(int e, int t, boolean what) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 if(what) {
 a.incFood();
 b.decFood();
 }else{
 a.incWater();
 b.decWater();
 }
 normsystem.updateNorms(1,1);
 a.updateOpinion(t, 3);

112

 b.updateOpinion(e, 3);
 donations++;
 }

 private void doSteal(int e, int t, boolean what) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 if(what) {
 a.incFood();
 b.decFood();
 }else{
 a.incWater();
 b.decWater();
 }
 normsystem.updateNorms(1,-1);
 a.updateOpinion(t, -7);
 b.updateOpinion(e, -7);
 thefts++;
 }

 private void doMate(int e, int t) {
 Entity a = denziens.get(e);
 Entity b = denziens.get(t);
 int mt = (a.getTemperment()+b.getTemperment())/2;
 Entity c = new Entity(r, maxpos, minpos, turn, gridsize,
denziens.size(), mt);
 int[] pos = freeSurroundingSpot(b);
 c.setxpos(pos[0]);
 c.setypos(pos[1]);
 denziens.add(c);
 a.updateOpinion(t,50);
 b.updateOpinion(e,50);
 combineOpinions(a,b,c);
 //logic behind this:
 //need to balance norm changes so that things don't spiral out of
control
 //births will soften a society and make it less prone to violence?
 normsystem.updateNorms(0,5);
 births++;
 }

 private int closestEntityWith(int type, Entity e) {
 int x = e.getxpos();
 int y = e.getypos();
 int x2;
 int y2;
 int distance = 1000000;
 int target = -1;
 for(int i=0; i<denziens.size(); i++) {
 x2 = denziens.get(i).getxpos();
 y2 = denziens.get(i).getypos();
 if(!((x==x2)&&(y==y2))&&(distanceTo(x,x2,y,y2)<distance)) {
 switch(type) {
 case 0:
 if(denziens.get(i).getFoodCount()>0) {
 target = i;
 }

113

 break;
 case 1:
 if(denziens.get(i).getWaterCount()>0) {
 target = i;
 }
 }
 }
 }
 return target;
 }

 private void randomTarget(Entity e) {
 int x = minpos + (r.nextInt(maxpos-minpos));
 int y = minpos + (r.nextInt(maxpos-minpos));
 while(collisionmap[x][y] != 0) {
 x = minpos + (r.nextInt(maxpos-minpos));
 y = minpos + (r.nextInt(maxpos-minpos));
 }
 e.setTarget(x, y);
 }

 private boolean surrounded(Entity e) {
 int x = 0;
 int y = 0;
 boolean result = true;
 for(int i=-1; i<=1; i++) {
 for(int j=-1; j<=1; j++) {
 x = e.getxpos() + i;
 y = e.getypos() + j;
 if(x>=minpos&&y>=minpos&&x<=maxpos&&y<=maxpos) {
 if(collisionmap[x][y] == 0) {
 result = false;
 }
 }
 }
 }
 return result;
 }

 void loadBoxToMap(ResourceBox b) {
 int x = b.getxpos();
 int y = b.getypos();
 for(int i=0; i<4; i++) {
 for(int j=0; j<4; j++) {
 collisionmap[x+i][y+j] = 1;
 }
 }
 }

 void nextTurn() {
 if(maxtwf <= twf) {
 foodbox.reset();
 twf=0;
 }
 if(maxtww <= tww) {
 waterbox.reset();
 tww=0;

114

 }
 turn++;
 /*System.out.println(turn);
 for(int k=0; k<maxpos; k++) {
 for(int l=0; l<maxpos; l++) {
 System.out.print(collisionmap[k][l]);
 }
 System.out.println();
 }
 System.out.println("\n");*/
 for(int i=0; i<denziens.size(); i++) {
 denziens.get(i).updateVitals(turn, maxage);
 if(denziens.get(i).isAlive()) {
 if(surrounded(denziens.get(i))) {
 denziens.get(i).zeroVel();
 }else{
 switch(denziens.get(i).getAction()) {
 case 0:
 denziens.get(i).chooseAction(r, getPopulation());
 break;
 case 1:
 denziens.get(i).zeroVel();
 if(denziens.get(i).getFoodCount()>0) {
 denziens.get(i).eat();
 log += "Entity " + i + " ate. Now has " +
denziens.get(i).getFoodCount() + ".\n";
 denziens.get(i).setAction(0);
 }else{
 denziens.get(i).setAction(3);
 }
 break;
 case 2:
 denziens.get(i).zeroVel();
 if(denziens.get(i).getWaterCount()>0) {
 denziens.get(i).drink();
 log += "Entity " + i + " drank. Now has " +
denziens.get(i).getWaterCount() + ".\n";
 denziens.get(i).setAction(0);
 }else{
 denziens.get(i).setAction(4);
 }
 break;
 case 3:
 if(!denziens.get(i).hasTarget()) {

