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ABSTRACT 

Acrylate-based amphiphilic diblock copolymers show great potential for anti-cancer drug 

transport due to their ability to aggregate into protective core-shell micelles. Using RAFT 

polymerization, copolymers containing poly(acrylic acid) and poly(methyl acrylate) blocks were 

made with high monomer conversion and narrow distributions of molecular weight for eventual 

use in medicinal applications. Based on previous findings of copolymers with low weight 

hydrophobic blocks failing to micellize, it was hypothesized that increasing the poly(methyl 

acrylate) block length would allow for micelle formation. 
1
H-NMR experiments conducted in the 

presence of an aqueous solution yielded diminished and broadened resonances of the lengthened 

hydrophobic block, which confirmed effects of micellization. As a result, a rigid hydrophobic 

core may be substituted with a longer flexible acrylate block for biological use. The adoption of 

longer core chain lengths in a micellar system may be useful in other transport applications when 

precipitation of drugs in vivo remains an issue. 
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Chapter 1: Introduction  

 

Copolymers and Micelle Formation 

 Polymers are macromolecular chains consisting of many subunits that are formed by 

consecutive additions of monomer. Diblock copolymers, in particular, have two characteristic 

subunit types in a single non-repeating AB pattern.
1-3

 Amphiphilic diblock copolymers consist of 

two regions with substantially different solubility properties. For example, a polymer composed 

of a hydrophobic poly(methyl acrylate) and a hydrophilic poly(acrylic acid) block can aggregate 

into micellar structures upon introduction to an aqueous solution.
4
 In this fashion, the 

hydrophobic region of the amphiphilic molecule initiates micellization by collapsing to form the 

core, while the hydrophilic block forms a protective shell.
5
   

Smaller surfactant molecules used as detergents and emulsifiers have long been studied in 

determining the size, shape, and physical properties of various micelles.
6-7

 Relatively high 

concentrations of surfactants have been observed for micelle formation.
8
 The concentration at 

which a block copolymer achieves micellization is referred to as the critical aggregation 

concentration (CAC). Copolymers are more ideal for micellar applications than surfactants due 

to decreased CAC requirements.
9
 Lower copolymer concentrations necessary for micelle 

formation were determined to be a function of dispersion, hydrogen bonding, and electrostatic 

intermolecular forces associated with the hydrophobic block.
10-12

  

 When the CAC is reached for a copolymer, small polymeric micelles form. The micelles 

then coalesce as local concentrations of copolymer are further increased.
13-14

 Micelle dissolution 

can then be triggered by a change in temperature, pH, salt concentration, or light intensity.
15-16

 

Assembly and disassembly of the micelle structure is necessary for delivery device function.  
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 The glass transition temperature (Tg) is a useful indicator for a polymer’s physical 

properties at a given temperature. The Tg provides information on the reversible transition of a 

polymer from a brittle to molten state.
17

 Therefore, the relative chain stiffness related by the Tg  

is believed to have a large effect on the polymer’s ability to form micelles.
18

 Copolymer block 

types containing less rigid acrylate substitutions have a lower Tg, which is historically favored 

for shell blocks.
19

 Micellization due to hydrophobic block collapse is less likely for acrylate core 

types due to the lack of an alpha methyl substitution.   

  

Amphiphilic Copolymer Medicinal Applications 

 Solubility differences within biological transport devices allow for hydrophobic 

molecular transport to exist. For instance, physiologically occurring transporters such as 

low/high density lipoproteins (LDL/HDL) contain a water soluble shell with a hydrophobic core 

analogous to the synthetic amphiphilic micelle.
20

 Micelles have been proposed as a transport 

device for a variety of proteins, genes, and pharmaceuticals with a low therapeutic index.
21-22

      

In addition, encapsulating drugs with relatively low lethal concentrations above the therapeutic 

effect provides additional flexibility in drug design. Polymeric micelles generally exhibit slow 

rates of dissolution in vitro, allowing for retention of loaded drugs for a longer time period, 

which could translate into higher accumulations of drug at a potential target site. For receptor 

mediated drug delivery, hydrophilic shell end cap moieties such as sugar molecules and peptides 

could be attached to target a biological response.
1-3, 23-24

   

Non-bonding methods to entrap lipophilic molecules within the hydrophobic core 

have also been employed. For example, a solution of water, cisplatinum, and poly(ethylene 

glycol-b-aspartic acid) yielded micelles containing the anti-tumor drug.
25-28
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Entrapped doxorubicin has also been found to increase micelle stabilization and prolong the 

release of both bonded and entrapped medicine in vitro.
29

 Re-uptake into the mononuclear 

phagocyte system (MPS) while in the blood stream remains a primary obstacle in designing 

micellar systems resistant to non-selective attack. Attempts are currently being made to optimize 

micelle size and hydrophilic block density in order to resist MPS attack.
30

     

 

Reversible Addition Fragmentation chain Transfer (RAFT) Polymerization 

 Reversible addition fragmentation chain transfer (RAFT) is a controlled radical 

polymerization technique. RAFT polymerizations are typically performed in a solution of   

monomer, chain transfer agent (CTA), and initiator.
31

 Ratios of monomer:CTA and 

CTA:initiator control the degree of polymerization (Dp) and, hence, the molecular weight.
32

  

Reactant ratios are optimized in consideration of viscosity, rate of polymerization, and the 

initiating species. Initiation occurs at higher temperatures in which a radical initiator such as  

2,2′-Azobis(2-methylpropionitrile) (AIBN) forms two equivalents of radical species. The 

radicals formed from the initiator commence chain growth with the addition of monomer. The 

CTA interrupts polymerization during the monomer addition process. In addition, the CTA 

tertiary alkyl group can initiate monomer as a result of chain transfer processes. Polymer radicals 

undergoing chain transfer reversibly form CTA-terminated polymer in the process of increasing 

chain length, as seen in Figure 1. Chain equilibrium also occurs when two growing polymer 

chains exchange the terminal CTA.
33

 The decreased rate of propagation due to chain transfer 

processes yields polymers with a relatively narrow distribution of molecular weights.
34-36

 As 

polymerization is complete, RAFT polymers characteristically contain pendant CTA moieties. 
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 Solution polymerization of RAFT block copolymers requires monomer, homopolymer, 

AIBN, and solvent. A homopolymer:AIBN ratio is used analogous to the initial CTA:AIBN 

homopolymer reaction to make copolymer with a desired molecular weight (Mn).
37-38

