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Abstract

This thesis develops an algorithm that can determine if a laser is functioning correctly over

a long period of time. A Fourier fit is created to model fringe profiles from a Fabry-Perot

interferometer, and singular value decomposition is used to reduce noise in each signal.

Levenberg-Marquardt gradient descent is performed to correctly locate the center of each

image and to optimize each fit with respect to the spatial frequency. The Fourier fit is used

to extract important information from each image to be used for separating the image

types from one another. Principal component analysis is used to reduce the dimensionality

of the data set and to plot a projection of the data using its first two principal components.

It is determined that the image data are not linearly separable and require a non-linear

support vector network to complete the classification of each image type.
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Introduction

Fabry-Perot interferometers have wide-reaching applications. For example, we use

them to measure the wavelengths of light and to study the fine structure of spectrum lines

(Fowles, 1989). They can also can be used as optical resonators to select the mode of

oscillation desired for a laser application (Saleh, 2007). Their main purpose in this study

will be in reference to atmospheric lidar (light detection and ranging) applications.

Lidar systems are very accurate instruments that are used extensively in atmospheric

studies (Wandiger, n.d.) such as for measuring wind velocity, temperature, pressure, and

humidity, as well as the concentration of atmospheric gases and the visibility and height of

clouds. Typically lidar systems have very demanding requirements on instrumentation

including laser power, wavelength of light, and beam width. Because of these requirements

lasers used in these experiments must exhibit stable and reliable behavior over long periods

of time. Otherwise there can be significant inaccuracy in the lidar system.

When a laser is stable, it has a relatively low fluctuation in amplitude and frequency

over a period of time. These fluctuations will occur naturally as a result of thermal changes

in the laser chamber, vibrations (Melles Griot, n.d.), or possible mode beating. Mode

beating is the process by which more than one laser mode is oscillating simultaneously, and

can be caused by backscattered radiation. When the laser is not exhibiting stable behavior,

then it may be experiencing problems with its reliability, which refers to its lifetime before

it experiences failure.

Many methods exist to analyze stability for lasers. A standard method to measure

frequency stability is to heterodyne the laser with a second laser with equal or greater
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stability to itself (Melles Griot, n.d.). The method of heterodyning is to create a new

frequency by mixing two frequencies. By examining the fluctuation of the beat frequencies

of the system, the stability of the laser can be determined relative to the system since it

must be no worse than the sum of the two frequency instabilities. To analyze the

amplitude, the fluctuations of laser light can be monitored by a photodetector. Another

useful way to determine frequency stability, as discussed by Hrabina et al., 2013, is to use a

Fabry-Perot cavity as a frequency discriminator so that frequency fluctuations can be

measured. Amplitude and noise fluctuations are typically measured as noise and are

compared to a standard accepted value to determine their influence. For example, the

cesium beam frequency standards are discussed in Lutwak, 2011. Methods such as these to

analyze laser stability are useful in determining their reliability because the two concepts

are closely related.

Laser failure occurs when there is a sudden shift in a laser parameter which is away

from the operating requirements so that the laser does not function normally (Eliseev,

1991). More specifically, lasing will not occur when there is a failure of the laser diode.

Diode failure can occur due to a vast number of reasons, many of which are very fast and

readily apparent and others occur very slowly and are harder to identify. A description of

these diode failure and degradation mechanisms is provided in Eliseev, 1991.

For example, according to Eliseev, the properties of diode crystals can be altered by

extended exposure to radiation and can cause the formation of defects. Defects appearing

as dark spots or bands can also form due to thermal or optical damage to the mirror faces

of the diode resulting from optical or thermal overload. These overloads can be

uncontrolled such as overloads caused by power instabilities from poor equipment or
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leakage current. A controlled overload could be due to improper wiring or other varieties of

operational mistakes. These forms of degradation of the laser diode result in fairly

immediate reduction in laser power or laser characteristic, so they are easier to identify

than longer term effects.

Natural aging of the laser diode can result in many different forms of degradation

which are often difficult to identify because they occur slowly and can be mistaken for

other forms of degradation (Eliseev, 1991). These are the forms of laser degradation that

we are most concerned in for this study. This is because they have more direct relevance to

the long term reliability for the laser. For instance, mechanical stress can occur due to

heating, impact, or vibrations. Additionally, oxidation of diode facets can occur over a long

period of time and because these oxide films are not uniform, the facet can become rough

(Fakuda, 1991), causing lasing threshold to increase. These are only a few of the

degradation mechanisms that occur due to age and wear on the diode. These degradation

mechanisms and their effects on laser characteristics are shown by the production of

self-sustained pulses, or self-modulation pulses. This causes a certain percent of laser pulses

to result in broadening of the lineshape, and can disrupt the single mode operation of the

laser (Eliseev, 1991).

Current methods to analyze laser reliability are based on the statistical prediction of

laser failure. Failure rates are based upon long term product testing at many different

temperatures. For example, Bao et al., 2010 discuss reliability analysis of high-performance

9xx nm single-emitter diodes. The article discusses how laser lifetimes are predicted based

upon the behavior of an exponential reliability curve that depends on several parameters

including the current, power, junction temperature, activation energy, and current and
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power acceleration factors. Some of these parameters are determined based upon

extrapolation of lifetime failure data for several different levels of current. Laser failures are

described according to whether they are an early lifetime failure, wearout failure

(long-lifetime failure), or a random failure (a failure that occurs in the intermediate stage

of laser life).

Failures for the 9xx nm lasers investigated by Bao et al. were mainly due to

catastrophic optical damage (COD) and COD resulting from bulk wear of the diode.

Parameters of current, power, and so on that are required for predicting these failures were

based upon limited data because the reliability analysis is so costly. In an attempt to find a

more precise method of analyzing laser reliability which could possibly have accurate

results based upon less data, this thesis investigates a different approach to the problem. It

analyzes the stability and reliability of lasers by using techniques in pattern recognition

and image classification to investigate the behavior of Fabry-Perot fringe patterns over a

long period of time. By investigating patterns in the laser lineshapes, it could be

worthwhile to investigate whether a certain form of laser degradation will correspond to a

particular lineshape. For instance, could a phase-shifted Fabry-Perot pattern correspond to

a lineshape that experienced broadening as the result of long-term laser degradation?

The etalon system used in the experiment was set up on an optical bench at

Michigan Aerospace Corporation. In this investigation, we analyze fringe profiles produced

by a Fabry-Perot air-gap etalon and a 266 nm neodymium-doped yttrium aluminum garnet

(Nd:YAG) laser which are intended for future use in a lidar system. We wish to answer the

following questions regarding the functionality and stability of the laser: Are there areas

that the laser becomes phase-shifted? Are there dark images where the laser is not
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producing output? While it is possible to visually sift through each profile by the naked eye

in order to distinguish between these images, it becomes increasingly cumbersome and time

consuming to do so for large data sets. The purpose of this paper is to lay the groundwork

in developing the ability to identify Fabry-Perot fringe profiles by the process of machine

learning. We are able to determine stability and reliability of the laser by identifying when

and how frequently the laser does not produce good fringe profiles over a large data set.
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Methodology

The theory of Fabry-Perot etalons, Fourier series, singular value decomposition,

Levenberg-Marquardt gradient descent, the density based clustering algorithm entitled

DBSCAN (Density Based Spatial Clustering of Applications with Noise), and support

vector machines are discussed in Methodology.

To help the reader to visualize the algorithm which is developed, a flow chart is

provided in Figure 1 to show a step by step procedure for performing the algorithm. The

reader should refer back to this chart each time he begins reading a new section of material.



7

Select a Fabry-Perot
fringe pattern and use
SVD to reduce the

noise of the data and
create a Fourier fit

Step 1

Use LM Descent to op-
timize the Fourier fit with
respect to the image center

and spatial frequency

Step 2

Create a feature vector
from the Fourier fit con-
sisting of 4 image features

Step 3

Repeat steps 1-3 for
each each image in the
data set and collect

the data into a matrix

Step 4

Compute the covariance
matrix of the data. Use its
eigenvalues and principal
components to project the
data to a lower dimension

Step 5

Use DBSCAN to spatially
separate the projec-
ted data into clusters

according to their density

Step 6

Use a support vector
network to classify each
cluster of image data

Step 7

Figure 1 . A flow chart showing how to execute the algorithm in a step-by-step procedure
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The Fabry-Perot Interferometer

In this section we describe the Fabry-Perot intensity distribution and phase difference

for multiple beam interference and provide a diagram to show the setup of a Fabry-Perot

etalon. We format the distribution as an approximate function of ρ2 where ρ is the radial

distance away from the center of the image plane. This will allow Matlab to produce a

periodic function.

Description of phase difference and intensity distribution. First, we derive

the phase difference φ. Figure 2 shows a ray diagram for light incident on a Fabry-Perot

etalon. Assume that the beam has been initially collimated by a lens, and then enters at

an external angle θ0 into an etalon consisting of two identical partially-reflecting mirrors,

M1 and M2, each with reflectivity r separated by a distance d. The transmitted beam

inside the etalon travels a path of length L at an angle θ1, hits point A where it partially

transmits through the etalon as T1 before reflecting on a path to B, reflects to C, and then

transmits through the etalon again as T2. The phase difference between the two

transmitted rays T1 and T2 is given by φ = φ(ABC)− φ(AD) where the focusing lens is

located at point D.
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L A

B

T1

T2

C

D

M1 M2

d

θ0

θ1

θ1

θ0

θ0

Figure 2 . A diagram showing the setup of a Fabry-Perot etalon.