denziens.get(i).setInteractionTarget(closestEntityWith(0,denziens.get(i)));
 denziens.get(i).setResourceAction(normsystem,
foodbox, getPopulation());

if(denziens.get(i).getResourceAction()!=0&&denziens.get(i).getInteractionTarg
et()==-1){
 denziens.get(i).setAction(5);
 }else{
 denziens.get(i).setHasTarget();
 }
 }else{
 if(denziens.get(i).atTarget()) {

115

 switch(denziens.get(i).getResourceAction()) {
 case 0:
 if(foodbox.getQuantity()>0) {
 denziens.get(i).incFood();
 foodbox.decQuantity();
 log += "Entity " + i + " got food. Food
Count: " + denziens.get(i).getFoodCount() + ".\n";
 }else{
 denziens.get(i).noTarget();
 }
 break;
 case 1:

if(denziens.get(denziens.get(i).getInteractionTarget()).getFoodCount()>0) {

doGive(i,denziens.get(i).getInteractionTarget(), true);
 }else{
 denziens.get(i).noTarget();
 }
 break;
 case 2:

if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) {

doSteal(i,denziens.get(i).getInteractionTarget(), true);
 }else{
 denziens.get(i).noTarget();
 }
 break;
 }
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 }else{
 if(denziens.get(i).getResourceAction() == 0) {
 if(foodbox.getQuantity()>0) {
 closestBoxSpot(denziens.get(i), foodbox);
 pf = new
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(),
denziens.get(i).getTarget(), collisionmap, minpos, maxpos);
 denziens.get(i).setVel(pf.findPath());
 }else{
 denziens.get(i).noTarget();
 }
 }else{

if(denziens.get(denziens.get(i).getInteractionTarget()).getFoodCount()>0) {
 closestEntitySpot(denziens.get(i));
 pf = new
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(),
denziens.get(i).getTarget(), collisionmap, minpos, maxpos);
 denziens.get(i).setVel(pf.findPath());
 }else{
 denziens.get(i).noTarget();
 }
 }
 }
 }

116

 break;
 case 4:
 if(!denziens.get(i).hasTarget()) {

denziens.get(i).setInteractionTarget(closestEntityWith(0,denziens.get(i)));
 denziens.get(i).setResourceAction(normsystem,
waterbox, getPopulation());

if(denziens.get(i).getResourceAction()!=0&&denziens.get(i).getInteractionTarg
et()==-1){
 denziens.get(i).setAction(5);
 }else{
 denziens.get(i).setHasTarget();
 }
 }else{
 if(denziens.get(i).atTarget()) {
 switch(denziens.get(i).getResourceAction()) {
 case 0:
 if(waterbox.getQuantity()>0) {
 denziens.get(i).incWater();
 waterbox.decQuantity();
 log += "Entity " + i + " got water.
Water Count: " + denziens.get(i).getWaterCount() + ".\n";
 }else{
 denziens.get(i).noTarget();
 }
 break;
 case 1:

if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) {

doGive(i,denziens.get(i).getInteractionTarget(), true);
 }else{
 denziens.get(i).noTarget();
 }
 break;
 case 2:

if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) {

doSteal(i,denziens.get(i).getInteractionTarget(), true);
 }else{
 denziens.get(i).noTarget();
 }
 break;
 }
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 }else{
 if(denziens.get(i).getResourceAction() == 0) {
 if(foodbox.getQuantity()>0) {
 closestBoxSpot(denziens.get(i), waterbox);
 pf = new
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(),
denziens.get(i).getTarget(), collisionmap, minpos, maxpos);
 denziens.get(i).setVel(pf.findPath());
 }else{

