Examining the accuracy of the normal approximation to the poisson random variable

Wesley Jacob Rich

Follow this and additional works at: http://commons.emich.edu/theses
Part of the Mathematics Commons

Recommended Citation

Rich, Wesley Jacob, "Examining the accuracy of the normal approximation to the poisson random variable" (2009). Master's Theses and Doctoral Dissertations. 262.
http://commons.emich.edu/theses/262

EXAMINING THE ACCURACY OF THE NORMAL

APPROXIMATION TO THE POISSON RANDOM VARIABLE

by

Wesley Jacob Rich

Thesis

Submitted to the Department of Mathematics
Eastern Michigan University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mathematics

Thesis Committee:
C. J. Gardiner, PhD, Chair

Bette Warren, PhD

Kenneth Shiskowski, PhD

August 11, 2009
Ypsilanti, Michigan

DEDICATION

To my wife, Amy, who has patiently endured countless hours of my absence, both physical and social, for the sake of research and the composition of this paper. You have always supported me, and I love you and thank you from the bottom of my heart.

ACKNOWLEDGMENTS

Thanks to Dr. K. G. Janardan, who both inspired this work, and who initially provided me with the proof about moment generating functions.

Thank you to my thesis committee for all your help. Dr. Kenneth Shiskowski, your classes helped me become more familiar with software necessary for this work. Dr. Bette Warren, the literature you provided me was invaluable to this work, as were your comments concerning the definition of an appropriate error measurement. Finally, Dr. Christopher Gardiner, through your classes you inspired in me a greater appreciation for numerical approximations and mathematical exploration than I had previously known; furthermore, I am grateful for your patient guidance throughout this process, without which this paper would not have been possible.

Abstract

Because the Poisson distribution is discrete, it is sometimes useful to use the continuous normal distribution as an approximation. In doing so, determining the accuracy of the approximation is important. Some issues of interest include: knowing how the error depends on the Poisson parameter, knowing when the approximation overestimates or underestimates the distribution, bounding the magnitude of the error, and determining if the approximation can be improved. This paper addresses these issues by examining how two types of absolute error measurements are affected by variations in the Poisson parameter; changes in the relative error are also examined. Generally, the error decays much like a power function of the parameter; therefore, curve fitting is used to bound the error. Finally, variations on the approximation are examined; these variations are often more accurate than the standard approximation.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGMENTS iii
ABSTRACT iv
LIST OF TABLES vi
LIST OF FIGURES ix
CHAPTER 1: INTRODUCTION 1
Objective and Significance 1
Theoretical Background 2
CHAPTER 2: REVIEW OF RELATED LITERATURE 6
CHAPTER 3: RESEARCH METHODS 10
CHAPTER 4: RESEARCH RESULTS AND DISCUSSION 13
Total PMF Error 13
Total CDF Error 17
Regions of Over- and Underestimation. 20
Conclusions from Absolute Error 36
Relative Error 38
Conclusions from Relative Error 45
Variations 46
Conclusions from Variations 75
CHAPTER 5: CONCLUSION 76
REFERENCES 78

LIST OF TABLES

Table Page
1 Maximum Errors of Two Approximations to the Poisson 7
2 Total PMF Error. 13
3 Predicted Minimum Values of λ for Specified Accuracy of PMF 14
4 Actual Minimum Values of λ for Specified Accuracy of PMF. 14
5 Points of Maximum PMF Error 15
6 Total CDF Error. 18
7 Minimum Values of λ for Specified Accuracy of CDF. 18
8 Intervals of Maximum CDF Error. 18
9 Intervals of Error Regions. 21
10 Maximum PMF Error by Region 22
11 Point of Maximum PMF Error by Region. 23
12 Maximum CDF Error by Region. 25
13 Curve Fits to PMF Error by Region 26
14 Curve Fits to CDF Error by Region. 26
15 Predicted Minimum Values of λ for Specified Accuracy of PMF by Region. 27
16 Predicted Minimum Values of λ for Specified Accuracy of CDF by Region. 27
17 Actual Minimum Values of λ for Specified Accuracy of PMF by Region. 27
18 Actual Minimum Values of λ for Specified Accuracy of CDF by Region. 27
19 Maximum Relative Error by Region. 39
20 Point of Maximum Relative Error by Region. 40
21 Significant Points in Regions 1 and 4 41Curve Fits to Relative Error by Region.42
23 Predicted Minimum Values of λ for Specified Relative Accuracy by Region. 42
24 Actual Minimum Values of λ for Specified Relative Accuracy by Region. 42
25 Total CDF Error for Gram-Charlier. 47
26 Interval of Maximum Error for Gram-Charlier. 47
27 Total CDF Error for Camp-Paulson. 48
28 Interval of Maximum Error for Camp-Paulson. 48
29 Total CDF Error for Ghosh. 49
30 Interval of Maximum Error for Ghosh. 49
31 Total CDF Error for Molenaar with Parameter w_{1} 50
32 Interval of Maximum Error for Molenaar with Parameter w_{1} 50
33 Total CDF Error for Molenaar with Parameter y 52
34
Interval of Maximum Error for Molenaar with Parameter y 52
35 Total CDF Error for Molenaar with Parameter v 53
36 Interval of Maximum Error for Molenaar with Parameter v. 53
37 Total CDF Error for Molenaar with Parameter v_{1} 55
38 Interval of Maximum Error for Molenaar with Parameter v_{1} 55
39 Total CDF Error for Molenaar with Parameter v^{*} 56
40 Interval of Maximum Error for Molenaar with Parameter v^{*} 56
41 Total CDF Error for Molenaar with Parameter $v^{* *}$ 57
42 Interval of Maximum Error for Molenaar with Parameter $v^{* *}$ 57
43 Total CDF Error for Molenaar with Parameter $v^{* * *}$. 58
44 Interval of Maximum Error for Molenaar with Parameter $v^{* * *}$. 58
Curve Fits to Total CDF Error for Gram-Charlier. 58
Curve Fits to Total CDF Error for Camp-Paulson 59
Curve Fits to Total CDF Error for Ghosh. 59
Curve Fits to Standard Normal Total CDF Error (Parameter w). 59
Curve Fits to Total CDF Error for Molenaar with Parameter $w_{1} \ldots$ 59
Curve Fits to Total CDF Error for Molenaar with Parameter y. 60
Curve Fits to Total CDF Error for Molenaar with Parameter v. 60
Curve Fits to Total CDF Error for Molenaar with Parameter v_{1} 60
Curve Fits to Total CDF Error for Molenaar with Parameter v^{*}. 60
Curve Fits to Total CDF Error for Molenaar with Parameter $v^{* *}$. 61
Curve Fits to Total CDF Error for Molenaar with Parameter $v^{* * *}$. 61
Exponential Curve Fit for Molenaar with Parameter $v^{* * *}$. 61
Predicted Minimum Values of λ for Specified CDF Accuracy. 62
Actual Minimum Values of λ for Specified CDF Accuracy. 62

LIST OF FIGURES

Figure Page
1 Total PMF Error for $1 \leq \lambda \leq 10$ 16
2 Total PMF Error for $10 \leq \lambda \leq 100$ 16
3 Total PMF Error for $100 \leq \lambda \leq 1000$ 16
4 Total CDF Error for $1 \leq \lambda \leq 10$ 19
5 Total CDF Error for $10 \leq \lambda \leq 100$ 19
6 Total CDF Error for $100 \leq \lambda \leq 1000$ 19
7 Region 1 PMF Error for $3 \leq \lambda \leq 10$. 28
8 Region 1 PMF Error for $10 \leq \lambda \leq 100$ 28
9 Region 1 PMF Error for $100 \leq \lambda \leq 1000$ 28
10 Region 2 PMF Error for $1 \leq \lambda \leq 10$ 29
11 Region 2 PMF Error for $10 \leq \lambda \leq 100$ 29
12 Region 2 PMF Error for $100 \leq \lambda \leq 1000$ 29
13 Region 3 PMF Error for $1 \leq \lambda \leq 10$ 30
14 Region 3 PMF Error for $10 \leq \lambda \leq 100$ 30
15 Region 3 PMF Error for $100 \leq \lambda \leq 1000$ 30
16 Region 4 PMF Error for $1 \leq \lambda \leq 10$ 31
17 Region 4 PMF Error for $10 \leq \lambda \leq 100$ 31
18 Region 4 PMF Error for $100 \leq \lambda \leq 1000$ 31
19 Region 1 CDF Error for $3 \leq \lambda \leq 10$. 32
20 Region 1 CDF Error for $10 \leq \lambda \leq 100$ 32
21 Region 1 CDF Error for $100 \leq \lambda \leq 1000$ 32
22 Region 2 CDF Error for $1 \leq \lambda \leq 10$ 33
23 Region 2 CDF Error for $10 \leq \lambda \leq 100$ 33
24 Region 2 CDF Error for $100 \leq \lambda \leq 1000$ 33
25 Region 3 CDF Error for $1 \leq \lambda \leq 10$ 34
26 Region 3 CDF Error for $10 \leq \lambda \leq 100$ 34
27 Region 3 CDF Error for $100 \leq \lambda \leq 1000$ 34
28 Region 4 CDF Error for $1 \leq \lambda \leq 10$ 35
29 Region 4 CDF Error for $10 \leq \lambda \leq 100$ 35
30 Region 4 CDF Error for $100 \leq \lambda \leq 1000$ 35
31 Region 2 Relative Error for $1 \leq \lambda \leq 10$ 43
32 Region 2 Relative Error for $10 \leq \lambda \leq 100$. 43
33 Region 2 Relative Error for $100 \leq \lambda \leq 1000$ 43
34 Region 3 Relative Error for $1 \leq \lambda \leq 10$. 44
35 Region 3 Relative Error for $10 \leq \lambda \leq 100$. 44
36 Region 3 Relative Error for $100 \leq \lambda \leq 1000$ 44
37 Gram-Charlier Error for $1 \leq \lambda \leq 10$ 63
38 Gram-Charlier Error for $10 \leq \lambda \leq 100$ 63
39 Gram-Charlier Error for $100 \leq \lambda \leq 1000$ 63
40 Camp-Paulson Error for $1 \leq \lambda \leq 10$ 64
41 Camp-Paulson Error for $10 \leq \lambda \leq 100$ 64
42 Camp-Paulson Error for $100 \leq \lambda \leq 1000$ 64
43 Ghosh Error for $1 \leq \lambda \leq 10$ 65
44 Ghosh Error for $10 \leq \lambda \leq 100$ 65
45 Ghosh Error for $100 \leq \lambda \leq 1000$ 65
46 Standard Normal (Parameter w) Error for $1 \leq \lambda \leq 10$ 66
47 Standard Normal (Parameter w) Error for $10 \leq \lambda \leq 100$ 66
48 Standard Normal (Parameter w) Error for $100 \leq \lambda \leq 1000$ 66
49 Molenaar (with Parameter w_{1}) Error for $1 \leq \lambda \leq 10$. 67
50 Molenaar (with Parameter w_{1}) Error for $10 \leq \lambda \leq 100$ 67
51 Molenaar (with Parameter w_{1}) Error for $100 \leq \lambda \leq 1000$. 67
52 Molenaar (with Parameter y) Error for $1 \leq \lambda \leq 10$ 68
53 Molenaar (with Parameter y) Error for $10 \leq \lambda \leq 100$ 68
54 Molenaar (with Parameter y) Error for $100 \leq \lambda \leq 1000$ 68
55 Molenaar (with Parameter v) Error for $1 \leq \lambda \leq 10$ 69
56 Molenaar (with Parameter v) Error for $10 \leq \lambda \leq 100$ 69
57 Molenaar (with Parameter v) Error for $100 \leq \lambda \leq 1000$ 69
58 Molenaar (with Parameter v_{1}) Error for $1 \leq \lambda \leq 10$. 70
59 Molenaar (with Parameter v_{1}) Error for $10 \leq \lambda \leq 100$. 70
60 Molenaar (with Parameter v_{1}) Error for $100 \leq \lambda \leq 1000$ 70
61 Molenaar (with Parameter v^{*}) Error for $1 \leq \lambda \leq 10$. 71
62 Molenaar (with Parameter v^{*}) Error for $10 \leq \lambda \leq 100$ 71
63 Molenaar (with Parameter v^{*}) Error for $100 \leq \lambda \leq 1000$ 71
64 Molenaar (with Parameter $v^{* *}$) Error for $1 \leq \lambda \leq 10$ 72
65 Molenaar (with Parameter $v^{* *}$) Error for $10 \leq \lambda \leq 100$ 72
66 Molenaar (with Parameter $v^{* *}$) Error for $100 \leq \lambda \leq 1000 \ldots$ 72
67 Molenaar (with Parameter $v^{* * *}$) Error for $1 \leq \lambda \leq 10$ 73

69 Molenaar (with Parameter $v^{* * *}$) Error for $100 \leq \lambda \leq 1000 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
70 Exponential Fit to Molenaar (with Parameter $v^{* * *}$) Error for $1 \leq \lambda \leq 10 \ldots \ldots \ldots . .74$

CHAPTER 1: INTRODUCTION

Objective and Significance

It is well known that the Poisson random variable mass function and the normal random variable density may be used as approximations of the binomial random variable mass function. It is also known, although not as widely studied, that the normal random variable may approximate the Poisson. The objective of this thesis is to examine the accuracy of the normal approximation to the Poisson random variable. Specifically, it will determine the values of the Poisson parameter for which the normal density provides an overestimate or an underestimate of the Poisson distribution, and it will set bounds on the magnitude of the error in those regions, as well as determine the number of decimal places and significant figures of accuracy possible. Further, it will provide modifications to the normal density that will allow greater accuracy than the standard approximation, and it will compare their accuracy to that of the standard approximation.

