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Abstract 

 Measurement error at different ability levels in the WISC-IV was studied to 

empirically test the conditional error variance hypothesis. Graduate students in clinical 

psychology at a Midwestern university scored fictitious WISC-IV Vocabulary subtests 

constructed to yield actual scaled scores of 4, 10, and 16. Classical measurement theory 

assumes error rate will be constant across the three conditions. Modern test theories (Item 

Response Theory), however, predict that the precision of a measurement instrument will 

change as a function of the examinee's ability level. Data supported the conditional error 

variance hypothesis. Scorers made significantly more errors in the low- and high-ability- 

level conditions than they did in the average ability condition. Implications of these findings 

for intelligence testing are discussed. 
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Introduction and Background 

The Wechsler IQ tests are the most widely used intellectual assessment instruments. 

Psychologists consider the test scores to be valid indicators of intellectual ability and 

frequently incorporate them into higher level inferences about the cognitive functioning of 

tested individuals. The accuracy of IQ scores is important given their significant influence 

on assessment, treatment, and placement recommendations. 

 Accuracy is degraded by measurement error, which is inherent in the process of 

quantifying variables. Measurement error is any variance in obtained scores not due to the 

variable being measured but still affecting the obtained score (Lord & Novick, 1968). Thus, 

error is a source of inconsistency, a random or systematic variation that can never be 

completely eliminated from a measurement instrument.  

In classical test theory, error represents the discrepancy between the obtained and the 

true score (Gregory, 1996). Given that the true score cannot be known, the estimate of error 

variance yields a confidence interval within which a person's true score is likely to reside. In 

other words, the precision of a test is defined in terms of the average difference between a 

hypothetical latent trait level and any given test score. This creates a paradoxical situation in 

latent variable measurement models, in which an unknown parameter (true score) is 

estimated on the basis of a number (observed score), the validity of which is derived from its 

proximity to an unknown parameter. Thus, in the absence of an incontrovertible index, it is 

critical to have an accurate estimate of the error distribution associated with obtained scores 

so that they can be correctly interpreted at all ability levels.  



                           
                           

 The standard error of measurement (SEM) is a descriptive measure of the variability 

in the error observed in a sample of scores and is a function of both the reliability of a test 

and the variability in the target population of scores. (Atkinson, 1990). SEM units are given 

in the same metric as is the test itself. Thus, it also may be thought of as an estimated 

standard deviation of a hypothetical normal distribution of an individual's obtained scores if 

the person were to take the same test an infinite number of times. The mean of this 

distribution would be the person's true score (Aiken, 2000). Although each individual will 

have a unique true score, in classical measurement theory SEM is conceptualized as a stable 

property of the test independent of a person’s ability level. Because confidence intervals are 

calculated from the SEM, it follows that the width of the intervals are invariant across all 

levels of ability as well.  

 Mathematically, the SEM is most often derived from the population standard 

deviation of the test score distribution and the reliability coefficient associated with the test. 

There are several ways to compute the SEM. Each method will produce a slightly different 

value, and each has unique properties that must be considered before it is applied to a 

specific data set (Lord, 1984). However, all computational procedures are derived from the 

basic formula  

SEM = σ√1-rxx 

where σ is the population standard deviation and rxx is the selected reliability coefficient. It is 

apparent that the SEM is proportionate to σ and inversely related to rxx. In other words, 

measurement error depends on both the actual variability in the measured trait and the error 

variance (i.e., variability coming from sources extraneous to the target variable). Reliability 

itself is defined as the ratio of true score variance to observed score variance and cannot be 
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directly determined given that true scores are never known (Dimitrov, 2002). Consequently, 

reliability is estimated using statistical and empirical methods (e.g., split-half reliability or 

Cronbach's alpha, test-retest reliability, criterion-referenced reliability, interrater reliability). 

Based on the estimated population standard deviation and the chosen reliability coefficient 

of the test, the SEM is invariant within a given measurement model and represents the first 

step in calculating the confidence interval within which a person's true score may be found. 

As previously stated, in classical test theory, the SEM does not change as a function of the 

true score; therefore, it is treated as a constant unaffected by the natural variability observed 

in test scores (see Figure 1).  
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Figure 1. SEM in classical measurement theory applied to the Wechsler intelligence scales 

(SEM = σ√1-rxx). 

 

In fact, neither local between-subjects variability nor reliability coefficients at 

different ability levels (e.g. low, average, high) are constant along the scale of measurement. 