 

Reversible chain transfer between the growing diblock chain and the CTA occurs to suspend 

polymerization. In addition, CTA equilibrium between two diblock chains limits the dispersity  

of the second block. Diblock copolymers are prone to radical side reactions, as any radical 

species can add directly to the second monomer type to form new homopolymer.
39

 Additional 

purification steps are taken to remove oligomeric impurities caused by the undesired radical 

reactions. Due to solubility issues of polymerizing a highly hydrophilic block directly, a post-

polymerization reaction such as de-esterification of tert-butyl ester groups to carboxylic acids 

may be used to achieve the amphiphilic diblock copolymer product.
40-41

   

 End group conjugation on either the hydrophobic or hydrophilic blocks will potentially 

play a role in the ability of the copolymer to function as a drug delivery device. Terminal 

isopropyl cyano groups derived from AIBN can be used in a variety of organic reactions 

including nucleophilic addition, nucleophilic acyl substitution, and nitrile hydrolysis.
42-44

   

Terminal CTA moieties can be reduced to a thiol in yielding an attachment site for biological 

motifs or possibly used for polymeric grafting or multi-arm star synthesis.
45-47

 Other CTAs can 

be implemented to perform reactions at benzyl, carboxylic acid, and cyano sites.
48-49

 Acrylic acid 

moieties have also been used to allow for multiple medicine attachments. Although doxorubicin 

has been tested extensively with side chains moieties, drugs such as mitomycin C, mitoxantrone, 

and paclitaxel have also been associated with carboxyl substituted cores.
50
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Figure 1. Reversible Addition Fragmentation chain Transfer (RAFT) Polymerization 
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1
H-NMR/

13
C-NMR (Nuclear Magnetic Resonance) 

 
1
H-NMR and 

13
C-NMR spectra are useful for verifying the presence of CTA resonances 

in RAFT copolymers. With low molecular weight oligomers, CTA resonances are more 

prominent due to a low monomer:CTA ratio. The chemical shifts of particular monomer and 

polymer peaks are also readily observed in 
1
H-NMR. Spectral peak intensities provide 

information regarding the relative amounts of monomer and polymer present.
51

 In general, 

polymer proton resonances appear upfield from monomer protons due to the shielding effect of 

randomly coiled macromolecular structures. The chemical environment of each monomer 

residue is influenced by the stereochemistry of several adjacent neighboring functional groups.
52

 

Therefore, a larger range of methine and methylene resonances is observed in both 
1
H and 

13
C 

spectra for non-stereospecific RAFT polymers. Theoretical molecular weights for de-esterified 

RAFT copolymers determined by the monomer:CTA and second monomer:hompolymer ratios 

are verified by monomer conversion in 
1
H-NMR, and also with 

13
C carbonyl integrations for 

each block type. Effects of micellization can be observed with NMR spectroscopy by the 

presence of diminished resonances from hydrophobic block protons.      

 

E-HSQC (Edited-Heteronuclear Single Quantum Correlation) NMR 

 The two dimensional 
1
H-

13
C E-HSQC NMR (Edited-Heteronuclear Single Quantum 

Correlation) experiment is useful for providing polymer and solvent correlations when peak 

overlap exists. The F2 axis displays proton resonances that can be correlated to the F1 
13

C axis. 

Because E-HSQC NMR is a 
1
H detected method, sensitivity advantages in obtaining phasing 

information over the traditional 
13

C DEPT 135 experiment exist. CH, CH2, and CH3 information 

included with the 2D plot are obtained with shorter collection times than in alternative 1D 

experiments.   
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Size Exclusion Chromatography (SEC)  

Size Exclusion Chromatography (SEC) provides peak intensities as a function of 

retention time. Larger molecules are preferentially excluded from the column and reach the 

detector first.
53

 The exclusionary method provides better separation with shorter experiment 

times in comparison to traditional columns.
54

 In addition, the presence of multimodal 

distributions from side reactions can be observed with homopolymer and diblock copolymer 

sample analysis.
55

 Polydispersity indices close to 1 indicate a relatively narrow distribution of 

chain lengths. Chain growth as a function of reaction time can be monitored by obtaining 

chromatographs at multiple reaction time points. The monomer:CTA and second monomer: 

homopolymer ratios can be used in approximating values for Dp when multi-detector SEC is not 

available. 

 

Justification and Hypothesis 

The RAFT polymerization method yields acrylate polymers of uniform molecular weight, 

which is desirable for medicinal applications. Previous group studies focused on synthesizing 

amphiphilic block copolymers with a rigid methacrylate core block that appeared to form 

micelles when analyzed in 
1
H-NMR experiments. It was determined that micellization did not 

occur for polymers with low Mn flexible blocks. The purpose of this study was to determine 

whether a non-micellar diblock copolymer with a low molecular weight hydrophobic acrylate 

block could be synthesized differently to form useful macroscopic structures. Two additional 

objectives of the study were to achieve efficient monomer conversion and predictable molecular 

weights. The hypothesis of the study was that increasing the core block length on a diblock 

copolymer would improve the effects of micellization when introduced into an aqueous 

environment due to additional hydrophobic intermolecular forces of the acrylate chains.   
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Chapter 2: Experimental 

 

Chain Transfer Agent (CTA) Materials 

 Carbon disulfide (CS2, ≥99.9%), tripotassium phosphate (K3PO4, ≥98%), 1-dodecanethiol 

(≥98%), 2-bromoisobutyric acid (98%), tert-butyl thiol (99%), and 1-bromododecane (97%) 

were purchased from Sigma-Aldrich. The following chemicals were purchased from various 

manufacturers: acetone (Macron Chemicals, ≥99.5%), dichloromethane (DCM, EMD Chemicals, 

99.5%), hexanes (Fischer Chemical, 99.9%), ethyl acetate (Fischer Chemical, 99.9%), 

hydrochloric acid (Fischer Chemical, 37.3%), and chloroform-d (Cambridge Isotope 

Laboratories, 0.03% TMS, 99.8%). 

 

CTA-1 tert-butyl dodecyl carbanotrithioate 

 CTA synthesis was followed according to procedures provided by Skey et al.
48

 

Equimolar amounts of tert-butyl thiol and K3PO4 were added to acetone and allowed to stir for 

10 minutes (Table 1). CS2 was added to the tertiary alkyl thiolate solution (Figure 2).  