This study is significant because it seeks to describe the accuracy of the normal approximation of the Poisson distribution. The important related problem of approximating the binomial mass function with the normal density has theoretical applications, such as approximating confidence intervals (Freund, 1999). The normal approximation to the Poisson has similar applications, so it is important to be aware of its level of accuracy.

Theoretical Background

The formula for the binomial probability mass function with parameters n and p
is

$$
\begin{equation*}
b(k ; n, p)=\frac{n!}{k!(n-k)!} p k(1-p) n-k, 0 \leq k \leq n, n \geq 0,0<p<1 . \tag{1}
\end{equation*}
$$

By taking the limit of $b(k ; n, p)$ as n approaches infinity while holding $n p$ constant, we get the formula for the Poisson probability mass function with parameter $\lambda=n p$:

$$
\begin{equation*}
p(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}, k \geq 0, \lambda>0 . \tag{2}
\end{equation*}
$$

Finally, the formula for the normal probability density with parameters μ and σ is

$$
\begin{equation*}
\varphi(k ; \mu, \sigma)=\frac{e^{-\frac{1}{2}\left(\frac{k-\mu}{\sigma}\right)^{2}}}{\sigma \sqrt{2 \pi}}, \sigma>0 . \tag{3}
\end{equation*}
$$

When $\mu=0$ and $\sigma=1$, the normal density is called the standard normal density, which shall be denoted as $\varphi(k)$. Any random variable may be standardized by subtracting the mean and dividing by the standard deviation; the resulting standardized random variable will always have zero as its mean and one as its standard deviation.

Throughout this paper, references will be made to the cumulative distribution functions of random variables. These are simply the sum/integral of the probability masses/densities from the lowest possible value to the input value. In this paper, masses/densities will be denoted by lower-case letters, whereas cumulative distribution functions will be denoted by capital letters. For example, $P(k ; \lambda)=\sum_{t=0}^{k} p(t ; \lambda)$.

It is well known that the standard normal density provides a good approximation to the standardized binomial mass under the right conditions on the parameters. Since the Poisson mass is a limiting case of the binomial mass, it makes sense that the standard normal density may also approximate the standardized Poisson mass under the right
conditions. This is indeed the case, and the accuracy of the approximation increases with the Poisson parameter λ. In order to prove this theoretically, Theorems 1 and 2, reproduced from Freund (1999), show that it suffices to demonstrate that the momentgenerating function (MGF) of the standardized Poisson random variable approaches that of the standard normal random variable in the limit as λ approaches infinity.

Theorem 1

There is a one-to-one correspondence between moment-generating functions and probability distributions (densities) when the former exist.

Theorem 2

If the moment-generating function of one random variable approaches that of another random variable, then the distribution (density) of the first random variable approaches that of the second random variable under the same limiting conditions.

The MGF of a Poisson random variable X with parameter λ is

$$
\begin{equation*}
M_{X}(t)=e^{\lambda\left(e^{t}-1\right)} \tag{4}
\end{equation*}
$$

To standardize the variable, we must subtract the mean (in this case λ) and divide by the standard deviation (in this case $\sqrt{\lambda}$), so if Y is the standardized Poisson random variable corresponding to X, then $Y=\frac{x-\lambda}{\sqrt{\lambda}}$, and its MGF is

$$
\begin{equation*}
M_{Y}(t)=e^{\lambda\left(e^{\frac{t}{\sqrt{\lambda}}}-1\right)-t \sqrt{\lambda}} \tag{5}
\end{equation*}
$$

This is in accordance with the rules of moment generating functions. The MGF of a standard normal random variable Z is

$$
\begin{equation*}
M_{Z}(t)=e^{\frac{1}{2} t^{2}} \tag{6}
\end{equation*}
$$

By using Taylor expansion, we get the following:

$$
\begin{align*}
& \ln \left(M_{Y}(t)\right)=\ln \left(e^{\lambda\left(e^{\frac{t}{\sqrt{\lambda}}}-1\right)-t \sqrt{\lambda}}\right) \tag{7}\\
& =\lambda\left(e^{\frac{t}{\sqrt{\lambda}}}-1\right)-t \sqrt{\lambda} \\
& =\lambda\left[\left(1+\frac{t}{\sqrt{\lambda}}+\frac{1}{2} \frac{t^{2}}{\lambda}+\sum_{n=3}^{\infty} \frac{1}{n!} \frac{t^{n}}{\sqrt{\lambda}^{n}}\right)-1\right]-t \sqrt{\lambda} \\
& =\left(t \sqrt{\lambda}+\frac{1}{2} t^{2}+\sum_{n=3}^{\infty} \frac{1}{n!} \frac{t^{n}}{\sqrt{\lambda}^{n-2}}\right)-t \sqrt{\lambda} \\
& =\frac{1}{2} t^{2}+\sum_{n=1}^{\infty} \frac{1}{(n+2)!} \frac{t^{n+2}}{\sqrt{\lambda}^{n}}
\end{align*}
$$

Now every term in the sum contains a negative power of $\sqrt{\lambda}$. Therefore, $\ln \left(M_{Y}(t)\right)$ approaches $\frac{1}{2} t^{2}$ as λ approaches infinity, whence $M_{Y}(t)$ approaches $e^{\frac{1}{2} t^{2}}$, which is precisely $M_{Z}(t)$. In practice, this means that as λ increases, the standardized Poisson distribution will tend to become a more accurate approximation to the standard normal density, and vice-versa.

In actual practice, it is generally preferable to use the standard normal distribution, $\Phi(k)$, rather than the standard normal density, $\varphi(k)$, when approximating the Poisson mass, $p(k ; \lambda)$. This is because, since $\varphi(k)$ is continuous whereas $p(k ; \lambda)$ is discrete, it is necessary to implement what is known as a "continuity correction." To find a point estimate of $p(k ; \lambda)$, we calculate the difference of the standard normal distribution values at the standardizations of the points $k+\frac{1}{2}$ and $k-\frac{1}{2}$; that is, we calculate the quantity $P_{1}(k ; \lambda)-P_{1}(k-1 ; \lambda)$ to estimate $p(k ; \lambda)$, where $P_{1}(k ; \lambda)=$
$\Phi\left(\frac{k+\frac{1}{2}-\lambda}{\sqrt{\lambda}}\right)$. Similarly, we calculate the quantity $P_{1}(k ; \lambda)-P_{1}(j ; \lambda)$ to estimate $P(k ; \lambda)-P(j ; \lambda)$.

CHAPTER 2: REVIEW OF RELATED LITERATURE

The relevant literature generally focuses on attempting to find variations on the standard normal that increase the accuracy of the approximation. (Actually, three of these variations are approximations to the binomial rather than the Poisson, but we can make use of them by taking the limit as n approaches infinity and $n p$ is held constant.) In almost all cases, this means using $\Phi(u)$ for some function $u(k ; \lambda)$, rather than $\Phi(w)$, where $w=\left(k+\frac{1}{2}-\lambda\right) / \sqrt{\lambda}$. There is one exception to this, and that is the Gram-Charlier approximation to the binomial (Raff, 1956), given by

$$
\begin{equation*}
B(k ; n, p) \approx \Phi(z)-\frac{1}{6}\left(\frac{q-p}{\sqrt{n p q}}\right)\left(z^{2}-1\right) \varphi(z) \tag{8}
\end{equation*}
$$

where n and p are as above, $q=1-p$, and $z=\frac{k+\frac{1}{2}-n p}{\sqrt{n p q}}$. The limiting case of this is

$$
\begin{equation*}
P(k ; \lambda) \approx \Phi(w)-\frac{1}{6 \sqrt{\lambda}}\left(w^{2}-1\right) \varphi(w) \tag{9}
\end{equation*}
$$

where w is as above. Thus, the modified Gram-Charlier approximation uses $\Phi(w)$, but it adds a term for error adjustment.

The remaining approximations involve a modification to w rather than to $\Phi(w)$. Two of these, the Camp-Paulson and Ghosh approximations, are actually approximations to the binomial, while the rest are approximations to the Poisson compared by Molenaar. The Camp-Paulson approximation to the binomial (Camp, 1951) is given by

$$
\begin{equation*}
B(k ; n, p) \approx \Phi(a / 3 \sqrt{b}) \tag{10}
\end{equation*}
$$

where $a=\frac{9 k+8}{k+1}-\left(\frac{p(n-k)}{q(k+1)}\right)^{\frac{1}{3}} \frac{9 n-9 k-1}{n-k}$, and $b=\frac{\left(\frac{p(n-k)}{q(k+1)}\right)^{\frac{2}{3}}}{n-k}+\frac{1}{k+1}$. In the limit, we have

$$
\begin{equation*}
P(k ; \lambda) \approx \Phi(\hat{a} / 3 \sqrt{\hat{b}}) \tag{11}
\end{equation*}
$$

where $\hat{a}=\frac{9 k+8}{k+1}-9\left(\frac{\lambda}{k+1}\right)^{\frac{1}{3}}$, and $\hat{b}=\frac{1}{k+1}$.

The Ghosh approximation to the binomial (Ghosh, 1980) is given by

$$
\begin{equation*}
B(k ; n, p) \approx \Phi(u) \tag{12}
\end{equation*}
$$

where $u=\operatorname{sgn}(q-p) \sqrt{1+2 z c+c^{2}}-c, c=\frac{3 \sqrt{n p q}}{q-p}$, and z is as in the Gram-Charlier approximation. In the limit, we have

$$
\begin{equation*}
P(k ; \lambda) \approx \Phi(\hat{u}), \tag{13}
\end{equation*}
$$

where $\hat{u}=\sqrt{1+6 w \sqrt{\lambda}+9 \lambda}-3 \sqrt{\lambda}$.

It is worth mentioning that there is also a Poisson Gram-Charlier approximation to the binomial (Raff, 1956). This approximation tends to be more accurate than the normal Gram-Charlier approximation; however, it makes explicit use of the Poisson approximation to the binomial. Since our purpose is to approximate the Poisson rather than the binomial, it seems that this variation is beyond the scope of our consideration.

Table 1
Maximum Errors of Two Approximations to the Poisson

Values of λ Gram-Charlier Camp-Paulson		
0.5	0.185	0.008
1	0.126	0.004
1.5	0.109	0.004
2	0.083	0.005
2.5	0.073	0.004
3		0.003
4		0.002
5	0.047	0.002
7.5		0.001
10	0.032	0.001

In comparing several approximations to the point binomial, M. S. Raff (1956) determined that the Camp-Paulson approximation outshines the Gram-Charlier almost
everywhere. In his work, he considered the maximum errors for given values of n and of $n p$. Allowing n to approach infinity, he calculated the maximum errors of these approximations as approximations to the Poisson for given values of λ. Table 1 displays his findings.