If the etalon has an index µ1 and λ0 is the laser central wavelength, then the phase

difference can be derived from the geometry of Figure 2 as (refer to Appendix A):

φ = 4πµ1d

λ0
cos(θ1). (1)

We now define ρ as:

ρ(x, y) =
√

(x− x0)2 + (y − y0)2, (2)

where the image center of each fringe profile is (x0, y0). The phase difference can be shown
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to be an approximate function of ρ2 (refer to Appendix A):

φ(x, y) ≈ 4πµ1d

λ0
(1− µ2

0
2µ2

1

ρ(x, y)2

f 2 ), (3)

assuming f >> ρ where f is the focal length of the focusing lens. Now, we define the

central order number M0 to be:

M0 = 2µ1d

λ0
. (4)

Using µ0 = 1 for air, (3) can be written as:

φ = 2πM0(1− ρ2

2µ2
1f

2 ), (5)

so the phase becomes:

φ(x, y) = φ0 − 2πα[ρ(x, y)]2, (6)

where the spatial frequency α (the number of waves per square pixel) is defined as:

α = M0

2µ2
1

(∆xpix)2

f 2 . (7)

φ0 is the phase at the minimum intensity which is given by:

φ0 = 2πM0. (8)

The factor ∆xpix is the pixel size in meters for the camera. This ensures that when we

measure ρ in pixels, φ is dimensionless.
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If we assume that the initial intensity of the incoming light is I0, the final intensity is

If , the transmittance is T and the reflectance is R, then If can be written as an

approximate function of ρ2 (refer to Appendix A) as follows:

IT (ρ2) ≈ I0
T 2

1− 2Rcos(φ0 − 2παρ2) +R2 , (9)

which is the Fabry-Perot intensity distribution.
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Identification of Image Features

Each image type in the data set is described and a discussion is provided on how to

select a suitable set of features that can be used distinguish between the three possible

image types: good images, phase-shifted images, and dark images.

If the laser is functioning correctly, it will continually produce images that have a

central fringe that is aligned in the center of the image plane. These are referred to as good

images. A shifted image will correspond to a fringe pattern that has a central fringe that is

not aligned with the center of the image plane, and thus its fringes are phase shifted in

comparison to those of a good image. A Fourier series in complex form is a simple and

effective way to keep track of the phase φ. Thus, in order to determine how much a given

image is phase shifted away from a good image, an effective strategy is to determine how

similar the Fourier coefficients of the selected image are to a good image which is used as

reference. If the coefficients for the given image are not similar to the reference image, then

the image has likely been phase shifted.

The fringe profile for a Fabry-Perot etalon is characterized by its lineshape function

(Saleh et al., 2007), which is a plot of the intensity of the laser as a function of the phase

(or frequency). The lineshape depends on several parameters, including its linewidth and

peak value. The linewidth is usually defined as the full width of the lineshape function at

half of its maximum value, or FWHM. If the laser is exhibiting stable behavior, then the

fringe profile will have a stable linewidth and peak value. If we observe variation in the

linewidth and peak value of the lineshape function in each image over time, it suggests that

the laser is unstable. Thus, the FWHM and peak values of the lineshape function are two
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important features that should be computed for each image in the data set.

The final image type that we wish to identify are dark images. These are images

where the laser is simply not producing any output and we do not observe a fringe profile

at all. If we plot the lineshape profiles for these dark images, it can be seen that they have

very little variation in their peak and minimum values, which suggests that a key image

feature that can be used to identify this image type is the minimum value of intensity (and

also the maximum, which has already been discussed as an important feature).

For each image, our goal is to construct a feature vector that consists of the four

features that have been described: the minimum and maximum intensity, the measure of

similarity in the Fourier coefficients, and the FWHM, and to record all of the feature

vectors into a data matrix.
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Fourier Projection and Least Squares

In this section we describe how a Fourier series can be used to calculate the similarity

between Fourier coefficients for two given images. This important image feature will help

us to distinguish between each image type in the data set. The method to solve for the

Fourier coefficients is formulated in terms of the method of least squares. We describe how

singular value decomposition can be used to reduce the noise of each Fourier fit. In the

final section we show how principal component analysis (PCA) is able to create a

projection of our data set so that it can be visualized.

Complex form of Fourier series - phase shifting and similarity. We recall

that a function f(x) of period 1 can be expanded in a Fourier series with complex

coefficients given by cn = an + ibn in the following way:

f(x) ≈
N∑

n=−N
cnexp(i2πnx). (10)

If we wish to compare the phase of a series that has been shifted τ units away from that of

the original series, then we find a simple relation between the set of Fourier coefficients

{cn} = {c−N , ...cN} and the set of the shifted series {dn} = {d−N , ...dN}. If we let our

shifted series be g(x), then we have:

g(x) = f(x+ τ) =
N∑

n=−N
dnexp(i2πnx) =

N∑
n=−N

cnexp(i2πn(x+ τ)) (11)

=
N∑

n=−N
cnexp(i2πnτ)exp(i2πnx) (12)
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and we see that the relationship between the coefficients is given by:

dn = cnexp(i2πnτ). (13)

This inspires the following strategy to be employed on the set of image data. Take a

good image and expand it in a Fourier series with the set of coefficients {cn}. Then take an

image that has been phase shifted and expand it as a new Fourier series with the set of

coefficients {dn}. If the image of the laser is showing a normal stable evolution over time,

then the Fourier coefficients of the new image should have a phase shift very similar to that

of the good image. We see that if each coefficient is equal so that cn = dn, then τ = 0, so

there is no phase shift. If there is a large phase shift, then we will see differences in

magnitude and phase when comparing cn and dn.

While it is likely possible to numerically estimate the values of τ and compare them

for each image in order to determine those which have become phase shifted from the good

image, this thesis does not take that approach to the problem. We use an idea based on

the definition of the inner product between two vectors to determine how similar the

shifted images are to a good image. We first recall that the angle θ between two vectors u

and v is given by:

cos(θ) = < u, v >

‖u‖‖v‖
. (14)

We will now define the variable S = cos(θ) to be the similarity between the vectors of
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Fourier coefficients given by c = (c−N , ...cN) and d = (d−N , ..., dN) so we will have:

S = < c, d >

‖c‖‖d‖
= c∗d

‖c‖‖d‖
, (15)

where * is the conjugate transpose. We also note that we need 0 ≤ S ≤ 1 because c and d

are complex. By defining S in this way, we see that a value of S = 0 corresponds to a

situation where c and d are orthogonal to each other, so the two images are entirely

dissimilar and so there may be a substantial phase shift. Similarly, a value of S = 1

corresponds to the situation that was discussed earlier when cn = dn and the images are

identical, so there will be zero phase shift.

The Fabry-Perot profile using the method of least squares. The method of

solving for the Fourier coefficients is equivalent to solving the linear system:

Ax = b, (16)

where A is an mxn matrix consisting of m observations and N Fourier terms

corresponding to n = 2N + 1 coefficients, x is an nx 1 vector of coefficients in the

expansion, and b is an mx 1 data vector; in our case it is the ρ2 values from the

Fabry-Perot intensity profile. In the Fourier sense, we can write the matrix equation as:

Ax = g, (17)
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and we can write the mth row of the equation as a function of ρ2 in the following format:

gm =
N∑

n=−N
cnexp(i2πnαρ2

m), (18)

where α is the spatial frequency that we found in (7). We can simplify this in terms of (6)

and write the equation as:

gm =
N∑

n=−N
cnexp(inφ2

m). (19)

A term in our Fourier matrix A in row m and column n is given by:

Amn = exp(inφ2
m) n = −N · · ·N. (20)

Since A is a matrix with m > n, it is overdetermined and we will solve for the coefficients

of best fit by the method of least squares, which seeks to minimize the sum of the squares

of the errors (SSE) where we can define "error" as being:

E = ‖Ax− b‖. (21)

It can be shown (refer to Appendix B) that the least squares estimate that minimizes

the SSE is given by:

x̂ = (A∗A)−1A∗b. (22)

Unfortunately, finding the Fourier fit in this manner is not very helpful if the data

which we wish to use is very noisy, which is the case with our images. However, the

language that we use in least squares is useful for solving (16) when we discuss the process
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of singular value decomposition in our next section. It will also be useful to us when we

discuss optimization of the Fourier fit in section 4.3.

Singular value decomposition. Computing each image feature from the

Fabry-Perot lineshape function cannot be accurately done without first reducing the noise

in each image profile. Singular value decomposition (SVD) is used to determine the Fourier

coefficients required to produce a Fourier fit for each image as in (16) and is used to reduce

noise of each fit by computing the pseudoinverse of the Fourier basis matrix.

A reader who is not familiar with techniques in linear algebra, or would like a brief

review of the key concepts needed to understand SVD, should refer to Appendix C before

reading further. We first state two very important properties of symmetric matrices

(Schlens, 2009) which we will need to understand the construction of the SVD. The first

property is that if A is a symmetric matrix, then it has orthogonal eigenvectors. If λ1 and

λ2 are distinct eigenvalues of the symmetric matrix A with corresponding eigenvectors e1

and e2, then we can use the eigenvalue equation (Appendix C) to show that (Schlens, 2009)

(λ1e1) · e2 = (λ2e1) · e2 and hence (λ1 − λ2)e1 · e2 = 0. Since λ1 6= λ2 then it must be true

that e1 · e2 = 0, so the eigenvectors are orthogonal. We can choose the eigenvectors to be

normalized so that A has an orthonormal basis. Next, we note that if A is a symmetric

matrix, then it can be orthogonally diagonalized. This means that A can be written in the

form:

A = EDET , (23)

where E is the matrix of eigenvectors of A so that each eigenvector ei is a column of E,

and D is a diagonal matrix where Dii = λi so that each entry is an eigenvalue of A. The
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proof of this fact as discussed by Schlens is provided in Appendix C.