They also fluctuate as a function of other demographic variables (e.g., type and severity of 
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coexisting disorders), creating the need for establishing more specific indices of variability 

and reliability. For example, the WISC-IV manual gives different values for both σ and rxx 

based on age, subtest, and ability level (Wechsler, 2003), implicitly recognizing that the 

construct of intelligence may not be equally stable in different segments of the population. 

Thus, the major disadvantage of using one generic SEM to describe the accuracy of an 

obtained score is that its actual value may vary along the measurement scale, and no 

universally accepted methods exist for calculating SEMs specific to each level of ability 

(Murphy & Davidshofer, 1998).  

Another fact that compromises the validity of the SEM in quantifying measurement 

error is the obvious, yet often ignored, discrepancy between internal consistency and 

empirical measures of reliability in applied settings. Friedman (1970) studied the long-term 

(17-month) stability of IQ scores as measured by the WISC in a sample of 44 children in the 

borderline-low average ability range. The obtained test-retest reliability coefficients were 

much below the ones derived from the standardization sample and used in establishing the 

omnibus SEM: VIQ rxx = .48, PIQ rxx = .78, FSIQ rxx = .68. His results are a sobering 

reminder that the rxx published by the test developers represents the higher limit of the 

instrument’s reliability and is unlikely to be replicated in everyday practice. Consequently, 

the SEM used in clinical practice is likely to be larger than the one commonly used to 

compute confidence intervals.  

 In contrast with the classical measurement models, item response theory (IRT) 

predicts conditional error variance—specifically, a U-shaped distribution of errors for 

standard fixed-item tests, with SEMs lowest around the mean ability levels and highest 

towards the tail of the distribution (Embretson, 1996). This is one version of the conditional 
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error variance hypothesis. Such a position has face validity because most tests contain few 

items that can adequately discriminate among individuals with extreme ability levels, which 

leads to floor and ceiling effects, thus artificially reducing variability. Dimitrov (2002) 

pointed out that with conditional error variance in a test population, SEM estimates based on 

different score levels would be more appropriate. He offered a refined formula using 

integration over the ability continuum, based on the probability density function for the trait 

distribution, arguing that computations taking into consideration the examinee's ability level 

allow for more accurate estimates of SEM. 

Data are available about the psychometric properties of the WISC-IV at different 

ability levels. The manual presents statistics for the normative sample in detailed tables, 

broken down by subtests, age groups, and special categories (Wechsler, 2003). The gifted 

group (IQ > 130) has a generally lower than average reliability coefficient across subtests, 

whereas the group with mild retardation has reliability coefficients similar or even higher 

than the rest of the standardization sample. This finding is also incongruent with the 

assumption implied in classical test theory that reliability coefficients should be uniform 

across ability levels, and it provides evidence for another version of the conditional error 

variance hypothesis, namely, that error is linearly related to ability level. In other words, the 

normative data of the WISC-IV contradict the assumption of uniform reliability along the 

ability scale implied by classical test theory and support the hypothesis of conditional error 

variance.   

Given that data from the standardization sample for the WISC-IV imply that 

reliability varies along the ability scale, it naturally follows that SEM will also change as a 
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function of IQ. The question of interest is How does it change—in a linear or curvilinear 

manner? There is evidence to support both. 

In a study done by Oakland, Lee, and Axelrad (1975), three partially completed 

WISC protocols of individuals at different ability levels (below average, average, and above 

average) were mailed to 400 randomly selected psychologists for scoring. A total of 94 

participants returned the protocols. The standard deviation of the scores psychologists 

assigned to each protocol can be interpreted as an empirically derived SEM. The average 

condition had the smallest overall standard deviation, and the above average condition had 

the largest one, with the below average condition in between, suggesting that error variance 

is highest in the right tail of the distribution, reaches its lowest value around the mean, and 

increases again towards the left tail. This trend was consistent across subtests as well, 

supporting the U-shaped model of SEM.  

 Franklin, Stillmann, Burpeau, and Sabers (1982) asked 33 practicing school 

psychologists and graduate students eligible for state certification as psychometrists to 

administer the WAIS to four actors who had memorized a script, each of which was 

designed to yield a different actual IQ. Error rates as measured by the standard deviation of 

the observed score distribution showed a clear increasing trend from the low to the high 

ability conditions, with one striking exception: One of the low average conditions (FSIQ = 

83) had the same SD as the superior condition (FSIQ = 129). This finding also suggests that 

error variance increases toward both tails of the distribution. 