1-bromododecane was then added to the solution, forming a KBr precipitate. The solution was 

allowed to stir for 10 hours at room temperature, and the precipitate was removed by suction 

filtration. The precipitate was washed with acetone, and the solvent was removed from the 

product under reduced pressure. The crude product was dissolved in hexanes and purified by 

column chromatography on silica gel to remove the 1-bromododecane reagent. The product was 

collected with ethyl acetate, and the solvent was removed under reduced pressure to yield a 

bright orange solid. The reaction was subsequently scaled up three-fold.  
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1
H-NMR (chloroform-d) δ 3.24-3.28 (S-CH2-(CH2)10CH3), 1.62 (S-C(CH3)3), 1.22-1.42  

(S-CH2-(CH2)10CH3), 0.84-0.88 (S-CH2-(CH2)10CH3), 
13

C-NMR (chloroform-d) δ 224.0  

(S-C=S-S), 54.2(S-C(CH3)3), 36.2 (S-CH2-(CH2)10CH3), 28.0-34.0 (S-CH2-(CH2)10CH3),  

22.8 (S-C(CH3)3), 14.2 (S-CH2-(CH2)10CH3). 

 
 

Figure 2. CTA-1 Chain Transfer Agent Synthesis 

 

 

Table 1. CTA-1 Chain Transfer Agent Reagents 

 

CTA tert-butyl thiol K3PO4 CS2 1-bromododecane acetone Yield Percent Yield 

CTA-1i 1.20 mL 2.61 g 0.7 mL 2.8 mL 20 mL 3.10 g 84.2% 

CTA-1 3.80 mL 7.07 g 6.0 mL 8.0 mL 60 mL 7.48 g 67.5% 

 

 

 

CTA-2 2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoic acid 

 Equimolar amounts of dodecane thiol and K3PO4 were added to acetone and allowed to 

stir for 10 minutes (Table 2). An excess of CS2 was added to the primary alkyl thiolate solution.  

Equimolar 2-bromoisobutyric acid was then added to the solution, forming a KBr precipitate.  

The solution was allowed to stir overnight at room temperature, and the precipitate was removed 

by suction filtration. The precipitate was washed with acetone, and the solvent was removed 

under reduced pressure. The residue was extracted with dichloromethane twice and washed with 

HCl, water, and brine. The solvent was removed from the residue, and the crude product was 

dissolved in ethyl acetate and purified by column chromatography with ethyl acetate on silica gel 

to remove residual reagent. The product shown in Figure 3 was removed from solvent under 

reduced pressure to yield a bright yellow solid.   
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1
H-NMR (chloroform-d) δ 11.0 (COOH not observed) 3.25-3.30 (S-CH2-(CH2)10CH3), 1.91-1.94 

(S-CH2-CH2-(CH2)9CH3), 1.71-1.74 (S-C(CH3)2COOH), 1.15-1.44 (S-(CH2)2-(CH2)9CH3),  

0.83-0.92 (S-(CH2)11-CH3), 
13

C-NMR (chloroform-d) δ 226.2 (S-C=S-S not observed), 178.1 

(COOH), 55.6 (S-C(CH3)2COOH), 37.1 (S-CH2-(CH2)10CH3), 32.0 (S-CH2-CH2-(CH2)9CH3), 

27.8-29.8 (S-(CH2)2-(CH2)8-CH2-CH3), 25.3 (S-C(CH3)2COOH), 22.8 (S-(CH2)10CH2-CH3), 

14.2 (S-(CH2)11-CH3). 

 
 

Figure 3. CTA-2 Chain Transfer Agent Synthesis 

 

 
Table 2. CTA-2 Chain Transfer Agent Reagents 

 

CTA 1-dodecanethiol K3PO4 CS2 2-bromoisobutyric acid acetone Yield Percent Yield 

CTA-2 1.60 mL 1.27 g 1.1 mL 1.05 g 20 mL 1.98 g 90.7% 
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Polymer Materials 

 2,2′-Azobis(2-methylpropionitrile) (AIBN, 98%), methyl acrylate (100 ppm MEHQ 

inhibitor, 99%), tert-butyl acrylate (10-20 ppm MEHQ inhibitor, 98%), and trifluoroacetic acid 

(TFA, 99%) were purchased from Sigma-Aldrich. AIBN was recrystallized from methanol.  

The following solvents were purchased from various manufacturers: dichloromethane (DCM, 

EMD Chemicals, 99.5%), methanol (VDW, 99.8%), hexanes (Fischer Chemical, 99.9%), 

benzene (Sigma-Aldrich, ≥99.9%; Alfa Aeasar, ≥99.5%), tetrahydrofuran (THF, EMD 

chemicals, 250 ppm BHT inhibitor, 99.2%), chloroform-d (Cambridge Isotope Laboratories, 

0.03% TMS, 99.8%), dimethyl sulfoxide-d6 (DMSO-d6
 
Cambridge Isotope Laboratories, 99.9%), 

1,4-dioxane-d8 (Cambridge Isotope Laboratories, 99%), and D2O (Cambridge Isotope 

Laboratories, 99.9%). THF was distilled from sodium and benzophenone for inhibitor removal. 

 

Poly(tert-butyl acrylate)/Poly(methyl acrylate)  

 Homopolymer reactions (Figure 4) were prepared in a similar manner to Chiefari et al.
31

 

In general, the solution viscosity was dependent on the concentration of monomer (Appendix A). 

The monomer:CTA ratio and CTA:AIBN ratio were varied to achieve desired molecular 

weights. Polymers with a variety of molecular weights were synthesized for use in potential 

micellization experiments. A summary of poly(methyl acrylate) and poly(tert-butyl acrylate) 

reactions performed are listed in Table 3.  

 General polymerization procedure: A benzene solution of AIBN was injected into a  

50-mL Schlenk flask. The CTA solid was then added to the reaction vessel. Additional benzene 

was added to the vessel by syringe to achieve the desired volume. Either methyl acrylate or tert-

butyl acrylate was passed through a pipet column of alumina gel to remove the MEHQ inhibitor. 



 

12

The monomer was then added to the flask, and the solution was degassed twice by freeze-pump-

thaw cycling over liquid N2. Most reactions proceeded as a 5-25 mL solution under a stream of 

nitrogen gas in an oil bath at 80 ± 5°C. Reaction times generally did not exceed 24 hours and 

varied depending on the experiment type. In addition, aliquots were removed at time intervals in 

some experiments for further study of monomer conversion and molecular weights of growing 

chains. Polymerized reactions were removed from solution under reduced pressure and 

redissolved in minimal amounts of benzene. A selection of poly(methyl acrylate) samples were 

precipitated into cold hexanes. The majority of poly(tert-butyl acrylate) samples were 

precipitated into 9:1 to 99:1 methanol:water solutions.   