We can now describe the SVD for a matrix. If A is an mxn matrix, then we see that

ATA and AAT are both symmetric matrices because (ATA)T = ATA and similarly

(AAT )T = AAT . Thus, we can diagonalize the matrices such that:

ATA = V DV T , AAT = UDUT . (24)

Because both of these conditions are true no matter what the original matrix A was

(it can be shown that the eigenvalues of ATA are the same as the eigenvalues of AAT ),

then it must also be true that there is a decomposition for the original matrix A which

satisfies them simultaneously. Trial and error shows us that the choice of A which satisfies

the conditions (24) is given by:

A = USV T , (25)

where S2 = D. Equation (25) is the SVD for the matrix A. If A is an mxn matrix, then it

can be written as the product of an mxm orthonormal matrix U , an mxn diagonal

matrix S, and the transpose of a second nxn orthonormal matrix V . The columns of the

matrix V consist of the orthonormal eigenvectors of the symmetric matrix ATA and the

columns of the matrix U consist of the orthonormal eigenvectors of the (also symmetric)

matrix AAT . The first r diagonal entries of S are called the singular values and are

arranged in decreasing order as s1 > s2 > ...sr where si =
√
λi and where λi is the

eigenvalue of either ATA or AAT . The value r is the rank of A (the number of linearly

independent columns of A). If it turns out that r < m then we have to add in an extra

(m− r) orthonormal vectors to the matrix U , and similarly if r < n we have to add in an
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extra (n− r) orthonormal vectors to the matrix V . This is because we need to make sure

that both U and V are truly orthonormal. We now show a computation to verify the claim

that λi = s2
i is an eigenvalue of ATA. We start with:

ATA = V SUTUSV T = V S2V T (26)

and then multiplying by V we get:

(ATA)V = V S2, (27)

so if vi is a column vector of V then we have:

(ATA)vi = s2
i vi (28)

and thus we have verified that λi = s2
i is an eigenvalue of ATA with eigenvector vi.

It is important to note that although one possible way to compute the SVD of a

matrix is by finding the eigenvectors and eigenvalues of ATA or AAT , this is typically not

done in practice for larger matrices (Sauer, 2006). This is because substantial loss in

accuracy occurs as the matrix increasingly approximates a singular matrix (one which is

not invertible). In general, special techniques are often used to form new matrices out of

the matrix A in order to compute the SVD. In order to explain the application of SVD to

reduce noise of a signal, we provide the SVD for a simple matrix. For this example, there is

no harm in simply computing ATA and AAT to find their eigenvectors. The SVD of the
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matrix
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(29)

We see that we can write our original matrix as the sum of two other matrices, one

for each singular value, and that the matrix corresponding to the larger singular value

accounts for a larger portion of the data in our original matrix than the matrix

corresponding to the smaller singular value. Large singular values will account for the

portion of the data with a large amount of variance and the small singular values with

account for the portion of the data which has very small variance, which we can categorize

as being noise. Thus, if we compute the SVD of a data matrix and throw away singular

values which are small in magnitude and keep the values with large magnitudes, we will

have filtered the data in a sense and removed a substantial portion of the noise. There is a

name for this kind of procedure. If we have a matrix A with rank r, and we choose to keep

p ≤ r singular values, then we have created the best rank p approximation to A in the least

squares sense. Ideally, we would like to perform SVD on our Fourier matrix A (with
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m > n), and then just solve the least squares system (16) as:

(ATA)−1 =(V SUTUSV T )−1

=(V S2V T )−1 = V S−2V T

x = (ATA)−1AT b =V S−2V TV SUT b

x =(V S−1UT )b,

(30)

but unfortunately, the matrix S is not square! We can however use Reduced SVD to

compute what is called the pseudoinverse of A, which is denoted as A†. The pseudoinverse

is defined to be (Clark, 2007):

A† = V S†UT , (31)

where V is an nxn matrix, S† is nxn, and UT is nxm so that A† is then

nxm. The definition for U in reduced SVD is slightly different than before, so that now we

only include the first n columns from the U as defined in (25). The diagonals entries of S†

are given by s†i = 1/si. Also, we throw away the last (m− n) rows from S in order to

ensure that the matrix S† is an nxn.

Thus, the least squares solution to (16) using SVD on the Fourier matrix A, is that

the Fourier coefficients x of the filtered signal will be given by:

x = A†b = (V S†UT )b, (32)

where we remember that b is our data from the fringe profile.

The method of using SVD to create a fit for each fringe profile relies on the
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assumption that we are capable of correctly estimating the center of each image prior to

producing the fit. One possible method to make a fairly good estimate for the center

(x0, y0) of a given image is to use an image tool that produces individual pixel values.

Unfortunately, we have to manually perform this procedure on an individual image in order

to produce the correct center. We can still identify which images appear to have been

phase shifted. If the center of a shifted image is incorrect (and we just used the center for

the good image) then its Fourier fit will also be incorrect, so the image features that we

observe will be highly different from that of the good one. The main disadvantage (a fairly

large one) to using this approach is that we are not guaranteed that images which appear

to be phase shifted are actually representing bad images. It is possible that they were good

images, but were produced by the camera drifting off center instead of by a problem with

the laser. If we are able to estimate the correct center for each image arbitrarily, and the

resulting fringe profiles are substantially different from a good image that we use for

reference, then we will have much more substantial evidence to support our belief that we

have identified images that have truly been phase-shifted. This estimation can be

performed with Levenberg-Marquardt gradient descent, and is the topic of the next chapter.

Principal component analysis. We now describe some of the basic ideas of

principal component analysis (PCA) and explain its relevance to our problem of image

classification. Principal component analysis provides a method for taking a data set and

representing it in a new set of orthogonal basis vectors that point in the directions of

maximal variance of the data (Shlens, 2009). This is the method that we use to reduce the

dimensionality of our data set so that it can be visualized. The description of PCA that is

presented here is very similar to the tutorial on performing PCA by Schlens, 2009.
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PCA provides a simple and fairly efficient method of taking a problem that is

seemingly very complex with observations that depend on a large number of parameters,

and then greatly reduces the dimensionality and redundancy of the data while eliminating

noise in the process. To accomplish this goal, PCA provides a reinterpretation of the SVD

for how we can project our data to a lower dimensional space.

The general strategy in PCA is to take a set of data that has been expressed in some

basis, and then reexpress it in a new basis which is a linear combination of the original

basis. To make these ideas more clear, we start with a data matrix X constructed from m

observations and n features. In order to perform PCA, it is often assumed (Schlens, 2009)

that each column of X has zero mean to ensure that each feature has the same weight. In

the case that the n features of X are measured in different units, then we may choose to

instead divide by the standard deviation. We now let P be an nxn linear transformation

which will project our data set as the new mxn representation Y , so that (Schlens, 2009):

XP = Y. (33)

We define pi to be the columns of P and xi to be the rows of X. Thus, the columns

of P will represent a new basis for expressing the rows of X. We can see this as:
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XP =



x1

x2

...

xm



[
p1 p2 · · · pn

]

Y =



x1 · p1 · · · x1 · pn
... . . . ...

xm · p1 · · · xm · pn


.

(34)

The row vectors yi of Y are given by:

yi =
[
xi · p1 · · · xi · pn

]
. (35)

The row vectors xi of the original data matrix X are expressed in terms of the columns of

P . The new representation for a row vector yi is found by projecting the ith row of xi onto

the basis {p1, p2, · · · , pn}.

This new basis should be the clearest representation of the data set so that it can be

most easily understood by the experimenter. A way of selecting the new basis is to require

that it produce data with the highest variance (Schlens, 2009). The covariance matrix of

the data CX is defined to be the nxn matrix:

CX = 1
n− 1X

TX. (36)
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If we divide the matrix X by the variance so that it is dimensionless, then it is referred to

as a correlation matrix. We see that the ijth entry of the matrix is found by taking the dot

product of the ith data type with the jth data type. The variance in each direction is

represented by each diagonal term, and each covariance term is represented by the

off-diagonal. The terms of variance which are large represent the important information in

the signal, and the small values correspond to noise. The off-diagonal terms represent

information which is redundant. These terms represent areas where the information from

one data type can be used to predict the information from another. Thus, to perform PCA,

we should define a procedure that will diagonalize the covariance matrix of the data since

we want to minimize redundancy (covariance) and maximize the signal (variance) (Schlens,

2009).

In order to accomplish this, we wish to project the data onto the basis for which the

variance is maximized. Thus, we will choose each normalized basis vector pi to be in a

direction where the variance of X is maximized, and such that each basis vector is

perpendicular to the previous ones. Each column of P which is chosen in this way is

referred to as a principal component. Our assumption that each principal component is

orthonormal is important, because it allows PCA to be performed by the use of SVD.

To make our goal more specific, we wish to find the orthonormal matrix P with

XP = Y such that covariance of the projected data CY with:

CY = 1
n− 1Y

TY (37)

becomes diagonalized. A fact that is verified by Schlens (refer to Appendix D) is that
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selecting the matrix P so that each column is an eigenvector of XTX will ensure that:

CY = 1
n− 1D, (38)

so that our goal is met and CY is diagonalized. Thus, the principal components pi of X are

orthonormal eigenvectors of XTX, and are the columns of P . How does this model fit

SVD? The SVD of the matrix X is written as:

X = USV T , (39)

where the columns of V are the orthonormal eigenvectors of XTX. We can multiply X by

V to write this as:

XV = Y, (40)

where Y = US is the projection of the data. This is the exact model that was described in

(33) with P = V . Iif we compute the SVD of 1√
n−1X, then the columns of V are the

eigenvectors of CX , so they are the principal components of X (Schlens, 2009). The matrix

combination US represents the best representation of X, which was found by projecting it

onto V . How does this let us reduce dimensionality and noise in the data set? We compute

the nxn matrix V and then use the first k columns with k < n, which correspond to the

largest k principal components so that V is then an nx k. Our projection Y will then be an

mxk data matrix which retains the data with the largest variation, but has a lower

dimensional representation than X.