Other studies found a linear rather than U-shaped relationship between true score and 

SEM. It logically follows that if there is comparable variability in observed scores along the 

ability continuum but reliability changes in a linear way, SEM will also change linearly. 
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Hopwood and Richard (2005) tested scoring accuracy as a function of both stimulus 

complexity (digitized film clips vs. partially completed record form) and ability level (a 

FSIQ of 84 vs. 112). No significant stimulus by IQ interaction was found, but participants 

made significantly more scoring errors in the high IQ condition regardless of the stimulus 

condition. Although ability was positively related to error, in the absence of a third condition 

(i.e., a protocol with a FSIQ of 100), a curvilinear trend could not be tested. 

It has been shown that contrary to the omnibus error variance assumption, reliability 

decreases toward the lower tail of the IQ distribution. Using the WISC, Davis (1966) tested 

142 children with mental retardation and found that rxx increased gradually as a function of 

IQ, and, conversely, SEM decreased as IQ increased. This study focused on the lower half of 

the distribution and concluded that there was an inverse relationship between SEM and 

observed IQ. However, without an average and a high IQ condition, one cannot determine 

whether the trend would have reversed. 

Webster (1988) performed a test-retest reliability study with the WISC-R on 155 

adolescents diagnosed with mild mental retardation (MR, mean IQ = 65.4) and learning 

disability (LD, mean IQ = 94.2). Even though the correlation between pre- and posttest 

scores is conceptually independent from internal consistency, SEM, or any other measure of 

error, it can be used as an indirect index of error variance. Reliability coefficients of the MR 

group were significantly below those reported in the manual: .57 for FSIQ, .64 for VIQ, and 

.53 for PIQ. None of the subtest's rxx exceeded .85. The test scores of the LD group proved 

to be more stable: FSIQ rxx = .99, VIQ rxx = .96, and PIQ rxx = .95. However, Atkinson 

(1990) pointed out that Webster had used the wrong measure of error variance (SEM instead 

of SEP, standard error of prediction), thus underestimating the reliability of the WISC-R. 
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Despite the impressive internal consistency of the WISC-IV (rxx ranging from .95 to 

.99 according to Wechsler, 2003), its reliability in the field depends on how well individual 

practitioners adhere to the strict administration and scoring rules. Real-life testing situations 

are more error prone than the ideal laboratory settings where the test was developed, as the 

body of empirical research on the WISC attests. No study has replicated the level of 

reliability reported in the manual. Moreover, as suggested by the studies described above, 

omnibus indices of reliability may be inaccurate when applied to scores at different ability 

levels if rxx is a function of ability as predicted by newer statistical models of testing 

(Dimitrov, 2002, 2003; Embretson, 1996; Lord & Novick, 1968). 

Purpose 

  The present project was inspired by the study done by Hopwood and Richard (2005) 

and was designed to further investigate the conditional error variance hypothesis. Two 

important changes were made in the design: adding a third level of the independent variable 

(the average ability condition) and using more extreme criterion scores (two instead of one 

standard deviations away from the mean). Hopwood and Richard measured the rate of 

examiner scoring error using partially completed protocols with fabricated responses that 

had predetermined Full Scale IQs of 84 and 112. Graduate student participants made 

significantly more errors in the high IQ condition, (d = .48, partial eta squared = .18). The 

current study was designed to determine whether scoring errors are a function of examinee 

ability level. Thus, scoring accuracy was tested at three different ability levels using partially 

completed protocols that contained only the Vocabulary subtest and were designed to yield 

scaled scores of 4, 10, and 16 if scored correctly. This subtest was chosen because it has 

been shown in prior research to yield a disproportionately high number of examiner scoring 
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errors compared to other subtests (Belk, LoBello, Ray, & Zacar, 2002; Butler, 1954; Kaspar, 

Throne, & Schulman, 1968; Miller, Chansky, & Gredler, 1970; Slate & Chick, 1989; Slate 

& Jones, 1990a, 1990b, 1990c; Slate, Jones, Coulter, & Covert, 1992; Slate, Jones, Murray, 

& Coulter, 1993; Patterson, Slate, Jones, & Steger, 1995; Plumb & Charles, 1955; Vance, 

Blixt, & Ellis, 1981; Walker, Hunt, & Schwartz, 1965). Because examiners are likely to 

make the most errors on this subtest, it provided the most powerful test of the conditional 

error variance hypothesis.  

