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ABSTRACT 

 Because the Poisson distribution is discrete, it is sometimes useful to use the 

continuous normal distribution as an approximation. In doing so, determining the 

accuracy of the approximation is important. Some issues of interest include: knowing 

how the error depends on the Poisson parameter, knowing when the approximation 

overestimates or underestimates the distribution, bounding the magnitude of the error, 

and determining if the approximation can be improved. This paper addresses these issues 

by examining how two types of absolute error measurements are affected by variations in 

the Poisson parameter; changes in the relative error are also examined. Generally, the 

error decays much like a power function of the parameter; therefore, curve fitting is used 

to bound the error. Finally, variations on the approximation are examined; these 

variations are often more accurate than the standard approximation. 
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CHAPTER 1: INTRODUCTION 

Objective and Significance 

 It is well known that the Poisson random variable mass function and the normal 

random variable density may be used as approximations of the binomial random variable 

mass function. It is also known, although not as widely studied, that the normal random 

variable may approximate the Poisson. The objective of this thesis is to examine the 

accuracy of the normal approximation to the Poisson random variable. Specifically, it 

will determine the values of the Poisson parameter for which the normal density provides 

an overestimate or an underestimate of the Poisson distribution, and it will set bounds on 

the magnitude of the error in those regions, as well as determine the number of decimal 

places and significant figures of accuracy possible. Further, it will provide modifications 

to the normal density that will allow greater accuracy than the standard approximation, 

and it will compare their accuracy to that of the standard approximation. 

 This study is significant because it seeks to describe the accuracy of the normal 

approximation of the Poisson distribution. The important related problem of 

approximating the binomial mass function with the normal density has theoretical 

applications, such as approximating confidence intervals (Freund, 1999). The normal 

approximation to the Poisson has similar applications, so it is important to be aware of its 

level of accuracy. 
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Theoretical Background 

 The formula for the binomial probability mass function with parameters  and  

is 

 . (1) 

By taking the limit of  as  approaches infinity while holding  constant, we 

get the formula for the Poisson probability mass function with parameter : 

   .    (2) 

Finally, the formula for the normal probability density with parameters  and  is 

   .    (3) 

When  and , the normal density is called the standard normal density, which 

shall be denoted as . Any random variable may be standardized by subtracting the 

mean and dividing by the standard deviation; the resulting standardized random variable 

will always have zero as its mean and one as its standard deviation. 

 Throughout this paper, references will be made to the cumulative distribution 

functions of random variables. These are simply the sum/integral of the probability 

masses/densities from the lowest possible value to the input value. In this paper, 

masses/densities will be denoted by lower-case letters, whereas cumulative distribution 

functions will be denoted by capital letters. For example, . 

 It is well known that the standard normal density provides a good approximation 

to the standardized binomial mass under the right conditions on the parameters. Since the 

Poisson mass is a limiting case of the binomial mass, it makes sense that the standard 

normal density may also approximate the standardized Poisson mass under the right 
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conditions. This is indeed the case, and the accuracy of the approximation increases with 

the Poisson parameter . In order to prove this theoretically, Theorems 1 and 2, 

reproduced from Freund (1999), show that it suffices to demonstrate that the moment-

generating function (MGF) of the standardized Poisson random variable approaches that 

of the standard normal random variable in the limit as  approaches infinity. 

Theorem 1 

There is a one-to-one correspondence between moment-generating functions and 

probability distributions (densities) when the former exist. 

Theorem 2 

If the moment-generating function of one random variable approaches that of another 

random variable, then the distribution (density) of the first random variable approaches 

that of the second random variable under the same limiting conditions. 

 

The MGF of a Poisson random variable  with parameter  is 

    .     (4) 

To standardize the variable, we must subtract the mean (in this case ) and divide by the 

standard deviation (in this case ), so if  is the standardized Poisson random variable 

corresponding to , then , and its MGF is 

    .    (5) 

This is in accordance with the rules of moment generating functions. The MGF of a 

standard normal random variable  is 

    .      (6) 
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By using Taylor expansion, we get the following: 

       (7) 

 

 

 

 

Now every term in the sum contains a negative power of . Therefore,  

approaches  as  approaches infinity, whence  approaches , which is 

precisely . In practice, this means that as  increases, the standardized Poisson 

distribution will tend to become a more accurate approximation to the standard normal 

density, and vice-versa. 

 In actual practice, it is generally preferable to use the standard normal 

distribution, , rather than the standard normal density, , when approximating 

the Poisson mass, . This is because, since  is continuous whereas  is 

discrete, it is necessary to implement what is known as a “continuity correction.” To find 

a point estimate of , we calculate the difference of the standard normal 

distribution values at the standardizations of the points  and ; that is, we 

calculate the quantity  to estimate , where 
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. Similarly, we calculate the quantity  to estimate 

. 
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CHAPTER 2: REVIEW OF RELATED LITERATURE 

 The relevant literature generally focuses on attempting to find variations on the 

standard normal that increase the accuracy of the approximation. (Actually, three of these 

variations are approximations to the binomial rather than the Poisson, but we can make 

use of them by taking the limit as  approaches infinity and  is held constant.) In 

almost all cases, this means using  for some function , rather than , 

where . There is one exception to this, and that is the Gram-Charlier 

approximation to the binomial (Raff, 1956), given by  

   ,   (8) 

where  and  are as above, , and . The limiting case of this is 

   ,   (9) 

where  is as above. Thus, the modified Gram-Charlier approximation uses , but it 

adds a term for error adjustment. 

 The remaining approximations involve a modification to  rather than to . 

Two of these, the Camp-Paulson and Ghosh approximations, are actually approximations 

to the binomial, while the rest are approximations to the Poisson compared by Molenaar. 

The Camp-Paulson approximation to the binomial (Camp, 1951) is given by 

    ,    (10) 

where , and . In the limit, we have 

         (11) 

where , and . 
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The Ghosh approximation to the binomial (Ghosh, 1980) is given by 

     ,    (12) 

where , , and  is as in the Gram-Charlier 

approximation. In the limit, we have 

     ,    (13) 

where . 

 It is worth mentioning that there is also a Poisson Gram-Charlier approximation to 

the binomial (Raff, 1956). This approximation tends to be more accurate than the normal 

Gram-Charlier approximation; however, it makes explicit use of the Poisson 

approximation to the binomial. Since our purpose is to approximate the Poisson rather 

than the binomial, it seems that this variation is beyond the scope of our consideration. 

 Table 1 

 Maximum Errors of Two Approximations to the Poisson 

Values of  Gram-Charlier Camp-Paulson 
0.5 0.185 0.008 
1 0.126 0.004 

1.5 0.109 0.004 
2 0.083 0.005 

2.5 0.073 0.004 
3   0.003 
4   0.002 
5 0.047 0.002 

7.5   0.001 
10 0.032 0.001 

 

 In comparing several approximations to the point binomial, M. S. Raff (1956) 

determined that the Camp-Paulson approximation outshines the Gram-Charlier almost 
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everywhere. In his work, he considered the maximum errors for given values of  and of 

. Allowing  to approach infinity, he calculated the maximum errors of these  

approximations as approximations to the Poisson for given values of . Table 1 displays 

his findings. 

Finally, there are seven variations that were examined by Molenaar (1970a, 

1970b). Each one replaces  in the usual  approximation with a different 

expression. These expressions are: 

, standard without continuity correction;     (14) 

, found using the asymptotic normality of the gamma distribution; (15) 

, square root transform for variance stabilization;  (16) 

, found using the Fisher approximation to ;  (17) 

, found by expanding a general formula;   (18) 

, found by expanding a general formula; and (19) 

, found by Peizer and Pratt (1968),  (20) 

where , and . In his work, Molenaar critiqued the approximations 

based on their accuracy and ease of computation. He recommended that among , , , 

and , only  should be used for “quick work,” because it is the most accurate and is no 

more difficult to compute than the others (but  should be replaced with  if the 

probability is between 0.06 and 0.94). For the remaining approximations , , and 

, each one is more accurate than its predecessor but also more difficult to compute. 
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Molenaar seemed to favor  for more accurate work, since it is far simpler to compute 

than  while yielding comparable accuracy. 
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CHAPTER 3: RESEARCH METHODS 

 In order to determine the accuracy of an approximation, one must decide upon a 

method of error measurement. The method used will depend somewhat on the purpose of 

the individual study. Because I am attempting to find bounds for the error, I have chosen 

methods that focus on the maximum possible error for a given region. I have primarily 

used two methods: one for examining the PMF (probability mass function) and one for 

the CDF (cumulative distribution function). (These methods will hereafter be referred to 

as “PMF error” and “CDF error.”) The CDF error is an adaptation of the “maximum 

error” used by Raff (1956): it is the largest absolute error that can arise by estimating the 

sum of consecutive points of the Poisson mass function within a specified interval 

. The formula is given by 

 (21) 

(note that we had to use  rather than  in the formula in order for the error at  to 

be included in the result). The PMF error is similar but simpler: it is the maximum error 

that can arise by estimating a single point of the Poisson mass function within a specified 

interval . The formula is given by 

. (22) 

This is, of course, precisely Equation 21 with . In practice, when , the 

quantities  and  are both so close to zero that the error 

is negligible. Therefore, it is possible to define the PMF and CDF error functions without 

specifying an interval, and the formulas become 

  (23) 

  . (24) 
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When referring to the CDF or PMF error without respect to an interval, the terms “total 

CDF error” and “total PMF error” will be used.  

