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ABSTRACT 

Many students of the sciences who must have background in mathematics take courses 
up to, and including, differential equations. In this course, one of the topics covered is the 
Laplace transform. Coming to prominence in the late 20

th century after being popular
ized by a famous electrical engineer, knowledge on how to do the Laplace transform has 
become a necessity for many fields. While it is discussed and examples are given of how it 
is used, none of its applications are explored in depth in a class like differential equations. 
As such, this project seeks to showcase some of the more important uses of the transform. 

1. INTRODUCTION 

A Laplace transform is an extremely diverse function that can transform a real function 
of time t to one in the complex plane s, referred to as the frequency domain. It is related 
to the Fourier transform, but they serve different purposes. Also, the Laplace transform 
is second only to the Fourier transform in terms of being used in many different situa
tions. Another thing to note is that the Laplace transform is a complex transform of a 
complex variable, while the Fourier transform is a complex transform of a real variable. 
This transform is also a holomorphic function, meaning it is a complex function that is 
complex differentiable in every direction from its position. The name of this transform 
originates from a French mathematician, Pierre-Simon Laplace, receiving the name in 
honor of the late great mathematician due to him using a very similar transform in his 
work. This one came to be known as the z-transform. Studying the theory and appli
cation of Laplace transforms has become an essential part of any curriculum involving 
mathematics such as engineering, mathematics, physics, and many other branches of 
science like nuclear physics. Even those going into fields such as chemistry sometimes 
are required to have an understanding of what a Laplace transform is. The most likely 
people to be using this transform would be engineers due to its applications in circuits, 
in harmonic oscillators and systems such as HVAC systems and many other types of 
systems that deal with sinusoids and exponentials. 

The primary use of this transform is to change an ordinary differential equation in a real 
domain into an algebraic equation in the complex domain, making the equation much 
easier to solve. The subsequent solution that is found by solving the algebraic equation 
is then taken and inverted by use of the inverse Laplace transform, acquiring a solution 
for the original differential equation, or ODE. This transform has become an integral 
part of society, even if it is not common knowledge, especially considering how attached 
members of today's society are to their cell phones. The reason for this being the Laplace 
transform is undoubtedly partially responsible for the device working, as it is in many 
other types of two-way receivers. The Laplace transform's applications are numerous, 
ranging from heating, ventilation, and air conditioning systems modeling to modeling 
radioactive decay in nuclear physics. Along with these applications, some of its more 
well-known uses are in electrical circuits and in analog signal processing, which will be 
the subjects explored in this paper. 

2 



2. LAPLACE TRANSFORM TABLE 

To help make taking the transform a function easier, a table has been derived. It allows 
mathematicians and engineers, along with others who use these transforms to do it much 
quicker. 

Laplace Transform Table 
I F(s) = L{J(t)} I f(t) 

= L-1{F(s)} 
1 

tn , n > 0 

tneat n > 0 ' 

eat 

sin(at) 
tsin(at) 

eat sin(bt) 
cos(at) 
tcos(at) 

eatcos(bt) 
fn(t) 

3. FORMAL DEFINITION 

! s>O 
.'1 ' 

n! 
> 0 ,n+l, S 

n' 

(s-a)n+l, s > a 
_!_ s>a s-a' 

s2:a2, S > U 
'l.as 

> (s2+a2)2' s a 
b 

(s-a)2+b2, s > a 

s�:t:n2' S > U 

s"L--a"L-

(s2+a2f2, s > a 
s-a 

(s2-a2)2+b, s > a 
snF(s) - sn-lf(O) - . . .  - 1n-1(0) 

[1] The Laplace transform of a function, f(t), t 2: 0 with t being in the time domain, is 
normally denoted by the following equation, 