To decide how many principal components we should keep, we plot the magnitudes of
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the individual eigenvalues of CX as a fraction of the total sum of eigenvalues. This will tell

us how much variance is contained in each principal component. This is the method that

we will use to reduce the dimensionality of our image data, so that it can be plotted and

then classified by support vector machines.
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Optimization of the Fourier Fit

We now describe how to optimize the Fourier fit to each image in the data set using

gradient descent techniques. First we describe a basic gradient descent technique, and then

describe the more advanced Levenberg-Marquardt gradient descent. It is by using this

method that we can estimate each image center arbitrarily. In addition, the algorithm

optimizes each Fourier fit with respect to the spatial frequency α as defined in (7), given

that we begin with a starting guess. The presentation of each descent method follows

closely with ideas presented by Ranganathan, 2004.

Levenberg-Marquardt gradient descent. Levenberg-Marquardt gradient

descent (LM algorithm) is one of the most widely used algorithms in optimization theory.

Specifically, it provides a fast solution to the Non-Linear Least Squares Minimization

Problem (Ranganathan, 2004). We wish to minimize the quantity:

E(x) =
m∑
j=1

1
2‖Rj(x)‖2, (41)

where x = (x1, x2, x3, ..., xn) is a vector of n parameters, E(x) is called an error function,

and each Rj(x) is a non-linear function of x called a residual. This can be rewritten in

terms of a residual vector R(x) of length m so that:

E(x) = 1
2‖R(x)‖2 (42)
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and R(x) = (R1(x), R2(x), ..., Rm(x)). We now use the derivatives of E to define the mxn

Jacobian matrix J where:

J = ∂Rj

∂xi
1 ≤ j ≤ m, 1 ≤ i ≤ n. (43)

Now, we will describe the simple gradient approach to solve the problem. First, take

an initial guess x = x0 for the value for x which ∇E(x) = 0. We will use the following

update rule (Ranganathan, 2004):

xi+1 = xi − γ∇E(xi). (44)

Thus we will take the current value of x and subtract from it the gradient of E which is

scaled by a factor of γ where we have:

∇E(x) =
m∑
j=1

Rj(x)∇Rj(x) = J(x)∗R(x). (45)

The factor of γ is set to be a value so that E(xi+1) < E(xi), and so the error function E(x)

decreases at every step, and gets closer to its minimum value. Since ∇E(x) points in the

direction of maximum increase, we see that −∇E(x) will point in the direction of

maximum decrease of E(x). This method of gradient descent is fairly slow and can miss

the value of the minimum, so it will not always converge. Using this rule, the stepsize used

to update our parameter x is proportional to the present size of the gradient. This means

that where the gradient is large and the function has a steep slope we end up taking a large

step, and where the gradient is small and the function has a shallow valley we end up
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taking a small step. In reality, we would like to do the exact opposite procedure in order to

converge quickly. Thus, simple gradient descent is slow because it forces us to take a small

stepsize in order to avoid rattling out of the minimum (Ranganathan, 2004).

This method can be greatly improved by using the curvature of the function in

addition to the gradient. First, we describe the Gauss-Newton update. Then we describe

the Levenberg update and finally the Levenberg-Marquardt update. The latter is the most

useful for our problem.

Newton’s method is used in order to approximate the solution to the equation

∇E(x) = 0 (since this is where our minimum occurs). If x = x0 is the current value of our

parameter vector, then we can use Taylor’s formula with a center x0 to expand ∇E(x) as

follows:

∇E(x) = ∇E(x0) + (x− x0)∗∇2E(x0) + higher order terms. (46)

If we assume that E is quadratic around the value x0, then the minimum of the function

will be where ∇E(x) = 0 and can be found by solving the equation (Ranganathan, 2004):

∇E(x0) + (x− x0)∗∇2E(x0) = 0. (47)

If we set x0 = xi and x = xi+1 then the update rule in Newton’s method will be given by

(Ranganathan, 2004):

xi+1 = xi − (∇2E(xi))−1∇E(xi). (48)
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Using the definition in (43) we see that:

∇2E(x) = J(x)∗J(x) +
m∑
j=1

Rj(x)∇2Rj(x). (49)

A common approximation is to assume that for the function E the Ri’s are nearly

linear around the solution, which means that the quantity ∇2Rj(x) is small. Thus, the

Hessian matrix H = ∇2E(x) (the matrix of second partial derivatives) is approximately

given by:

H = J(x)∗J(x). (50)

The Newton update (actually, it is now referred to as the Gauss-Newton update) can be

written as (Ranganathan, 2004):

xi+1 = xi −H−1∇E(xi), (51)

where H must be evaluated at xi.

The advantage of using this update is that it will converge to the minimum much

faster than simple gradient descent. Unfortunately, it relies on the assumption that E

around the starting guess x0 is fairly linear in R(x), which may or not be the case. Thus,

the tradeoff we have is that convergence is sensitive to our choice of x0. This is exactly the

opposite situation that we saw with simple gradient descent.

It is beneficial to combine simple gradient descent and the Gauss-Newton update into

a new rule which we call the Levenberg update. When we are far away from the minimum

where E is not very quadratic around x0, then we will use simple gradient descent. When
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we get closer to the minimum, then our quadratic assumption should work better and we

will implement the Gauss-Newton update. We will define this new update rule as follows

(Ranganathan, 2004):

xi+1 = xi − (H + γI)−1∇E(xi), (52)

where I is the identity matrix. So the smaller the value of γ the more that this update will

look like (51), while large values of γ will make the update rule much closer to:

xi+1 = xi − γ−1∇E(xi), (53)

which is just gradient descent. The Levenberg algorithm can be described as follows

(Ranganathan, 2004):

1. Perform the update rule in (52) to find the new parameter vector xi+1.

2. Calculate the error at the new parameter vector E(xi+1).

3. If E(xi+1)− E(xi) < 0 so the error decreases, it means our quadratic assumption is

correct so we accept the update in (52). We decrease γ (generally by a factor of

abound 10) to reduce the amount that we rely on on the gradient.

4. If E(xi+1)− E(xi) > 0 so the error increases, then we undo the update and reset the

parameter vector to its previous value. We increase γ (by a factor of about 10) so

that we increase our use of the gradient and then we try the update again.

While this new update rule is much better than both simple gradient descent and the

Gauss-Newton algorithm, it still has the disadvantage that using large values of γ results in
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us ignoring the Hessian, so the curvature provides us with no additional information. We

would like an update rule that should take large steps in directions of high curvature and

small steps in directions of low curvature. The Levenberg-Marquardt algorithm will do

exactly this and uses an update rule defined by:

xi+1 = xi − (H + γdiag[H])−1∇E(xi), (54)

so the identity matrix in (52) is replaced by the diagonal of H, which scales each component

of the gradient according to the curvature. Since the Hessian is proportional to the

curvature, we see that where the curvature is large the stepsize (H + γdiag[H])−1 becomes

small, and similarly where the curvature is small the stepsize is large (Ranganathan, 2004).

The Levenberg-Marquardt algorithm (LM algorithm) works very well to optimize a

system which has a moderate number of parameters. When the system begins to have on

the order of a few thousand parameters the method becomes too difficult to implement in

practice because it requires us to use matrix inversion and requires too many operations to

be efficient (Ranganathan, 2004).

Implementation of the LM algorithm with image data. We now put the LM

algorithm in the context of our image data. The algorithm works by taking an initial

estimate for the image center (x0, y0) and spatial frequency α, and then iteratively arrives

at values for (x0, y0) and α which minimize the sum of the squares of the errors (SSE)

between the Fourier fit that was created using SVD and the image data. The error function

E(x) that we wish to minimize will be:
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E(α, x0, y0) = 1
2‖b− g(α, x0, y0))‖2, (55)

where we have:

g(α, x0, y0) =
N∑

j=−N
cjexp(inφ(α, x0, y0)) (56)

and

φ(α, x0, y0) = 2παρ2 = 2πα[(x− x0)2 + (y − y0)2]. (57)

The residual vector which has length m is defined as:

R(α, x0, y0) = b− g(α, x0, y0). (58)

The gradient of the error function is found to be:

∇E = 〈b− g,−∇g〉 = (−∇g)∗(b− g), (59)

where the Jacobian matrix that we need is given by:

∇g =
(
∂g

∂α

∂g

∂x0

∂g

∂y0

)
=
(
∂g

∂φ

∂φ

∂α

∂g

∂φ

∂φ

∂x0

∂g

∂φ

∂φ

∂y0

)
. (60)

Each of the derivatives that we must compute are as follows:

∂g

∂φ
= in

N∑
j=−N

ajexp(inφ(α, x0, y0)) (61)
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∂φ

∂α
= 2π[(x− x0)2 + (y − y0)2] (62)

∂φ

∂x0
= −4πα(x− x0) (63)

∂φ

∂y0
= −4πα(y − y0), (64)

where the Hessian is found using (50):

H = (∇g)∗∇g. (65)

In order to compute the LM update as defined in (54), the Jacobian and Hessian must be

evaluated at the current value of the parameter vector x = (α, x0, y0).

Thus, for each image we use LM Gradient Descent to create a Fourier fit with

minimal noise which is produced using accurate values for its image center and spatial

frequency. Each Fourier fit is used to compute a vector consisting of four features. We then

collect the feature information for the entire set of images into a matrix so that PCA can

be performed on it.
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Density Based Clustering (DBSCAN)

Clustering algorithms are extremely useful for class identification, which is the

process of taking a set of data and then dividing it into a number of subclasses. DBSCAN

(Density Based Spatial Clustering of Applications with Noise) is a clustering algorithm

which takes a data set and separates it into subclasses according to how spatially dense

they are (Ester et al, 1996). DBSCAN has been accepted as a very effective method for

discovering data clusters since it can identify clusters which have arbitrary shape, will work

on databases with several thousand objects, and it will significantly outperform other

clustering algorithms, such as CLARANS (Clustering Large Applications Based on

Randomized Search) (Ester et al, 1996). While we do not execute DBSCAN to obtain our

results, we discuss its implications for our results and refer to it in our conclusions when

discussing future research.