 According to the theoretical background for this problem, both error functions 

will tend to decrease as  increases. If we can find good curve fits for the error functions, 

we will have bounded the error; furthermore, we can use these curve fits to determine a 

lower bound for the minimum number of decimal places of accuracy we have for a given 

value of . Solving the following inequality for  will accomplish this: 

    .     (25) 

Here  is the curve fit to the error function. Similarly, solving this equation for  will 

give the minimum value of  for which we can be guaranteed  decimal places of 

accuracy in our approximation. 

 In addition to bounding the absolute error, it is often useful to find bounds for the 

relative error. The relative errors corresponding to the CDF and PMF errors for an 

interval  are as follows: 

  (26) 

  . (27) 

The same process of finding curve fits for the absolute error can be applied to the relative 

error as well. Then we can determine how many significant figures we can be guaranteed 

for a given value of  (or the minimum value of  necessary to guarantee the desired 

number of significant figures) by solving the following equation for the appropriate 

variable (where  represents the number of significant figures): 

     .    (28) 
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Here  is the curve fit to the relative error. 

 It may be possible to achieve greater accuracy than the total error functions 

indicate if we determine at which points the PMF error will be an overestimate or an 

underestimate. This will partition the points into “regions” of over- or underestimation. 

We might expect the total CDF error to be greatest over some interval whose points are 

all in the same region, because the PMF error at each point in the same region will have 

the same sign; therefore, the total CDF error will be the sum of the PMF errors at every 

point in that region. However, if we consider some region other than the one that 

generates the total CDF error, we know that the CDF error for that region will be no 

larger than the total CDF error; in fact, it will be smaller. Thus, if we can determine how 

to find these regions with reasonable accuracy, then for most regions we can find even 

better bounds on  and on the number of decimal places or significant figures of accuracy 

than the total error would suggest. The accuracy of the approximation will depend on the 

region wherein the interval (or point) of interest occurs. 

 All calculations were performed using software. Most calculations, including 

probability values, error values, intervals, and decimal places (and significant figures) of 

accuracy were computed using Maple programs that I wrote for these purposes. All curve 

fits and graphs were generated using Vernier Software’s Graphical Analysis program. 

Floating point values have been rounded to fewer significant figures than were used to 

calculate them. 



 13 

CHAPTER 4: RESEARCH RESULTS AND DISCUSSION 

Total PMF Error 

 In examining the total PMF error for various values of , a pattern quickly 

becomes apparent. As Table 2 demonstrates, the total PMF error is approximately 

inversely proportional to  (notice that the error is approximately divided by ten 

whenever  is multiplied by ten). If we do power function curve fits on the data, we get 

the following functions: 

       (29) 

      (30) 

      (31) 

         Table 2 

         Total PMF Error 

 Error  Error  Error 

1 0.12615         
2 0.053256 20 0.0048032 200 0.00046841 
3 0.030865 30 0.0032278 300 0.00031141 
4 0.025548 40 0.0024076 400 0.00023300 
5 0.020983 50 0.0019054 500 0.00018604 
6 0.017424 60 0.0015917 600 0.00015484 
7 0.014694 70 0.0013555 700 0.00013262 
8 0.012576 80 0.0011864 800 0.00011596 
9 0.010907 90 0.0010528 900 0.00010298 

10 0.0096724 100 0.00094315 1000 0.000092639 
 

Now if , then we have the following: 

      (32) 
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Thus, a log-log plot of the data should demonstrate a linear relationship with negative 

slope (since  in these fits). Just to confirm the appropriateness of a power fit, and 

also to see how nice these fits really are, we have done linear fits for the log-log plots as  

well. These power fits, together with the corresponding linear fits, are illustrated in 

Figures 1, 2, and 3. 

We can now obtain an estimate for the number of decimal places of accuracy this 

approximation yields by solving Equation 25 for . The results for the first four decimal 

places are given in Table 3, using the appropriate error fit function depending on the 

value of . Table 4 lists the actual values. Comparing these with the predicted values, we 

see that our curve fit to the error function quite accurately predicts the minimum value of 

 required for up to four decimal places of accuracy, even when we have extrapolated. 

(We have used the values predicted by the  error fit for three or four decimal 

places, which makes sense, since the values predicted by both fits are greater than 100; 

however, for four digits, this is technically extrapolation, since the predicted value is 

greater than 1000.) 

    Table 3 

    Predicted Minimum Values of  for Specified Accuracy of PMF 

Decimal places 1 2 3 4 

 3 20 189 1847a 
       a Extrapolation. 

    Table 4 

    Actual Minimum Values of λ for Specified Accuracy of PMF 

Decimal places 1 2 3 4 

 3 20 188 1849 
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 Next let us consider the location of the point of maximum error for a given . 

That is, for which value of  will we have ? From Table 5, it is 

obvious that the point of maximum error is always slightly less than the value of . In 

fact, careful examination reveals that it is less than  by approximately 0.75 standard 

deviations, i.e. . Thus, if one wishes to approximate  when  is near 

, the data from Table 2 and Table 3 are accurate; however, if  is not near this 

value, the approximation will be more accurate than these tables indicate. We will discuss 

this later in greater detail. 

            Table 5 

            Points of Maximum PMF Error 

      

1 0     
2 1 20 17 200 189 
3 2 30 26 300 287 
4 2 40 35 400 385 
5 3 50 45 500 483 
6 4 60 54 600 582 
7 5 70 64 700 680 
8 6 80 73 800 779 
9 7 90 83 900 878 

10 7 100 92 1000 976 
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Figure 1. Total PMF Error for . 

  

Figure 2. Total PMF Error for . 

  

Figure 3. Total PMF Error for . 
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Total CDF Error 

 The total CDF error is listed in Table 6. Just as in the case of the total PMF error, 

there is a noticeable pattern: the error varies approximately inversely as . Curve fits 

yield the following functions: 

      (33) 

      (34) 

       (35) 

Figures 4, 5, and 6 show these curve fits and their log-log linear counterparts. The 

predicted decimal places of accuracy are listed in Table 7, along with the actual values. 

The intervals of maximum CDF error are given in Table 8. As we might expect, the 

interval of maximum CDF error always contains the point of maximum PMF error. 

Furthermore, the final point of the interval is always . (This indicates that the sign 

of the PMF error, before the absolute value is taken, changes at . We will discuss this 

more when we address regions of over- and underestimation.) The initial point of the 

interval is always approximately 1.75 standard deviations less than , or . 

This happens to be one standard deviation less than the estimate of the point of greatest 

PMF error. (Again, we will discuss this later in greater detail.) Thus, if one desires to 

approximate the Poisson over an interval, the location of the interval is relevant: the 

errors listed in Table 6 are maximum error values, so if the interval of interest is not 

approximately equal to the interval of maximum CDF error (e.g. if it does not intersect 

that interval, or even if it does not begin near  or end near ), the CDF error 

will be significantly less than the values listed in Table 6. 
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Table 6 

Total CDF Error 

 Error  Error  Error 

1 0.12615         
2 0.082719 20 0.022522 200 0.0068969 
3 0.061445 30 0.018219 300 0.0056158 
4 0.053920 40 0.015686 400 0.0048567 
5 0.047296 50 0.013973 500 0.0043393 
6 0.042296 60 0.012738 600 0.0039580 
7 0.039508 70 0.011773 700 0.0036622 
8 0.036545 80 0.010996 800 0.0034239 
9 0.033986 90 0.010352 900 0.0032268 

10 0.032489 100 0.0098071 1000 0.0030603 
 

Table 7 

Minimum Values of λ for Specified Accuracy of CDF 

Decimal places 1 2 3 
Estimated  5 379 35759a 

Actual  5 378  37066 
a Extrapolation. 

Table 8 

Intervals of Maximum CDF Error  

 Interval  Interval  Interval 

1 [0, 0]         
2 [0, 1] 20 [13, 19] 200 [176, 199] 
3 [1, 2] 30 [21, 29] 300 [271, 299] 
4 [1, 3] 40 [30, 39] 400 [366, 399] 
5 [2, 4] 50 [38, 49] 500 [462, 499] 
6 [2, 5] 60 [47, 59] 600 [558, 599] 
7 [3, 6] 70 [56, 69] 700 [655, 699] 
8 [4, 7] 80 [65, 79] 800 [752, 799] 
9 [4, 8] 90 [74, 89] 900 [849, 899] 

10 [5, 9] 100 [83, 99] 1000 [946, 999] 
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Figure 4. Total CDF Error for . 

 

Figure 5. Total CDF Error for . 