F(s) = L{f(t)} = 100 

e-st J(t)dt 

This function transforms the equation from being in the time domain to being in the 
complex domain where s is a complex variable representing frequency denoted by the 
following equation, 

s=u+iw 
In the case of the equation denoting s, u and ware both real numbers with i being the 
complex portion. This means we are putting the differential equation into a completely 
different domain, as previously mentioned with u and iw being our individual coordinates 
respectively. This domain will be referred to as the frequency domain. Something else to 
note, for future reference, is that this transform is invertible as shown in the table. The 
equation to do so is as follows, 

3 



1 1,-+iT 
J(t) = L""'1 {F(s)} = -

2 
. lim est F(s)ds 

7rz n-ux, -y-iT 

It is worth noting that , is a real number in this integral, which is also known by the 
name of The Bromwich Integral, among others. The importance of this inverse transform 
cannot be understated, as it is what allows us to convert the equation back into the real 
domain to get the solution for the original equation. To do this, we will be utilizing the 
table of Laplace transforms from section 2, as well as algebraic techniques to manipulate 
the complex solution. 

We can do an example of this to showcase how exactly it is done, so let us set f ( t) equal 
to the following, 

We say that the following is true, 
f(t) = 1 

L{f(t)} = L{l} 

1 = -, s > 0 s 
This is due to the table mentioned above, but now we will prove exactly why this is the 
case. 

Proof: 

Let J(t) = 1, we will show the following to be true; 
1 

L{l} = -, s > 0 
s 

First, we plug this into our formal equation to get 
F(s) = L{l} = 100 

e-stldt 
Now, we want to replace the oowith something that can actually be used, so we tum it 
into a limit with an arbitrary variable approaching oo, getting 

lim 1A 

e-stdt 
A-+oo 

o 

-e-st 
= lim --It 

A-+oo s 
-e-sA 1 

- lim +-
A-+oo S S 

Now, we plug ooback into the equation to get -e-soo 1 
---+-s s 

Since -e00is O, and S*oois still oo, we can simplify this, resulting in the final answer being, 
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L{l} = � s 
Now, we also know that s > 0 since if it is 0, the equation is undefined, and it cannot be 
negative since when we invert it, it is impossible to have a negative answer. This is due 
to the fact that time can't be negative. So we end up with 

1 L{l} = -, s > 0 s 
QED 

We can do a proof for each of the equations on the Laplace transform table, but to save 
time let's assume that they are all true. 

4. ANALOG SIGNAL PROCESSING 

[2] The Laplace transform is designed to analyze a specific class of time domain signals: 
impulse responses consisting of sinusoids and exponentials. The importance of this being 
that systems belonging to this class are extremely common in the sciences and engineer
ing. The reason for this being they are quite often the solution to a differential equation 
as well as the fact that they are naturally occurring in the world. This makes it especially 
useful in signal processing, specifically analog signal processing, in which case the signal 
is continuous and is going to consist of a sinusoid or an exponential. The way in which 
analog signals are processed can be illustrated by the following diagram: 

ANALOG ANALOG ANALOG 

INPUT � SIGNAL � OUTPUT 

SIGNAL PROCESSOR SIGNAL 

The system's input, processor and output are continuous time functions. For the input 
and output, the labels are x(t) and y(t) respectively. Also, for the purposes of this 
example we will label the analog signal processor in the middle by h( t). Now, this is where 
the Laplace transform will finally come into play when doing analog signal processing. 
We will use the Laplace transform to figure out how the system behaves depending on 
what input is applied to it, and from there we can discover quite a few things about the 
system. This means we are trying to find out what the values of y(t) are when we plug in 
x(t) to the system. We can take the Laplace transform of this to get it into the complex s 
domain. By taking the Laplace transform, we get X(s) and Y(s}, replacing our previous 
functions,x(t) and y(t), along with getting the transfer function, H(s). Note that H(s) 
is the analog signal processor from the previous diagram and that the equation that will 
be mentioned below applies to many more fields than just analog signal processing. The 
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reason we include it is because we take the Laplace transform of the processor as well 
so to get an accurate equation. It is also the processor that X(s) goes through to give 
the output Y{s). This relationship can be seen in the following diagram, replacing the 
previous diagram with another one where the variables are now in the complex plane: 

X(s)� 
H(s) 

Transfer 
Function 

�Y(s) 

With this new system in the s plane, we can now figure out what the value of the transfer 
function,H(s), is. We do this by first writing the equation in the form we know we can 
write it as, by recognizing that to get Y(s) we have to multiply the other two together. 