117

 denziens.get(i).noTarget();
 }
 }else{

if(denziens.get(denziens.get(i).getInteractionTarget()).getWaterCount()>0) {
 closestEntitySpot(denziens.get(i));
 pf = new
Pathfinder(denziens.get(i).getxpos(), denziens.get(i).getypos(),
denziens.get(i).getTarget(), collisionmap, minpos, maxpos);
 denziens.get(i).setVel(pf.findPath());
 }else{
 denziens.get(i).noTarget();
 }
 }
 }
 }
 break;
 case 5:
 if(!denziens.get(i).hasTarget()) {
 randomTarget(denziens.get(i));
 denziens.get(i).setHasTarget();
 }else{
 if(denziens.get(i).atTarget()) {
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 }else{
 pf = new Pathfinder(denziens.get(i).getxpos(),
denziens.get(i).getypos(), denziens.get(i).getTarget(), collisionmap, minpos,
maxpos);
 denziens.get(i).setVel(pf.findPath());
 }
 }
 break;
 case 6:
 if(!denziens.get(i).hasTarget()) {

denziens.get(i).setInteractionTarget(randomEntity(i));
 denziens.get(i).setInteraction(normsystem);
 denziens.get(i).setHasTarget();
 }else{

if(denziens.get(denziens.get(i).getInteractionTarget()).isAlive()) {
 if(denziens.get(i).atTarget()) {
 switch(denziens.get(i).getInteraction()) {
 case 0:
 log += "Entity " + i + " attempted to
talk to Entity " + denziens.get(i).getInteractionTarget() + ". It";
 log += doTalk(i,
denziens.get(i).getInteractionTarget());
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 case 1:
 log += "Entity " + i + " attempted to hug
Entity " + denziens.get(i).getInteractionTarget() + ".\n";
 doHug(i,
denziens.get(i).getInteractionTarget());

118

 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 case 2:
 log += "Entity " + i + " slapped Entity "
+ denziens.get(i).getInteractionTarget() + ".\n";
 doSlap(i,
denziens.get(i).getInteractionTarget());
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 case 3:
 log += "Entity " + i + " kissed Entity "
+ denziens.get(i).getInteractionTarget() + ".\n";
 doKiss(i,
denziens.get(i).getInteractionTarget());
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 case 4:
 log += "Entity " + i + " punched Entity "
+ denziens.get(i).getInteractionTarget() + ".\n";
 doPunch(i,
denziens.get(i).getInteractionTarget());
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 case 5:
 log += "Entity " + i + " attempted to
mate with Entity " + denziens.get(i).getInteractionTarget();

if(foodbox.getQuantity()<20&&waterbox.getQuantity()<20) {
 log += " but decided against it due to
lack of resources.\n";
 }else
if(surrounded(denziens.get(denziens.get(i).getInteractionTarget()))||getPopul
ation()>=maxpop) {
 log += " but decided against it
because it's too crowded.\n";
 }else{
 doMate(i,
denziens.get(i).getInteractionTarget());
 log += " and a bouncing fully
functional adult was born.\n";
 }
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 case 6:
 log += "Entity " + i + " killed Entity "
+ denziens.get(i).getInteractionTarget() + ".\n";
 doKill(i,
denziens.get(i).getInteractionTarget());
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 break;
 }

119

 }else{
 closestEntitySpot(denziens.get(i));
 pf = new Pathfinder(denziens.get(i).getxpos(),
denziens.get(i).getypos(), denziens.get(i).getTarget(), collisionmap, minpos,
maxpos);
 denziens.get(i).setVel(pf.findPath());
 }
 }else{
 denziens.get(i).noTarget();
 denziens.get(i).setAction(0);
 }
 }
 break;
 }

collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 0;

positionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 0;
 if(collision(denziens.get(i).premove())==0) {
 denziens.get(i).move();
 }

collisionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = 1;

positionmap[denziens.get(i).getxpos()][denziens.get(i).getypos()] = i;
 }
 }
 }
 if(foodbox.getQuantity()==0) {
 twf++;
 }
 if(waterbox.getQuantity()==0) {
 tww++;
 }
 }