Finally, there are seven variations that were examined by Molenaar (1970a, 1970b). Each one replaces w in the usual $\Phi(w)$ approximation with a different expression. These expressions are:
$w_{1}=\frac{k-\lambda}{\sqrt{\lambda}}$, standard without continuity correction;
$y=\frac{k+1-\lambda}{\sqrt{k+1}}$, found using the asymptotic normality of the gamma distribution;
$v=2(\sqrt{k+1}-\sqrt{\lambda})$, square root transform for variance stabilization;
$v_{1}=2\left(\sqrt{k+\frac{3}{4}}-\sqrt{\lambda}\right)$, found using the Fisher approximation to $\chi_{n}^{2} ;$
$v^{*}=2 \sqrt{k+\frac{w^{2}+8}{12}}-\sqrt{\lambda}$, found by expanding a general formula;
$v^{* *}=2\left(\sqrt{k+\frac{w^{2}+5}{9}}-\sqrt{\lambda+\frac{w^{2}-4}{36}}\right)$, found by expanding a general formula; and
$v^{* * *}=\left(k+\frac{2}{3}-\lambda+\frac{1}{50(k+1)}\right) \sqrt{\frac{1+A}{\lambda}}$, found by Peizer and Pratt (1968),
where $A=\frac{1-f^{2}+2 f \ln (f)}{(1-f)^{2}}$, and $f=\frac{k+\frac{1}{2}}{\lambda}$. In his work, Molenaar critiqued the approximations based on their accuracy and ease of computation. He recommended that among w, w_{1}, y, and v, only v should be used for "quick work," because it is the most accurate and is no more difficult to compute than the others (but v should be replaced with v_{1} if the probability is between 0.06 and 0.94). For the remaining approximations $v^{*}, v^{* *}$, and $v^{* * *}$, each one is more accurate than its predecessor but also more difficult to compute.

Molenaar seemed to favor $v^{* *}$ for more accurate work, since it is far simpler to compute than $v^{* * *}$ while yielding comparable accuracy.

CHAPTER 3: RESEARCH METHODS

In order to determine the accuracy of an approximation, one must decide upon a method of error measurement. The method used will depend somewhat on the purpose of the individual study. Because I am attempting to find bounds for the error, I have chosen methods that focus on the maximum possible error for a given region. I have primarily used two methods: one for examining the PMF (probability mass function) and one for the CDF (cumulative distribution function). (These methods will hereafter be referred to as "PMF error" and "CDF error.") The CDF error is an adaptation of the "maximum error" used by Raff (1956): it is the largest absolute error that can arise by estimating the sum of consecutive points of the Poisson mass function within a specified interval [m, M]. The formula is given by

$$
\begin{equation*}
E_{C D F}(\lambda ; m, M)=\operatorname{Max}_{m-1 \leq j<k \leq M}\left|\left(P_{1}(k ; \lambda)-P_{1}(j ; \lambda)\right)-(P(k ; \lambda)-P(j ; \lambda))\right| \tag{21}
\end{equation*}
$$

(note that we had to use $m-1$ rather than m in the formula in order for the error at m to be included in the result). The PMF error is similar but simpler: it is the maximum error that can arise by estimating a single point of the Poisson mass function within a specified interval $[m, M]$. The formula is given by

$$
\begin{equation*}
E_{P M F}(\lambda ; m, M)=\operatorname{Max}_{m \leq k \leq M}\left|\left(P_{1}(k ; \lambda)-P_{1}(k-1 ; \lambda)\right)-p(k ; \lambda)\right| . \tag{22}
\end{equation*}
$$

This is, of course, precisely Equation 21 with $j=k-1$. In practice, when $k \gg \lambda$, the quantities $\left(P_{1}(k ; \lambda)-P_{1}(k-1 ; \lambda)\right)$ and $p(k ; \lambda)$ are both so close to zero that the error is negligible. Therefore, it is possible to define the PMF and CDF error functions without specifying an interval, and the formulas become

$$
\begin{gather*}
E_{C D F}(\lambda)=\operatorname{Max}_{-1 \leq j<k}\left|\left(P_{1}(k ; \lambda)-P_{1}(j ; \lambda)\right)-(P(k ; \lambda)-P(j ; \lambda))\right| \tag{23}\\
E_{P M F}(\lambda)=\operatorname{Max}_{0 \leq k}\left|\left(P_{1}(k ; \lambda)-P_{1}(k-1 ; \lambda)\right)-p(k ; \lambda)\right| \tag{24}
\end{gather*}
$$

When referring to the CDF or PMF error without respect to an interval, the terms "total CDF error" and "total PMF error" will be used.

According to the theoretical background for this problem, both error functions will tend to decrease as λ increases. If we can find good curve fits for the error functions, we will have bounded the error; furthermore, we can use these curve fits to determine a lower bound for the minimum number of decimal places of accuracy we have for a given value of λ. Solving the following inequality for k will accomplish this:

$$
\begin{equation*}
E(\lambda)<0.5 \cdot 10^{-k} \tag{25}
\end{equation*}
$$

Here $E(\lambda)$ is the curve fit to the error function. Similarly, solving this equation for λ will give the minimum value of λ for which we can be guaranteed k decimal places of accuracy in our approximation.

In addition to bounding the absolute error, it is often useful to find bounds for the relative error. The relative errors corresponding to the CDF and PMF errors for an interval $[m, M$] are as follows:

$$
\begin{gather*}
E_{C D F, \text { rel }}(\lambda ; m, M)=\operatorname{Max}_{m-1 \leq j<k \leq M}\left|\frac{\left(P_{1}(k ; \lambda)-P_{1}(j ; \lambda)\right)-(P(k ; \lambda)-P(j ; \lambda))}{P(k ; \lambda)-P(j ; \lambda)}\right| \tag{26}\\
E_{P M F, r e l}(\lambda ; m, M)=\operatorname{Max}_{m \leq k \leq M}\left|\frac{\left(P_{1}(k ; \lambda)-P_{1}(k-1 ; \lambda)\right)-p(k ; \lambda)}{p(k ; \lambda)}\right| \tag{27}
\end{gather*}
$$

The same process of finding curve fits for the absolute error can be applied to the relative error as well. Then we can determine how many significant figures we can be guaranteed for a given value of λ (or the minimum value of λ necessary to guarantee the desired number of significant figures) by solving the following equation for the appropriate variable (where k represents the number of significant figures):

$$
\begin{equation*}
F(\lambda)<5 \cdot 10^{-k} \tag{28}
\end{equation*}
$$

Here $F(\lambda)$ is the curve fit to the relative error.
It may be possible to achieve greater accuracy than the total error functions indicate if we determine at which points the PMF error will be an overestimate or an underestimate. This will partition the points into "regions" of over- or underestimation. We might expect the total CDF error to be greatest over some interval whose points are all in the same region, because the PMF error at each point in the same region will have the same sign; therefore, the total CDF error will be the sum of the PMF errors at every point in that region. However, if we consider some region other than the one that generates the total CDF error, we know that the CDF error for that region will be no larger than the total CDF error; in fact, it will be smaller. Thus, if we can determine how to find these regions with reasonable accuracy, then for most regions we can find even better bounds on λ and on the number of decimal places or significant figures of accuracy than the total error would suggest. The accuracy of the approximation will depend on the region wherein the interval (or point) of interest occurs.

All calculations were performed using software. Most calculations, including probability values, error values, intervals, and decimal places (and significant figures) of accuracy were computed using Maple programs that I wrote for these purposes. All curve fits and graphs were generated using Vernier Software's Graphical Analysis program. Floating point values have been rounded to fewer significant figures than were used to calculate them.

CHAPTER 4: RESEARCH RESULTS AND DISCUSSION

Total PMF Error

In examining the total PMF error for various values of λ, a pattern quickly becomes apparent. As Table 2 demonstrates, the total PMF error is approximately inversely proportional to λ (notice that the error is approximately divided by ten whenever λ is multiplied by ten). If we do power function curve fits on the data, we get the following functions:

$$
\begin{align*}
& E(\lambda)=0.1250 \lambda^{-1.163}, 1 \leq \lambda \leq 10 \tag{29}\\
& E(\lambda)=0.09827 \lambda^{-1.007}, 10 \leq \lambda \leq 100 \tag{30}\\
& E(\lambda)=0.09805 \lambda^{-1.008}, 100 \leq \lambda \leq 1000 \tag{31}
\end{align*}
$$

Table 2

Total PMF Error

λ	Error	λ	Error	λ	Error
1	0.12615				
2	0.053256	20	0.0048032	200	0.00046841
3	0.030865	30	0.0032278	300	0.00031141
4	0.025548	40	0.0024076	400	0.00023300
5	0.020983	50	0.0019054	500	0.00018604
6	0.017424	60	0.0015917	600	0.00015484
7	0.014694	70	0.0013555	700	0.00013262
8	0.012576	80	0.0011864	800	0.00011596
9	0.010907	90	0.0010528	900	0.00010298
10	0.0096724	100	0.00094315	1000	0.000092639

Now if $E(\lambda)=A \lambda^{B}$, then we have the following:

$$
\begin{equation*}
\ln (E(\lambda))=\ln \left(A \lambda^{B}\right)=B \ln (\lambda)+\ln (A) \tag{32}
\end{equation*}
$$

Thus, a log-log plot of the data should demonstrate a linear relationship with negative slope (since $B<0$ in these fits). Just to confirm the appropriateness of a power fit, and also to see how nice these fits really are, we have done linear fits for the $\log -\log$ plots as well. These power fits, together with the corresponding linear fits, are illustrated in Figures 1, 2, and 3.

We can now obtain an estimate for the number of decimal places of accuracy this approximation yields by solving Equation 25 for k. The results for the first four decimal places are given in Table 3, using the appropriate error fit function depending on the value of λ. Table 4 lists the actual values. Comparing these with the predicted values, we see that our curve fit to the error function quite accurately predicts the minimum value of λ required for up to four decimal places of accuracy, even when we have extrapolated. (We have used the values predicted by the $\lambda \geq 100$ error fit for three or four decimal places, which makes sense, since the values predicted by both fits are greater than 100; however, for four digits, this is technically extrapolation, since the predicted value is greater than 1000.)

Table 3
Predicted Minimum Values of $\boldsymbol{\lambda}$ for Specified Accuracy of PMF

Decimal places	1	2	3	4
λ	3	20	189	1847^{a}

${ }^{a}$ Extrapolation.
Table 4

Actual Minimum Values of λ for Specified Accuracy of PMF

Decimal places	1	2	3	4
λ	3	20	188	1849

Next let us consider the location of the point of maximum error for a given λ.
That is, for which value of k will we have $E_{P M F}(\lambda ; k, k)=E_{P M F}(\lambda)$? From Table 5 , it is obvious that the point of maximum error is always slightly less than the value of λ. In fact, careful examination reveals that it is less than λ by approximately 0.75 standard deviations, i.e. $0.75 \sqrt{\lambda}$. Thus, if one wishes to approximate $p(k ; \lambda)$ when k is near $\lambda-0.75 \sqrt{\lambda}$, the data from Table 2 and Table 3 are accurate; however, if k is not near this value, the approximation will be more accurate than these tables indicate. We will discuss this later in greater detail.

Table 5
Points of Maximum PMF Error

λ	k	λ	k	λ	k
1	0				
2	1	20	17	200	189
3	2	30	26	300	287
4	2	40	35	400	385
5	3	50	45	500	483
6	4	60	54	600	582
7	5	70	64	700	680
8	6	80	73	800	779
9	7	90	83	900	878
10	7	100	92	1000	976

Figure 1. Total PMF Error for $1 \leq \lambda \leq 10$.

Figure 2. Total PMF Error for $10 \leq \lambda \leq 100$.

Figure 3. Total PMF Error for $100 \leq \lambda \leq 1000$.

The total CDF error is listed in Table 6. Just as in the case of the total PMF error, there is a noticeable pattern: the error varies approximately inversely as $\sqrt{\lambda}$. Curve fits yield the following functions:
$E(\lambda)=0.1254 \lambda^{-0.6038}, 1 \leq \lambda \leq 10 ;$
$E(\lambda)=0.1078 \lambda^{-0.5218}, 10 \leq \lambda \leq 100 ;$
$E(\lambda)=0.1009 \lambda^{-0.5062}, 100 \leq \lambda \leq 1000$.
Figures 4, 5, and 6 show these curve fits and their log-log linear counterparts. The predicted decimal places of accuracy are listed in Table 7, along with the actual values. The intervals of maximum CDF error are given in Table 8. As we might expect, the interval of maximum CDF error always contains the point of maximum PMF error. Furthermore, the final point of the interval is always $\lambda-1$. (This indicates that the sign of the PMF error, before the absolute value is taken, changes at λ. We will discuss this more when we address regions of over- and underestimation.) The initial point of the interval is always approximately 1.75 standard deviations less than λ, or $\lambda-1.75 \sqrt{\lambda}$. This happens to be one standard deviation less than the estimate of the point of greatest PMF error. (Again, we will discuss this later in greater detail.) Thus, if one desires to approximate the Poisson over an interval, the location of the interval is relevant: the errors listed in Table 6 are maximum error values, so if the interval of interest is not approximately equal to the interval of maximum CDF error (e.g. if it does not intersect that interval, or even if it does not begin near $\lambda-1.75 \sqrt{\lambda}$ or end near λ), the CDF error will be significantly less than the values listed in Table 6.