Y(s) = H(s)X(s) 

However, while knowing Y(s) is useful, we truly want to know what H(s) is, so we just 
divide both sides by X(s), 

H( 
) = Y(s) 

8 

X(s) 

The importance of the equation directly above cannot be stressed enough when doing 
signal process1Y' as well as many other fields where a transfer function is employed. By 
figuring out �<:>,we can find the transfer function of the system's value, giving us a lot 
of necessary information so we can then proceed to doing other work such as adjusting 
the filter or the signal to get the desired output wave. [3) We can then use Laplace 
transforms to discover what x(t) and y(t) are, if we need to, these two being the original 
measures of the signal wave's input and output with respect to time. By doing this, we 
can gleam some information on what exactly we are working with if the value of original 
wave is one that we are unaware of. For now though, we are more focused on H ( s) and 
h( t) as these two give us much more information that is extremely crucial. The most 
important aspect of the equation giving us H(s) is that by knowing what H(s)is, we can 
discover if the system is stable. If it is, then we can discover what the frequency response 
of the system is, a rather important value to know. With the frequency response, we will 
know what our filter is doing and how to get the final result we are aiming for, as well 
as allowing us to adjust our sound waves to fix any issues with the filter if we need to. 
These pieces of information that are so vital to signal processing come from, as we have 
shown, the Laplace transform. 

For a tangible example, we can see how exactly a filter works in reality by creating a 
sound wave and running it through a mathematical software capable of processing these 
signals. Using these types of software, the Laplace transform and all the resulting com
putation is done for us, making it much more convenient. It even includes the frequency 
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response to discover how exactly to adjust the filter. 

The following example was in Maple using a sound wave created from a . wav file of a song. 

Example ,4..1: Here are all of the diagrams of the process: 

c 
�-"5 'a -
i ·--35 VJ 

-45 

-55 

-2S 

-JO 

-JS 
i:j'-40 
�4S • 
a-so 
iii-ss 

-60 

-65 
-70 

Original Input Signal and Frequency Response Respectively 

-20 
0 ---·� 
-g -40 

1-60 
ti5 -110 

I- input - oug,ut! 

Input Wave vs. Output Wave 
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Frequency-Time Response for the Input Signal and Output Signal respectively 

The first diagram is the original signal before it has gone through any filter, with the 
second being its frequency response so we can alter the filter to work for the signal. The 
filter used in this example is an analog low pass filter with the cut off frequency bound
aries being 1000 to 5000. We can see in the third diagram a comparison between the two 
filters with the blue wave being the input and the red wave being the output. However, 
this doesn't exactly give us a clear image of anything other than the frequency being 
lower, this is where the the last two diagrams come in. When comparing the two images, 
we can see that at the end of the signal, the curves become much smoother in the output 
signal, showcasing how much of an impact the filter truly had on the signal wave. While 
it is harder to see in graph form, the 3-D model does an excellent job of depicting the 
stark contrast between input and output. 

Example 4,.2: Let's look at another signal wave with a different type of filter, still 
utilizing the Laplace transform, in order to help showcase the versatility of it. To start, 
here are all the diagrams along with their labels: 

Frc"1cncy lllzl 
6_ IC 10:1. IC IIY 2. IC Jo' 6. IC loll. IC ICT 2. IC I Frequency [HzJ 

I. ,c I o2 I. ,c I o-1 I. ,c 10
4 

•20 
-iii 

-15 

-25 

;;;' _ 35 � 
r.1-45 
.2!1-55 • · 
rl'l 

-65 

-7S 

-31l 
-35 

�-40 
1-45 
ol-50 
-�-55 rr. 