  

Figure 6. Total CDF Error for . 
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Regions of Over- and Underestimation 

 After examining the sign (before absolute value) of the PMF error at each point, it 

quickly becomes apparent that the points tend to divide into four main regions. If , 

the first region contains points at which the normal approximation to the Poisson is an 

overestimate. This region ranges from zero up to the point immediately preceding the 

initial point of the interval of maximum CDF error. The second region is one of 

underestimation, and it is precisely equal to the interval of maximum CDF error (from 

approximately  to ). The third region overestimates the Poisson, and it 

begins with  and extends about 1.75 standard deviations (to approximately ); 

for , the final point of the third region is exactly the same distance from  as is the 

initial point of the second region. The fourth and final region underestimates, and it 

includes all points after the final point of the third region. (Actually, for , the 

fourth region begins to include a few isolated points of overestimation; however, these 

anomalies only begin to appear six standard deviations past the mean, where the 

probability values are negligible.) See Table 9. Since these four regions are universal in 

their appearance (except that when  Region 1 does not occur), we are able to refine 

the bounds on the error. If the point (or interval) of interest lies outside Region 2, the  

error is guaranteed to be less than the maximum; furthermore, if the interval (or point) of 

interest lies entirely within one of the other three regions, the error will be at most the 

CDF error for that region, because the PMF error at each point has the same sign (before 

absolute value). Therefore, the CDF error over an interval corresponding to the entirety 

of one of the four regions constitutes an upper bound of the CDF error for any interval 

within that region. Similarly, we may refine the upper bound on the PMF error within a 
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region by considering the PMF error for the interval corresponding to the entirety of that 

region. The results are listed in Tables 10, 11, and 12. (We may also consider intervals 

that intersect two or more regions; in that case, the greatest maximum error for any of the 

intersected regions will be an upper bound for the error on the interval of interest.) 

        Table 9 

        Intervals of Error Regions  

 Region 1 Region 2 Region 3 Region 4 
  Over Under Over Under 
1   [0, 0] [1, 2] [3, ) 
2   [0, 1] [2, 4] [5, ) 
3  [0, 0] [1, 2] [3, 6] [7, ) 
4  [0, 0] [1, 3] [4, 7] [8, ) 
5  [0, 1] [2, 4] [5, 9] [10, ) 
6  [0, 1] [2, 5] [6, 10] [11, ) 
7  [0, 2] [3, 6] [7, 11] [12, ) 
8  [0, 3] [4, 7] [8, 13] [14, ) 
9  [0, 3] [4, 8] [9, 14] [15, ) 

10  [0, 4] [5, 9] [10, 15] [16, ) 
20  [0, 12] [13, 19] [20, 27] [28, ) 
30  [0, 20] [21, 29] [30, 39] [40, ) 
40  [0, 29] [30, 39] [40, 51] [52, ) 
50  [0, 37] [38, 49] [50, 62] [63, ) 
60  [0, 46] [47, 59] [60, 73] [74, ) 
70  [0, 55] [56, 69] [70, 84] [85, ) 
80  [0, 64] [65, 79] [80, 95] [96, ) 
90  [0, 73] [74, 89] [90, 106] [107, ) 
100  [0, 82] [83, 99] [100, 117] [118, ) 
200  [0, 175] [176, 199] [200, 224] [225, ) 
300  [0, 270] [271, 299] [300, 330] [331, ) 
400  [0, 365] [366, 399] [400, 434] [435, ) 
500  [0, 461] [462, 499] [500, 538] [539, ) 
600  [0, 557] [558, 599] [600, 642] [643, ) 
700  [0, 654] [655, 699] [700, 745] [746, ) 
800  [0, 751] [752, 799] [800, 849] [850, ) 
900  [0, 848] [849, 899] [900, 952] [953, ) 
1000  [0, 945] [946, 999] [1000, 1054] [1055, ) 
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Table 10 

Maximum PMF Error by Region  

 Region 1 Region 2 Region 3 Region 4 
  Over Under Over Under 
1   0.12615 0.057791 0.0093513 
2   0.053256 0.036968 0.0060970 
3 0.0030612 0.030865 0.025146 0.0046373 
4 0.0095190 0.025548 0.018373 0.0039865 
5 0.0083946 0.020983 0.014946 0.0031142 
6 0.0059118 0.017424 0.013171 0.0028739 
7 0.0054248 0.014694 0.011618 0.0023804 
8 0.0044020 0.012576 0.010300 0.0022528 
9 0.0039224 0.010907 0.0091891 0.0020093 

10 0.0034966 0.0096724 0.0082502 0.0018328 
20 0.0015672 0.0048032 0.0042696 0.0010057 
30 0.00098653 0.0032278 0.0028919 0.00070030 
40 0.00072268 0.0024076 0.0021659 0.00053710 
50 0.00057373 0.0019054 0.0017565 0.00043554 
60 0.00047268 0.0015917 0.0014631 0.00036624 
70 0.00040066 0.0013555 0.0012635 0.00031767 
80 0.00034725 0.0011864 0.0011018 0.00028009 
90 0.00030769 0.0010528 0.00098693 0.00024963 
100 0.00027543 0.00094315 0.00088843 0.00022604 
200 0.00013360 0.00046841 0.00044837 0.00011639 
300 0.000087947 0.00031141 0.00030033 0.000078568 
400 0.000065403 0.00023300 0.00022580 0.000059393 
500 0.000052096 0.00018604 0.00018087 0.000047712 
600 0.000043245 0.00015484 0.00015103 0.000039916 
700 0.000036930 0.00013262 0.00012948 0.000034336 
800 0.000032254 0.00011596 0.00011346 0.000030108 
900 0.000028614 0.00010298 0.00010091 0.000026815 
1000 0.000025702 0.000092639 0.000090855 0.000024177 

 

 

 It is interesting to note the symmetry in the points of maximum PMF error from 

Table 11. The points of maximum error in Regions 2 and 3 are very nearly the same 

distance from  (about 0.75 standard deviations, or ). This is also true of Regions 

1 and 4: the points of maximum error are about  standard deviations away from  in 

both regions. 

 



 23 

        Table 11 

        Point of Maximum PMF Error by Region  

 Region 1 Region 2 Region 3 Region 4 
1   0 2 4 
2   1 3 6 
3 0 2 4 7 
4 0 2 5 9 
5 0 3 7 11 
6 0 4 8 12 
7 1 5 9 13 
8 2 6 10 15 
9 2 7 11 16 

10 3 7 12 18 
20 10 17 23 31 
30 17 26 34 43 
40 25 35 45 55 
50 34 45 55 67 
60 42 54 66 78 
70 51 64 76 90 
80 59 73 87 101 
90 68 83 97 112 
100 77 92 107 124 
200 167 189 210 233 
300 260 287 313 341 
400 354 385 415 447 
500 448 483 516 552 
600 543 582 618 657 
700 638 680 719 762 
800 734 779 821 866 
900 830 878 922 970 
1000 926 976 1023 1074 

 

Now we may find curve fits for the PMF and CDF errors in each of the four 

regions. We have already done this for the total PMF and CDF errors; that information 

will be repeated in Tables 13 and 14 as the information for Region 2. Just as in Region 2, 

the error functions for Regions 1, 3, and 4 are nicely fit by power functions of  of the 

form . Tables 13 and 14 list the values of  (the coefficient) and  (the 

exponent). Three fits are given for each region: one each for  (of course, the 
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lower bound is 3 for Region 1), , and . In a few instances, 

additional intervals were used to try to get nicer curve fits by removing a single 

problematic point; in these instances, which only occurred for small values of  ( ), 

it was always the smallest value of  that was removed. We might have expected that 

these very small values of  would be problematic, given that the accuracy of the 

approximation we are using improves as  increases. The root mean square error is listed 

for each fit to demonstrate its accuracy. Figures 7 through 30 show the graphs of these 

curve fits with their log-log linear fits. 

Note the impressive accuracy of these curve fits. When , the fits are 

slightly less accurate but still quite reliable. Using these curve fits, we can estimate the 

minimum value of  necessary to obtain a given level of accuracy (see Tables 15 and 16). 