Table 6
Total CDF Error

λ	Error	λ	Error	λ	Error
1	0.12615				
2	0.082719	20	0.022522	200	0.0068969
3	0.061445	30	0.018219	300	0.0056158
4	0.053920	40	0.015686	400	0.0048567
5	0.047296	50	0.013973	500	0.0043393
6	0.042296	60	0.012738	600	0.0039580
7	0.039508	70	0.011773	700	0.0036622
8	0.036545	80	0.010996	800	0.0034239
9	0.033986	90	0.010352	900	0.0032268
10	0.032489	100	0.0098071	1000	0.0030603

Table 7
Minimum Values of λ for Specified Accuracy of CDF

Decimal places	1	2	3
Estimated λ	5	379	$35759^{\text {a }}$
Actual λ	5	378	37066
${ }^{\text {a }}$ Extrapolation.			

Table 8
Intervals of Maximum CDF Error

λ	Interval	λ	Interval	λ	Interval
1	$[0,0]$				
2	$[0,1]$	20	$[13,19]$	200	$[176,199]$
3	$[1,2]$	30	$[21,29]$	300	$[271,299]$
4	$[1,3]$	40	$[30,39]$	400	$[366,399]$
5	$[2,4]$	50	$[38,49]$	500	$[462,499]$
6	$[2,5]$	60	$[47,59]$	600	$[558,599]$
7	$[3,6]$	70	$[56,69]$	700	$[655,699]$
8	$[4,7]$	80	$[65,79]$	800	$[752,799]$
9	$[4,8]$	90	$[74,89]$	900	$[849,899]$
10	$[5,9]$	100	$[83,99]$	1000	$[946,999]$

Figure 4. Total CDF Error for $1 \leq \lambda \leq 10$.

Figure 5. Total CDF Error for $10 \leq \lambda \leq 100$.

Figure 6. Total CDF Error for $100 \leq \lambda \leq 1000$.

Regions of Over- and Underestimation

After examining the sign (before absolute value) of the PMF error at each point, it quickly becomes apparent that the points tend to divide into four main regions. If $\lambda \geq 3$, the first region contains points at which the normal approximation to the Poisson is an overestimate. This region ranges from zero up to the point immediately preceding the initial point of the interval of maximum CDF error. The second region is one of underestimation, and it is precisely equal to the interval of maximum CDF error (from approximately $\lambda-1.75 \sqrt{\lambda}$ to $\lambda-1$). The third region overestimates the Poisson, and it begins with λ and extends about 1.75 standard deviations (to approximately $\lambda+1.75 \sqrt{\lambda}$); for $\lambda \geq 9$, the final point of the third region is exactly the same distance from λ as is the initial point of the second region. The fourth and final region underestimates, and it includes all points after the final point of the third region. (Actually, for $\lambda \geq 553$, the fourth region begins to include a few isolated points of overestimation; however, these anomalies only begin to appear six standard deviations past the mean, where the probability values are negligible.) See Table 9. Since these four regions are universal in their appearance (except that when $\lambda \leq 2$ Region 1 does not occur), we are able to refine the bounds on the error. If the point (or interval) of interest lies outside Region 2, the error is guaranteed to be less than the maximum; furthermore, if the interval (or point) of interest lies entirely within one of the other three regions, the error will be at most the CDF error for that region, because the PMF error at each point has the same sign (before absolute value). Therefore, the CDF error over an interval corresponding to the entirety of one of the four regions constitutes an upper bound of the CDF error for any interval within that region. Similarly, we may refine the upper bound on the PMF error within a
region by considering the PMF error for the interval corresponding to the entirety of that region. The results are listed in Tables 10, 11, and 12. (We may also consider intervals that intersect two or more regions; in that case, the greatest maximum error for any of the intersected regions will be an upper bound for the error on the interval of interest.)

Table 9
Intervals of Error Regions

λ	Region 1 Over	Region 2 Under	Region 3 Over	Region 4 Under
1		$[0,0]$	$[1,2]$	$[3, \infty)$
2		$[0,1]$	$[2,4]$	$[5, \infty)$
3	$[0,0]$	$[1,2]$	$[3,6]$	$[7, \infty)$
4	$[0,0]$	$[1,3]$	$[4,7]$	$[8, \infty)$
5	$[0,1]$	$[2,4]$	$[5,9]$	$[10, \infty)$
6	$[0,1]$	$[2,5]$	$[6,10]$	$[11, \infty)$
7	$[0,2]$	$[3,6]$	$[7,11]$	$[12, \infty)$
8	$[0,3]$	$[4,7]$	$[8,13]$	$[14, \infty)$
9	$[0,3]$	$[4,8]$	$[9,14]$	$[15, \infty)$
10	$[0,4]$	$[5,9]$	$[10,15]$	$[16, \infty)$
20	$[0,12]$	$[13,19]$	$[20,27]$	$[28, \infty)$
30	$[0,20]$	$[21,29]$	$[30,39]$	$[40, \infty)$
40	$[0,29]$	$[30,39]$	$[40,51]$	$[52, \infty)$
50	$[0,37]$	$[38,49]$	$[50,62]$	$[63, \infty)$
60	$[0,46]$	$[47,59]$	$[60,73]$	$[74, \infty)$
70	$[0,55]$	$[56,69]$	$[70,84]$	$[85, \infty)$
80	$[0,64]$	$[65,79]$	$[80,95]$	$[96, \infty)$
90	$[0,73]$	$[74,89]$	$[90,106]$	$[107, \infty)$
100	$[0,82]$	$[83,99]$	$[100,117]$	$[118, \infty)$
200	$[0,175]$	$[176,199]$	$[200,224]$	$[225, \infty)$
300	$[0,270]$	$[271,299]$	$[300,330]$	$[331, \infty)$
400	$[0,365]$	$[366,399]$	$[400,434]$	$[435, \infty)$
500	$[0,461]$	$[462,499]$	$[500,538]$	$[539, \infty)$
600	$[0,557]$	$[558,599]$	$[600,642]$	$[643, \infty)$
700	$[0,654]$	$[655,699]$	$[700,745]$	$[746, \infty)$
800	$[0,751]$	$[752,799]$	$[800,849]$	$[850, \infty)$
900	$[0,848]$	$[849,899]$	$[900,952]$	$[953, \infty)$
1000	$[0,945]$	$[946,999]$	$[1000,1054]$	$[1055, \infty)$

Table 10
Maximum PMF Error by Region

λ	Region 1 Over	Region 2 Under	Region 3 Over	Region 4 Under
1		0.12615	0.057791	0.0093513
2		0.053256	0.036968	0.0060970
3	0.0030612	0.030865	0.025146	0.0046373
4	0.0095190	0.025548	0.018373	0.0039865
5	0.0083946	0.020983	0.014946	0.0031142
6	0.0059118	0.017424	0.013171	0.0028739
7	0.0054248	0.014694	0.011618	0.0023804
8	0.0044020	0.012576	0.010300	0.0022528
9	0.0039224	0.010907	0.0091891	0.0020093
10	0.0034966	0.0096724	0.0082502	0.0018328
20	0.0015672	0.0048032	0.0042696	0.0010057
30	0.00098653	0.0032278	0.0028919	0.00070030
40	0.00072268	0.0024076	0.0021659	0.00053710
50	0.00057373	0.0019054	0.0017565	0.00043554
60	0.00047268	0.0015917	0.0014631	0.00036624
70	0.00040066	0.0013555	0.0012635	0.00031767
80	0.00034725	0.0011864	0.0011018	0.00028009
90	0.00030769	0.0010528	0.00098693	0.00024963
100	0.00027543	0.00094315	0.00088843	0.00022604
200	0.00013360	0.00046841	0.00044837	0.00011639
300	0.000087947	0.00031141	0.00030033	0.000078568
400	0.000065403	0.00023300	0.00022580	0.000059393
500	0.000052096	0.00018604	0.00018087	0.000047712
600	0.000043245	0.00015484	0.00015103	0.000039916
700	0.000036930	0.00013262	0.00012948	0.000034336
800	0.000032254	0.00011596	0.00011346	0.000030108
900	0.000028614	0.00010298	0.00010091	0.000026815
1000	0.0000257020 .000092639	0.000090855	0.000024177	

It is interesting to note the symmetry in the points of maximum PMF error from
Table 11. The points of maximum error in Regions 2 and 3 are very nearly the same distance from λ (about 0.75 standard deviations, or $0.75 \sqrt{\lambda}$). This is also true of Regions 1 and 4: the points of maximum error are about $2 \frac{1}{3}$ standard deviations away from λ in both regions.

Table 11
Point of Maximum PMF Error by Region

$\boldsymbol{\lambda}$	Region 1	Region 2	Region 3	Region 4
1		0	2	4
2		1	3	6
3	0	2	4	7
4	0	2	5	9
5	0	3	7	11
6	0	4	8	12
7	1	5	9	13
8	2	6	10	15
9	2	7	11	16
10	3	7	12	18
20	10	17	23	31
30	17	26	34	43
40	25	35	45	55
50	34	45	55	67
60	42	54	66	78
70	51	64	76	90
80	59	73	87	101
90	68	83	97	112
100	77	92	107	124
200	167	189	210	233
300	260	287	313	341
400	354	385	415	447
500	448	483	516	552
600	543	582	618	657
700	638	680	719	762
800	734	779	821	866
900	830	878	922	970
1000	926	976	1023	1074

Now we may find curve fits for the PMF and CDF errors in each of the four regions. We have already done this for the total PMF and CDF errors; that information will be repeated in Tables 13 and 14 as the information for Region 2. Just as in Region 2, the error functions for Regions 1, 3, and 4 are nicely fit by power functions of λ of the form $E(\lambda)=A \lambda^{B}$. Tables 13 and 14 list the values of A (the coefficient) and B (the exponent). Three fits are given for each region: one each for $1 \leq \lambda \leq 10$ (of course, the
lower bound is 3 for Region 1), $10 \leq \lambda \leq 100$, and $100 \leq \lambda \leq 1000$. In a few instances, additional intervals were used to try to get nicer curve fits by removing a single problematic point; in these instances, which only occurred for small values of $\lambda(\lambda \geq 10)$, it was always the smallest value of λ that was removed. We might have expected that these very small values of λ would be problematic, given that the accuracy of the approximation we are using improves as λ increases. The root mean square error is listed for each fit to demonstrate its accuracy. Figures 7 through 30 show the graphs of these curve fits with their log-log linear fits.

Note the impressive accuracy of these curve fits. When $1 \leq \lambda \leq 10$, the fits are slightly less accurate but still quite reliable. Using these curve fits, we can estimate the minimum value of λ necessary to obtain a given level of accuracy (see Tables 15 and 16). Comparing these values to the actual values in Tables 17 and 18, we see that they are almost identical; indeed, when not extrapolating, the predicted values usually equal the actual values, and even in the handful of cases where they do not, they are only off by one.