If the rate of scoring errors is significantly different across ability levels within a 

subtest, then a uniform SEM across ability levels is not justified. In other words, if the SEM 

is conditional on ability level, confidence intervals should expand or contract as a function 

of the obtained score’s location on the IQ scale.  

Hypotheses 

It was hypothesized that the SEM is not uniform but is a function of an examinee’s 

true score. Two alternative hypotheses were formulated. According to the linearly increasing 

measurement error hypothesis, examiners scoring Vocabulary subtests of higher performing 

individuals will make more item-level errors and be less accurate than examiners scoring 

subtests of lower performing individuals. Alternatively, the U-shaped (IRT) measurement 

error hypothesis states that low and high ability levels (4 and 16) will produce similar error 

rates that are significantly higher than that observed around the medium ability level (10). 

Two aspects of error variance were used as dependent variables. Item-level error 

rate, defined as the ratio of scoring errors to the total number of items scored, was the 

primary measure of scoring error, as it corrects for the difference in the length of the 

protocols. A scaled score deviation (criterion score minus obtained score) was used as a 
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more pragmatic measure of error because this is where scorer judgment starts affecting the 

final IQ score. 

Method 

Graduate students in clinical psychology were asked to score WISC-IV Vocabulary 

subtests for which a fictitious examinee’s item responses were provided but had not been 

scored. Representing three ability levels, the subtests had predetermined true scores of 4, 10, 

and 16. Participants’ completed and returned record forms were then compared to the 

appropriate criterion scores, and the total number of item-level scoring errors was calculated 

for each participant and each ability level. The standard deviation associated with each IQ 

condition can be interpreted as an empirically derived SEM.  

The thesis committee approved the proposal of the project on July 15, 2005. The 

University’s Human Subject Research Review Committee approved the project on October 

17, 2005 (Approval # 003-06). No data were collected before the day of approval. 

Participants 

 Twenty-eight graduate students (12 men and 16 women) from a Midwestern 

comprehensive university participated in the study. Participants were recruited informally 

and through graduate classes. The age range was from 22 to 51 years (M = 28.2, SD = 8.1). 

Half of the participants were pursuing a Master’s degree, and half of them were doctoral 

students in clinical psychology. All participants completed the same course in administering 

and scoring the WISC-IV. However, they varied on several variables potentially related to 

scoring proficiency (length of graduate training [M = 23.3, SD = 15.5 months], number of 

clinical administrations of the Wechsler scales [M = 13.3, SD = 17.1], and grade received in 

the assessment course [M = 3.7, SD = .4 on a 4-point scale]), providing a projected ability 
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range similar to the one found among entry-level psychometricians. Extra credit for 

participation was provided for some of the participants.  

Materials 

After having signed the informed consent, each participant scored three protocols 

that included a fictitious examinee’s responses to test items but not his scores. The protocols 

were developed by the author in consultation with three PhD-level psychologists and a 

graduate student who had experience with intellectual assessment. Items were revised until a 

consensus was reached about the correct score.  Actual responses of children who had taken 

the WISC-IV were obtained from archived protocols and were used in developing the 

protocols. 

Three different record forms were used. If scored accurately, each was designed to 

yield a subtest scaled score of 4, 10, and 16, respectively. A score of 10 is the population 

average (50th percentile), a score of 4 is two standard deviations below the mean (2nd 

percentile), and a score of 16 is two standard deviations above the mean (98th percentile). 

The number of items was increased beyond the typical number of responses expected at the 

given ability level in the first two conditions (4 & 10) so that participants would not be given 

cues about the expected score on the basis of the length of the protocol alone. The low 

ability condition contained 17 items, the average ability condition had 22 items, and the high 

ability condition had 27 items. Each participant scored three subtests, one at each ability 

level.  Participants were asked to score the items as if they had come from a male who was 

11 years and six months old at the time of testing. 

Participants were randomly given a sequence of three protocols, one at each of the 

three ability levels. Thus, each participant’s scoring of the protocols can be considered an 
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independent replication effort of the empirical error rate associated with each ability level. 

Despite the artificiality of target stimuli (i.e., testing based on fabricated protocols involving 

no real person), the fact that in this context repeated scoring could be conceived as true 

parallel measurements enables an important experimental control over extraneous variables 

typically present with actual examinees. It must be noted, however, that the data points in 

this analysis were not generated by the same (fictitious) participant but came from repeated 

scorings of the same protocol by real examiners. Therefore, the measurement analogy used 

in this study is imperfect, yet perhaps it is the only possible empirical approximation of the 

distribution of observed scores over repeated attempts to measure a true score given the 

practical restrictions on intellectual assessment (i.e., learning effects, cost of test 

administration).   