Comparing these values to the actual values in Tables 17 and 18, we see that they are 

almost identical; indeed, when not extrapolating, the predicted values usually equal the 

actual values, and even in the handful of cases where they do not, they are only off by 

one. 
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      Table 12 

      Maximum CDF Error by Region  

 Region 1 Region 2 Region 3 Region 4 
  Over Under Over Under 
1   0.12615 0.072836 0.013494 
2   0.082719 0.058272 0.014103 
3 0.0030162 0.061445 0.048630 0.011854 
4 0.0095190 0.053920 0.043251 0.011074 
5 0.011382 0.047296 0.038704 0.0097424 
6 0.011763 0.042296 0.036076 0.0095246 
7 0.012557 0.039508 0.033521 0.0088631 
8 0.012099 0.036545 0.031385 0.0082657 
9 0.011379 0.033986 0.029926 0.0080898 

10 0.011293 0.032489 0.028491 0.0077452 
20 0.0077520 0.022522 0.020482 0.0057145 
30 0.0061341 0.018219 0.016919 0.0048343 
40 0.0052089 0.015686 0.014709 0.0042318 
50 0.0045950 0.013973 0.013219 0.0038410 
60 0.0041738 0.012738 0.012097 0.0035326 
70 0.0038417 0.011773 0.011220 0.0032884 
80 0.0035746 0.010996 0.010512 0.0030907 
90 0.0033540 0.010352 0.0099243 0.0029262 
100 0.0031671 0.0098071 0.0094257 0.0027857 
200 0.0021985 0.0068969 0.0067038 0.0020054 
300 0.0017787 0.0056158 0.0054873 0.0016502 
400 0.0015333 0.0048567 0.0047598 0.0014364 
500 0.0013666 0.0043393 0.0042616 0.0012889 
600 0.0012441 0.0039580 0.0038938 0.0011800 
700 0.0011496 0.0036622 0.0036066 0.0010940 
800 0.0010735 0.0034239 0.0033757 0.0010253 
900 0.0010108 0.0032268 0.0031839 0.00096787 
1000 0.00095796 0.0030603 0.0030215 0.00091915 
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     Table 13 

     Curve Fits to PMF Error by Region  

Region Fit Interval Coefficient Exponent RMSE 

1 [3, 10] 0.009184 -0.2855 0.002394 
1 [4, 10] 0.04608 -1.114 0.0003988 
1 [10, 100] 0.04697 -1.130 0.00001740 
1 [100, 1000] 0.03237 -1.035 0.0000003529 
2 [1, 10] 0.1250 -1.163 0.002184 
2 [10, 100] 0.09827 -1.007 0.00001273 
2 [100, 1000] 0.09805 -1.008 0.0000001609 
3 [1, 10] 0.05914 -0.8169 0.001479 
3 [10, 100] 0.07578 -0.9624 0.00001661 
3 [100, 1000] 0.08437 -0.9887 0.0000003428 
4 [1, 10] 0.009482 -0.6762 0.0001662 
4 [10, 100] 0.01441 -0.8937 0.000009266 
4 [100, 1000] 0.01936 -0.9661 0.0000003051 

      Note. RMSE = root mean square error. 

      Table 14 

      Curve Fits to CDF Error by Region  

Region Fit Interval Coefficient Exponent RMSE 

1 [3, 10] 0.004194 0.4946 0.002344 
1 [4, 10] 0.008791 0.1375 0.0008773 
1 [10, 100] 0.04058 -0.5550 0.00002753 
1 [100, 1000] 0.03479 -0.5207 0.000004258 
2 [1, 10] 0.1254 -0.6038 0.001329 
2 [10, 100] 0.1078 -0.5218 0.00005230 
2 [100, 1000] 0.1009 -0.5062 0.000003883 
3 [1, 10] 0.07435 -0.4040 0.001112 
3 [10, 100] 0.08594 -0.4790 0.00003611 
3 [100, 1000] 0.09161 -0.4937 0.000004113 
4 [1, 10] 0.01482 -0.2526 0.0008730 
4 [2, 10] 0.01812 -0.3700 0.0001775 
4 [10, 100] 0.02140 -0.4405 0.00002554 
4 [100, 1000] 0.02549 -0.4804 0.000003704 

       Note. RMSE = root mean square error. 
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    Table 15 

    Predicted Minimum Values of  for Specified Accuracy of PMF by 
    Region  

Decimal places Region 1 Region 2 Region 3 Region 4 

1 1a 3 2 1 
2 8 20 17 3 
3 56 189 179 43 
4 521 1847a 1837a 478 

       a Extrapolation. 
    Table 16 

    Predicted Minimum Values of  for Specified Accuracy of CDF by 
    Region 

Decimal places Region 1 Region 2 Region 3 Region 4 

1 1a 5 3 1 
2 44 379 362 28 
3 3456a 35759a 38345a 3582a 

       a Extrapolation. 
    Table 17 

    Actual Minimum Values of  for Specified Accuracy of PMF by Region 

Decimal places Region 1 Region 2 Region 3 Region 4 

1 3 3 2 1 
2 8 20 18 3 
3 57 188 180 43 
4 521 1849 1822 477 

 

    Table 18 

    Actual Minimum Values of  for Specified Accuracy of CDF by Region 

Decimal places Region 1 Region 2 Region 3 Region 4 

1 3 5 3 1 
2 44 378 363 28 
3  37066 36912  

      Note. Blank cells represent values that could not be determined. 
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Figure 7. Region 1 PMF Error for . 

  

Figure 8. Region 1 PMF Error for . 

  

Figure 9. Region 1 PMF Error for . 
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Figure 10. Region 2 PMF Error for . 

  

Figure 11. Region 2 PMF Error for . 

  

Figure 12. Region 2 PMF Error for . 
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Figure 13. Region 3 PMF Error for . 

  

Figure 14. Region 3 PMF Error for . 

  

Figure 15. Region 3 PMF Error for . 
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Figure 16. Region 4 PMF Error for . 

  

Figure 17. Region 4 PMF Error for . 

  

Figure 18. Region 4 PMF Error for . 
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Figure 19. Region 1 CDF Error for . 

  

Figure 20. Region 1 CDF Error for . 

  

Figure 21. Region 1 CDF Error for . 
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Figure 22. Region 2 CDF Error for . 

 

Figure 23. Region 2 CDF Error for . 

  

Figure 24. Region 2 CDF Error for . 
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Figure 25. Region 3 CDF Error for . 

  

Figure 26. Region 3 CDF Error for . 

  

Figure 27. Region 3 CDF Error for . 
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Figure 28. Region 4 CDF Error for . 

  

Figure 29. Region 4 CDF Error for . 

  

Figure 30. Region 4 CDF Error for . 
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Conclusions from Absolute Error  

 At the outset of this paper, we affirmed the legitimacy of using the normal 

random variable to approximate the Poisson random variable; furthermore, we asserted 

that this approximation increases in accuracy as the Poisson parameter  increases in 

value. We have now added greater detail to those general claims. Here is a brief summary 

of the important information we have discovered. 

 We now know that the error introduced by using this approximation behaves 

somewhat like a wave: it oscillates between the states of overestimation and 

underestimation, and it does so in a regular fashion rather than erratically. We have 

isolated about seven important points (depending on the value of ) that tell the estimator 

a great deal about the accuracy of the approximation. For a fixed value of , the trend is 

as follows. Beginning at zero and letting the value of the variable increase, the 

approximation is an increasing overestimate that reaches a local point of maximum 

overestimation at about . The accuracy then begins to improve until it is nearly 

exact at . After this, it crosses over to a state of underestimation, the error of 

which increases until . The accuracy again begins to improve, again 

becoming nearly exact near . After , it overestimates again, peaking at , 

and improving until , where it is again nearly exact. Finally, it becomes an 

underestimate, the error of which increases until ; after that, its accuracy 

improves until it becomes nearly exact, and it remains in this state as the value of the 

variable approaches infinity and the probability drops to zero. These important points are 

not difficult to remember, because they are symmetric and centered at the mean. 



 37 

 We have further ascertained specific data linking the value of  and the number of 

decimal places of accuracy we can achieve. Tables 17 and 18 offer quick references for 

determining this. The estimator should use these tables in conjunction with the 

knowledge of the wave-like behavior of the error, realizing that the approximation is 

more accurate than these quick references indicate when the points of interest are not near 

the points of maximum error in each region, and is especially accurate near the 

boundaries between regions. 
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Relative Error 

 The relative error behaves somewhat differently than the absolute error. The four 

regions of over- and underestimation previously discussed do also govern the behavior of 

the relative error. The general pattern of the relative PMF error is as follows: the error at 

zero is very large (almost always much greater than 1), but it decreases throughout 

Region 1. The error fluctuates a little in Regions 2 and 3. Finally, it increases throughout 

Region 4, approaching a limiting value of 1. 

 The process of calculating the relative error varied significantly from that of the 

absolute error. First of all, calculating the total relative error is a waste of time: it always 

occurs at zero (for both PMF and CDF relative errors), and it is so high that it is not 

useful. (Actually, if  is less than about five, the error at zero drops below one; however, 

this is no better, because it simply means that the total error is equal to one, since the 

error converges to one in Region 4.) Second, it turns out that the relative CDF error is 

always maximized on an interval consisting of one point; increasing the interval size 

(within a region) always results in a larger denominator, so the error is maximized on the 

interval consisting precisely of the point of maximum relative PMF error. Thus, within 

any region, the relative PMF and CDF errors are identical; therefore, their common value 

will, henceforth, simply be called the “relative error.” When determining relative error by 

region, only Regions 2 and 3 were considered. The results are listed in Tables 19 and 20. 