Table 12
Maximum CDF Error by Region

λ	Region 1 Over	Region 2 Under	Region 3 Over	Region 4 Under
1		0.12615	0.072836	0.013494
2		0.082719	0.058272	0.014103
3	0.0030162	0.061445	0.048630	0.011854
4	0.0095190	0.053920	0.043251	0.011074
5	0.011382	0.047296	0.038704	0.0097424
6	0.011763	0.042296	0.036076	0.0095246
7	0.012557	0.039508	0.033521	0.0088631
8	0.012099	0.036545	0.031385	0.0082657
9	0.011379	0.033986	0.029926	0.0080898
10	0.011293	0.032489	0.028491	0.0077452
20	0.0077520	0.022522	0.020482	0.0057145
30	0.0061341	0.018219	0.016919	0.0048343
40	0.0052089	0.015686	0.014709	0.0042318
50	0.0045950	0.013973	0.013219	0.0038410
60	0.0041738	0.012738	0.012097	0.0035326
70	0.0038417	0.011773	0.011220	0.0032884
80	0.0035746	0.010996	0.010512	0.0030907
90	0.0033540	0.010352	0.0099243	0.0029262
100	0.0031671	0.00980710 .0094257	0.0027857	
200	0.0021985	0.00689690 .0067038	0.0020054	
300	0.0017787	0.00561580 .0054873	0.0016502	
400	0.0015333	0.00485670 .0047598	0.0014364	
500	0.0013666	0.00433930 .0042616	0.0012889	
600	0.0012441	0.0039580	0.0038938	0.0011800
700	0.0011496	0.00366220 .0036066	0.0010940	
800	0.0010735	0.0034239	0.0033757	0.0010253
900	0.0010108	0.00322680 .0031839	0.00096787	
1000	0.000957960 .00306030 .00302150 .00091915			

Table 13
Curve Fits to PMF Error by Region

Region	Fit Interval Coefficient Exponent			RMSE
1	[3, 10]	0.009184	-0.2855	0.002394
1	[4, 10]	0.04608	-1.114	0.0003988
1	[10, 100]	0.04697	-1.130	0.00001740
1	[100, 1000]	0.03237	-1.035	0.0000003529
2	[1, 10]	0.1250	-1.163	0.002184
2	[10, 100]	0.09827	-1.007	0.00001273
2	[100, 1000]	0.09805	-1.008	0.0000001609
3	[1, 10]	0.05914	-0.8169	0.001479
3	[10, 100]	0.07578	-0.9624	0.00001661
3	[100, 1000]	0.08437	-0.9887	0.0000003428
4	[1, 10]	0.009482	-0.6762	0.0001662
4	[10, 100]	0.01441	-0.8937	0.000009266
4	[100, 1000]	0.01936	-0.9661	0.0000003051

Note. RMSE = root mean square error.
Table 14
Curve Fits to CDF Error by Region

Region	Fit Interval Coefficient Exponent	RMSE		
1	$[3,10]$	0.004194	0.4946	0.002344
1	$[4,10]$	0.008791	0.1375	0.0008773
1	$[10,100]$	0.04058	-0.5550	0.00002753
1	$[100,1000]$	0.03479	-0.5207	0.000004258
2	$[1,10]$	0.1254	-0.6038	0.001329
2	$[10,100]$	0.1078	-0.5218	0.00005230
2	$[100,1000]$	0.1009	-0.5062	0.000003883
3	$[1,10]$	0.07435	-0.4040	0.001112
3	$[10,100]$	0.08594	-0.4790	0.00003611
3	$[100,1000]$	0.09161	-0.4937	0.000004113
4	$[1,10]$	0.01482	-0.2526	0.0008730
4	$[2,10]$	0.01812	-0.3700	0.0001775
4	$[10,100]$	0.02140	-0.4405	0.00002554
4	$[100,1000]$	0.02549	-0.4804	0.000003704

Note. RMSE = root mean square error.

Table 15
Predicted Minimum Values of λ for Specified Accuracy of PMF by Region

Decimal places	Region 1	Region 2	Region 3	Region 4
1	1^{a}	3	2	1
2	8	20	17	3
3	56	189	179	43
4	521	1847^{a}	1837^{a}	478
${ }^{\text {a }}$ Extrapolation.				

Table 16
Predicted Minimum Values of λ for Specified Accuracy of CDF by Region

Decimal places	Region 1	Region 2	Region 3	Region 4
1	1^{a}	5	3	1
2	44	379	362	28
3	3456^{a}	35759^{a}	38345^{a}	3582^{a}

${ }^{a}$ Extrapolation.
Table 17
Actual Minimum Values of λ for Specified Accuracy of PMF by Region

Decimal places	Region 1	Region 2	Region 3	Region 4
1	3	3	2	1
2	8	20	18	3
3	57	188	180	43
4	521	1849	1822	477

Table 18
Actual Minimum Values of λ for Specified Accuracy of CDF by Region

Decimal places	Region 1	Region 2	Region 3	Region 4
1	3	5	3	1
2	44	378	363	28
3		37066	36912	

Note. Blank cells represent values that could not be determined.

Figure 7. Region 1 PMF Error for $3 \leq \lambda \leq 10$.

Figure 8. Region 1 PMF Error for $10 \leq \lambda \leq 100$.

Figure 9. Region 1 PMF Error for $100 \leq \lambda \leq 1000$.

Figure 10. Region 2 PMF Error for $1 \leq \lambda \leq 10$.

Figure 11. Region 2 PMF Error for $10 \leq \lambda \leq 100$.

Figure 12. Region 2 PMF Error for $100 \leq \lambda \leq 1000$.

Figure 13. Region 3 PMF Error for $1 \leq \lambda \leq 10$.

Figure 14. Region 3 PMF Error for $10 \leq \lambda \leq 100$.

Figure 15. Region 3 PMF Error for $100 \leq \lambda \leq 1000$.

Figure 16. Region 4 PMF Error for $1 \leq \lambda \leq 10$.

Figure 17. Region 4 PMF Error for $10 \leq \lambda \leq 100$.

Figure 18. Region 4 PMF Error for $100 \leq \lambda \leq 1000$.

Figure 19. Region 1 CDF Error for $3 \leq \lambda \leq 10$.

Figure 20. Region 1 CDF Error for $10 \leq \lambda \leq 100$.

Figure 21. Region 1 CDF Error for $100 \leq \lambda \leq 1000$.

Figure 22. Region 2 CDF Error for $1 \leq \lambda \leq 10$.

Figure 23. Region 2 CDF Error for $10 \leq \lambda \leq 100$.

Figure 24. Region 2 CDF Error for $100 \leq \lambda \leq 1000$.

Figure 25. Region 3 CDF Error for $1 \leq \lambda \leq 10$.

Figure 26. Region 3 CDF Error for $10 \leq \lambda \leq 100$.

Figure 27. Region 3 CDF Error for $100 \leq \lambda \leq 1000$.

Figure 28. Region 4 CDF Error for $1 \leq \lambda \leq 10$.

Figure 29. Region 4 CDF Error for $10 \leq \lambda \leq 100$.

Figure 30. Region 4 CDF Error for $100 \leq \lambda \leq 1000$.

Conclusions from Absolute Error

At the outset of this paper, we affirmed the legitimacy of using the normal random variable to approximate the Poisson random variable; furthermore, we asserted that this approximation increases in accuracy as the Poisson parameter λ increases in value. We have now added greater detail to those general claims. Here is a brief summary of the important information we have discovered.

We now know that the error introduced by using this approximation behaves somewhat like a wave: it oscillates between the states of overestimation and underestimation, and it does so in a regular fashion rather than erratically. We have isolated about seven important points (depending on the value of λ) that tell the estimator a great deal about the accuracy of the approximation. For a fixed value of λ, the trend is as follows. Beginning at zero and letting the value of the variable increase, the approximation is an increasing overestimate that reaches a local point of maximum overestimation at about $\lambda-2 \frac{1}{3} \sqrt{\lambda}$. The accuracy then begins to improve until it is nearly exact at $\lambda-1.75 \sqrt{\lambda}$. After this, it crosses over to a state of underestimation, the error of which increases until $\lambda-0.75 \sqrt{\lambda}$. The accuracy again begins to improve, again becoming nearly exact near λ. After λ, it overestimates again, peaking at $\lambda+0.75 \sqrt{\lambda}$, and improving until $\lambda+1.75 \sqrt{\lambda}$, where it is again nearly exact. Finally, it becomes an underestimate, the error of which increases until $\lambda+2 \frac{1}{3} \sqrt{\lambda}$; after that, its accuracy improves until it becomes nearly exact, and it remains in this state as the value of the variable approaches infinity and the probability drops to zero. These important points are not difficult to remember, because they are symmetric and centered at the mean.

We have further ascertained specific data linking the value of λ and the number of decimal places of accuracy we can achieve. Tables 17 and 18 offer quick references for determining this. The estimator should use these tables in conjunction with the knowledge of the wave-like behavior of the error, realizing that the approximation is more accurate than these quick references indicate when the points of interest are not near the points of maximum error in each region, and is especially accurate near the boundaries between regions.

Relative Error

The relative error behaves somewhat differently than the absolute error. The four regions of over- and underestimation previously discussed do also govern the behavior of the relative error. The general pattern of the relative PMF error is as follows: the error at zero is very large (almost always much greater than 1), but it decreases throughout Region 1. The error fluctuates a little in Regions 2 and 3. Finally, it increases throughout Region 4, approaching a limiting value of 1.

The process of calculating the relative error varied significantly from that of the absolute error. First of all, calculating the total relative error is a waste of time: it always occurs at zero (for both PMF and CDF relative errors), and it is so high that it is not useful. (Actually, if λ is less than about five, the error at zero drops below one; however, this is no better, because it simply means that the total error is equal to one, since the error converges to one in Region 4.) Second, it turns out that the relative CDF error is always maximized on an interval consisting of one point; increasing the interval size (within a region) always results in a larger denominator, so the error is maximized on the interval consisting precisely of the point of maximum relative PMF error. Thus, within any region, the relative PMF and CDF errors are identical; therefore, their common value will, henceforth, simply be called the "relative error." When determining relative error by region, only Regions 2 and 3 were considered. The results are listed in Tables 19 and 20. Table 19 lists the maximum relative error in each region, and Table 20 lists the points at which these errors occur. It is interesting to note that, in both Regions 2 and 3, the points of maximum relative error occur one standard deviation from the mean.

Table 19
Maximum Relative Error by Region

λ	Region 2 Under	Region 3 Over
1	0.34291	0.31418
2	0.21770	0.20487
3	0.20474	0.17816
4	0.17436	0.16106
5	0.14948	0.14310
6	0.13491	0.12755
7	0.12949	0.11877
8	0.12212	0.11396
9	0.11455	0.10844
10	0.10738	0.10285
20	0.075036	0.072435
30	0.061309	0.059536
40	0.053095	0.051941
50	0.047700	0.046624
60	0.043504	0.042491
70	0.040078	0.039397
80	0.037637	0.036930
90	0.035357	0.034748
100	0.033623	0.033067
200	0.023705	0.023436
300	0.019324	0.019150
400	0.016738	0.016599
500	0.014955	0.014849
600	0.013650	0.013557
700	0.012634	0.012556
800	0.011817	0.011750
900	0.011142	0.011081
1000	0.010568	0.010510

It seemed pointless to closely examine the relative error in Regions 1 and 4, since it tends to be so high in these regions; however, Table 21 lists two significant points: the minimum point in Region 1 at which the relative error is less than the maximum in Region 2, and the minimum point in Region 4 at which the relative error is greater than the maximum in Region 2. We see from these data that there is again some symmetry here. The points at which the error in Regions 1 and 4 equal the maximum error (in

Region 2) are equidistant from the mean, occurring at $\lambda-2 \sqrt{\lambda}$ in Region 1 and at $\lambda+2 \sqrt{\lambda}$ in Region 4.

Table 20
Point of Maximum Relative Error by Region

λ	Region 2 Under	Region 3 Over
1	0	2
2	0	3
3	1	5
4	2	6
5	3	7
6	3	8
7	4	10
8	5	11
9	6	12
10	7	13
20	15	24
30	24	35
40	34	46
50	43	57
60	52	68
70	62	78
80	71	89
90	80	99
100	90	110
200	186	214
300	283	317
400	380	420
500	478	522
600	575	624
700	673	726
800	772	828
900	870	930
1000	968	1032

We may now find curve fits just as we did with the absolute error. The results are listed in Table 22. Graphical representations are found in Figures 31-36 (along with the linear log-log fits). Based on these curve fits, we may predict the minimum value of λ necessary to achieve a specified accuracy (number of significant figures) in our
approximation. These predictions are listed in Table 23, and the actual values are listed in Table 24.

Table 21
Significant Points in Regions 1 and 4

λ	Region 1 $E<$ Max	Region 4 $E>$ Max
1		4
2		6
3	0	7
4	None	9
5	1	10
6	None	12
7	None	13
8	3	15
9	None	16
10	None	17
20	12	30
30	20	42
40	28	54
50	37	65
60	45	76
70	54	88
80	63	99
90	72	110
100	81	121
200	173	229
300	266	336
400	361	441
500	456	546
600	552	650
700	648	754
800	744	857
900	841	961
1000	938	1064
Note. Max $=$ maximum error in Region 2.		