Power Analysis 

 To detect a medium effect size on error rate with three levels of the IV with a one-

way ANOVA while keeping alpha at a .05 level and beta at a .20 level, the sample size 

required is 52 per condition, or a total of 156 participants (Cohen, 1992).  Effect size is 

defined as the degree to which a phenomenon is present in the population, without implying 

causality among variables (Cohen, 1988). Medium effect is an informal label introduced by 

Cohen to describe a relationship between two variables that is detectable by the naked eye of 

a careful observer. Given that the present study used a repeated measures design, which is 

more powerful than the independent group contrast, fewer participants were required in 

order to attain a .80 power. Also, because of the unusually large observed effect, a much 

smaller sample was needed to detect it. 
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Response Ambiguity  

An ambiguous item is defined as a response that cannot be clearly scored on the 

basis of the instructions and examples provided in the WISC manual; therefore, the 

examiner must rely on personal judgment. As ambiguity has been shown to be an important 

variable in scoring accuracy, it must be controlled for in the protocols (Sattler & Winget, 

1970; Sattler, Winget, & Roth, 1969; Slate & Hunnicutt, 1988; Slate & Jones, 1990b; Plumb 

& Charles, 1955; Walker et al., 1965). To maintain the same absolute level of scoring 

difficulty among the different IQ conditions, the amount of item ambiguity was held 

constant across conditions. There were two ambiguous items (one between the score of 0 

and 1 and one between the score of 1 and 2) in each condition. 

Issues Related to Test Administration 

 Even though not directly related to scoring accuracy, knowledge of general test 

administration rules was also assessed. For example, each protocol contained two items that 

should have been queried on the basis of the scoring manual. Participants were instructed to 

mark items that they would have queried. Two separate dependent variables emerged from 

this request: number of correctly identified missing queries (value ranges from 0 to 2) and 

number of over-queried items (value ranges from 0 to the total number of items in the 

respective protocol). An instance of over querying was defined either as (a) querying an item 

that should receive a 2-point score without the extra query or (b) querying an item that 

already contained a query.  

 Also, the low ability protocol started with a response that was calibrated as a 1-point 

answer. On the basis of the standard administration protocol, the reverse rule should have 
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been applied here. The participant’s ability to recognize and mark this rule was also 

recorded. 

Procedures  

 Partially completed, unscored protocols were distributed to participants for scoring in 

a quiet office setting at the university.  Each participant was provided with three protocols 

containing only the Vocabulary subtest and a WISC-IV scoring manual. Participants were 

randomly assigned to one of the possible sequences of the three ability levels (4, 10, and 16). 

Participants were also asked to assess their overall perceived proficiency in scoring the 

protocols on a 0-to-100 scale before and after they scored the protocols, as well as to 

monitor the time taken to finish scoring. This and other demographic variables (sex, age, 

length and level of training, latency of the Wechsler class and grade obtained, number and 

latency of clinical WISC-IV/WAIS-III administrations) were used for a correlational 

analysis to search for scorer variables that systematically covaried with scoring error. 
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Results 

 The primary analysis involved repeated measures ANOVAs for each subtest in 

which the following dependent variables were used: (a) scoring error rate for subtests and 

(b) the deviation of the observed subtest scaled score from the criterion scaled score. The 

scoring error rate is the number of errors made by a participant on a subtest divided by the 

total number of items on the protocol. The observed subtest scaled score is the standardized 

score of the observed raw score. Mauchly’s test of sphericity was performed on all 

ANOVAs described below. A nonsignificant W indicated in each case that the sphericity 

assumption was met for that analysis.  

Item-level scoring errors. The purest measure of scoring error, total item-level error 

rate is conceptualized as the ratio of incorrectly scored items over the total number of items 

in a protocol. Its value ranges between 0 (no error) and 1 (every single item was scored 

wrong). As the proportion of incorrect item-level rater judgment and total number of items 

scored, the error rate is an unbiased estimator of the error variance, and its values are 

directly comparable across conditions.  

 A significant within-subjects effect on item-level scoring errors was observed among 

the three levels of the IV: F(2, 54) = 39.09, p < .001, partial eta squared = .59, with an 

observed power of 1.0. Both the linear [F(1, 54) = 35.53, p < .001, partial eta squared = .57] 

and the quadratic [F(1, 54) = 46.57, p < .001, partial eta squared = .63] effect were 

significant.  