Table 19 lists the maximum relative error in each region, and Table 20 lists the points at 

which these errors occur. It is interesting to note that, in both Regions 2 and 3, the points 

of maximum relative error occur one standard deviation from the mean. 
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Table 19 

Maximum Relative Error by Region  

 Region 2 Region 3 
  Under Over 
1 0.34291 0.31418 
2 0.21770 0.20487 
3 0.20474 0.17816 
4 0.17436 0.16106 
5 0.14948 0.14310 
6 0.13491 0.12755 
7 0.12949 0.11877 
8 0.12212 0.11396 
9 0.11455 0.10844 

10 0.10738 0.10285 
20 0.075036 0.072435 
30 0.061309 0.059536 
40 0.053095 0.051941 
50 0.047700 0.046624 
60 0.043504 0.042491 
70 0.040078 0.039397 
80 0.037637 0.036930 
90 0.035357 0.034748 
100 0.033623 0.033067 
200 0.023705 0.023436 
300 0.019324 0.019150 
400 0.016738 0.016599 
500 0.014955 0.014849 
600 0.013650 0.013557 
700 0.012634 0.012556 
800 0.011817 0.011750 
900 0.011142 0.011081 
1000 0.010568 0.010510 

 

It seemed pointless to closely examine the relative error in Regions 1 and 4, since 

it tends to be so high in these regions; however, Table 21 lists two significant points: the 

minimum point in Region 1 at which the relative error is less than the maximum in 

Region 2, and the minimum point in Region 4 at which the relative error is greater than 

the maximum in Region 2. We see from these data that there is again some symmetry 

here. The points at which the error in Regions 1 and 4 equal the maximum error (in 
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Region 2) are equidistant from the mean, occurring at  in Region 1 and at 

 in Region 4. 

Table 20 

Point of Maximum Relative Error by Region  

 Region 2 Region 3 
  Under Over 
1 0 2 
2 0 3 
3 1 5 
4 2 6 
5 3 7 
6 3 8 
7 4 10 
8 5 11 
9 6 12 

10 7 13 
20 15 24 
30 24 35 
40 34 46 
50 43 57 
60 52 68 
70 62 78 
80 71 89 
90 80 99 
100 90 110 
200 186 214 
300 283 317 
400 380 420 
500 478 522 
600 575 624 
700 673 726 
800 772 828 
900 870 930 
1000 968 1032 

 

 We may now find curve fits just as we did with the absolute error. The results are 

listed in Table 22. Graphical representations are found in Figures 31-36 (along with the 

linear log-log fits). Based on these curve fits, we may predict the minimum value of  

necessary to achieve a specified accuracy (number of significant figures) in our 
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approximation. These predictions are listed in Table 23, and the actual values are listed in 

Table 24. 

Table 21 

Significant Points in Regions 1 and 4  

 Region 1 Region 4 
    
1  4 
2  6 
3 0 7 
4 None 9 
5 1 10 
6 None 12 
7 None 13 
8 3 15 
9 None 16 

10 None 17 
20 12 30 
30 20 42 
40 28 54 
50 37 65 
60 45 76 
70 54 88 
80 63 99 
90 72 110 
100 81 121 
200 173 229 
300 266 336 
400 361 441 
500 456 546 
600 552 650 
700 648 754 
800 744 857 
900 841 961 
1000 938 1064 

         Note. Max = maximum error in Region 2. 
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      Table 22 

      Curve Fits to Relative Error by Region 

Region Fit Interval Coefficient Exponent RMSE 

2 [1, 10] 0.3363 -0.4963 0.008810 
2 [10, 100] 0.3425 -0.5048 0.0002286 
2 [100, 1000] 0.3407 -0.5029 0.00001103 
3 [1, 10] 0.3074 -0.4855 0.006210 
3 [10, 100] 0.3189 -0.4925 0.0002236 
3 [100, 1000] 0.3271 -0.4976 0.000006106 

       Note. RMSE = root mean square error. 

       Table 23 

       Predicted Minimum Values of  for Specified Relative Accuracy 
       by Region 

Significant figures Region 2 Region 3 

1 1 1 
2 46 44 
3 4423a 4456a 

          a Extrapolation. 

      Table 24 

      Actual Minimum Values of  for Specified Relative Accuracy 
      by Region 

Significant figures Region 2 Region 3 

1 1 1 
2 46 43 
3 4456 4433 
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Figure 31. Region 2 Relative Error for . 

  

Figure 32. Region 2 Relative Error for . 

 

Figure 33. Region 2 Relative Error for . 
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Figure 34. Region 3 Relative Error for . 

  

Figure 35. Region 3 Relative Error for . 

  

Figure 36. Region 3 Relative Error for . 
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Conclusions from Relative Error 

 Based on the data we have found, we have gained further insight into the accuracy 

of the normal approximation to the Poisson random variable. In addition to the regions of 

over- and underestimation and their points of maximum absolute error, we now know the 

points of maximum relative error as well:  in Region 2 and  in Region 3. It 

is important to note that these points do not coincide with the points of maximum 

absolute error, so the estimator must determine which measurement of accuracy is 

desired in each particular situation. We also have upper bounds for the relative error in 

Regions 2 and 3 (and, in fact, the upper bound on Region 2 holds for the entire interval 

from  to ). This information translates into a minimum value of  for 

which a specified number of significant figures of accuracy can be guaranteed. Table 24 

may be used as a quick reference for this, together with the knowledge that the relative 

accuracy will be greater than the table indicates when the points of interest are not near 

, provided they are between  and . 
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Variations 

 Now that we have examined the accuracy of the standard normal method of 

approximating the Poisson random variable, we will briefly turn to variations of this 

method. Specifically, we will find curve fits to the total CDF errors of each of the 

variations under consideration. As before, each method will be assigned at least three 

curve fits: one for each of the intervals , , and 

, and possibly others when it is deemed appropriate. These curve fits will be used to 

generate quick reference tables of the minimum value of  necessary to guarantee a 

specified number of decimal places of accuracy. 

 Tables 25 to 44 correspond to Tables 6 and 8 (which showed the total CDF error 

versus  and the interval on which that error occurred, respectively) for each of the ten 

variations we are considering. 

The modified Gram-Charlier approximation method is significantly more accurate 

than the standard normal approximation method. In Table 25, we can clearly see that the 

total CDF error is inversely proportional to  (it is obvious that the error approximately 

divides by ten when  multiplies by ten, just like the standard normal PMF error). This is 

distinctly better than the total CDF error of the standard normal approximation method, 

which varies inversely with  rather than . Furthermore, not only does the accuracy of 

Gram-Charlier improve more rapidly with , the initial error (at ) is less than half 

that of the standard normal. Interestingly, in Table 26, it becomes apparent that  is no 

longer the point at which the sign of the error changes, as it is in the standard normal; in 

fact, the interval of maximum error is now precisely symmetric about , ranging 

approximately from  to . We will see that  also occurs in the middle 
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of the interval of maximum error in the other two modified binomial approximation 

methods. 

         Table 25 

         Total CDF Error for Gram-Charlier 

 Error  Error  Error 

1 0.055158         
2 0.024447 20 0.0020860 200 0.00020823 
3 0.015210 30 0.0014031 300 0.00013879 
4 0.010669 40 0.0010467 400 0.00010405 
5 0.0090036 50 0.00083335 500 0.000083231 
6 0.0071491 60 0.00069360 600 0.000069357 
7 0.0059872 70 0.00059510 700 0.000059442 
8 0.0054345 80 0.00052150 800 0.000052010 
9 0.0048000 90 0.00046395 900 0.000046210 

10 0.0041845 100 0.00041727 1000 0.000041605 
 

Table 26 

Interval of Maximum Error for Gram-Charlier 

 Interval  Interval  Interval 

1 [0, 0]         
2 [0, 4] 20 [14, 26] 200 [179, 221] 
3 [1, 5] 30 [22, 38] 300 [274, 326] 
4 [1, 7] 40 [31, 49] 400 [370, 430] 
5 [2, 8] 50 [40, 60] 500 [466, 534] 
6 [3, 9] 60 [49, 71] 600 [563, 637] 
7 [3, 11] 70 [58, 82] 700 [660, 740] 
8 [4, 12] 80 [67, 93] 800 [757, 843] 
9 [5, 13] 90 [76, 104] 900 [854, 946] 

10 [6, 14] 100 [85, 115] 1000 [952, 1048] 
 

 In the modified Camp-Paulson approximation method, we again see  falling very 

near the middle of the interval of maximum error. In fact, almost every interval listed in 

Table 28 is centered at either  or . The intervals are narrower than those for 
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Gram-Charlier, being approximately half as wide. As with the Gram-Charlier, the inverse 

relationship of the error with  is obvious; however, the accuracy has greatly improved: 

the error is less than 25% of the error in the Gram-Charlier method, regardless of the 

value of . This agrees with the findings of Raff (1956), who demonstrated the 

superiority of the Camp-Paulson method over the Gram-Charlier method when 

approximating the binomial distribution. 