Table 22
Curve Fits to Relative Error by Region

Region	Fit Interval			
Coefficient Exponent	RMSE			
2	$[1,10]$	0.3363	-0.4963	0.008810
2	$[10,100]$	0.3425	-0.5048	0.0002286
2	$[100,1000]$	0.3407	-0.5029	0.00001103
3	$[1,10]$	0.3074	-0.4855	0.006210
3	$[10,100]$	0.3189	-0.4925	0.0002236
3	$[100,1000]$	0.3271	-0.4976	0.000006106

Note. RMSE = root mean square error.
Table 23
Predicted Minimum Values of λ for Specified Relative Accuracy by Region

Significant figures	Region 2	Region 3
1	1	1
2	46	44
3	4423^{a}	4456^{a}
${ }^{\mathrm{a}}$ Extrapolation.		

Table 24
Actual Minimum Values of λ for Specified Relative Accuracy by Region

Significant figures	Region 2	Region 3
1	1	1
2	46	43
3	4456	4433

Figure 31. Region 2 Relative Error for $1 \leq \lambda \leq 10$.

Figure 32. Region 2 Relative Error for $10 \leq \lambda \leq 100$.

Figure 33. Region 2 Relative Error for $100 \leq \lambda \leq 1000$.

Figure 34. Region 3 Relative Error for $1 \leq \lambda \leq 10$.

Figure 35. Region 3 Relative Error for $10 \leq \lambda \leq 100$.

Figure 36. Region 3 Relative Error for $100 \leq \lambda \leq 1000$.

Conclusions from Relative Error

Based on the data we have found, we have gained further insight into the accuracy of the normal approximation to the Poisson random variable. In addition to the regions of over- and underestimation and their points of maximum absolute error, we now know the points of maximum relative error as well: $\lambda-\sqrt{\lambda}$ in Region 2 and $\lambda+\sqrt{\lambda}$ in Region 3. It is important to note that these points do not coincide with the points of maximum absolute error, so the estimator must determine which measurement of accuracy is desired in each particular situation. We also have upper bounds for the relative error in Regions 2 and 3 (and, in fact, the upper bound on Region 2 holds for the entire interval from $\lambda-2 \sqrt{\lambda}$ to $\lambda+2 \sqrt{\lambda}$). This information translates into a minimum value of λ for which a specified number of significant figures of accuracy can be guaranteed. Table 24 may be used as a quick reference for this, together with the knowledge that the relative accuracy will be greater than the table indicates when the points of interest are not near $\lambda \pm \sqrt{\lambda}$, provided they are between $\lambda-2 \sqrt{\lambda}$ and $\lambda+2 \sqrt{\lambda}$.

Variations

Now that we have examined the accuracy of the standard normal method of approximating the Poisson random variable, we will briefly turn to variations of this method. Specifically, we will find curve fits to the total CDF errors of each of the variations under consideration. As before, each method will be assigned at least three curve fits: one for each of the intervals $1 \leq \lambda \leq 10,10 \leq \lambda \leq 100$, and $100 \leq \lambda \leq$ 1000 , and possibly others when it is deemed appropriate. These curve fits will be used to generate quick reference tables of the minimum value of λ necessary to guarantee a specified number of decimal places of accuracy.

Tables 25 to 44 correspond to Tables 6 and 8 (which showed the total CDF error versus λ and the interval on which that error occurred, respectively) for each of the ten variations we are considering.

The modified Gram-Charlier approximation method is significantly more accurate than the standard normal approximation method. In Table 25, we can clearly see that the total CDF error is inversely proportional to λ (it is obvious that the error approximately divides by ten when λ multiplies by ten, just like the standard normal PMF error). This is distinctly better than the total CDF error of the standard normal approximation method, which varies inversely with $\sqrt{\lambda}$ rather than λ. Furthermore, not only does the accuracy of Gram-Charlier improve more rapidly with λ, the initial error (at $\lambda=1$) is less than half that of the standard normal. Interestingly, in Table 26, it becomes apparent that λ is no longer the point at which the sign of the error changes, as it is in the standard normal; in fact, the interval of maximum error is now precisely symmetric about λ, ranging approximately from $\lambda-1.5 \sqrt{\lambda}$ to $\lambda+1.5 \sqrt{\lambda}$. We will see that λ also occurs in the middle
of the interval of maximum error in the other two modified binomial approximation methods.

Table 25

Total CDF Error for Gram-Charlier

λ	Error	λ	Error	λ	Error
1	0.055158				
2	0.024447	20	0.0020860	200	0.00020823
3	0.015210	30	0.0014031	300	0.00013879
4	0.010669	40	0.0010467	400	0.00010405
5	0.0090036	50	0.00083335	500	0.000083231
6	0.0071491	60	0.00069360	600	0.000069357
7	0.0059872	70	0.00059510	700	0.000059442
8	0.0054345	80	0.00052150	800	0.000052010
9	0.0048000	90	0.00046395	900	0.000046210
10	0.0041845	100	0.00041727	1000	0.000041605

Table 26
Interval of Maximum Error for Gram-Charlier

λ	Interval	λ	Interval	λ	Interval
1	$[0,0]$				
2	$[0,4]$	20	$[14,26]$	200	$[179,221]$
3	$[1,5]$	30	$[22,38]$	300	$[274,326]$
4	$[1,7]$	40	$[31,49]$	400	$[370,430]$
5	$[2,8]$	50	$[40,60]$	500	$[466,534]$
6	$[3,9]$	60	$[49,71]$	600	$[563,637]$
7	$[3,11]$	70	$[58,82]$	700	$[660,740]$
8	$[4,12]$	80	$[67,93]$	800	$[757,843]$
9	$[5,13]$	90	$[76,104]$	900	$[854,946]$
10	$[6,14]$	100	$[85,115]$	1000	$[952,1048]$

In the modified Camp-Paulson approximation method, we again see λ falling very near the middle of the interval of maximum error. In fact, almost every interval listed in Table 28 is centered at either $\lambda-1$ or $\lambda-0.5$. The intervals are narrower than those for

Gram-Charlier, being approximately half as wide. As with the Gram-Charlier, the inverse relationship of the error with λ is obvious; however, the accuracy has greatly improved: the error is less than 25% of the error in the Gram-Charlier method, regardless of the value of λ. This agrees with the findings of Raff (1956), who demonstrated the superiority of the Camp-Paulson method over the Gram-Charlier method when approximating the binomial distribution.

Table 27
Total CDF Error for Camp-Paulson

λ	Error	λ	Error	λ	Error
1	0.0040298				
2	0.0046609	20	0.00049953	200	0.000050902
3	0.0029216	30	0.00033685	300	0.000033953
4	0.0023423	40	0.00025258	400	0.000025471
5	0.0019065	50	0.00020232	500	0.000020379
6	0.0016224	60	0.00016890	600	0.000016984
7	0.0014071	70	0.00014492	700	0.000014559
8	0.0012303	80	0.00012692	800	0.000012741
9	0.0010853	90	0.00011296	900	0.000011324
10	0.00097942	100	0.00010163	1000	0.000010193

Table 28
Interval of Maximum Error for Camp-Paulson

λ	Interval	λ	Interval	λ	Interval
1	$[2,3]$				
2	$[1,2]$	20	$[16,22]$	200	$[189,209]$
3	$[2,3]$	30	$[26,33]$	300	$[287,312]$
4	$[2,4]$	40	$[35,43]$	400	$[385,414]$
5	$[3,5]$	50	$[45,54]$	500	$[483,515]$
6	$[4,7]$	60	$[54,65]$	600	$[582,617]$
7	$[5,8]$	70	$[64,75]$	700	$[680,718]$
8	$[6,9]$	80	$[73,85]$	800	$[779,820]$
9	$[7,10]$	90	$[83,96]$	900	$[878,921]$
10	$[7,11]$	100	$[92,106]$	1000	$[976,1022]$

Table 29
Total CDF Error for Ghosh

λ	Error	λ	Error	λ	Error
1	0.030915				
2	0.016704	20	0.0011832	200	0.00011564
3	0.0089703	30	0.00078194	300	0.000076974
4	0.0066886	40	0.00058480	400	0.000057728
5	0.0052208	50	0.00046655	500	0.000046166
6	0.0041446	60	0.00038802	600	0.000038465
7	0.0035479	70	0.00033202	700	0.000032966
8	0.0031089	80	0.00028995	800	0.000028847
9	0.0027296	90	0.00025753	900	0.000025637
10	0.0024096	100	0.00023191	1000	0.000023074

Table 30
Interval of Maximum Error for Ghosh

λ	Interval	λ	Interval	λ	Interval
1	$[0,1]$				
2	$[0,3]$	20	$[14,25]$	200	$[180,219]$
3	$[1,4]$	30	$[22,37]$	300	$[276,324]$
4	$[1,6]$	40	$[31,48]$	400	$[372,427]$
5	$[2,7]$	50	$[40,59]$	500	$[468,531]$
6	$[3,8]$	60	$[49,70]$	600	$[565,634]$
7	$[3,10]$	70	$[58,81]$	700	$[663,736]$
8	$[4,11]$	80	$[67,92]$	800	$[760,839]$
9	$[5,12]$	90	$[77,102]$	900	$[858,941]$
10	$[6,13]$	100	$[86,113]$	1000	$[955,1044]$

The modified Ghosh method provides results similar to the modified Gram-
Charlier and Camp-Paulson methods. The error clearly varies inversely with λ. Also, λ again falls in the middle of the interval of maximum error (although it seems the interval here is actually centered at $\lambda-0.5$, similar to Camp-Paulson). The intervals are almost identical to those provided by Gram-Charlier, being only slightly narrower. The accuracy
is significantly better than that of Gram-Charlier, but not as good as that of CampPaulson.

Table 31
Total CDF Error for Molenaar with Parameter w_{1}

λ	Error	λ	Error	λ	Error
1	0.25851				
2	0.19362	20	0.061050	200	0.019305
3	0.15769	30	0.049892	300	0.015760
4	0.13505	40	0.043205	400	0.013646
5	0.12190	50	0.038643	500	0.012204
6	0.11098	60	0.035266	600	0.011140
7	0.10309	70	0.032653	700	0.010313
8	0.096192	80	0.030537	800	0.0096463
9	0.090991	90	0.028794	900	0.0090941
10	0.086132	100	0.027314	1000	0.0086271

Table 32
Interval of Maximum Error for Molenaar with Parameter w w_{1}

λ	Interval	λ	Interval	λ	Interval
1	$[0,1]$				
2	$[0,2]$	20	$[10,20]$	200	$[167,200]$
3	$[0,3]$	30	$[18,30]$	300	$[259,300]$
4	$[0,4]$	40	$[26,40]$	400	$[352,400]$
5	$[1,5]$	50	$[34,50]$	500	$[447,500]$
6	$[1,6]$	60	$[42,60]$	600	$[541,600]$
7	$[2,7]$	70	$[51,70]$	700	$[637,700]$
8	$[2,8]$	80	$[59,80]$	800	$[732,800]$
9	$[3,9]$	90	$[68,90]$	900	$[828,900]$
10	$[4,10]$	100	$[77,100]$	1000	$[924,1000]$

We now turn our attention to the variations considered by Molenaar (1970a, 1970b). The first four parameters (w_{1}, y, v, and v_{1}) all yield results similar to w, the standard parameter. In all cases, it is clear that the error varies inversely as $\sqrt{\lambda}$ (e.g. the
errors approximately divide by ten when λ multiplies by 100). Of these four parameters, only v_{1} provides a more accurate approximation than w, while v provides the most accuracy of the remaining three. This agrees perfectly with the recommendation of Molenaar (1970b) to use either v or v_{1}, depending on the probability values. In particular, he found that results were best using v_{1} when the probability is between 0.06 and 0.94 ; since the interval of maximum error is always near λ where probabilities are high (greater than 0.5 , but less than 0.8), it makes sense that v_{1} would yield the most accurate results.