 

 
 

Figure 4. Homopolymer Synthesis 
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Poly(tert-butyl acrylate-b-methyl acrylate)/Poly(methyl acrylate-b-tert-butyl acrylate) 

 Diblock copolymer reactions were performed with a 5:1 homopolymer:AIBN ratio 

(Figure 5). Factors affecting viscosity and rate of monomer conversion were similar to 

homopolymer reactions, as highlighted in Appendix B. Degree of polymerizations for diblock 

copolymers were obtained from the second monomer:homopolymer ratio and confirmed by  

1
H-NMR. A summary of acrylate copolymer reactions performed are listed in Table 4.   

 General polymerization procedure: A benzene solution of AIBN was injected into a  

25-mL Schlenk flask. The homopolymer was then added to the reaction vessel followed with the 

desired volume of benzene added by syringe. Either tert-butyl acrylate or methyl acrylate was 

run through a pipet column of alumina gel to remove the MEHQ inhibitor. The monomer was 

added to the container, and the solution was degassed twice using freeze-pump-thaw cycling 

over liquid N2. Most reactions occurred as a 5-20 mL solution under a stream of N2 gas in an oil 

bath at 80 ± 5°C for approximately 24 hours.   

 

 
 

Figure 5. Diblock Copolymer Synthesis 
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Poly(acrylic acid-b-methyl acrylate)/Poly(methyl acrylate-b-acrylic acid) 

 A de-esterification reaction in a solution of trifluoroacetic acid and methylene chloride 

afforded the synthesis of poly(acrylic acid) from poly(tert-butyl acrylate) blocks as shown in 

Figure 6. A 5:1 TFA:tert-butyl acrylate unit ratio was used, and the solution was allowed to stir 

at room temperature overnight. The solvent was removed under reduced pressure. Either 

poly(acrylic acid-b-methyl acrylate) or poly(methyl acrylate-b-acrylic acid) copolymers were 

precipitated in hexanes to afford the purified amphiphilic diblock copolymer product. A 

summary of copolymer reactions performed are listed in Table 5. 

 

 
 

Figure 6. Amphiphilic Diblock Copolymer Synthesis 

 

 

 

Polymer Characterization 

 NMR sample preparations: 10 mg/mL samples of either homopolymer or non-hydrolyzed 

diblock samples in chloroform-d were prepared in an NMR tube. Amphiphilic copolymer 

samples were prepared in either DMSO-d6 or 1,4-dioxane-d8. Gradient shimming with 16-128  

1
H scans was performed on the samples using a JEOL 400MHz NMR spectrometer. For 

13
C 

experiments, an average of 7000 scans with a 5 second relaxation delay was used to obtain 

spectra. Data processing was performed using the manufacturer's Delta v4.3.6 software. 
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In addition to product verification, 
1
H-NMR was used to determine the rate of monomer 

conversion for both homopolymer and diblock copolymer samples. For polymerizing samples in 

solution, 50 µL aliquots were extracted at various time intervals. Percent conversion was 

calculated based on the number of monomer protons and polymer protons present for a given 

monomer type. For conversion of methyl acrylate to poly(methyl acrylate), the monomer vinyl 

protons were divided by the sum of monomer methyl ester and poly(methyl ester) protons. For 

conversion of tert-butyl acrylate to poly(tert-butyl acrylate), the monomer vinyl protons were 

divided by 1/3 (the sum of monomer tert-butyl ester and poly(tert-butyl ester) protons). In 

general, molecular weights were approximated using 
1
H and 

13
C resonances to verify that block 

ratios were analogous to either the monomer:CTA or second monomer:homopolymer ratio.   

2D 
1
H-

13
C correlations were obtained using E-HSQC (Edited-Heteronuclear Single 

Quantum Correlation) NMR with a 30 mg/mL sample of DAC-1 poly(acrylic acid-b-methyl 

acrylate) in 25% D2O/75% 1,4-dioxane-d8. High resolution 
1
H-NMR and 

13
C-NMR spectra were 

obtained for the x and y projections on the plot. CH, CH2, and CH3 phasing information was also 

included as part of the edited, pulsed gradient sequence to assist in distinguishing multiple 

solvent resonances.  

SEC sample preparation: 4 mg/mL samples of either homopolymer or non-hydrolyzed 

copolymer were prepared in THF. The solvent was sonicated prior to collection for 10 minutes.  

A Shimadzu LC-20AT with a SPD-M20A detector and a Tosoh M0049-903K GPC column were 

used to obtain chromatographs of samples. An Agilent 1100 HPLC with a G1315A detector, 

autosampler, and the Tosoh GPC column were also used for acquiring molecular weight data.   

Either poly(methyl methacrylate) or poly(styrene) standards were analyzed on days of collection 

for calibration.  
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20 µL samples were run for 15 minutes at a 1 mL/min solvent flow rate to obtain 

chromatographs. Molecular weights were obtained using Polymer Laboratory’s Cirrus software 

package. Some Dp values obtained for poly(tert-butyl acrylate) blocks were found to be large 

overestimates of the monomer:CTA or second monomer:homopolymer ratio, and thus 

spectroscopic methods were used to estimate chain length.    

 

Micellization Experiments 

 A 2.5 mg/mL sample of DMA-6 poly(methyl acrylate-b-acrylic acid) (66-b-60) (SEC- 

1
H-NMR) and DAC-1 poly(acrylic acid-b-methyl acrylate) (65-b-194) in varying ratios of 

solvent were analyzed by 
1
H-NMR micellization experiments. Samples with higher 

concentrations of 1,4-dioxane-d8 than D2O were considered to be present in a hydrophobic 

environment. Concentrations of D2O were then raised in samples to simulate an aqueous milieu.  