        Table 27 

        Total CDF Error for Camp-Paulson 

 Error  Error  Error 

1 0.0040298         
2 0.0046609 20 0.00049953 200 0.000050902 
3 0.0029216 30 0.00033685 300 0.000033953 
4 0.0023423 40 0.00025258 400 0.000025471 
5 0.0019065 50 0.00020232 500 0.000020379 
6 0.0016224 60 0.00016890 600 0.000016984 
7 0.0014071 70 0.00014492 700 0.000014559 
8 0.0012303 80 0.00012692 800 0.000012741 
9 0.0010853 90 0.00011296 900 0.000011324 

10 0.00097942 100 0.00010163 1000 0.000010193 
 

Table 28 

Interval of Maximum Error for Camp-Paulson 

 Interval  Interval  Interval 

1 [2, 3]         
2 [1, 2] 20 [16, 22] 200 [189, 209] 
3 [2, 3] 30 [26, 33] 300 [287, 312] 
4 [2, 4] 40 [35, 43] 400 [385, 414] 
5 [3, 5] 50 [45, 54] 500 [483, 515] 
6 [4, 7] 60 [54, 65] 600 [582, 617] 
7 [5, 8] 70 [64, 75] 700 [680, 718] 
8 [6, 9] 80 [73, 85] 800 [779, 820] 
9 [7, 10] 90 [83, 96] 900 [878, 921] 

10 [7, 11] 100 [92, 106] 1000 [976, 1022] 
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         Table 29 

         Total CDF Error for Ghosh 

 Error  Error  Error 

1 0.030915         
2 0.016704 20 0.0011832 200 0.00011564 
3 0.0089703 30 0.00078194 300 0.000076974 
4 0.0066886 40 0.00058480 400 0.000057728 
5 0.0052208 50 0.00046655 500 0.000046166 
6 0.0041446 60 0.00038802 600 0.000038465 
7 0.0035479 70 0.00033202 700 0.000032966 
8 0.0031089 80 0.00028995 800 0.000028847 
9 0.0027296 90 0.00025753 900 0.000025637 

10 0.0024096 100 0.00023191 1000 0.000023074 
 

Table 30 

Interval of Maximum Error for Ghosh 

 Interval  Interval  Interval 

1 [0, 1]         
2 [0, 3] 20 [14, 25] 200 [180, 219] 
3 [1, 4] 30 [22, 37] 300 [276, 324] 
4 [1, 6] 40 [31, 48] 400 [372, 427] 
5 [2, 7] 50 [40, 59] 500 [468, 531] 
6 [3, 8] 60 [49, 70] 600 [565, 634] 
7 [3, 10] 70 [58, 81] 700 [663, 736] 
8 [4, 11] 80 [67, 92] 800 [760, 839] 
9 [5, 12] 90 [77, 102] 900 [858, 941] 

10 [6, 13] 100 [86, 113] 1000 [955, 1044] 
 

 The modified Ghosh method provides results similar to the modified Gram-

Charlier and Camp-Paulson methods. The error clearly varies inversely with . Also,  

again falls in the middle of the interval of maximum error (although it seems the interval 

here is actually centered at , similar to Camp-Paulson). The intervals are almost 

identical to those provided by Gram-Charlier, being only slightly narrower. The accuracy 
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is significantly better than that of Gram-Charlier, but not as good as that of Camp-

Paulson. 

Table 31 

Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.25851         
2 0.19362 20 0.061050 200 0.019305 
3 0.15769 30 0.049892 300 0.015760 
4 0.13505 40 0.043205 400 0.013646 
5 0.12190 50 0.038643 500 0.012204 
6 0.11098 60 0.035266 600 0.011140 
7 0.10309 70 0.032653 700 0.010313 
8 0.096192 80 0.030537 800 0.0096463 
9 0.090991 90 0.028794 900 0.0090941 

10 0.086132 100 0.027314 1000 0.0086271 
 

Table 32 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [0, 1]         
2 [0, 2] 20 [10, 20] 200 [167, 200] 
3 [0, 3] 30 [18, 30] 300 [259, 300] 
4 [0, 4] 40 [26, 40] 400 [352, 400] 
5 [1, 5] 50 [34, 50] 500 [447, 500] 
6 [1, 6] 60 [42, 60] 600 [541, 600] 
7 [2, 7] 70 [51, 70] 700 [637, 700] 
8 [2, 8] 80 [59, 80] 800 [732, 800] 
9 [3, 9] 90 [68, 90] 900 [828, 900] 

10 [4, 10] 100 [77, 100] 1000 [924, 1000] 
 

 We now turn our attention to the variations considered by Molenaar (1970a, 

1970b). The first four parameters ( , , , and ) all yield results similar to , the 

standard parameter. In all cases, it is clear that the error varies inversely as  (e.g. the 
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errors approximately divide by ten when  multiplies by 100). Of these four parameters, 

only  provides a more accurate approximation than , while  provides the most 

accuracy of the remaining three. This agrees perfectly with the recommendation of 

Molenaar (1970b) to use either  or , depending on the probability values. In particular, 

he found that results were best using  when the probability is between 0.06 and 0.94; 

since the interval of maximum error is always near  where probabilities are high (greater 

than 0.5, but less than 0.8), it makes sense that  would yield the most accurate results. 

 The intervals of maximum error are interesting to observe. The intervals for  

contain those for , but they extend a bit farther to the left, and they also contain  as the 

right endpoint (rather than ). In an almost opposite phenomenon, the intervals for  

contain Region 3 for  (rather than Region 2, the interval of maximum error for ), but 

they extend a bit farther to the right. The intervals for  and  are curious: they coincide 

(almost always identically) with either Region 2 or Region 3 for , with Region 3 being 

matched most frequently; however, there seems to be no way to predict which values of  

will yield an interval matching Region 2 instead of Region 3. Upon closer inspection, it 

becomes apparent that this phenomenon occurs because the errors on Regions 2 and 3 are 

very close in value (from the beginning for , but only with larger values of  for ). 

When considering these two variations, one should keep this fact in mind. 

 The parameter  yields much better results than the first four parameters. 

Interestingly, the behavior of this method more closely resembles that of the modified 

binomial approximation methods than that of the first four methods considered by 

Molenaar. As with the modified binomial approximation methods, the inverse 

relationship of the error to  is obvious. Its accuracy is slightly better than that of the 
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modified Ghosh method, although it is not as accurate as the modified Camp-Paulson 

method; furthermore, the interval of maximum error has  near the center rather than one 

side. The interval tends to run approximately from  to , making 

them almost identical to the intervals for the modified Camp-Paulson method. 

Table 33 

Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.17994         
2 0.11312 20 0.042745 200 0.013588 
3 0.10859 30 0.034953 300 0.011100 
4 0.094046 40 0.030335 400 0.0096126 
5 0.084602 50 0.027144 500 0.0085988 
6 0.077533 60 0.024775 600 0.0078496 
7 0.071397 70 0.022937 700 0.0072680 
8 0.067263 80 0.021461 800 0.0067988 
9 0.063549 90 0.020242 900 0.0064100 

10 0.060137 100 0.019210 1000 0.0060811 
 

Table 34 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [1, 3]         
2 [2, 4] 20 [20, 28] 200 [200, 224] 
3 [3, 6] 30 [30, 39] 300 [300, 330] 
4 [4, 7] 40 [40, 51] 400 [366, 399] 
5 [5, 9] 50 [50, 62] 500 [462, 499] 
6 [6, 10] 60 [60, 73] 600 [600, 642] 
7 [7, 11] 70 [70, 84] 700 [655, 699] 
8 [8, 13] 80 [80, 95] 800 [800, 849] 
9 [9, 14] 90 [90, 106] 900 [900, 952] 

10 [10, 15] 100 [100, 117] 1000 [946, 999] 
 

  



 53 

Table 35 

Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.13588         
2 0.096631 20 0.030559 200 0.0096462 
3 0.079068 30 0.024935 300 0.0078749 
4 0.068446 40 0.021588 400 0.0068194 
5 0.061155 50 0.019309 500 0.0060989 
6 0.055878 60 0.017625 600 0.0055673 
7 0.051674 70 0.016313 700 0.0051541 
8 0.048369 80 0.015260 800 0.0048210 
9 0.045587 90 0.014387 900 0.0045452 

10 0.043234 100 0.013646 1000 0.0043118 
 

Table 36 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [1, 3]         
2 [2, 5] 20 [20, 31] 200 [200, 235] 
3 [3, 7] 30 [30, 43] 300 [300, 342] 
4 [4, 9] 40 [40, 55] 400 [400, 449] 
5 [5, 10] 50 [50, 67] 500 [500, 555] 
6 [6, 12] 60 [60, 79] 600 [600, 660] 
7 [7, 13] 70 [70, 90] 700 [700, 765] 
8 [8, 15] 80 [80, 102] 800 [800, 869] 
9 [9, 16] 90 [90, 113] 900 [900, 973] 

10 [10, 18] 100 [100, 124] 1000 [1000, 1077] 
 

 The parameters  and  produce considerably better results than we have 

seen until now. Notice that multiplying  by 100 divides the error by more than 1000 in 

the case of , and with  the results are even better; therefore, the errors are 

inversely proportional to a power of  exceeding 1.5. The intervals of maximum error 

behave quite unusually for both of these. For , the interval ends at , but the 
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starting point is not consistent: for a while, the width of the interval is approximately 

, but then it begins to narrow considerably, although it remains much wider than for 

. For , the interval begins at 0 and has width approximately  until  exceeds 20; 

afterwards, the behavior changes, and from there onward the interval runs from 

approximately  to  or . We will see below that the strange behavior in 

the error when  influences the curve fit as well. 