The intervals of maximum error are interesting to observe. The intervals for w_{1} contain those for w, but they extend a bit farther to the left, and they also contain λ as the right endpoint (rather than $\lambda-1$). In an almost opposite phenomenon, the intervals for v contain Region 3 for w (rather than Region 2, the interval of maximum error for w), but they extend a bit farther to the right. The intervals for y and v_{1} are curious: they coincide (almost always identically) with either Region 2 or Region 3 for w, with Region 3 being matched most frequently; however, there seems to be no way to predict which values of λ will yield an interval matching Region 2 instead of Region 3. Upon closer inspection, it becomes apparent that this phenomenon occurs because the errors on Regions 2 and 3 are very close in value (from the beginning for v_{1}, but only with larger values of λ for y). When considering these two variations, one should keep this fact in mind.

The parameter v^{*} yields much better results than the first four parameters. Interestingly, the behavior of this method more closely resembles that of the modified binomial approximation methods than that of the first four methods considered by Molenaar. As with the modified binomial approximation methods, the inverse relationship of the error to λ is obvious. Its accuracy is slightly better than that of the
modified Ghosh method, although it is not as accurate as the modified Camp-Paulson method; furthermore, the interval of maximum error has λ near the center rather than one side. The interval tends to run approximately from $\lambda-0.75 \sqrt{\lambda}$ to $\lambda+0.75 \sqrt{\lambda}$, making them almost identical to the intervals for the modified Camp-Paulson method.

Table 33
Total CDF Error for Molenaar with Parameter y

λ	Error	λ	Error	λ	Error
1	0.17994				
2	0.11312	20	0.042745	200	0.013588
3	0.10859	30	0.034953	300	0.011100
4	0.094046	40	0.030335	400	0.0096126
5	0.084602	50	0.027144	500	0.0085988
6	0.077533	60	0.024775	600	0.0078496
7	0.071397	70	0.022937	700	0.0072680
8	0.067263	80	0.021461	800	0.0067988
9	0.063549	90	0.020242	900	0.0064100
10	0.060137	100	0.019210	1000	0.0060811

Table 34
Interval of Maximum Error for Molenaar with Parameter y

λ	Interval	λ	Interval	λ	Interval
1	$[1,3]$				
2	$[2,4]$	20	$[20,28]$	200	$[200,224]$
3	$[3,6]$	30	$[30,39]$	300	$[300,330]$
4	$[4,7]$	40	$[40,51]$	400	$[366,399]$
5	$[5,9]$	50	$[50,62]$	500	$[462,499]$
6	$[6,10]$	60	$[60,73]$	600	$[600,642]$
7	$[7,11]$	70	$[70,84]$	700	$[655,699]$
8	$[8,13]$	80	$[80,95]$	800	$[800,849]$
9	$[9,14]$	90	$[90,106]$	900	$[900,952]$
10	$[10,15]$	100	$[100,117]$	1000	$[946,999]$

Table 35
Total CDF Error for Molenaar with Parameter v

λ	Error	λ	Error	λ	Error
1	0.13588				
2	0.096631	20	0.030559	200	0.0096462
3	0.079068	30	0.024935	300	0.0078749
4	0.068446	40	0.021588	400	0.0068194
5	0.061155	50	0.019309	500	0.0060989
6	0.055878	60	0.017625	600	0.0055673
7	0.051674	70	0.016313	700	0.0051541
8	0.048369	80	0.015260	800	0.0048210
9	0.045587	90	0.014387	900	0.0045452
10	0.043234	100	0.013646	1000	0.0043118

Table 36
Interval of Maximum Error for Molenaar with Parameter v

λ	Interval	λ	Interval	λ	Interval
1	$[1,3]$				
2	$[2,5]$	20	$[20,31]$	200	$[200,235]$
3	$[3,7]$	30	$[30,43]$	300	$[300,342]$
4	$[4,9]$	40	$[40,55]$	400	$[400,449]$
5	$[5,10]$	50	$[50,67]$	500	$[500,555]$
6	$[6,12]$	60	$[60,79]$	600	$[600,660]$
7	$[7,13]$	70	$[70,90]$	700	$[700,765]$
8	$[8,15]$	80	$[80,102]$	800	$[800,869]$
9	$[9,16]$	90	$[90,113]$	900	$[900,973]$
10	$[10,18]$	100	$[100,124]$	1000	$[1000,1077]$

The parameters $v^{* *}$ and $v^{* * *}$ produce considerably better results than we have seen until now. Notice that multiplying λ by 100 divides the error by more than 1000 in the case of $v^{* *}$, and with $v^{* * *}$ the results are even better; therefore, the errors are inversely proportional to a power of λ exceeding 1.5. The intervals of maximum error behave quite unusually for both of these. For $v^{* *}$, the interval ends at $\lambda-2$, but the
starting point is not consistent: for a while, the width of the interval is approximately 0.5λ, but then it begins to narrow considerably, although it remains much wider than for w. For $v^{* * *}$, the interval begins at 0 and has width approximately 0.5λ until λ exceeds 20 ; afterwards, the behavior changes, and from there onward the interval runs from approximately $\lambda-1.5 \sqrt{\lambda}$ to λ or $\lambda+1$. We will see below that the strange behavior in the error when $\lambda \leq 20$ influences the curve fit as well.

Now that we have calculated the error for the various alternative approximation methods, we may find curve fits for them. Tables 45 through 56 describe these fits, and Figures 37-70 display their graphical representations. The curve fits for the standard normal approximation method have been repeated in Table 48 and Figures 46-48 for comparison. For $v^{* * *}$, the second interval begins at 20 instead of 10 because of its unusual behavior. This is reflected in Table 55 and Figure 68. Also, the behavior in the interval $1 \leq \lambda \leq 10$ is rather different from anything we have seen previously; in Table 56 and Figure 70, this interval is fit by an exponential curve of the form $E(\lambda)=A e^{k \lambda}$, which seems to work better than the usual power fit. (To show the linear relationship in Figure 70, the natural logarithm of the error is plotted against λ instead of its natural logarithm.)

Finally, using these curve fits, we may predict the minimum value of λ necessary to guarantee a specified number of decimal places of accuracy. These results are compiled in Table 57. Table 58 shows the actual values.

Table 37
Total CDF Error for Molenaar with Parameter v_{1}

λ	Error	λ	Error	λ	Error
1	0.040171				
2	0.031817	20	0.010688	200	0.0033978
3	0.026343	30	0.0087443	300	0.0027745
4	0.023328	40	0.0075728	400	0.0024034
5	0.020960	50	0.0067841	500	0.0021498
6	0.019235	60	0.0061957	600	0.0019625
7	0.017849	70	0.0057371	700	0.0018170
8	0.016702	80	0.0053677	800	0.0016996
9	0.015808	90	0.0050618	900	0.0016024
10	0.015030	100	0.0048028	1000	0.0015203

Table 38
Interval of Maximum Error for Molenaar with Parameter v_{1}

λ	Interval	λ	Interval	λ	Interval
1	$[1,2]$				
2	$[2,4]$	20	$[13,19]$	200	$[200,224]$
3	$[1,2]$	30	$[30,39]$	300	$[300,330]$
4	$[4,7]$	40	$[30,39]$	400	$[366,399]$
5	$[2,4]$	50	$[50,62]$	500	$[462,499]$
6	$[6,10]$	60	$[60,73]$	600	$[600,642]$
7	$[7,11]$	70	$[70,84]$	700	$[655,699]$
8	$[4,7]$	80	$[80,95]$	800	$[752,799]$
9	$[9,14]$	90	$[90,106]$	900	$[849,899]$
10	$[10,15]$	100	$[100,117]$	1000	$[946,999]$

Table 39
Total CDF Error for Molenaar with Parameter v^{*}

λ	Error	λ	Error	λ	Error
1	0.011508				
2	0.0089831	20	0.0010618	200	0.00010804
3	0.0062312	30	0.00071273	300	0.000072039
4	0.0048152	40	0.00053864	400	0.000054055
5	0.0040433	50	0.00042937	500	0.000043239
6	0.0034772	60	0.00035942	600	0.000036033
7	0.0030023	70	0.00030732	700	0.000030897
8	0.0026138	80	0.00026984	800	0.000027029
9	0.0023052	90	0.00023943	900	0.000024029
10	0.0020831	100	0.00021596	1000	0.000021629

Table 40
Interval of Maximum Error for Molenaar with Parameter v^{*}

λ	Interval	λ	Interval	λ	Interval
1	$[2,4]$				
2	$[1,2]$	20	$[17,23]$	200	$[189,210]$
3	$[2,4]$	30	$[26,33]$	300	$[286,313]$
4	$[3,5]$	40	$[35,44]$	400	$[384,415]$
5	$[3,6]$	50	$[45,55]$	500	$[482,517]$
6	$[4,7]$	60	$[54,65]$	600	$[581,619]$
7	$[5,8]$	70	$[64,76]$	700	$[679,720]$
8	$[6,9]$	80	$[73,86]$	800	$[778,822]$
9	$[7,11]$	90	$[83,97]$	900	$[876,923]$
10	$[8,12]$	100	$[92,107]$	1000	$[975,1024]$

Table 41
Total CDF Error for Molenaar with Parameter $v^{* *}$

λ	Error	λ	Error	λ	Error
1	0.010490				
2	0.0042904	20	0.000082023	200	0.0000024676
3	0.0018190	30	0.000043541	300	0.0000013417
4	0.0010728	40	0.000028003	400	0.00000087101
5	0.00080025	50	0.000019945	500	0.00000062304
6	0.00062866	60	0.000015134	600	0.00000047386
7	0.00047982	70	0.000011990	700	0.00000037598
8	0.00037182	80	0.0000098022	800	0.00000030770
9	0.00030571	90	0.0000082072	900	0.00000025785
10	0.00025330	100	0.0000070023	1000	0.00000022014

Table 42
Interval of Maximum Error for Molenaar with Parameter $v^{* *}$

λ	Interval	λ	Interval	λ	Interval
1	$[0,0]$				
2	$[0,0]$	20	$[8,18]$	200	$[85,198]$
3	$[0,1]$	30	$[14,28]$	300	$[158,298]$
4	$[0,2]$	40	$[19,38]$	400	$[235,398]$
5	$[1,3]$	50	$[24,48]$	500	$[306,498]$
6	$[1,4]$	60	$[29,58]$	600	$[389,598]$
7	$[1,5]$	70	$[34,68]$	700	$[471,698]$
8	$[1,6]$	80	$[38,78]$	800	$[551,798]$
9	$[2,7]$	90	$[42,88]$	900	$[643,898]$
10	$[2,8]$	100	$[47,98]$	1000	$[720,998]$

Table 43
Total CDF Error for Molenaar with Parameter $v^{* * *}$

λ	Error	λ	Error	λ	Error
1	0.0036355				
2	0.0023163	20	0.0000048573	200	0.000000099402
3	0.0010694	30	0.0000022579	300	0.000000052900
4	0.00044803	40	0.0000013521	400	0.000000033898
5	0.00017960	50	0.00000092159	500	0.000000024037
6	0.000098365	60	0.00000067952	600	0.000000018156
7	0.000063029	70	0.00000052779	700	0.000000014331
8	0.000043498	80	0.00000042522	800	0.000000011678
9	0.000031544	90	0.00000035193	900	0.0000000097530
10	0.000024415	100	0.00000029731	1000	0.0000000083005

Table 44
Interval of Maximum Error for Molenaar with Parameter $v^{* * *}$

λ	Interval	λ	Interval	λ	Interval
1	$[0,0]$				
2	$[0,0]$	20	$[0,14]$	200	$[180,201]$
3	$[0,0]$	30	$[23,31]$	300	$[275,301]$
4	$[0,0]$	40	$[32,41]$	400	$[370,400]$
5	$[0,0]$	50	$[41,51]$	500	$[467,500]$
6	$[0,2]$	60	$[50,61]$	600	$[563,600]$
7	$[0,3]$	70	$[59,71]$	700	$[660,700]$
8	$[0,4]$	80	$[68,81]$	800	$[758,800]$
9	$[0,5]$	90	$[77,91]$	900	$[855,900]$
10	$[0,5]$	100	$[86,101]$	1000	$[952,1000]$

Table 45
Curve Fits to Total CDF Error for Gram-Charlier

Fit Interval			
Coefficient	Exponent	RMSE	
$[1,10]$	0.05499	-1.150	0.0003671
$[10,100]$	0.04192	-1.001	0.000004135
$[100,1000]$	0.04206	-1.002	0.00000005930

Note. RMSE = root mean square error.