The hydrophobic block resonances of DMA-6 and DAC-1 were compared to observe 

diminishing or broadening effects of micellization due to the hydrophobic block chain length 

upon increasing D2O concentrations.   
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Table 3. Homopolymer Conditions and Results  

 

poly(methyl acrylate) experiments 

 

Polymer 

ID 
Mon:CTA

a 
[Mon] CTA:AIBN 

CTA 

ID 

Temp
b
 

(⁰C) 
Yield 

Percent 

Recovery 

Reaction 

Time 

HPM-1 398:1 2.0 M 5.0:1 CTA-1 84.6 3491 mg 66.3%
c
 210 min 

HPM-2 381:1 1.0 M 5.1:1 CTA-2 80.0 2346 mg 89.5% 1350 min 

HPM-3 297:1 2.0 M 5.0:1 CTA-1 81.0 2615 mg 49.9%
c
 210 min 

HPM-4 194:1 2.0 M 4.4:1 CTA-2 83.0 2039 mg 19.3%
c
 300 min 

HPM-5 191:1 1.0 M 5.0:1 CTA-2 80.0 685 mg 19.4%
c
 1200 min 

HPM-6 188:1 2.0 M 5.3:1 CTA-1 83.9 3050 mg 57.8%
c
 210 min 

HPM-7 184:1 4.0 M 5.4:1 CTA-1 83.2 7014 mg 66.4%
c
 210 min 

HPM-8 151:1 4.0 M 5.1:1 CTA-1i 75.0 8016 mg N.D.
d
 Overnight 

HPM-9 151:1 2.0 M 5.7:1 CTA-1i 75.0 4203 mg N.D.
d
 Overnight 

HPM-10 98:1 2.0 M 5.1:1 CTA-1 81.0 2868 mg 53.2%
c
 210 min 

HPM-11 98:1 2.0 M 4.9:1 CTA-2 75.0 2333 mg 64.7% Overnight 

HPM-12 97:1 4.0 M 5.1:1 CTA-1 83.2 6640 mg 61.6%
c
 210 min 

HPM-13 82:1 2.1 M 4.4:1 CTA-1i 79.0 3013 mg 79.8% Overnight 

HPM-14 80:1 2.1 M 5.1:1 CTA-1i 80.0 2121 mg 56.2% 1440 min 

HPM-15 78:1 2.0 M 5.1:1 CTA-1 82.5 4159 mg N.D.
d
 210 min 

HPM-16 76:1 2.1 M 4.9:1 CTA-1i 76.9 2749 mg 72.6% 1440 min 

HPM-17 66:1 2.0 M 4.7:1 CTA-2 75.0 2955 mg 40.4% 1200 min 

HPM-18 40:1 2.0 M 5.0:1 CTA-1 82.5 572 mg 20.0%
c
 210 min 

HPM-19 25:1 2.0 M 5.1:1 CTA-1i 75.0 3377 mg 60.2% Overnight 

HPM-20 24:1 2.0 M 4.5:1 CTA-1i 75.0 3485 mg 61.8% Overnight 

 

poly(tert-butyl acrylate) experiments 

 

Polymer 

ID 
Mon:CTA

a 
[Mon] CTA:AIBN 

CTA 

ID 

Temp
b
 

(⁰C) 
Yield 

Percent 

Recovery 

Reaction 

Time 

HPT-1 199:1 2.0 M 5.0:1 CTA-1 81.8 3291 mg 42.2%
c
 210 min 

HPT-2 198:1 4.0 M 5.1:1 CTA-1 81.6 3145 mg 20.2%
c
 210 min 

HPT-3 98:1 4.0 M 5.1:1 CTA-2 81.6 2595 mg 16.4%
c
 210 min 

HPT-4 90:1 2.0 M 11:1 CTA-2 70.0 674 mg 21.1% 30 min 

HPT-5 81:1 2.0 M 4.5:1 CTA-1i 83.0 4225 mg 79.6%
c
 360 min 

HPT-6 65:1 4.0 M 5.0:1 CTA-1 79.5 3936 mg 73.6% 180 min 
a
 Average measured homopolymer PDI = 1.20, range = 1.003-1.65

  

b
 Temperature of oil bath

  

c
 
1
H-NMR monomer conversion/SEC molecular weight sampling

 

d
 Final mass recorded prior to removal of residual solvent 
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Table 4. Diblock Copolymer Conditions and Results 

 

poly(methyl acrylate-b-tert-butyl acrylate) experiments 

 

Polymer 

ID 

Mon:

pma
a [Mon] 

pma:

AIBN 

CTA 

ID 
pma ID 

Temp
b
 

(°C) 
Yield 

Percent 

Recovery 

Reaction 

Time 

DMT-1 412:1 2.0 M 5.0:1 CTA-1 HPM-6 83.9 3492 mg 54.6%
c
 180 min 

DMT-2 188:1 0.87 M 2.1:1 CTA-2 HPM-11 75.0 642 mg 73.6% Overnight 

DMT-3 179:1 1.1 M 1.4:1 CTA-2 HPM-17 75.0 653 mg 70.1% Overnight 

DMT-4 151:1 3.1 M 6.3:1 CTA-1i HPM-8 75.0 19649 mg N.D.
d
 1440 min 

DMT-5 151:1 1.6 M 6.3:1 CTA-1i HPM-9 75.0 8421 mg N.D.
d
 1440 min 

DMT-6 100:1 0.87 M 1.2:1 CTA-2 HPM-11 75.0 1046 mg N.D.
d
 Overnight 

DMT-7 74:1 0.97 M 6.0:1 CTA-1i HPM-14 79.8 3651 mg 72.5%
c
 1510 min 

DMT-8 60:1 1.1 M 1.4:1 CTA-2 HPM-17 75.0 737 mg 43.7% Overnight 

DMT-9 53:1 0.89 M 2.3:1 CTA-2 HPM-11 75.0 512 mg 35.5% Overnight 

DMT-10 52:1 0.84 M 5.7:1 CTA-1i HPM-19 70.0 1396 mg 85.2% Overnight 

DMT-11 25:1 0.84 M 7.1:1 CTA-1i HPM-19 70.0 1611 mg 77.9% Overnight 

DMT-12 12:1 0.84 M 7.3:1 CTA-1i HPM-19 70.0 2375 mg 75.4% Overnight 

 

poly(tert-butyl acrylate-b-methyl acrylate) experiments 

Polymer 

ID 

Mon:

pma
a [Mon] 

pma:

AIBN 

CTA 

ID 
pma ID 

Temp
b
 

(°C) 
Yield 

Percent 

Recovery 

Reaction 

Time 

DTM-1 439:1 4.0 M 5.0:1 CTA-1 HPT-2 77.1 1797 mg 74.0% 120 min 

DTM-2 213:1 4.0 M 5.0:1 CTA-2 HPT-3 77.1 904 mg 58.4%
c
 120 min 

DTM-3 213:1 4.0 M 5.0:1 CTA-2 HPT-3 77.1 387 mg 32.9%
c
 120 min 

DTM-4 194:1 4.0 M 5.0:1 CTA-1 HPT-6 83.2 1654 mg 54.9% 120 min 

DTM-5 82:1 1.4 M 5.0:1 CTA-1i HPT-5 77.8 4476 mg 63.0%
c
 480 min 

a
 Average measured diblock copolymer PDI = 1.29, Range = 1.20-1.40 

b
 Temperature of oil bath 

c
 
1
H-NMR monomer conversion/SEC molecular weight sampling 

d
 Final mass recorded prior to removal of residual solvent 
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Table 5. Amphiphilic Copolymer Conditions and Results 
 

poly(methyl acrylate-b-acrylic acid) experiments 

 

Polymer 

ID 
pma:ptba CTA ID Block ID DCM 

Temp 

(°C) 
Yield 

Percent 

Recovery 
Time 

DMA-1 151:151 CTA-1i DMT-4 50 mL rt 16600 mg 84.7% Overnight 

DMA-2 151:151 CTA-1i DMT-5 50 mL rt 7358 mg 87.4% Overnight 

DMA-3 98:188 CTA-2 DMT-2 20 mL rt 246 mg 54.8% Overnight 

DMA-4 98:179 CTA-2 DMT-3 20 mL rt 216 mg 48.1% Overnight 

DMA-5 66:60 CTA-2 DMT-8 20 mL rt 263 mg 80.4% Overnight 

DMA-6 66:60 CTA-2 DMT-8 20 mL rt 741 mg N.D.
a
 Overnight 

DMA-7 25:52 CTA-1i DMT-10 25 mL rt 1049 mg 75.1% Overnight 

DMA-8 25:25 CTA-1i DMT-11 25 mL rt 1665 mg N.D.
a
 Overnight 

DMA-9 25:12 CTA-1i DMT-12 25 mL rt 2019 mg 85.0% Overnight 

         

         
poly(acrylic acid-b-methyl acrylate) experiments 

         
Polymer 

ID 
ptba:pma CTA ID Block ID DCM 

Temp 

(°C) 
Yield 

Percent 

Recovery 
Time 

DAC-1 65:194 CTA-1 DTM-4 10 mL rt 1413 mg 85.4% Overnight 

a
 Final mass recorded prior to removal of residual solvent    
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Chapter 3: Results and Discussion 

 

CTA-1 tert-butyl dodecyl carbanotrithioate 
1
H-NMR 

 Chemical shifts and coupling information obtained for CTA-1 were verified with values 

reported by Skey et al.
48

 Distinguishable resonances included the dodecyl alpha methylene peak 

at 3.26 ppm (2H, triplet), as well as the tert-butyl peak at 1.62 ppm (9H, singlet) shown in Figure 

7. The remaining dodecyl methylene protons appeared at 1.20-1.42 ppm (20H, broad), with the 

terminal methyl at 0.87 ppm (3H, triplet). In general, the 
1
H-NMR for CTA-1 was monitored for 

the consumption of reactants during polymerization. The synthesis of CTA-1 was preferred over 

CTA-2 because of the favorable SN2 reaction with 1-bromododecane over the analogous SN1 

reaction with 2-bromoisobutryic acid. 

 

Figure 7. CTA-1 tert-butyl dodecyl carbanotrithioate 
1
H-NMR  
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CTA-1 tert-butyl dodecyl carbanotrithioate 
13

C-NMR 

 The structure of CTA-1 was confirmed by 
13

C-NMR with the carbanotrithioate carbon 

peak at 224.0 ppm. The peak at 54.2 ppm represented the quaternary tert-butyl carbon. The 

dodecyl alpha methylene peak at 36.4 ppm was readily apparent due to its proximity to the 

electron withdrawing carbanotrithioate functional group. The remaining dodecyl methylene 

carbon resonances were present at 28.0-34.0 ppm. The tert-butyl methyls at the 22.5 ppm peak 

were downfield from the dodecyl methyl. The dodecyl CH3 resonance was apparent at 14.2 ppm,  

as depicted in Figure 8.  

 

Figure 8. CTA-1 tert-butyl dodecyl carbanotrithioate 
13

C-NMR 
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Poly(tert-butyl acrylate) 
1
H-NMR  

 The 
1
H-NMR of HPT-6 poly(tert-butyl acrylate) contained regions of overlap between 

polymer backbone protons, tert-butyl ester protons, and also CTA-1 dodecyl methylenes.  

A correlation was made between the methine (1H) backbone proton with the methylene (2H) and 

tert-butyl (9H) protons. The 1:11 ratio closely reflected the integration ratios apparent in  

Figure 9. A proton integration ratio of 1:11.27 methine: (methylene + tert-butyl) for this polymer 

was a good approximation without accounting for CTA resonance overlap. For smaller block 

sizes, CTA resonances were more prominently overlapped with the poly(tert-butyl ester) 

resonances.  

 

Figure 9. HPT-6 poly(tert-butyl acrylate) 
1
H-NMR  
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Poly(tert-butyl acrylate) 
13

C-NMR
 

 The 
13

C-NMR spectrum of HPT-6 assisted in verifying the presence of the ester carbonyl 

peak at 174.0 ppm. The 4° tert-butyl carbon peak was present at 80.5 ppm. The methine 

resonances at 42.0 and 42.1 ppm indicated the various stereochemistries of monomer repeat units 

on the homopolymer chain. In addition, the methylene resonances at 35.9 and 37.2 ppm were 

very broad due to the relative stereochemistry on each methylene repeat unit. The Figure 10 

insert shows the effect of neighboring repeat units evident with both HPT-6 methine and 

methylene carbons. The peak for the tert-butyl ester methyls was also apparent at 28.0 ppm. 

 

Figure 10. HPT-6 poly(tert-butyl acrylate) 
13

C-NMR 
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Poly(methyl acrylate) Percent Conversion 
1
H-NMR   

 A kinetic experiment to determine the percent conversion of methyl acrylate to 

poly(methyl acrylate) as a function of polymerization time was conducted. Poly(tert-butyl 

acrylate) had similar rates of conversion when compared to poly(methyl acrylate), but overlap 

with poly(tert-butyl ester) methyls, backbone protons, and CTA peaks in 
1
H-NMR made this 

polymer difficult to interpret. The RAFT system was generally efficient, with high percent 

conversion being based off of the methyl acrylate vinylic protons divided by the total number of 

methyl ester protons. Figure 11 shows a 94.7% conversion within 5 hours of polymerizing the 

HPM-13 sample. Additional polymerization time past 5 hours yielded, in some cases, lower 

molecular weight. In homopolymer experiments, kinetic data suggested that an initial refractory 

period may exist, in which no polymerization is observed.   