Deviations from the criterion scaled score. We calculated the deviation scores by 

subtracting the obtained scores (xi) from the criterion scores (τ). The absolute value of xi - τ 

was treated as an alternative dependent variable. A significant within-subjects effect was 
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observed in scaled score deviations: F(2, 54) = 9.87, p < .001, partial eta squared = .28, with 

an observed power of .98. Both the linear [F(1, 54) = 6.12, p < .05, partial eta squared = .19, 

observed power = .66] and the quadratic [F(1, 54) = 13.31, p < .001, partial eta squared = 

.34, observed power = .94] effect were significant. 

It was hypothesized that the variability in observed scores in the low (4) and high 

ability (16) conditions would be significantly larger than the variability associated with the 

average ability (10) condition. The alternative hypothesis also implied that the standard 

deviation of the observed scaled scores would be greater than the SEM reported in the 

WISC-IV manual. This hypothesis is generally not supported by the data. As shown in Table 

1, despite the strong quadratic effect observed in the sample, the obtained values and the 

values published in the manual at any given ability level are close to each other. We used 

Hays’s (1973) formula to perform a significance test between the standard deviation 

associated with each of the three conditions and the SEMs specified by the manual: 

(N-1)s2/δ2 = χ2
(N-1) 

Table 1 

Means and Standard Deviations of Scaled Scores as Well as SEMs from the WISC-IV 

Technical and Interpretive Manual 

 Mean Standard 

deviation 

SEM 

(11-yo.) 

SEM 

(12-yo.) 

Low ability (4)  4.74 1.06 1.08 .90 

Average ability (10)  9.89  .96 1.08 .90 

High ability (16) 16.21 1.20 1.08 .90 
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Only one comparison, the variance of the high ability condition compared to the 

SEM of the 12-year-old group reached statistical significance [χ2 (27) = 48.00, p < .05]. 

Although this issue is of theoretical importance and pertinent to the main hypothesis, it has 

little if any impact on the routine of intelligence testing. In everyday practice, confidence 

intervals are not computed at subtest level; hence, the true value of the SEM is irrelevant. 

Replicating this study at the full-scale IQ level, however, could address the question whether 

a discrepancy exists between the theoretically derived and the empirically produced SEM. 

As a measure of variability of observed scores around the criterion score, the sample 

standard deviation can be considered (by definition) an empirically derived SEM. In this 

case the protocols are experimental analogues that unlike real examinees, do not change as a 

result of repeated assessment. An important conceptual difference in the present study is that 

the replicated measure is not an examinee taking the same test repeatedly but the same test 

data scored by many different judges. 

One-sample t tests were performed at each level of the IV to test for the significance 

of the difference between the obtained mean and the criterion score. Only the low ability 

level reached statistical significance, t(27) = 3.69, p < .001, d = .70 (medium-large effect 

size). 

 Figures 2 and 3 visually represent the results of the present study. Figure 2 graphs 

the mean item-level error rate across the three ability levels. In essence, it shows a V-shaped 

distribution of errors, consistent with the conditional error variance hypothesis. On average, 

in the low ability condition, participants made a scoring error on 20% of the items; in the 

average ability condition they erred on 6% of the items; and in the high ability condition 

they made an error on 10% of the items.  
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Figure 2. Error distribution expressed in mean item-level error rate. 

Figure 3 shows the mean deviation from the criterion score expressed in scaled score 

units (M = 10, SD = 3). On average, participants scored the first protocol .71 points higher 

than the criterion score (4), they scored the second .11 points lower than the criterion score 

(10), and they scored the third protocol .25 points higher than the pre-established criterion 

(16).  
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Figure 3. Error distribution expressed in mean scaled score deviation units. 
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The relationship between scorer variables and error variance. Table 2 shows how 

some scorer variables relate to the two major measures of error variance. Mean error rate 

was computed by adding the error rates associated with each level of the independent 

variable (low, average, and high examinee ability) and dividing it by three. Similarly, the 

mean scaled score deviation was computed by adding the average deviation from each of the 

scaled criterion scores and dividing it by three. Although not directly related to the initial 

hypotheses, this correlational analysis was performed to elucidate the differential 

contribution of the shown variables to the two measures of error variance.   