Table 46
Curve Fits to Total CDF Error for Camp-Paulson

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.004769	-0.5510	0.0006166
$[2,10]$	0.008937	-0.9644	0.00007697
$[10,100]$	0.009339	-0.9789	0.000001470
$[100,1000]$	0.01009	-0.9983	0.00000001210

Note. RMSE = root mean square error.
Table 47
Curve Fits to Total CDF Error for Ghosh

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.03139	-1.084	0.0007579
$[3,10]$	0.02992	-1.091	0.00006415
$[10,100]$	0.02525	-1.021	0.000002219
$[100,1000]$	0.02351	-1.003	0.00000004485
Note. RMSE $=$ root mean square error.			

Table 48

Curve Fits to Standard Normal Total CDF Error (Parameter w)

Fit Interval	Coefficient Exponent	RMSE	
$[1,10]$	0.1254	-0.6038	0.001329
$[10,100]$	0.1078	-0.5218	0.00005230
$[100,1000]$	0.1009	-0.5062	0.000003883
Note. RMSE			

Table 49

Curve Fits to Total CDF Error for Molenaar with Parameter w_{1}

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.2617	-0.4752	0.002524
$[2,10]$	0.2740	-0.5035	0.0005379
$[10,100]$	0.2716	-0.4985	0.00003738
$[100,1000]$	0.2738	-0.5005	0.0000006194
Note. RMSE			

Note. RMSE = root mean square error.

Table 50
Curve Fits to Total CDF Error for Molenaar with Parameter y

Fit Interval	Coefficient Exponent	RMSE	
$[1,10]$	0.1808	-0.4731	0.0007058
$[10,100]$	0.1882	-0.4952	0.00003653
$[100,1000]$	0.1916	-0.4995	0.000001091

Note. RMSE = root mean square error.

Table 51

Curve Fits to Total CDF Error for Molenaar with Parameter v

Fit Interval	Coefficient Exponent	RMSE	
$[1,10]$	0.1361	-0.4966	0.0001463
$[10,100]$	0.1370	-0.5008	0.000002881
$[100,1000]$	0.1367	-0.5004	0.0000002453

Note. RMSE = root mean square error.
Table 52

Curve Fits to Total CDF Error for Molenaar with Parameter v_{1}

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.04103	-0.4213	0.0006408
$[2,10]$	0.04396	-0.4633	0.0001119
$[10,100]$	0.04702	-0.4950	0.000009352
$[100,1000]$	0.04793	-0.4995	0.0000002565
Note. RMSE $=$ root mean square error.			

Note. RMSE = root mean square error.
Table 53
Curve Fits to Total CDF Error for Molenaar with Parameter v^{*}

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.01219	-0.6785	0.0006291
$[2,10]$	0.01660	-0.8868	0.00006003
$[10,100]$	0.01990	-0.9798	0.000002794
$[100,1000]$	0.02153	-0.9993	0.000000006168

Note. RMSE = root mean square error.

Table 54
Curve Fits to Total CDF Error for Molenaar with Parameter $v^{* *}$

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.01059	-1.509	0.0002448
$[3,10]$	0.01044	-1.602	0.00003146
$[10,100]$	0.01002	-1.598	0.0000008147
$[100,1000]$	0.007124	-1.504	0.0000000007915
N			

Note. RMSE = root mean square error.
Table 55
Curve Fits to Total CDF Error for Molenaar with Parameter $v^{* * *}$

Fit Interval Coefficient Exponent	RMSE		
$[1,10]$	0.003837	-1.504	0.0003539
$[20,100]$	0.001098	-1.811	0.00000003707
$[100,1000]$	0.0004091	-1.569	0.0000000003734

Note. RMSE = root mean square error.
Table 56
Exponential Curve Fit for Molenaar with Parameter $v^{* * *}$

Fit Interval	A	k	RMSE

$\begin{array}{lllll}{[1,10]} & 0.006918 & -0.6138 & 0.0001345\end{array}$
Note. RMSE = root mean square error.

Table 57
Predicted Minimum Values of $\boldsymbol{\lambda}$ for Specified CDF Accuracy

Decimal places	1	2	3	4	5	6	7	8
w	5	379	35759^{a}					
w_{1}	30	2975^{a}						
y	15	1480^{a}						
v	8	744	74081^{a}					
v_{1}	1	93	9274^{a}					
Gram-Charlier	2	9	84	830	8262^{a}			
Camp-Paulson	1	1	20	204	2045^{a}			
Ghosh	1	6	47	462	4585^{a}			
v^{*}	1	4	43	433	4332^{a}			
$v^{* *}$	1	2	7	28	126	578	2672^{a}	
$v^{* * *}$	1	1	4	9^{b}	20	71	312	1353^{a}

${ }^{2}$ Extrapolation. ${ }^{\mathrm{b}}$ Based on exponential fit, not power fit.
Table 58
Actual Minimum Values of $\boldsymbol{\lambda}$ for Specified CDF Accuracy

Decimal places	1	2	3	4	5	6	7	8
w	5	378	37066					
w_{1}	30	2976						
y	15	1480						
v	8	744	74312					
v_{1}	1	93	9248					
Gram-Charlier	2	9	84	833	8319			
Camp-Paulson	1	1	20	204	2052			
Ghosh	1	6	47	462	4620			
v^{*}	1	4	44	433	4327			
$v^{* *}$	1	2	7	28	126	579	2686	
$v^{* * *}$	1	1	4	8	20	73	312	1394

Figure 37. Gram-Charlier Error for $1 \leq \lambda \leq 10$.

Figure 38. Gram-Charlier Error for $10 \leq \lambda \leq 100$.

Figure 39. Gram-Charlier Error for $100 \leq \lambda \leq 1000$.

Figure 40. Camp-Paulson Error for $1 \leq \lambda \leq 10$.

Figure 41. Camp-Paulson Error for $10 \leq \lambda \leq 100$.

Figure 42. Camp-Paulson Error for $100 \leq \lambda \leq 1000$.

Figure 43. Ghosh Error for $1 \leq \lambda \leq 10$.

Figure 44. Ghosh Error for $10 \leq \lambda \leq 100$.

Figure 45. Ghosh Error for $100 \leq \lambda \leq 1000$.

Figure 46. Standard Normal (Parameter w) Error for $1 \leq \lambda \leq 10$.

Figure 47. Standard Normal (Parameter w) Error for $10 \leq \lambda \leq 100$.

Figure 48. Standard Normal (Parameter w) Error for $100 \leq \lambda \leq 1000$.

Figure 49. Molenaar (with Parameter w_{1}) Error for $1 \leq \lambda \leq 10$.

Figure 50. Molenaar (with Parameter w_{1}) Error for $10 \leq \lambda \leq 100$.

Figure 51. Molenaar (with Parameter w_{1}) Error for $100 \leq \lambda \leq 1000$.

Figure 52. Molenaar (with Parameter y) Error for $1 \leq \lambda \leq 10$.

Figure 53. Molenaar (with Parameter y) Error for $10 \leq \lambda \leq 100$.

Figure 54. Molenaar (with Parameter y) Error for $100 \leq \lambda \leq 1000$.

Figure 55. Molenaar (with Parameter v) Error for $1 \leq \lambda \leq 10$.

Figure 56. Molenaar (with Parameter v) Error for $10 \leq \lambda \leq 100$.

Figure 57. Molenaar (with Parameter v) Error for $100 \leq \lambda \leq 1000$.

Figure 58. Molenaar (with Parameter v_{1}) Error for $1 \leq \lambda \leq 10$.

Figure 59. Molenaar (with Parameter v_{1}) Error for $10 \leq \lambda \leq 100$.

Figure 60. Molenaar (with Parameter v_{1}) Error for $100 \leq \lambda \leq 1000$.

Figure 61. Molenaar (with Parameter v^{*}) Error for $1 \leq \lambda \leq 10$.

Figure 62. Molenaar (with Parameter v^{*}) Error for $10 \leq \lambda \leq 100$.

Figure 63. Molenaar (with Parameter v^{*}) Error for $100 \leq \lambda \leq 1000$.

Figure 64. Molenaar (with Parameter $v^{* *}$) Error for $1 \leq \lambda \leq 10$.

Figure 65. Molenaar (with Parameter $v^{* *}$) Error for $10 \leq \lambda \leq 100$.

Figure 66. Molenaar (with Parameter $v^{* *}$) Error for $100 \leq \lambda \leq 1000$.

Figure 67. Molenaar (with Parameter $v^{* * *}$) Error for $1 \leq \lambda \leq 10$.

Figure 68. Molenaar (with Parameter $v^{* * *}$) Error for $20 \leq \lambda \leq 100$.

Figure 69. Molenaar (with Parameter $v^{* * *}$) Error for $100 \leq \lambda \leq 1000$.

Figure 70. Exponential Fit to Molenaar (with Parameter $v^{* * *}$) Error for $1 \leq \lambda \leq 10$.

Conclusions from Variations

It is clear that the standard normal approximation to the Poisson can be improved significantly, but this tends to come at the cost of a more complicated formula. It also influences the interval of maximum error. Furthermore, it seems that the more complicated the formula, the more unusual the behavior becomes. This is to be expected, of course; however, it hinders the process of finding patterns. The same principles may be applied in this context as in that of the standard normal approximation: we can always find the minimum number of decimal places of accuracy achieved by consulting a quick reference table, specifically Table 58. Unfortunately, it is difficult to obtain a more accurate result, because the variations do not have as nice of a wave pattern as the standard normal, although preliminary results do indicate that there is a similar pattern for the modified approximations to the binomial (but with more regions, or sometimes regions that could only be described as "erratic," rather than over- or underestimate).

CHAPTER 5: CONCLUSION

It is well known that the standard normal random variable may be used to approximate the Poisson random variable. We have now provided a detailed description of this approximation. We have determined that the error follows a wavelike pattern of behavior, and we have described this behavior by identifying the approximate locations of its roots and local extrema. Furthermore, based on the magnitudes of its extrema, we have generated quick reference tables providing information concerning the accuracy of the approximation. Specifically, these tables provide the minimum value of λ necessary to guarantee a specified number of decimal places of accuracy (or, alternatively, given a specified value of λ, we may use them to determine the minimum number of decimal places of accuracy guaranteed). We have similarly examined several variations of the standard normal approximation, providing quick references for the number of decimal places of accuracy of each of these variations, as well as comments on their behavior. Moreover, we have examined the relative accuracy of the standard normal approximation, providing a description of its behavior (including roots, local extrema, and asymptotes), as well as quick references for the number of significant figures of accuracy we can guarantee.

The central focus of this paper has been the examination and description of the error in the standard normal approximation to the Poisson random variable. The purpose of this study was to gain greater insight into the accuracy of this approximation. We have done this, and along the way we have also uncovered very interesting patterns in the behavior of the error. We have also seen that modifying the approximation formula alters
this behavior, as does considering the relative error. Future research might investigate these phenomena further. One might ask what effect modifying the formula has on the error pattern; in particular, one might offer a description of the behavior of the error for any or all of the variation approximations described in this paper. From there, one might attempt to determine if it is possible to predict the intervals on which the regions of overand underestimation occur based on modifications to the original approximation formula. Alternatively, one might go on to describe the behavior of the relative error of the variation approximations.

REFERENCES

Camp, Burton H. (1951). Approximation to the point binomial. Annals of Mathematical Statistics, 22, 130-131.
Freund, John E. (1999). Mathematical statistics (6 ${ }^{\text {th }}$ ed.). Upper Saddle River, NJ: Prentice-Hall.

Ghosh, B. K. (1980). Two normal approximations to the binomial distribution. Communications in Statistics. A. Theory and Methods, No. 4, 427-438.

Molenaar, W. (1970a). Mathematical Centre Tract 31. Approximations to the Poisson, binomial, and hypergeometric distribution functions. Amsterdam: Mathematisch Centrum.

Molenaar, W. (1970b). Normal approximations to the Poisson distribution. In G. P. Patil (Ed.), Random Counts in Scientific Work, Vol. 2 (pp. 237-54). Pennsylvania State University Press.

Peizer, D. B. \& Pratt, J. W. (1968). A normal approximation for binomial, beta and other common, related tail probabilities. Journal of the American Statistical Association, 63, 1417-56.

Raff, M. S. (1956). On approximating the point binomial. Journal of the American Statistical Association, 51, 293-303.