 

Figure 11. HPM-13 poly(methyl acrylate) Conversion 
1
H-NMR  
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Poly(tert-butyl acrylate) SEC 

 Molecular weight data as a function of reaction time obtained by SEC for HPT-5 

poly(tert-butyl acrylate) illustrated the monomodal distribution of RAFT systems. Throughout 

polymerization, molecular weight (Mn) increased gradually and was represented by a decrease in 

elution time. An exception with some polymerizations to these general findings was the presence 

of an initial refractory period, depicted at 60 min in Figure 12. The cause of low molecular 

weight chains at low reaction times was most likely due to an excess of chain transfer processes 

over propagation. In general, after the presence of any refractory period, polymer was formed at 

molecular weights reflected by the monomer:CTA ratio.  

 

Figure 12. HPT-5 poly(tert-butyl acrylate) SEC 
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Poly(tert-butyl acrylate-b-methyl acrylate) 
1
H-NMR 

 Verification of poly(tert-butyl acrylate-b-methyl acrylate) formation was marked by the 

appearance of a poly(methyl ester) peak at 3.64 ppm, as seen in Figure 13. In addition, 
1
H-NMR 

integration ratios of DTM-4 were verified with the monomer:(homopolymer units) ratio.  

In the DTM-4 sample, both methylene types and tert-butyl methyl resonances were severely 

overlapped, which was not ideal for verifying product formation. The theoretical methyl ester 

resonance: methine poly(tert-butyl acrylate) + methine poly(methyl acrylate) yields 2.25:1, or  

3H (194) : (1H (194) + 1H (65)). The NMR integration yielded 2.17:1, or 3:1.38; which was a 

good indication that the desired diblock copolymer size was formed.    

 

Figure 13. DTM-4 poly(tert-butyl acrylate-b-methyl acrylate) 
1
H-NMR 
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Poly(tert-butyl acrylate-b-methyl acrylate) 
13

C-NMR 

 The 
13

C-NMR spectrum of poly(tert-butyl acrylate-b-methyl acrylate) contained ester 

carbonyl carbon peaks for both block types at 175.0 and 174.1 ppm. A methyl ester peak at 51.8 

ppm also signified the presence of a second poly(methyl acrylate) block. Both methine 

resonances were present at 41.0-42.5 ppm, as indicated in Figure 14. The methylene region for 

DTM-4 had also broadened due to the incorporation of the second monomer with additional 

stereochemistry complexities of each block type. The tert-butyl ester 4° carbon and tert-butyl 

ester methyls present were previously identified in Figure 10.   

  

Figure 14. DTM-4 poly(tert-butyl acrylate-b-methyl acrylate) 
13

C-NMR 
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Diblock Copolymer Percent Conversion 
1
H-NMR 

 In general, diblock copolymer percent conversion of the second block observed in 
1
H-

NMR was higher when the Dp of the second block was low. DTM-5 poly(tert-butyl acrylate-b-

methyl acrylate) (81-b-82) achieved 87.5% conversion of methyl acrylate to poly(methyl 

acrylate), whereas DTM-1 poly(tert-butyl acrylate-b-methyl acrylate) (198-b-439) experienced 

74.6% conversion of the second monomer (Figure 15). Although other factors including 

monomer concentration, first block size, and block order also had an effect on monomer 

conversion for diblock copolymers, the second block size was a main factor in achieving high 

yield.  

 

Figure 15. Diblock Percent Conversion Second Monomer 
1
H-NMR 
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Poly(methyl acrylate-b-tert-butyl acrylate) SEC   

 Molecular weight data as a function of polymerization time were collected on a 

poly(methyl acrylate-b-tert-butyl acrylate) sample with SEC, as depicted in Figure 16. As tert-

butyl acrylate monomer was polymerized to the poly(tert-butyl acrylate) block, a bimodal 

distribution occurred between 60-120 min. The cause for separate molecular weight distributions 

was most likely equilibrating chain transfer processes. From 150 min to 210 min, the distribution 

for DMT-1 became monomodal again, which indicated that the diblock copolymer 

polymerization contained negligible amounts of poly(tert-butyl acrylate) from homopolymer side 

products at the end of the reaction.    

 

Figure 16. DMT-1 poly(methyl acrylate-b-tert-butyl acrylate) SEC  
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Poly(acrylic acid-b-methyl acrylate) E-HSQC NMR 

 The polymer and solvent 
1
H-NMR peaks of an amphiphilic poly(acrylic acid-b-methyl 

acrylate) copolymer sample dissolved in 25% D2O/75% 1,4-dioxane-d8 overlapped in the  

3.5-3.6 ppm region. 2D correlations by E-HSQC NMR provided phasing information for 

methine (CH, green), methylene (CH2, red), and methyl (CH3, green) multiplicities, as annotated 

in Figure 17. The methyl ester peak at 3.59 ppm for DAC-1 was correlated to the 51.8 ppm 
13

C-

NMR peak previously identified in Figure 14. A 1,4-dioxane peak identified as CH2 at 3.55 ppm 

correlated to a carbon singlet at 66.8 ppm. An additional 1,4-dioxane peak identified as CHD at 

3.51 ppm correlated to a CD triplet at 66.2 ppm. The polymer methine protons at 2.25 ppm 

correlated to a carbon peak at 41.2 ppm; whereas the methylene protons at 1.63 ppm correlated 

to a 34.7 ppm broad carbon peak. Due to the overlap of the methyl ester and solvent protons, 

combined with uncertainty in the degree of deuteration of the 1,4-dioxane-d8 solvent, an accurate 

integration of methyl ester to polymer back bone protons could not be made. However, the 

validation of polymer correlations and the lack of tert-butyl resonances by E-HSQC NMR 

assisted in confirming the presence of the DAC-1 product resonances. 
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Figure 17. DAC-1 poly(acrylic acid-b-methyl acrylate) E-HSQC NMR 
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Poly(acrylic acid-b-methyl acrylate) 
13

C-NMR 

 The degree of polymerization for DAC-1 poly(acrylic acid-b-methyl acrylate) was 

verified by 
13

C carbonyl integration ratios. The carboxylic acid carbonyl:methyl ester carbonyl 

integration ratio of 1:3.15 in Figure 18 closely matched the theoretical poly(acrylic acid): 

poly(methyl acrylate) ratio of 1:2.98, or 65:194. The 
13

C carbonyl integrations of DAC-1 were 

not affected by nuclear Overhauser effect (NOE) enhancement, and were considered accurate 

approximations without accounting for T1 diffusion and long relaxation delays typical of long 

polymer chains. Thus, 
13

C integrations provided a validation of monomer:CTA and second 

monomer: homopolymer ratios despite the inability to confirm poly(acrylic acid) blocks using 

SEC. 