The basics of DBSCAN are discussed here, using definitions as presented by Ester et

al, 1996. The main idea behind DBSCAN is to observe that data clusters can be identified

by the fact that inside of a data cluster there is a substantially higher density of data

points than there is outside of the cluster, and that places of noise in the data are identified

by an area of lower density. Every data point of a cluster should have a minimum number

of points within a neighborhood around it. Thus, if D is our database, we define the

ε− neighborhood of a point p Nε(p) to be (Ester et al, 1996):

Nε(p) = {q ∈ D | d(p, q) ≤ ε}, (66)

where d(p, q) is the normal Euclidean distance between two points. There are two kinds of
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data points of a data cluster. The points which are inside of the cluster are called core

points, and the points are on the outside of the cluster are called border points. A core

point p is easy to identify because it should satisfy the condition that (Ester et al, 1996)

|Nε(p)| ≥MinPts where MinPts is a threshold number of points that we choose. This is

sometimes, but not necessarily, true for a border point. To identify all points of a data

cluster, we need several new definitions.

First, we say that a point p is directly density-reachable from a point q with respect to

the parameters ε and MinPts if p is contained in Nε(q) and |Nε(q)| ≥MinPts (Ester et

al, 1996).

This relation between two points is not necessarily symmetric. Two core points are

always directly density-reachable from each other, but if a border point p is directly

density-reachable from q, then q is not necessarily directly density-reachable from p.

We say that a point p is density-reachable from a point q with respect to ε and

MinPts if there is a chain of points p1, · · · , pn where p1 = q and pn = p such that pi+1 is

directly density-reachable from pi (Ester et al, 1996).

This definition is a simple extension of direct density reachability. It will allow us to

state the final definition that we need before we define a cluster and how to find one.

We say that a point p is density-connected to a point q with respect to ε and MinPts

if there is a point o such that both p and q are density-reachable from o with respect to ε

and MinPts then q is in C (Ester et al, 1996).

Thus, we see that even though two border points in the same cluster are not

density-reachable from each other that they must be density connected. We now state the

definition of a cluster.
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If D is a database of points, then a cluster C with respect to ε and MinPts is a

non-empty subset of D which satisfies the following conditions (Ester et al, 1996):

1. For every p and q in C, p is density-connected to q with respect to ε and MinPts.

2. For every p and q, if p is in C and q is density-reachable from p with respect to ε and

MinPts, then q is in C.

We can then define noise as being the collection of points which do not belong to any

cluster of D. The algorithm DBSCAN identifies a cluster by first choosing an arbitrary

core point from the data set, and then returning the set of data points which are

density-reachable from that core point. In order to run, it first requires a suitable choice for

ε and MinPts. Details for executing the algorithm and the process for determining ε and

MinPts are both included in Ester et al, 1996.
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Support Vector Machines

Support vector machines (SVMs) are a widely used tool in pattern recognition. They

have been used with high accuracy to classify data in biological sequence analysis (Rätsch,

n.d.) as well as in handwriting (Cortes et al., 1995) and face detection in images (Osuna et

al., 1997). This section is not meant to be a tutorial on how to use SVMs, but instead to

give a brief introduction to SVMs and to summarize some of their underlying theory. In

this section we describe the fundamental concepts of SVMs and state a formal definition of

the linear SVM. Note that the notation and much of the discussion presented here is very

similar to Ben-Hur et al., 2010. Some excellent step by step tutorials on how to correctly

implement SVMs can be found in Hsu et al., 2010 and Ben-Hur et al., 2010. A much more

extensive guide to the theory of SVMs can be found in Burges, 1998.

Support vector machines are two-class classifiers which allow us to take a set of data

and separate it into two categories. For instance, one class of data might be a set of images

that are good Fabry-Perot fringe patterns and another class might be phase shifted

patterns. We say that the ith observation vector xi from a data set with n observations will

be given a label yi where yi ∈ {+1,−1}, so that we can classify each object as being either

"positive" for one class or "negative" for the other (Burges, 1998).

SVMs, whether they are linear or non-linear rely on a separating hypersurface in

order to correctly classify observation points. For linear SVMs, these hypersurfaces are

simply hyperplanes. In order to decide which class an object will belong to, we need to

know which side of the hyperplane the observation lies on. If we are able to find a suitable

linear decision boundary that is able to separate the data into positive and negative
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classes, then we say that the data is linearly separable. In order to define what our linear

decision boundary is, we will introduce the concept of a discriminant function f(x) such

that (Ben-Hur et al., 2010):

f(x) = wTx− γ, (67)

where we call w the weight vector, and γ is the bias which determines how far from the

origin the hyperplane is translated. Our decision boundary is where f(x) = 0, so we have

(Ben-Hur et al., 2010):

wTx− γ = 0. (68)

In the training process the parameters w and γ are generated and used to create the

decision boundary. This process allows the SVM to read in part of a given data set in order

to recognize the characteristics of each class. The method to compute these parameters is

discussed later in this section after more definitions have been stated. In the classification

process, the sign of f(x) is computed for data that the SVM has not encountered. We say

that a label yi is given to a data point xi according to which side of the decision boundary

it is on (Burges, 1998):

wTxi − γ ≥ +1 if yi = +1 (69)

wTxi − γ ≤ −1 if yi = −1. (70)
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This set of inequalities can be combined to give (Burges, 1998):

yi(wTxi − γ) ≥ 1 i = 1, ..., n. (71)

The support vectors are the data points which are the closest to the decision

boundary. The geometric margin m, is defined as the distance from a support vector to the

decision boundary. If we let x+ and x− be support vectors that are equidistant from the

decision boundary and on the positive and negative sides respectively, then if ŵ is a unit

vector in the direction of w, we can define the margin to be as follows (Ben-Hur et al.,

2010):

m = 1
2ŵ

T (x+ − x−). (72)

If we further require f(x+) = 1 and f(x−) = −1, then we obtain two equations that can be

subtracted to yield (Ben-Hur et al., 2010):

wT (x+ − x−) = 2 (73)

Then dividing by 2‖w‖ we obtain a different way to express the margin (Ben-Hur et al.,

2010):

m = 1
2ŵ

T (x+ − x−) = 1
‖w‖

. (74)

Figure 3 below shows a linearly separable data set along with the separating surface,

the support vectors, and the geometric margin.
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f(x) = −1
f(x) = 0

f(x) = 1

Figure 3 . A linearly separable data set. The line f(x) = 0 represents the separating
surface. The support vectors are located along f(x) = 1 and f(x) = −1. The black line
drawn between the support vectors represents twice the distance of the geometric margin.

We are now in a position to more precisely define support vector machines. A

support vector machine is a discriminant function that maximizes the geometric margin.

As such, we also refer to a SVM as being a maximum margin classifier. We will talk about

the hard-margin SVM first, which is a maximum margin classifier that assumes our data is

linearly separable. In order to maximize the geometric margin m = 1/‖w‖ we will

minimize 1
2‖w‖

2, which is an equivalent task. Note that the factor of 1/2 appears purely

for convenience. Thus, in creating a hard margin SVM we solve the following optimization

problem (Ben-Hur et al., 2010):

minimize
w,γ,ξ

1
2‖w‖

2

subject to: yi(wTxi − γ) ≥ 1 i = 1, ..., n.
(75)

A large number of data sets are linearly separable and therefore can be classified with

100 percent accuracy, but many are not. In the case that our data sets are not linearly
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separable, we can still have a fair degree of accuracy by allowing the classifier to have room

for error. This new classifier which allows for misclassified data points is referred to as a

soft-margin SVM, which we will now discuss.

We introduce positive slack variables ξi which correspond to each data point xi and

alter our previous constraints to read (Ben-Hur et al., 2010):

yi(wTxi − γ) ≥ 1− ξi i = 1, ..., n. (76)

These new constraints allow data points that lie within the geometric margin to have

0 ≤ ξi ≤ 1 and data points which are misclassified (and lie on the opposite side of the

margin than we would hope) to have ξi > 1. In the spirit of reducing the number of

misclassified points, we now seek to solve the following optimization problem (Ben-Hur et

al., 2010):

minimize
w,γ,ξ

1
2‖w‖

2 + ν
n∑
i=0

ξi

subject to: yi(wTxi − γ) ≥ 1− ξi ξi ≥ 0.

(77)

This is the soft-margin SVM. Our minimization condition now provides a term ∑n
i=0 ξi

which represents an upper bound on the number of misclassified data points. The factor of

ν in (77) allows us to choose how much we wish to penalize ourselves for misclassifying

points, and serves as a regularization parameter (Ben-Hur et al., 2010).

In order to implement the SVM algorithm, we use the approach as described by

Mangasarian et al., 2001. A more optimal version of (77), where the constraint equation is

written with matrices to make interpretation in Matlab easier (Mangasarian et al., 2001):
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minimize
w,γ,ξ

1
2(‖w‖2 + γ2) + ν

‖ξ‖2

2

subject to: D(Aw − eγ) ≥ e− ξ.
(78)

The added factor of γ2 in the quantity to be minimized allows for the margin between

the separating planes to be optimized with respect to both the orientation w as well as the

location γ (instead of only with respect to w) (Mangasarian et al., 1999). The term

involving ξ was reformulated to ‖ξ‖2 in order to make the constraint ξ ≥ 0 redundant. The

diagonal matrix D is the mxm matrix where m is the number of observations to be

classified and has either either Dii = +1 or Dii = −1 depending on the membership of the

observation point Ai (Mangasarian et al, 2001). The constant 1 is now written as the

column vector e consisting of all ones.