 //Start stuff for drawing
 int getDenziensCount() {
 return denziens.size();
 }

 int getPopulation() {
 int p = 0;
 for(int i=0; i<denziens.size(); i++) {
 if(denziens.get(i).isAlive()) {
 p++;
 }
 }
 return p;
 }

 int getEntityXpos(int i) {
 return denziens.get(i).getxpos()*gridsize;
 }

 int getEntityYpos(int i) {
 return denziens.get(i).getypos()*gridsize;

120

 }

 int getEntityWidth(int i) {
 return denziens.get(i).getwidth();
 }

 Color getEntityColor(int i) {
 return denziens.get(i).getColor();
 }

 int getBoxXpos(int i) {
 int n = 0;
 switch(i) {
 case 0:
 n = foodbox.getxpos()*gridsize;
 break;
 case 1:
 n = waterbox.getxpos()*gridsize;
 break;
 }
 return n;
 }

 int getBoxYpos(int i) {
 int n = 0;
 switch(i) {
 case 0:
 n = foodbox.getypos()*gridsize;
 break;
 case 1:
 n = waterbox.getypos()*gridsize;
 break;
 }
 return n;
 }

 int getBoxWidth(int i) {
 int n = 0;
 switch(i) {
 case 0:
 n = foodbox.getwidth();
 break;
 case 1:
 n = waterbox.getwidth();
 break;
 }
 return n;
 }

 boolean isEntityAlive(int i) {
 return denziens.get(i).isAlive();
 }

 //End Stuff for drawing

 //Start Stuff for menus

121

 int getBoxQuantity(int i) {
 int n = 0;
 switch(i) {
 case 0:
 n = foodbox.getQuantity();
 break;
 case 1:
 n = waterbox.getQuantity();
 break;
 }
 return n;
 }

 void editBoxQuantity(int i, boolean add) {
 int n = 0;
 if(add) {
 n = 10;
 }else{
 n = -10;
 }
 switch(i) {
 case 0:
 foodbox.setQuantity(foodbox.getQuantity()+n);
 if(add) {
 if(foodbox.getQuantity()>200) {
 foodbox.setQuantity(200);
 }
 }else{
 if(foodbox.getQuantity()<0) {
 foodbox.setQuantity(0);
 }
 }
 break;
 case 1:
 waterbox.setQuantity(waterbox.getQuantity()+n);
 if(add) {
 if(waterbox.getQuantity()>200) {
 waterbox.setQuantity(200);
 }
 }else{
 if(waterbox.getQuantity()<0) {
 waterbox.setQuantity(0);
 }
 }
 break;
 }
 }

 //End stuff for menus

 int getTurn() {
 return turn;
 }

 String getLog() {
 return log;
 }

122

 String getResults() {
 String r = "";
 /*
 r += "Number of turns: " + Integer.toString(turn) + "\n";
 r += "Final Population: " + getPopulation() + "\n";
 r += "Give/Steal: " + normsystem.getGS() + "\n";
 r += "Donations: " + donations + "\n";
 r += "Thefts: " + thefts + "\n";
 r += "Hug/Hit: " + normsystem.getHH() + "\n";
 r += "Hugs: " + hugs + "\n";
 r += "Assaults: " + assaults + "\n";
 r += "Kiss/Kill: " + normsystem.getKK() + "\n";
 r += "Kisses: " + kisses + "\n";
 r += "Murders: " + murders + "\n";
 r += "Births: " + births + "\n";
 */
 r = Integer.toString(turn) + "," + getPopulation() + "," +
normsystem.getS() + "," + donations + "," + thefts + "," +normsystem.getV() +
"," + hugs + "," + slaps + "," + kisses + "," + punches + "," + murders + ","
+ births;
 return r;
 }

 Norms getNorms() {
 return normsystem;
 }
}

Thesis.java

import java.lang.Thread;
import java.io.*;

import javax.swing.*;

public class Thesis {

 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");
 } catch (ClassNotFoundException e1) {
 e1.printStackTrace();
 } catch (InstantiationException e1) {
 e1.printStackTrace();
 } catch (IllegalAccessException e1) {
 e1.printStackTrace();
 } catch (UnsupportedLookAndFeelException e1) {
 e1.printStackTrace();
 }
 InitFrame startFrame;
 int gridsize = 20;
 int ecount = 10;
 int maxecount = 20;
 int foodcount = 100;