 A number of general observations can be made about the patterns of correlation 

observed in the data. First, there seems to be no relationship between the two measures of 

error across the listed variables, which seems puzzling given that theoretically, error rate and 

scaled score deviation are simply different ways to measure the same thing, that is, error 

variance (see Table 3). Second, scorer variables tend to correlate more with error rate than 

with scaled score deviations (Table 2). The Pearson coefficients associated with the former 

are generally higher than the ones associated with the latter. All four statistically significant 

correlations were associated with item-level error rate. Third, because of the small sample 

size and small effect, the matrix is vulnerable to spurious correlations, so even statistically 

significant values should be interpreted with caution. Even variables that logically should be 

unrelated to error variance, like subject number, produced correlation coefficients as high as 

.17. Also, the fact that the two measures of error were sometimes inversely related leads us 

to believe that at least one of the dependent measures is spuriously related to the scorer 

variables. Given the above observations, it seems that scaled score deviation is an artificial 

and unreliable measure of true scoring error. 
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Table 2 

Correlations Among Error Rate, Scaled Score Deviation and Other Measured Variables in 

the Study 

 Mean error rate Mean scaled score 

deviation 

Age of participant +.47* +.06 

Latency of Wechsler course +.45* -.27 

Time taken to complete scoring +.38* +.09 

Identified missing queries -.44* +.20 

Subject number +.17 +.11 

* Significant at p < .05 level 

 

 Table 3 summarizes the correlation between error rate and scaled score deviation at 

each level of the IV. The last row, labeled Mean, shows the correlation coefficient between 

the two DVs, averaged for the three levels of the IV. Again, the two measures of error seem 

to be unrelated. A tentative explanation would be that the conversion of raw scores to scaled 

scores absorbs some of the item-level errors: Mistakes made in opposite direction cancel 

each other out without causing any deviation from the true score. For example, if a scorer 

marks five 1-point answers as 0 and another five 1-point answers as 2, he or she makes 10 

mistakes but will obtain the correct scaled score. Conversely, if a scorer gives two points to 

two 1-point answers and scores the rest of the items correctly, he or she makes only two 

mistakes, but that will be enough to change (inflate) the scaled score. In other words, 10 

item-level errors can go undetected, but 2 may show up at the scaled score level. Therefore, 

it is not surprising at all that the two measures of error variance are unrelated. 
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Table 3 

The Correlation Between Error Rate and Scaled Score Deviations 

 rxy 

Low ability (4) +.12 

Average ability (10)  -.14 

High ability (16)  -.18 

Mean   -.04 

 

Table 4 shows the relationship between querying and error, both at each level of the 

IV individually and collapsed across them. Only identifying missing queries correlated 

significantly with mean item-level error rate. Finally, Tables 5 and 6 give a visual summary 

of the frequency distributions of item-level error rates and scaled score deviations, 

respectively. They show the frequency of error at each ability level. 

 

Table 4 

The Correlation Between Querying and Error 

 Condition Error rate Scaled score deviation 

Low ability -.30  +.33 

Average ability -.09 +.23 

High ability  -.38*                     -.23 

Identifying missing 

query 

On average  -.44* +.20 

* Significant at p < .05 level 
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Table 5 

Frequency Distribution of Item-Level Error Rates at Each of the Ability Levels 

 Levels of the IV 

Low ability Average ability High ability Number of 

errors Frequency %* Frequency %* Frequency %* 

0 0 0 8 29 0 0 

1 3 11 13 46 6 21 

2 4 14 2 7 10 36 

3 8 29 1 4 4 14 

4 8 29 2 7 6 21 

5 3 11 1 4 1 4 

6 2 7 1 4 1 4 

* Percentage may not add up to 100 because of rounding error. 

 

Table 6 

Frequency Distribution of Scaled Score Deviations at Each of the Ability Levels 

 Levels of the IV 

Deviation Low ability Average ability High ability 

 Frequency %* Frequency %* Frequency %* 

-3 0 0 1 4 1 4 

-2 1 4 1 4 0 0 

-1 1 4 5 18 7 25 

 0 10 36 14 50 8 29 

 1 10 36 7 25 7 25 

 2 

 3 

5 

1 

18 

4 

0 

0 

0 

0 

5 

0 

18 

0 

* Percentage may not add up to 100 because of rounding error. 
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Discussion 

 The conditional error variance hypothesis was supported by the data. Both measures 

of error show a V-shaped distribution, and the left side of the V is twice as tall as the right 

side. In other words, twice as much scoring error was made in the low ability condition than 

in the high ability condition regardless how error was defined. Even though pairwise 

comparisons show that all three conditions are significantly different from each other in 

item-level error rate, it is apparent that the error variance in the low ability condition drives 

both the quadratic and the linear effect. When contrasted on scaled score deviations, the 

average and high ability conditions were not different, whereas the low ability condition 

continued to be different from the other two. 