-6oL..... ...... �__.......-"" 
-65 
-70 

-75 

Original Input Signal and Frequency Response respectively 

-20 
c"-40 

I. IC 1(¥ 
Froqucncy [Hz] 

l. ,c I o-1 

� -601---....___, 
1-HO 
jr,-100 r-___ .,,,.._ 

-120 

1-- inplt - 0Ulff%1 

Input Wave vs. Output Wave 
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Frequency-Time Response for the Input Signal and Output Signal respectively 

The diagrams are in the same order as the previous example, with the first being the 
original input, the second being the frequency response, the third being the input vs. 
ouput and the last two being 3D images of the waves to showcase what truly is happen
ing. We can see just how useful this filter is, the input wave is a complete mess while the 
output wave is almost completely smooth. The big difference in this example, versus the 
previous one, being that instead of a low pass filter, a Band-pass filter was used instead 
with the upper and lower boundaries being 4000 to 6000. An example of one of these is 
an RLC circuit. What this filter does is allow frequencies within a certain range to go 
through it whilst rejecting all other ones, as does the majority of other filters. The signi
fance of this one is that it is another filter that utilizies the Laplace transform, meaning 
it is an analog filter. 

The process discussed above is an extremely significant process to the world today and 
as such is one of the major areas where the Laplace transform is used. It is important 
to note that this type of analysis, and subsequent processing of the signal is used in 
cellphones, a device that many would be unable to part with in modem society along 
with speakers, microphones and many other devices used by the general population. 

5. CIRCUIT ANALYSIS 

The Laplace transform actually gained its popularity from its use in analyzing electrical 
circuits due to Oliver Heaviside, an electrical engineer. By using Laplace transforms we 
can analyze an electrical circuit to discover its current, its maximum capacity and figure 
out if anything is wrong with the circuit. This is crucial for engineers, electrical engi
neers in particular, in doing their jobs to ensure the necessary machines and technology 
is working properly. 
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To start, let's show how this works in a simple RLC circuit. However, this does not 
mean it isn't used for more advanced types of circuits as well. For a visual aid, here is a 
diagram of a RLC circuit: 

C 

R 

First let's identify the individual symbols on the circuit and what they mean. Also, while 
doing this it would help to identify what is used to measure each of these different pieces 
of the circuit for future reference. The symbols are as follows: R means resistor which 
is measured in ohms, L means the inductor which has inductance measured in henrys, 
C is the capacitor which has capacitance measured in farads and finally, V stands for 
the generator or battery and is measured in volts. Something to note is that another 
symbol commonly used for V is E when making diagrams of circuits. We can measure 
the charges of the capacitors and the currents by modeling them as functions of time. 
The equation that is used to model circuits and then subsequently used to analyze the 
circuits after solving it is as follows, 

V(t) = RI +L' + �Q 

The remaining variable left to be defined is Q, which is normally the variable used to 
represent the charge of a circuit. [1) We get this equation due to the fact that the voltage 
drop across a circuit is modeled by the following equations: 

• The voltage drop across a resistor of a circuit is modeled by RI where I = � 

• Across an inductor it is modeled by L :f, and since we know I = �, we simplify 
this to get L� which we can then reduce even further to LI'. 

• Across a capacitor it is modeled by �Q 

• Across a generator it's modeled by -V 

By taking the Laplace transform of this equation, after plugging in values for the indi
vidual pieces of the circuit, and manipulating the resulting equation to take the inverse 
transform we can get a final solution to our circuit. 
Before we go further, it is necessary to note that when we acquired the equation for V(t), 
we actually used Kirchhoff's Laws. [1] Due to the necessity of knowing these laws when 
doing circuit analysis, they are as follows: 
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1. The algebraic sum of the currents flowing toward any junction point is equal to 
zero. 

2. The algebraic sum of the potential drops, or the voltage drops, around any closed 
loop is equal to zero. 

The first of these two laws is often referred to as Kirchhoff's Current Law and the second 
of the two as Kirchhoff's Voltage Law. These two laws are extremely important to circuit 
analysis, as without them, the equation that we are using to model the circuit would not 
work. In some cases, only of the laws needs to be applied to get the equations. However, 
this is usually due to it being a rather simple circuit, such as the circuit in the first 
example. 