123

 int watercount = 100;
 int mediantemperment = 0;
 int steal = 0;
 int violence = 0;
 int twf = 0;
 int tww = 0;
 int maxt = 0;
 boolean visualize = true;
 boolean showFinal = true;
 boolean printLog = false;

 Simulation s;
 DrawingFrame ThesisFrame;
 JFrame finalFrame;
 JPanel finalPanel;
 JTextArea finalText;

 try{
 FileOutputStream fos = new FileOutputStream("output.txt");
 PrintStream ps = new PrintStream(fos);
 System.setOut(ps);
 }catch(IOException e) {

 }

 if(args.length > 0) {
 gridsize = Integer.parseInt(args[0]);
 ecount = Integer.parseInt(args[1]);
 maxecount = Integer.parseInt(args[2]);
 foodcount = Integer.parseInt(args[3]);
 watercount = Integer.parseInt(args[4]);
 mediantemperment = Integer.parseInt(args[5]);
 steal = Integer.parseInt(args[6]);
 violence = Integer.parseInt(args[7]);
 twf = Integer.parseInt(args[8]);
 tww = Integer.parseInt(args[9]);
 maxt = Integer.parseInt(args[10]);
 visualize = Boolean.parseBoolean(args[11]);
 printLog = Boolean.parseBoolean(args[12]);
 showFinal = false;
 }else{
 startFrame = new InitFrame(true);
 while(!startFrame.initialized()) {
 startFrame.repaint();
 }
 startFrame.setVisible(false);
 startFrame.removeAll();
 if(startFrame.getVars()) {
 gridsize = startFrame.getGrid();
 ecount = startFrame.getEntity();
 maxecount = startFrame.getMaxE();
 foodcount = startFrame.getFood();
 watercount = startFrame.getWater();
 mediantemperment = startFrame.getMT();
 steal = startFrame.getS();
 violence = startFrame.getV();

124

 twf = startFrame.getTWF();
 tww = startFrame.getTWW();
 maxt = startFrame.getMaxT();
 visualize = startFrame.getVisualize();
 printLog = startFrame.printLog();
 }
 showFinal = true;
 }

 s = new Simulation(ecount, maxecount, foodcount, watercount,
600/gridsize-1, gridsize, mediantemperment, steal, violence, twf, tww);

 if(visualize) {
 ThesisFrame = new DrawingFrame(s);
 while(!ThesisFrame.done()&&s.getPopulation()>0&&s.getTurn()<maxt) {
 if(ThesisFrame.going()) {
 s.nextTurn();
 try {
 Thread.sleep(ThesisFrame.getspeed());
 }catch(InterruptedException e){
 System.out.println(e);
 }
 }else if(ThesisFrame.step()) {
 s.nextTurn();
 ThesisFrame.stepped();
 }
 ThesisFrame.setSimulation(s);
 ThesisFrame.repaintStuff();
 }
 ThesisFrame.setVisible(false);
 }else{
 while(s.getPopulation()>0&&s.getTurn()<maxt) {
 s.nextTurn();
 }
 }
 if(printLog) {
 System.out.println(s.getResults()+s.getLog());
 }else{
 System.out.println(s.getResults());
 }
 if(showFinal) {
 finalFrame = new JFrame();
 finalPanel = new JPanel();
 finalText = new JTextArea(8,20);
 finalText.setText(s.getResults());
 //finalText.setEditable(false);
 finalPanel.add(finalText);
 finalFrame.getContentPane().add(finalPanel);
 finalFrame.pack();
 finalFrame.setTitle("Results");
 finalFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 finalFrame.setResizable(false);
 finalFrame.setVisible(true);
 }else{
 System.exit(0);
 }
 }

125

}

126

	Eastern Michigan University
	DigitalCommons@EMU
	2008

	Adding simple simulations to video games to improve realism
	Leonard Kinnaird-Heether
	Recommended Citation

	Microsoft Word - Thesis-Final-Version.docx