 

Figure 18. DAC-1 poly(acrylic acid-b-methyl acrylate) 
13

C-NMR 
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Poly(methyl acrylate-b-acrylic acid) (66-b-60) 
1
H-NMR 

 Previous findings by Wilmes et al. of a poly(methyl acrylate-b-acrylic acid) (66-b-60) 

(SEC-
1
H-NMR) suggested that the polymer did not form micelles in solutions of D2O and 1,4-

dioxane-d8.
18

 Copolymer containing a more rigid poly(methyl methacrylate) block did show 

evidence of micellization in 
1
H-NMR at moderate concentrations of D2O. The hypothesis of 

chain rigidity assisting the hydrophobic block’s ability to form micelle structures was verified 

with a low molecular weight, flexible acrylate block failing to produce micelles. The negligible 

coalescence of the methine peaks from the less rigid poly(methyl acrylate) and poly(acrylic acid) 

blocks in 50%/50% and 75%/25% D2O/1,4-dioxane-d8 mixtures was taken as evidence that 

micellization did not occur for DMA-6 in the presence of D2O (Figure 19).   

 

Figure 19. DMA-6 poly(methyl acrylate-b-acrylic acid) (66-b-60) 
1
H-NMR 
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Poly(acrylic acid-b-methyl acrylate) (65-b-194) 
1
H-NMR 

 A poly(acrylic acid-b-methyl acrylate) (65-b-194) copolymer consisting of a longer 

hydrophobic block than used in chain rigidity experiments was observed in 
1
H-NMR for effects 

of micellization (Figures 20 and 21). The DAC-1 sample in 25% D2O/75% 1,4-dioxane-d8, with 

a benzene standard, displayed a prominent methyl ester peak at 3.54 ppm. The poly(acrylic acid) 

and poly(methyl acrylate) methine peaks at 2.1-2.4 ppm were also prominent. In the 75% D2O/ 

25% 1,4-dioxane-d8 sample, the methyl ester resonance was 2.4 times less prominent than in the 

25% D2O sample. The 1,4-dioxane solvent peak identified in the 75% D2O sample was smaller 

due to its lower concentration in the aqueous solution previously identified in Figure 17. The 

methine region in the 75% D2O sample was 5.4 times less prominent than in the non-micellar, 

more hydrophobic solution.   

 In NMR micellization experiments, the presence of diminished hydrophobic block proton 

resonances may indicate that aggregated molecular structures did form. By incorporating a 

poly(methyl acrylate) block in DAC-1 that was roughly three times as large as in DMA-6, 

additional hydrophobic interactions of the lengthened hydrophobic block appear to have caused 

micelle formation in an aqueous environment, which led to a decrease in proton integrations. In 

addition, when DAC-1 was introduced to the 75% D2O environment, the presence of a viscous 

cloudy suspension in solution was observed. Conversely, positive 
1
H-NMR results and physical 

characteristics typical of micelle formation could still indicate that some other non-micellar 

structure was formed. Additional analysis with T1/T2 relaxation experiments and light scattering 

methods may help to further improve the certainty of micelle existence and size in future 

experiments.    
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Figure 20. DAC-1 poly(acrylic acid-b-methyl acrylate) (65-b-194) 25% D2O 
1
H-NMR 

 

Figure 21. DAC-1 poly(acrylic acid-b-methyl acrylate) (65-b-194) 75% D2O 
1
H-NMR 
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Chapter 4: Conclusions 

 

 Amphiphilic diblock copolymers show promise as micellar transport devices of 

hydrophobic drugs such as cisplatinum and doxorubicin. When these polymers are introduced 

into an aqueous environment, a protective core-shell complex can form around the hydrophobic 

species. Reversible addition fragmentation chain transfer (RAFT) is a radical chain growth 

polymerization method that uses equilibrium and transfer processes to yield a narrow distribution 

of polymer molecular weights. Production of monodisperse RAFT polymers is desirable due to   

their predictable thermodynamic properties appropriate for use in medicinal transport systems. 

1
H-NMR and 

13
C-NMR (Nuclear Magnetic Resonance) spectroscopy was used in verifying chain 

transfer agent (CTA) products and detecting polymerization in experiments. Consumption of 

monomer proceeded rapidly for homopolymers, whereas diblock copolymer formation was 

slightly less effective in converting 75-85% of monomer. Increasing the polymer molecular 

weight generally decreased monomer conversion. RAFT polymer growth rates obtained by size 

exclusion chromatography (SEC) depicted a gradual increase of molecular weight with reaction 

time and reflected the monomer:CTA ratio upon exhaustion of the monomer.   

 The 2D E-HSQC (Edited-Heteronuclear Single Quantum Correlation) NMR 

method was used to assign amphiphilic copolymer and solvent peaks, which was necessary for 

characterizing 
1
H resonances in micellization experiments. A main factor that appeared to affect 

micellization of acrylate-based amphiphilic block copolymers was chain length. A relatively 

short hydrophobic poly(methyl acrylate) block of poly(methyl acrylate-b-acrylic acid) (66-b-60) 

failed to display the effects of micellization in an aqueous environment when compared to a 

sample with a hydrophobic block that was about three times as large. 
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 The effects of micellization were observed when the lengthened poly(methyl acrylate) 

block 
1
H resonances of poly(acrylic acid-b-methyl acrylate) were diminished when the solvent 

hydrophilicity was increased to 75% D2O. The experimental results reflected the hypothesis of 

the study summarized by the hydrophobic block collapse theory, in which hydrophobic forces of 

additional methyl acrylate repeat units assisted in forming an aqueous micelle solution. Further 

experimentation with acrylate-based amphiphilic diblock copolymers using light scattering or 

other spectroscopic techniques may assist in ultimately addressing the issue of drug precipitation 

in the body.  
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