Because this is a convex quadratic programming problem (Boyd et al., 2004), the

minimization problem (78) is reformulated in terms of the single variable u, which is the

much simpler dual of the problem, and is ideal for computation. The dual is (Mangasarian,

1994):

minimize
u≥0

1
2u
′(I
ν

+D(AA′ + ee′)D)u− e′u., (79)

where the values for w and γ that define the separating plane are found from the relations

(Mangasarian et al., 2001):

w = A′Du, ξ = u

ν
, γ = −e′Du. (80)
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To simplify notation, the following matrices are introduced (Mangasarian et al., 2001):

H = D[A− e], Q = I

ν
+HH ′, (81)

so that (79) is written as:

minimize
u≥0

1
2u
′Qu− e′u. (82)

By using the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions

for (82) (Mangasarian, 1994):

u ≥ 0 and u ⊥ (Qu− e) ≥ 0 (83)

the solution to the minimization problem is then provided by the iterative scheme

(Mangasarian et al., 2001):

ui+1 = Q−1(e+ ((Qui − e)− αui)) α ≥ 0, i = 0, 1, ... (84)

and is referred to as the Lagrangian support vector machine algorithm (LSVM algorithm).

Values for the parameters ν and α are chosen as (Mangasarian, 1994) ν = 2.0, α = 1.9/ν in

order to ensure convergence. The inverse of the matrix Q is computed by a special case of

the Sherman-Morrison-Woodbury (SMW) identity (Golub et al., 1996):

(I
ν

+HH ′)−1 = ν(I −H(I
ν

+H ′H)−1H ′). (85)

As a final note, we state that material regarding non-linear SVMs is not needed for
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understanding the rest of this paper, but provides useful background information. As such,

topics regarding non-linear SVMs are discussed in Appendix E.
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Results and Discussion

The results consist of four sections. First, specific examples of the three image types

are shown and the etalon system is described. In the next section two Fourier fits are

produced to show how the LM algorithm is able to optimize the fit by correctly guessing

the image center and spatial frequency for each image. We provide two additional plots

that give valuable information about the stability of the laser by showing the drift of the

image center and spatial frequency over time. We then create a feature vector for each

image and collect the information into a data matrix. PCA is used to compute the

principal components of the data set, and the two components with the largest variance are

used to create an easily visualized projection. A linear support vector network is created to

show how to classify a simple set of three Gaussian clusters. Because the projection of our

data is not Gaussian, the linear support vector network will not classify our data set

without misclassification.

Discussion of Image Data

In this section we very briefly describe the image data. This project uses images

taken from a pulsed, diode-pumped, 266 nm Nd:YAG laser sent through an air gap etalon.

The etalon uses two fused silica mirrors each with index ≈ 1.49 that are separated by a

distance of roughly d ≈ 6.7mm. The beam is focused onto a CCD image sensor with a

pixel size of 16 microns and an image plane that is 512x 512 pixels. The data set consists

of a total of 6780 images which are taken over a period of several hours. Our goal is to

separate the images into the three classes that we described in the introduction: images in

which the laser produces a "good" pattern so that the fringes are centered in the middle of



49

the image plane; images which appear to be phase-shifted; and dark images in which the

laser does not produce output. Examples of Fabry-Perot fringe patterns for each of these

three image types are shown below in Figures 4, 5, and 6 respectively. Although it can be

difficult to see a difference between the good image in Figure 4 and the image in Figure 5,

if the reader investigates closely, it appears that the entire fringe pattern in Figure 5 has

been phase shifted downward by several pixels in comparison to Figure 4. In Figure 6 we

see that the image plane of the CCD is completely dark so it does not display any fringes

at all. This indicates that the laser is not producing output.
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Figure 4 . A fringe pattern that is aligned to the center of the CCD frame.
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Figure 5 . A shifted fringe pattern. This image appears shifted downward by several pixels
in comparison to our good image.
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Figure 6 . A dark image.
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Optimization of the Fourier Fit Using Levenberg-Marquardt Algorithm

In this section, an example is shown of how the LM algorithm is able to use an image

and an initial guess for the image center to produce the optimal image center and Fourier

fit. We begin with an initial estimate for the center (x0,y0) which is somewhat arbitrary,

but is chosen in an attempt to minimize deviation away from the true center for each

image in the set in order to ensure convergence of the method. The initial estimate for the

spatial frequency, α, is based upon the spacing of the peaks in the intensity profile. This is

done by simply counting a set number of fringes that we have moved away from the image

center and dividing by an estimate for the number of square pixels it took to get there. In

the process of producing the Fourier fit, we also perform singular value decomposition

(SVD) on the data in order to reduce the noise of our signal.

If we use the Matlab image processing tool "impixelregion" on the image in Figure 5,

we might use the values x0 = 246.0 and y0 = 287.0 as an approximation to the correct

center. However, when we use a poor initial guess x0 = 250.0, y0 = 265.0, we see that an

incorrect center produces a very poor fringe profile. We do not see a fringe pattern that

travels smoothly between a distinct minimum and maximum intensity, we simply see an

incoherent pattern of data. The following fit in Figure 7 is produced between the first and

second fringe orders, so that the phase is plotted over 2π ≤ φ ≤ 4π where φ is calculated

using (6). The blue points in the plot represent the total intensity of the light collected by

the CCD. The width of this cluster of points shows that the data has considerable noise,

thus making it difficult to choose individual data points for a particular intensity. The red

line is the Fourier fit that is produced by performing SVD on the matrix A of Fourier basis
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vectors, where A is defined in (20) and where the Fourier coefficients are found by solving

(32). This fit is a reconstruction of the data that has significantly less noise than before.

Figure 7 . A Fourier fit that uses an incorrect guess for the image center.

When we perform the LM algorithm using the update rule as defined in (54), we

produce the much more accurate values x0 = 245.9 y0 = 287.8 for the center of the image,

which is comparable to our initial guess using "impixelregion". In addition, when using an

initial estimation of α = 2.17× 10−4, we produce an optimal value for the spatial frequency

α = 3.17× 10−4. For this particular image, the sum of squares of the errors for the poor fit

was found to be E = 1.94× 1011, but after using the optimal values this sum has been

reduced to E = 1.72× 1010, a factor of more than 10. Thus, we see the LM algorithm

allows us to correctly guess the center and spatial frequency for each image in an arbitrary

fashion. These values are used to produce the best Fourier fit in the sense that the sum of

the squares of the errors has been minimized. The optimized fit is shown below in Figure 6.
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Because it uses an accurate estimate for the image center, a smooth fringe profile is

produced.

Figure 8 . A Fourier fit that uses an optimized guess for the image center.

The LM algorithm also allows two very useful plots to be produced which provide

insight into the stability of the laser. Figure 9 shows the evolution of the image center over

time. The x and y locations of the image center (in pixels) are plotted against the total

number of images which have elapsed.
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Figure 9 . A plot of the x and y locations of the image center as a function of total time
elapsed.

Figure 9 indicates that while there is substantial drift in the image center in the first

hundred images or so, there is not much drift over long periods of time. Most of this

observed drift is likely due to thermal noise. Figure 10 shows the evolution of the spatial

frequency over time.
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Figure 10 . A plot of the spatial frequency α as a function of total time elapsed.

Figure 10 shows that there is substantial change in the spatial frequency over long

periods of time indicating that the fringes are expanding and contracting fairly rapidly and

thus becoming unstable.
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Creation of The Feature Vector and Dimensionality Reduction with PCA

For each image, we construct an optimized Fourier fit using the LM algorithm . The

DC term of each fit is set to zero prior to calculating each image feature in order to avoid

scaling problems with the correlation matrix used in PCA. Each feature vector is given by

x = [max(f),min(f), S, δ] where max(f) and min(f) are the maximum and minimum

values of the Fourier fit, S is the measure of similarity as described in (15), and δ is the

FWHM of each fit. We use each vector to form a 6780x 4 matrix consisting of all of the

feature information in our data set, so that each feature vector is a row. We then divide

each column by its variance to ensure that each column of observations is dimensionless.

We form the correlation matrix CX of the data matrix X as described in (36) and compute

its eigenvectors, which are the principal components.
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We now create a plot which shows us the amount of variance in the data that is

present in each eigenvalue. Figure 11 is produced by plotting the amount of variance in the

data against the sum of the first k eigenvalues for k ≤ 4. As we increase k, the total

amount of variance that we account for increases. Note that the eigenvalues are plotted in

ascending order of magnitude. Our plot is shown below:

Figure 11 . A plot of the fraction of total variance in the data as a function of the
cumulative sum of the eigenvalues.

We see that more than 95% of the variance in the data is contained in the last two

eigenvalues. Thus, we remove the first two principal components and use the remaining

two components as input to (40) to create a projection of our data, which is shown in

Figure 12 below:
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Figure 12 . A projection of the data using the two principal components with the maximum
variance.

Figure 12 provides evidence that the data set can be clustered into three distinct

categories, each according to their density by using the DBSCAN algorithm. The densest

region of data points seem to be present in region 1. Region 2 is substantially less dense.

The least dense points seem to be present in region 3. The right side of region 3 seems to

have mostly isolated points which suggests that they correspond to noise (the same can be

said about some of the data points on the edges of region 1). In order to verify this

conjecture and complete the clustering process DBSCAN must be performed on the data.

The shape of these data clusters are not Gaussian, which (as we will see in the next section)

suggests that a linear SVM will likely not classify the set of image data without substantial
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error and thus a non-linear SVM must be used to perform the classification process.
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Classifying Sets of Gaussian Data with Linear SVMs

In this section we describe how we can use a network of linear SVMs to classify three

clusters of Gaussian data. Even though our set of data is not Gaussian, this demonstration

provides a clear example of how a support vector network is able to correctly classify three

data clusters. It also provides a simple framework for understanding how a non-linear SVM

would function in a similar way.