Now that the circuit's components have been labeled we can showcase how exactly 
a Laplace transform is used in an introductory example followed by a more complex 
example. 

Example 5.1: 

.02 farads 

20 ohms 

Based on the diagram above, our circuit has an inductor of 4 henrys, a resistor of 20 
ohms and a capacitor of .02 farads. As for the charge and current, let's set a condition 
so that the charge on the capacitor, and current in the circuit, be O at t=O. Let's find 
the charge on the capacitor at any time t besides 0, where V is equal to 200 volts. So 
then we get the following, 

S. I !!Q. mce = dt, 

dl 1 4- + 201 + -Q = 200 dt .02 

cFQ dQ 
4 dt2 

+ 20
dt 

+ 50Q = 200 

It is important to take into account that we have the following initial conditions due to 
our chaxge at t = 0 being 0. 
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1 .  Q(O) = 0 

2. Q'(O) = 0 
Now, we know the following is true 

• � = Q" 

• � - Q' dt -

With this, we can rewrite the original equation 
Q" + 5Q' + 25 Q = 50 

2 
Now, we take the Laplace transform 

L{Q" + 5Q' + 
2
2
5 

Q} = £{50} 

= { s2
q - sQ(O) - Q' (O)} + 5{ sq - Q(O)} + 

25 
q 

== 50 
2 s 

Recall our initial conditions to simplify this further 
50 q(s2 

+ 5s + 12.5) = -s 
50 

= q = 
s ( s2 + 5s + :i5) 

The goal is to take the inverse Laplace transform so that we can get the answer back in 
the original domain of time, but as of right now it isn't clear what function we get when 
taking the inverse transform. Since it isn't clear what the inverse transform function 
would be, we need to manipulate the equation. To start is partial fraction expansion of 
the equation, by doing this we get 

50 A Bs + C  
----� = - + ----s( s2 + 5s + 22

5 ) s s2 + 5s + ;5 

So, by way of doing partial fraction expansion 
25 

50 = A(s2 + 5s + 
2

) + Bs2 + Cs 

From here we solve for the individual variables. By plugging in O for s, we solve for A. 
Then if we plug that solution back in we can find B and C. By doing this, we end up 
with the following for the individual variables: 

• A = 4  

• B = -4 

• C = -20 
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Now, we just plug these back into the original equation 

4 -4s - 20 
= - + -----::,=-s s2 + 5s + 2; 

From here we manipulate the equation to fit one in the form from the table. 

4 s +  i 1 
- - - 4  - 10-�--= - s  (s + i)2 + 2

4

s (s + �)2 + �s 

With the equation now fitting the table on Laplace transforms, we can take the inverse 
transform 

L-i{i - 4 s + i  - 10 1 } 
s (s + �)2 + �s (s + i)2 + 2; 

= 4 - 4e-�tcos(�t) - 4e-itsin(�t) 
2 2 

So our charge at any time, t, t > 0 is the equation above. We can see what this looks 
like in the form of a graph via Maple to determine exactly what it is. 

s 

4 

3 

2 

0 ---------------
4 6 10 

- I  

-2 

We can see from this graph that the charge maxes out a little after 4C and then flattens 
out at 4C. 

After doing an example of a rather basic circuit, let's do one a little more advanced with 
multiple loops to showcase how the Laplace transform is utilized in a more advanced case. 

[l]Example 5.2: 

13 



36 ohms 

3 henrys 
;. 