 Item-level error rate is a purer measure of scoring error from a theoretical standpoint 

because it counts each mistake a scorer makes and adjusts it for the total number of items. 

The amount of deviation from the scaled score, however, is a more pragmatic way to assess 

scoring accuracy: After all, this is the only way error can influence full-scale IQ and, thus, 

diagnostic decisions. The two main dependent variables were virtually independent of each 

other (rxy = -.04). Theoretically, it is possible for a scorer to make a mistake on every single 

item yet come up with the correct scaled score. For example, if a subtest consists of an even 

number of 1-point items and someone scores half of them as zero and the other half as two, 

the person will produce the same scaled score as he or she would by correctly scoring the 

items. Conversely, given that ambiguous items had two different scores accepted as correct, 

in this study one could produce a wrong scaled score even without making any item-level 

errors by giving the two ambiguous items either the higher or the lower score both times.  
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 Scoring errors in opposite direction that cancel each other out have been long 

reported in the literature. The most important implication of this finding is that random item-

level errors, regardless of their frequency, are absorbed by the score conversion procedure, 

often having no effect on the examinee’s final score. On the other hand, even a couple of 

systematic errors can cause a deviation from the true scaled score. As an artifact of the 

norm-referenced raw score conversion and statistical weighting, there are two levels of such 

invisible error filters in the Wechsler scales, where item- or subtest-level mistakes are 

functionally eliminated: first, when transferring raw score totals to subtest scaled scores, as 

described above, and second, when deriving a full scale IQ from subtest scores. 

Consequently, random errors have little effect on the final results. 

 Systematic (i.e., unidirectional) errors, however, influence test scores even at low 

frequency. The halo effect often reported in scoring accuracy research was also observed in 

the present study: The only significant deviation from the criterion score (in the low ability 

condition) was in the positive direction. If this effect is robust and omnipresent in IQ testing, 

it may contribute to the underdiagnosing of mental retardation. More sophisticated 

replications of this study are needed to further investigate this issue. 

 Correlational analyses revealed a few surprising patterns of covariation. Somewhat 

paradoxically, but consistent with previous studies, older, more experienced participants 

who were farther along in their graduate training and took more time to complete the scoring 

tended to make more errors than younger, less experienced students working more quickly. 

Reliance on the manual negatively correlated with errors, this being the only measured 

variable that can be easily adjusted to improve scoring performance. The ability to detect 

missing queries and the reversal rule also had an inverse relationship with error rate, perhaps 
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because both of those variables are indicative of familiarity with the administration 

procedure and vigilance while scoring the protocols. Self-reported confidence in scoring did 

not correlate significantly with any relevant variable. This may be partially due to the 

restricted range: On a 0-to-100 scale, the lowest score was 70, and the highest was 98. 

 The present study has several limitations. First, the sample used comes from a single 

graduate training program; thus, it may not be representative of the general population of 

graduate students in clinical psychology. Second, and more important, graduate students’ 

scoring abilities may be different in important ways from that of practicing 

psychometricians. Third, the artificiality of the protocols may compromise the 

generalizability of the findings: Even though the items themselves come from a pool of 

actual examinee responses given during real WISC-IV administrations, the subtests were 

constructed using arbitrary decisions in an attempt to maximize internal validity. Fourth, the 

subtest with the highest reported error variance was deliberately chosen to magnify patterns 

of error—ability level covariation. It may be the case that conditional error variance does not 

operate within other, more objectively scored subtests such as Picture Completion or Block 

Design. 

 The present study has two main implications for the practice of intellectual 

assessment. First, psychometricians may have a tendency to significantly inflate the scores 

of examinees whose true scores are at the demarcation line between Borderline and Mild 

Mental Retardation. This can lead to the underdiagnosing of mental retardation. Second, the 

most important examiner trait that influences test scores is a systematic, one-way bias in 

scoring. Therefore, assessing and correcting the tendency of practitioners to err in a given 

direction would be a meaningful part of the screening and training of professionals. Future 
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studies should be conducted to replicate these findings with different samples and WISC-IV 

subtests or other assessment instruments.  
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