First, three Gaussian data classes are generated by using the the Matlab command

"mvnrnd" which creates a vector of multivariate normal random numbers. It requires us to

specify the mean and covariance matrix for the data set.

In order to implement a support vector network which will classify a total of N

classes of data, we create a support vector machine for each of the N(N−1)
2 unique class

pairings. Thus for each pairing (i, j) we create a support vector machine that will classify a

given data vector into one of two classes:i or j where we have i = {1, 2, ..., N − 1} and

j = {i+ 1, i+ 2, ..., N}. In this example we use a total of three support vector machines to

classify our three data types. The first half of the data set is trained in order to generate

the decision boundary for each support vector machine. The code used to train the data is

the LSVM algorithm that was taken (and simplified) from Mangasarian et al., 2001, and

performs the update rule for u in (84). By training a particular pairing (i, j) of data

clusters we produce the parameter w which is the normal vector to the decision boundary,

and the parameter γ. These parameters are then used to create each of the three decision

boundaries as in (68).

We then classify the second half of the data by taking each pairing (i, j), and
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producing the output of the corresponding decision function as defined in (67) for every

data vector. The output for a given data vector is either positive or negative and indicates

into which class the decision function has classified the data vector. If the output is

negative, then the decision function categorizes the vector as belonging to class i, and if it

is positive, then the decision function categorizes the vector as belonging to class j. A

given data vector will receive one vote from each support vector machine to indicate which

class it belongs to. Because a given data vector will always be misclassified by one of the

support vector machines, we determine which class has received the most votes. If the

winning index is k, then we determine that the data vector ultimately belongs to class k.

Figure 13 shows a plot for each decision boundary and the data set which has been

classified using the support vector network. Because the data set is linearly separable, it is

classified by the support vector machine with 100% accuracy. We can clearly see this

because each decision boundary perfectly separates two of the data classes. The plot is

shown below:
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Figure 13 . A plot of the three decision boundaries and the gaussian clusters that have been
correctly classified.

Next, three different Gaussian clusters are generated, which cannot be perfectly

separated by linear decision boundaries. This is because many of the data points are much

closer together and thus more difficult to separate. In Figure 14, each of the data classes is

represented by a different color. For argument’s sake, we will label the red data points class

1, the green data points class 2, and the blue data points class 3.
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Figure 14 . A gaussian data set that has classification error when using a linear support
vector network.

To further illustrate how a linear support vector network will misclassify some of the

data, the first half of the data belonging to classes 1 and 2 is trained in order to generate a

decision boundary. The second half of the data is then used for classification and it is

shown that the boundary does not completely separate the two data classes.
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Figure 15 . A plot of two of the data classes and the decision boundary used to separate
them. The boundary cannot perfectly separate each data set, which indicates classification
error.

Figure 15 shows even though some data points are misclassified, a linear support

vector network is able to classify the data set with 94.3% accuracy. Thus, we see that

linear support vector machines do well to classify Gaussian data clusters.
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Conclusions

We have made progress toward the creation of an algorithm which is able to classify

Fabry-Perot fringe profiles according to their image types. We have determined that

singular value decomposition is an effective method to reduce the noise present in each

fringe profile while simultaneously generating a Fourier series to model the data. Use of the

LM algorithm has allowed us to acquire an accurate guess for the center of every image in

our data profile and to find the value of the spatial frequency that produces a Fourier fit

that minimizes the sum of errors. We are ensured that the phase shift calculated for each

profile is independent of the choice of the image center, so we eliminate the possibility of

the shift being caused by a drift in the camera. Additionally, our plots of the image center

and spatial frequency as a function of the total time elapsed provide evidence that the laser

used in this investigation shows unstable behavior.

Principal component analysis has served as an effective method to reduce the

dimensionality of our feature data so it can be visualized. Our projection of the data set

shows us that there appear to be three different regions of data, each sorted according to

their density. If our projected data did not produce data clusters which could be spatially

separated from one another based on their density, it would be evidence to suggest that

PCA may have been inadequate. In this case, we could have proceeded by attempting a

transformation of the data set prior to performing PCA, as suggested in Schlens, 2009.

In order to verify that we can sort the data into the three regions, we must perform

DBSCAN as described by Ester et al., 1996 for future research. This will assign each image

to a particular data cluster, so that they can be fed into a support vector network and then
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classified. Because of the shape of each proposed cluster in the data set, we see that a

non-linear SVM should perform much better than using a linear SVM. Alterations to our

linear SVM should be made as discussed in Mangasarian et al., 2001 to produce a

non-linear SVM.

After classification is complete, we can perform a more detailed stability analysis

than the plots provided by the LM algorithm. Stability of the laser can be determined

based upon how many images belong to each class. If we determine that more than a very

small percentage of the images are either dark or show substantial phase shift, then we

would conclude that the laser is not producing stable output and must undergo work

before it can be used to take data involved in future experiments.
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Appendix A - Derivation of Fabry-Perot Phase Difference and Intensity

Distribution

Derivation of phase difference. In this section we provide the derivation for the

Fabry-Perot phase difference (1) as presented by Fowles, 1989. We can see from the

geometry of Figure 12 that we need to have:

AB = BC = L = d

cos(θ1)

AC = 2Lsin(θ1) = 2dtan(θ1)

AD = ACsin(θ0) = 2dtan(θ1)sin(θ0).

If the external index of refraction is µ0, the etalon has index of refraction µ1, and λ0 is the

laser central wavelength we can find the phase difference as follows:

φ(ABC) = 2πµ1

λ0
(AB +BC) = 4πµ1d

λ0

1
cos(θ1)

φ(AD) = 2πµ0

λ0
(AD) = 4πµ0d

λ0
tan(θ1)sin(θ0)

φ = φ(ABC)− φ(AD)

φ = 4πµ1d

λ0
( 1
cos(θ1

− µ0

µ1
tan(θ1)sin(θ0))
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φ = 4πµ1d

λ0
(1− sin2(θ1)

cos(θ1) )

φ = 4πµ1d

λ0
cos(θ1),

where we have used Snell’s Law in (7) to write µ0
µ1
sin(θ0) = sin(θ1).

Next, we show the derivation for the phase difference in (3) which is written as an

approximate function of ρ2. First, Snell’s law is used to write the cosine of the angle

through the etalon as a function of the external angle:

cos(θ1) = (1− [µ0

µ1
sin(θ0)]2) 1

2 .

We now use the binomial expansion:

(1 + x)n ≈ 1 + nx+ ...,

with x = −(µ0
µ1
sin(θ0))2 and n = 1

2 to write:

(1− (µ0

µ1
sin(θ0))2) 1

2 ≈ 1− 1
2(µ0

µ1
sin(θ0))2,

where the external angle θ0 is assumed to be small. For a point on the image plane that is

a radius ρ away from the optical axis, we can write:

sin(θ1) = ρ

ρ+ f

where f is the focal length of the focusing lens. By assuming f >> ρ, we obtain the
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expression:

1− 1
2(µ0

µ1
sin(θ0))2 ≈ 1− µ2

0
2µ2

1

ρ2

f 2 ,

so the phase shift written as a function of pixel location becomes:

φ(x, y) = 4πµ1d

λ0
cos(θ1) ≈ 4πµ1d

λ0
(1− µ2

0
2µ2

1

ρ(x, y)2

f 2 ).

Derivation of intensity distribution. In this section, we provide a derivation of

the Fabry-Perot intensity distribution as presented by Fowles, 1989. Let us first derive the

expression for the electric field. Assume that the transmission coefficient is t, the reflection

coefficient is r, and that the ingoing electric field has amplitude E0. Looking at Figure 2

once more, we see that the transmitted fields are ET1 = E0t
2 and ET2 = E0t

2r2eiφ. If we

continue in this way we see that the final transmitted electric field can be written as the

following sum:

ET = E0t
2 + E0t

2r2eiφ + E0t
2r4e2iφ + ...

= E0t
2(1 + r2eiφ + r4e2iφ + ...).

If we use the geometric series given by:

∞∑
n=0

xn = 1
1− x with |x| < 1

and let x = r2eiφ then we obtain:

ET = E0t
2

1− r2eiφ
.
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If we square the magnitude of the electric fields and use the transmittance T = |t2| and the

reflectance R = |r2| then we can write the intensity as follows:

IT = I0
T 2

|1−Reiφ|2

and we have:

|1−Reiφ|2 = (1−Reiφ)(1−Re−iφ) = 1− 2Rcos(φ) +R2,

so the expression becomes:

IT = I0
T 2

1− 2Rcos(φ) +R2 .

When we use the approximation (6) for the phase shift φ written in terms of ρ2 we obtain:

IT (ρ2) ≈ I0
T 2

1− 2Rcos(φ0 − 2παρ2) +R2 ,

so we have derived the intensity distribution for Fabry-Perot and shown that it is an

approximate function of ρ2.
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Appendix B - Derivation of Least Squares Estimate

In this Appendix, we derive the least squares estimate (22). In terms of the calculus

of variations, we seek to minimize the cost functional J(x) where:

J(x) = ‖Ax− b‖2 = 〈Ax− b, Ax− b〉

and the subscript denotes that we are taking an l2 norm. If we increment J by an amount

proportional to h, then we obtain:

J(x;h) = 〈Ax− b, A(x+ βh)− b〉.