 Now that we have calculated the error for the various alternative approximation 

methods, we may find curve fits for them. Tables 45 through 56 describe these fits, and 

Figures 37-70 display their graphical representations. The curve fits for the standard 

normal approximation method have been repeated in Table 48 and Figures 46-48 for 

comparison. For , the second interval begins at 20 instead of 10 because of its 

unusual behavior. This is reflected in Table 55 and Figure 68. Also, the behavior in the 

interval  is rather different from anything we have seen previously; in Table 

56 and Figure 70, this interval is fit by an exponential curve of the form , 

which seems to work better than the usual power fit. (To show the linear relationship in 

Figure 70, the natural logarithm of the error is plotted against  instead of its natural 

logarithm.) 

 Finally, using these curve fits, we may predict the minimum value of  necessary 

to guarantee a specified number of decimal places of accuracy. These results are 

compiled in Table 57. Table 58 shows the actual values. 
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Table 37 

Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.040171         
2 0.031817 20 0.010688 200 0.0033978 
3 0.026343 30 0.0087443 300 0.0027745 
4 0.023328 40 0.0075728 400 0.0024034 
5 0.020960 50 0.0067841 500 0.0021498 
6 0.019235 60 0.0061957 600 0.0019625 
7 0.017849 70 0.0057371 700 0.0018170 
8 0.016702 80 0.0053677 800 0.0016996 
9 0.015808 90 0.0050618 900 0.0016024 

10 0.015030 100 0.0048028 1000 0.0015203 
 

Table 38 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [1, 2]         
2 [2, 4] 20 [13, 19] 200 [200, 224] 
3 [1, 2] 30 [30, 39] 300 [300, 330] 
4 [4, 7] 40 [30, 39] 400 [366, 399] 
5 [2, 4] 50 [50, 62] 500 [462, 499] 
6 [6, 10] 60 [60, 73] 600 [600, 642] 
7 [7, 11] 70 [70, 84] 700 [655, 699] 
8 [4, 7] 80 [80, 95] 800 [752, 799] 
9 [9, 14] 90 [90, 106] 900 [849, 899] 

10 [10, 15] 100 [100, 117] 1000 [946, 999] 
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         Table 39 

         Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.011508         
2 0.0089831 20 0.0010618 200 0.00010804 
3 0.0062312 30 0.00071273 300 0.000072039 
4 0.0048152 40 0.00053864 400 0.000054055 
5 0.0040433 50 0.00042937 500 0.000043239 
6 0.0034772 60 0.00035942 600 0.000036033 
7 0.0030023 70 0.00030732 700 0.000030897 
8 0.0026138 80 0.00026984 800 0.000027029 
9 0.0023052 90 0.00023943 900 0.000024029 

10 0.0020831 100 0.00021596 1000 0.000021629 
 

Table 40 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [2, 4]         
2 [1, 2] 20 [17, 23] 200 [189, 210] 
3 [2, 4] 30 [26, 33] 300 [286, 313] 
4 [3, 5] 40 [35, 44] 400 [384, 415] 
5 [3, 6] 50 [45, 55] 500 [482, 517] 
6 [4, 7] 60 [54, 65] 600 [581, 619] 
7 [5, 8] 70 [64, 76] 700 [679, 720] 
8 [6, 9] 80 [73, 86] 800 [778, 822] 
9 [7, 11] 90 [83, 97] 900 [876, 923] 

10 [8, 12] 100 [92, 107] 1000 [975, 1024] 
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    Table 41 

    Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.010490         
2 0.0042904 20 0.000082023 200 0.0000024676 
3 0.0018190 30 0.000043541 300 0.0000013417 
4 0.0010728 40 0.000028003 400 0.00000087101 
5 0.00080025 50 0.000019945 500 0.00000062304 
6 0.00062866 60 0.000015134 600 0.00000047386 
7 0.00047982 70 0.000011990 700 0.00000037598 
8 0.00037182 80 0.0000098022 800 0.00000030770 
9 0.00030571 90 0.0000082072 900 0.00000025785 

10 0.00025330 100 0.0000070023 1000 0.00000022014 
 

Table 42 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [0, 0]         
2 [0, 0] 20 [8, 18] 200 [85, 198] 
3 [0, 1] 30 [14, 28] 300 [158, 298] 
4 [0, 2] 40 [19, 38] 400 [235, 398] 
5 [1, 3] 50 [24, 48] 500 [306, 498] 
6 [1, 4] 60 [29, 58] 600 [389, 598] 
7 [1, 5] 70 [34, 68] 700 [471, 698] 
8 [1, 6] 80 [38, 78] 800 [551, 798] 
9 [2, 7] 90 [42, 88] 900 [643, 898] 

10 [2, 8] 100 [47, 98] 1000 [720, 998] 
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Table 43 

Total CDF Error for Molenaar with Parameter  

 Error  Error  Error 

1 0.0036355         
2 0.0023163 20 0.0000048573 200 0.000000099402 
3 0.0010694 30 0.0000022579 300 0.000000052900 
4 0.00044803 40 0.0000013521 400 0.000000033898 
5 0.00017960 50 0.00000092159 500 0.000000024037 
6 0.000098365 60 0.00000067952 600 0.000000018156 
7 0.000063029 70 0.00000052779 700 0.000000014331 
8 0.000043498 80 0.00000042522 800 0.000000011678 
9 0.000031544 90 0.00000035193 900 0.0000000097530 

10 0.000024415 100 0.00000029731 1000 0.0000000083005 
 

Table 44 

Interval of Maximum Error for Molenaar with Parameter  

 Interval  Interval  Interval 

1 [0, 0]         
2 [0, 0] 20 [0, 14] 200 [180, 201] 
3 [0, 0] 30 [23, 31] 300 [275, 301] 
4 [0, 0] 40 [32, 41] 400 [370, 400] 
5 [0, 0] 50 [41, 51] 500 [467, 500] 
6 [0, 2] 60 [50, 61] 600 [563, 600] 
7 [0, 3] 70 [59, 71] 700 [660, 700] 
8 [0, 4] 80 [68, 81] 800 [758, 800] 
9 [0, 5] 90 [77, 91] 900 [855, 900] 

10 [0, 5] 100 [86, 101] 1000 [952, 1000] 
 

Table 45 

Curve Fits to Total CDF Error for Gram-Charlier  

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.05499 -1.150 0.0003671 
[10, 100] 0.04192 -1.001 0.000004135 

[100, 1000] 0.04206 -1.002 0.00000005930 
Note. RMSE = root mean square error. 
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Table 46 

Curve Fits to Total CDF Error for Camp-Paulson  

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.004769 -0.5510 0.0006166 
[2, 10] 0.008937 -0.9644 0.00007697 

[10, 100] 0.009339 -0.9789 0.000001470 
[100, 1000] 0.01009 -0.9983 0.00000001210 
Note. RMSE = root mean square error. 

Table 47 

Curve Fits to Total CDF Error for Ghosh  

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.03139 -1.084 0.0007579 
[3, 10] 0.02992 -1.091 0.00006415 

[10, 100] 0.02525 -1.021 0.000002219 
[100, 1000] 0.02351 -1.003 0.00000004485 
Note. RMSE = root mean square error. 

  Table 48 

  Curve Fits to Standard Normal Total CDF Error (Parameter ) 

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.1254 -0.6038 0.001329 
[10, 100] 0.1078 -0.5218 0.00005230 

[100, 1000] 0.1009 -0.5062 0.000003883 
   Note. RMSE = root mean square error. 

 Table 49 

 Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.2617 -0.4752 0.002524 
[2, 10] 0.2740 -0.5035 0.0005379 

[10, 100] 0.2716 -0.4985 0.00003738 
[100, 1000] 0.2738 -0.5005 0.0000006194 

  Note. RMSE = root mean square error. 
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  Table 50 

  Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.1808 -0.4731 0.0007058 
[10, 100] 0.1882 -0.4952 0.00003653 

[100, 1000] 0.1916 -0.4995 0.000001091 
  Note. RMSE = root mean square error. 

 
 Table 51 

 Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.1361 -0.4966 0.0001463 
[10, 100] 0.1370 -0.5008 0.000002881 

[100, 1000] 0.1367 -0.5004 0.0000002453 
 Note. RMSE = root mean square error. 

 Table 52 

 Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.04103 -0.4213 0.0006408 
[2, 10] 0.04396 -0.4633 0.0001119 

[10, 100] 0.04702 -0.4950 0.000009352 
[100, 1000] 0.04793 -0.4995 0.0000002565 

 Note. RMSE = root mean square error. 

           Table 53 

           Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.01219 -0.6785 0.0006291 
[2, 10] 0.01660 -0.8868 0.00006003 

[10, 100] 0.01990 -0.9798 0.000002794 
[100, 1000] 0.02153 -0.9993 0.000000006168 

             Note. RMSE = root mean square error. 
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          Table 54 

          Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.01059 -1.509 0.0002448 
[3, 10] 0.01044 -1.602 0.00003146 

[10, 100] 0.01002 -1.598 0.0000008147 
[100, 1000] 0.007124 -1.504 0.0000000007915 

            Note. RMSE = root mean square error. 