6 henrys ;. on 
24 ohms 

We have a circuit with two different branches, let's figure out what the currents are in 
each of these branches when the initial is zero. Due to Kirchhoff's second law, we know 
that the sum of the voltage on a closed loop is zero, and we can see that our loops are 
closed from the diagram above. Let's make Q the current around the top part of the 
circuit, and then let Q'and Q" be the respective currents that divide at the junction point 
so that Q = Q' + Qn . Also, it is important to note that we have the following intitial 
conditions: 

• Q(O) = 0 

• Q'(O) = 0 
Now that we know the initial conditions, let's analyze this circuit. To do this we need to 
apply Kirchhoff's second law to these two loops to get the following equations, 

1 -12Q' - 3� + 6!!fl'.. + 24Q" = 0 • 
dt dt 

2. 36Q + 3� + 12Q' = 150 

By looking closely, one can recognize we can divide both equations by 3 to get a new set: 
1. -4Q' - � + 2� + SQ" = 0 
2. 12Q + � + 4Q' = 50 

To make things easier, let's work with the first equation. 

L{-4Q' - dQ' + 2dQ" + SQ" } = 0 
dt dt 

= -4q' - (sq' - Q'(O)) + 2(sq" - Q(O)) + Sq" 

= 4q' - sq' + 2sq + Sq 
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= (s + 4)q' - (2s + S)q" 
It follows that 

(s + 4)q' = (2s + 8)q 
I 

2S + 8  
= q = --q s + 4  

= q' = 2q" 

Now that we know what q'is, let's focus on the second equation. If we apply Kirchhoff's 
seocnd law, we can alter it to get the following: 

dQ' + SQ' + 6Q" = 50 
dt 

The reason for doing this is so we can take the Laplace transform. 

L{ dQ' + SQ' +  6Q" } = L{50} dt 
50 

= {sq' - Q'(O)) + Sq' + 6q" = -

Recall our initial condition to simply the equation, 
(s + S)q' + 6q" = 

50 
s 

s 

Since we know that q' = 2q" ,  we are going to substitute it in. 

50 (s + S)q" + 6q" = -s 
50 = q"(IOs + 14) = -s 

,, 50 
= q = 

s(lOs + 14) 
Since q" is now by itself, we can take the inverse Laplace transform of the equation 

L -1 { q"} = L -1 { 50 
} s(I0s + 14) 

Q" 
= 

25 _ ett 25 

7 7 

It follows that since q'is double this, 
Q' = 

50 - 2eft 25 

7 7 

Recall the previous equation, Q = Q' + Q" .  From this, it follows that 

Q = 

25 _ e gt 25 
+ 

50 _ 2e t t 25 

7 7 7 7 

Q = 75 _ 3egt 25 

7 7 
At any time t, t > 0 the circuit's current will have the value denoted by the equation 
given by Q. We can see this via a graph to truly understand what this means: 
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-so 

. - [00 

- 1 SO 

-200 
We can see from this graph that the charge is exponentially decreasing and will continue 
to drop. 

The process of analyzing circuits is used by engineers who wish to gain a better under
standing of the circuit they are currently working with. While the two examples are not 
increasingly complex, lacking a switch for both, the same principle is applied to any RLC 
circuit. By using a Laplace transform for circuit analysis, we get the automatic inclu
sion of the initial conditions, in the examples case these wereQ(O) = 0 and Q'(O) = 0, 
giving us an entirely complete solution of the analysis. The fact that we get our initial 
conditions automatically included in the solution is arguably the main reason why the 
transform gained such popularity in doing circuit analysis. 

6. CONCLUSION 

Laplace transforms have become an integral part of modern science, being used in a vast 
number of different disciplines. Whether they are being used in electrical circuit anal
ysis, signal processing, or even in modeling radioactive decay in nuclear physics, they 
have quickly gained popularity among the intellectual community that deals with these 
subjects on a day to day basis. From gaining popularity in the late 1900s, the transform 
has cemented itself as a necessary component for those going into mathematics, engineer
ing, physics, and other sciences to be familiar with and understand how to use it. The 
Laplace transform may have gained its fame for its uses in analyzing circuits, but it is an 
extremely diverse transform that any mathematician should have knowledge of due to its 
versatility. Its applications are numerous, without it many of our technological advances 
would have been stunted, setting back the rapid increase in technology modern society 
has continued to bear witness to. 
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