By minimizing the variation in J with respect to the parameter β we obtain:

δJ = δ

δβ
〈Ax− b, A(x+ βh)− b〉|β=0 = 0

which yields:

〈Ax− b, Ah〉 = 0 ∀ h

and since l2 is a Hilbert Space, we can write this as:

〈A∗(Ax− b), h〉 = 0 ∀ h,
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where * denotes the complex conjugate. Since this equation holds for all h, then we arrive

at:

A∗Ax = A∗b,

so the least squares estimate that minimizes the SSE is given by:

x̂ = (A∗A)−1A∗b.
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Appendix C - Linear Algebra

Review of basic concepts. In this section, we review some basic definitions from

linear algebra which are needed to understand singular value decomposition (SVD). First,

we define the transpose of a matrix, the inverse of a matrix, and the notion of a symmetric

matrix. We also define eigenvectors and eigenvalues. If A is an mxn matrix, we denote its

transpose by AT and define it as the matrix where we exchange every row with every

column, so that aTij = aji for all i, j. Thus since A is an mxn matrix, then AT is an nxm

matrix. We denote the inverse of a matrix A to be A−1, and define it to be the matrix

which satisfies the equation AA−1 = I where I is the identity matrix consisting of all 1’s

across the diagonal. We say that a a matrix A is symmetric if AT = A, or written another

way aij = aji for all i, j. A vector e and a scalar λ which provide a solution to the equation:

Ae = λe

are called an eigenvector e and an associated eigenvalue λ. We find the entire set of

eigenvalues of a matrix A (Sauer, 2006) by solving for the roots λ of the characteristic

polynomial defined by:

det(A− λI) = 0.

The associated eigenvectors are found by taking scalar multiples of the nonzero vectors e

which are in the nullspace of A− λI.

Next we will define orthonormal vectors, the idea of an orthonormal matrix, and we

state a property about orthonormal matrices. We say that two vectors u and v are
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orthonormal if they are unit vectors and are orthogonal so that their inner product (dot

product) is zero:

u · v = uTv = u1v1 + u2v2 + ... = 0.

A set of vectors {un} forms an orthonormal set if every vector in the set is a unit

vector and is mutually orthogonal. Similarly, a matrix Q is orthonormal if its column

vectors form an orthonormal set. A very useful property of orthonormal matrices is that

QT = Q−1, which is equivalent to saying that QTQ = I. This is easily shown (Schlens,

2009) since the ijth element of QTQ is

(QTQ)ij = qTi qj = δij,

where δij is the Kroenecker delta, so δij = 1 when i = j, and δij = 0 when i 6= j. So we must

have QTQ = I and thus QT = Q−1.

A proof about symmetric matrices. In this section, we provide a proof to

equation (23) regarding a symmetric matrix A as discussed by Schlens, 2009. To show that

(23) is true for symmetric matrices, we first show that any matrix A with independent

eigenvectors can be written as:

AE = ED.
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If we assume that E is defined as in the above equation, then we see that the right hand

side means that:

AE =A
[
e1 e2 ... en

]

AE =
[
Ae1 Ae2 ... Aen

]

and then the eigenvalue equation gives us:

[
Ae1 Ae2 ... Aen

]
=
[
λ1e1 λ2e2 ... λnen

]
= ED

and thus we have seen that AE = ED. If this equation is written as A = EDE−1 and if A

is also symmetric, then we have finally shown that we can write A = EDET for a

symmetric matrix A.
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Appendix D - Selection of the Projection Matrix in PCA

In this Appendix, we provide a proof (as discussed by Schlens) of the claim that

choosing the matrix P as defined in (33) such that each column is an eigenvector of XTX

will diagonalize the covariance matrix CY . To verify this, we first write CY in terms of P as:

CY = 1
n− 1Y

TY

= 1
n− 1(XP )T (XP )

= 1
n− 1P

T (XTX)P.

Because XTX is symmetric, we can write it as in (53) so that:

CY = 1
n− 1P

T (EDET )P

and our choice of P ensures that P = E so that:

CY = 1
n− 1(P TP )D(P TP )

CY = 1
n− 1D,

which shows us that CY has been diagonalized.
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Appendix E - Lagrangian SVMs and Non-Linear SVMs

Linear SVMs using the Lagrangian. Now that we have discussed the basics of

linear SVMs, we provide a reformulation of the problem using Lagrange multipliers. This

will be an extremely useful interpretation of the problem, since it will allow us to very

easily begin a discussion about kernel methods and non-linear SVMs. First we will create

the Lagrangian of our problem (Burges, 1998). We take each constraint ci which has been

written in the form ci ≥ 0 and multiply it by a positive Lagrange multiplier αi, then

subtract the objective function which is to be minimized. Our primal Lagrangian for the

soft-margin SVM will then become (Burges, 1998):

LP = 1
2 ||w‖

2 + ν
n∑
i=0

ξi −
n∑
i=0

αi{yi(wTxi − γ)− 1 + ξi} −
n∑
i=0

µiξi,

so we seek to solve the primal optimization problem (Burges, 1998):

minimize
w,γ,ξ

LP

subject to: ∂LP
∂αi

= 0, ∂LP
∂µi

= 0, αi ≥ 0 µi ≥ 0.

We can solve the equivalent dual problem which is formulated as follows (Burges, 1998):

maximize
w,γ,ξ

LP

subject to: ∇wLP = 0, ∇γLP = 0, αi ≥ 0 µi ≥ 0



85

and our constraints for the dual yield the conditions (Burges, 1998):

w =
n∑
i=0

αiyixi

n∑
i=0

αiyi = 0.

It is important to note that the data points xi which correspond to Lagrange

multipliers αi > 0 are support vectors which either lie on or within the margin. Because

these constraints for the dual must also be true for the primal Lagrangian, we will

substitute them in order to obtain (Burges, 1998):

LD =
n∑
i=i

αi −
1
2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj,

which is the dual formulation of the Lagrangian. So our new formulation of our

optimization problem is as follows (Burges, 1998):

maximize
α

LD

subject to:
n∑
i=0

yiαi = 0, 0 ≤ αi ≤ ν.

This Lagrangian formulation will be the starting point for us to begin discussing

kernel-based methods and non-linear SVMs, which is the topic of the next section.

Kernel methods and non-linear SVMs. As we have stated in the previous

sections, many data sets are not linearly separable, and cannot be accurately classified by

linear decision boundaries. Instead we need to rely on non-linear decision boundaries, and
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hence we must create an interpretation for a non-linear SVM. Even if the data is linearly

separable and has a fair degree of accuracy by using a linear SVM, we can oftentimes

substantially increase the accuracy by using non-linear SVMs. Thus, in this section we will

describe the basic concepts of non-linear SVMs using arguments presented by (Ben-Hur et

al., 2010).

Let’s start by defining a non-linear decision function, by replacing our variable x,

with some non-linear function φ(x) with φ : X → F which will map our original feature

space X into some new and possibly higher dimensional space F (Ben-Hur et al., 2010):

f(x) = wTφ(x) + b.

We can immediately see that we have some difficulty in utilizing such a decision

function. We started with a problem that had a fairly high dimensional input space, and

we are now trying to compute in a space which is quadratic, or even higher dimensional

with respect to our data vectors. The number of operations in performing the computation

required becomes increasingly cumbersome as we increase the dimension of our original

input space (Ben-Hur et al., 2010). How can we create a non-linear decision function while

avoiding a problem with scaling its computational complexity?

Let us broaden our definition of support vector machines, to lump in SVMs as part of

a broad category of algorithms that are called kernel methods. Kernel methods do not

directly depend on a given data set; instead they indirectly depend on the data through

dot products. If we examine the dual Lagrangian LD, we see that the data set only appears
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as the dot product xTi xj. We will now write the Lagrangian as:

LD =
n∑
i=i

αi −
1
2

n∑
i=1

n∑
j=1

yiyjαiαjk(xi, xj),

where the linear kernel function is (Ben-Hur et al., 2010):

k(xi, xj) = xTi xj.

If we return to our linear discriminant function (67), and if we assume the weight

vector w can be expressed as a linear combination of the training samples xi then we have

(Ben-Hur et al., 2010):

f(x) =
n∑
i=1

αix
T
i x− γ,

which we express in terms of the kernel function as (Ben-Hur et al., 2010):

f(x) =
n∑
i=1

αik(xi, x)− γ.

Rewriting the decision function this way for the linear case is not extremely helpful,

but if we perform the same procedure for a non-linear case, we will see that this approach

will have considerable advantage. If we use the decision function defined above along with

a non-linear kernel function (Ben-Hur et al., 2010):

k(x, y) = φ(x)Tφ(y),

then we will be able to avoid directly mapping our data into a complex feature space. By
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picking some simple functions as possibilities for φ, we can reason that we can write our

kernel function k(x, y) in terms of the dot product xTy. We are able to compute the

function k(x, y) without ever having to make explicit reference to the function φ in our

computation. We can now see that our method involving the kernel function requires

substantially less effort to compute f(x) than our original formulation of the problem.

We now mention some of the kernel functions that are prominent throughout the

literature. The degree d polynomial kernel is a simple extension of the linear kernel and

can be defined as (Hsu et al., 2010):

k(xi, xj) = (γxTi xj + r)d,

where γ > 0 and r are kernel parameters. In general, as the degree of the polynomial kernel

is increased we add curvature to the decision boundary. One of the most popular and

effective kernel functions is the radial basis function (RBF) kernel, oftentimes referred to as

a Gaussian kernel (Hsu et al., 2010):

k(xi, xj) = e−γ‖xi−xj‖2
,

where γ > 0. This kernel has the effect of creating decision boundaries that have several

bumps in them. As the factor of γ is increased, so does the curvature and irregularity of

these bumps.

Before kernel functions are computed in order to construct a non-linear SVM, it is

generally a good idea to perform basic scaling of the data. This can help reduce numerical
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difficulties when choosing a range for kernel values. In order to search for the best penalty

term C and appropriate kernel parameters, a cross-validation search is often performed.

Details on these procedures are discussed in Hsu et al., 2010.
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