          Table 55 

          Curve Fits to Total CDF Error for Molenaar with Parameter   

Fit Interval Coefficient Exponent RMSE 

[1, 10] 0.003837 -1.504 0.0003539 
[20, 100] 0.001098 -1.811 0.00000003707 

[100, 1000] 0.0004091 -1.569 0.0000000003734 
            Note. RMSE = root mean square error. 

   Table 56 

   Exponential Curve Fit for Molenaar with Parameter   

Fit Interval   RMSE 

[1, 10] 0.006918 -0.6138 0.0001345 
    Note. RMSE = root mean square error. 
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   Table 57 

   Predicted Minimum Values of  for Specified CDF Accuracy 

Decimal places 1 2 3 4 5 6 7 8 

 5 379 35759a      
 30 2975a       

 15 1480a       
 8 744 74081a      
 1 93 9274a      

Gram-Charlier 2 9 84 830 8262a    
Camp-Paulson 1 1 20 204 2045a    

Ghosh 1 6 47 462 4585a    
 1 4 43 433 4332a    
 1 2 7 28 126 578 2672a  
 1 1 4 9b 20 71 312 1353a 

     a Extrapolation. b Based on exponential fit, not power fit. 

   Table 58 

   Actual Minimum Values of  for Specified CDF Accuracy 

Decimal places 1 2 3 4 5 6 7 8 

 5 378 37066      
 30 2976       

 15 1480       
 8 744 74312      
 1 93 9248      

Gram-Charlier 2 9 84 833 8319    
Camp-Paulson 1 1 20 204 2052    

Ghosh 1 6 47 462 4620    
 1 4 44 433 4327    
 1 2 7 28 126 579 2686  
 1 1 4 8 20 73 312 1394 
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Figure 37. Gram-Charlier Error for . 

  

Figure 38. Gram-Charlier Error for . 

  

Figure 39. Gram-Charlier Error for . 
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Figure 40. Camp-Paulson Error for . 

  

Figure 41. Camp-Paulson Error for . 

  

Figure 42. Camp-Paulson Error for . 
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Figure 43. Ghosh Error for . 

  

Figure 44. Ghosh Error for . 

  

Figure 45. Ghosh Error for . 
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Figure 46. Standard Normal (Parameter ) Error for . 

 

Figure 47. Standard Normal (Parameter ) Error for . 

  

Figure 48. Standard Normal (Parameter ) Error for . 
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Figure 49. Molenaar (with Parameter ) Error for . 

  

Figure 50. Molenaar (with Parameter ) Error for . 

  

Figure 51. Molenaar (with Parameter ) Error for . 
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Figure 52. Molenaar (with Parameter ) Error for . 

  

Figure 53. Molenaar (with Parameter ) Error for . 

  

Figure 54. Molenaar (with Parameter ) Error for . 
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Figure 55. Molenaar (with Parameter ) Error for . 

  

Figure 56. Molenaar (with Parameter ) Error for . 

  

Figure 57. Molenaar (with Parameter ) Error for . 
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Figure 58. Molenaar (with Parameter ) Error for . 

  

Figure 59. Molenaar (with Parameter ) Error for . 

  

Figure 60. Molenaar (with Parameter ) Error for . 
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Figure 61. Molenaar (with Parameter ) Error for . 

  

Figure 62. Molenaar (with Parameter ) Error for . 

  

Figure 63. Molenaar (with Parameter ) Error for . 
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Figure 64. Molenaar (with Parameter ) Error for . 

  

Figure 65. Molenaar (with Parameter ) Error for . 

  

Figure 66. Molenaar (with Parameter ) Error for . 
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Figure 67. Molenaar (with Parameter ) Error for . 

  

Figure 68. Molenaar (with Parameter ) Error for . 

  

Figure 69. Molenaar (with Parameter ) Error for . 
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Figure 70. Exponential Fit to Molenaar (with Parameter ) Error for . 
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Conclusions from Variations 

 It is clear that the standard normal approximation to the Poisson can be improved 

significantly, but this tends to come at the cost of a more complicated formula. It also 

influences the interval of maximum error. Furthermore, it seems that the more 

complicated the formula, the more unusual the behavior becomes. This is to be expected, 

of course; however, it hinders the process of finding patterns. The same principles may be 

applied in this context as in that of the standard normal approximation: we can always 

find the minimum number of decimal places of accuracy achieved by consulting a quick 

reference table, specifically Table 58. Unfortunately, it is difficult to obtain a more 

accurate result, because the variations do not have as nice of a wave pattern as the 

standard normal, although preliminary results do indicate that there is a similar pattern for 

the modified approximations to the binomial (but with more regions, or sometimes 

regions that could only be described as “erratic,” rather than over- or underestimate). 
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CHAPTER 5: CONCLUSION 

 It is well known that the standard normal random variable may be used to 

approximate the Poisson random variable. We have now provided a detailed description 

of this approximation. We have determined that the error follows a wavelike pattern of 

behavior, and we have described this behavior by identifying the approximate locations 

of its roots and local extrema. Furthermore, based on the magnitudes of its extrema, we 

have generated quick reference tables providing information concerning the accuracy of 

the approximation. Specifically, these tables provide the minimum value of  necessary 

to guarantee a specified number of decimal places of accuracy (or, alternatively, given a 

specified value of , we may use them to determine the minimum number of decimal 

places of accuracy guaranteed). We have similarly examined several variations of the 

standard normal approximation, providing quick references for the number of decimal 

places of accuracy of each of these variations, as well as comments on their behavior. 

Moreover, we have examined the relative accuracy of the standard normal 

approximation, providing a description of its behavior (including roots, local extrema, 

and asymptotes), as well as quick references for the number of significant figures of 

accuracy we can guarantee. 

 The central focus of this paper has been the examination and description of the 

error in the standard normal approximation to the Poisson random variable. The purpose 

of this study was to gain greater insight into the accuracy of this approximation. We have 

done this, and along the way we have also uncovered very interesting patterns in the 

behavior of the error. We have also seen that modifying the approximation formula alters 
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this behavior, as does considering the relative error. Future research might investigate 

these phenomena further. One might ask what effect modifying the formula has on the 

error pattern; in particular, one might offer a description of the behavior of the error for 

any or all of the variation approximations described in this paper. From there, one might 

attempt to determine if it is possible to predict the intervals on which the regions of over- 

and underestimation occur based on modifications to the original approximation formula. 

Alternatively, one might go on to describe the behavior of the relative error of the 

variation approximations. 

  



 78 

REFERENCES 

Camp, Burton H. (1951). Approximation to the point binomial. Annals of Mathematical 

 Statistics, 22, 130-131. 

Freund, John E. (1999). Mathematical statistics (6th ed.). Upper Saddle River, NJ:  

Prentice-Hall. 

Ghosh, B. K. (1980). Two normal approximations to the binomial distribution.  

Communications in Statistics. A. Theory and Methods, No. 4, 427-438. 

Molenaar, W. (1970a). Mathematical Centre Tract 31. Approximations to the Poisson,  

binomial, and hypergeometric distribution functions. Amsterdam: Mathematisch  

Centrum. 

Molenaar, W. (1970b). Normal approximations to the Poisson distribution. In G. P. Patil 

(Ed.), Random Counts in Scientific Work, Vol. 2 (pp. 237-54). Pennsylvania State 

University Press. 

Peizer, D. B. & Pratt, J. W. (1968). A normal approximation for binomial, beta and other  

common, related tail probabilities. Journal of the American Statistical  

Association, 63, 1417-56. 

Raff, M. S. (1956). On approximating the point binomial. Journal of the American  

Statistical Association, 51, 293-303. 

 


	Eastern Michigan University
	DigitalCommons@EMU
	2009

	Examining the accuracy of the normal approximation to the poisson random variable
	Wesley Jacob Rich
	Recommended Citation


	Preliminary Pages
	1 Maximum Errors of Two Approximations to the Poisson…………………..…….7 2 Total PMF Error…..……………………………………………………………..13 3 Predicted Minimum Values of 𝜆 for Specified Accuracy of PMF…………..…..14 4 Actual Minimum Values of  for Specified Accuracy of PMF…………...
	LIST OF FIGURES

	Thesis
	Objective and Significance
	Table 1
	Maximum Errors of Two Approximations to the Poisson
	Total PMF Error

	Table 2
	Total PMF Error
	Table 3
	Predicted Minimum Values of 𝝀 for Specified Accuracy of PMF
	a Extrapolation.
	Table 4
	Actual Minimum Values of  for Specified Accuracy of PMF
	Total CDF Error

	Table 6
	Total CDF Error
	Table 7
	Minimum Values of  for Specified Accuracy of CDF
	Regions of Over- and Underestimation

	Table 13
	Curve Fits to PMF Error by Region
	Table 57
	Predicted Minimum Values of 𝝀 for Specified CDF Accuracy
	Table 58
	Actual Minimum Values of 𝝀 for Specified CDF Accuracy



