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Abstract 

Bimanual coordination is an essential human function requiring efficient 

interhemispheric communication to produce coordinated movements. Motor deficits affect a 

variety of clinical populations, yet a complete understanding of bimanual coordination has yet to 

be achieved. Previous research suggests performance variability depends on the phase demands 

of the coordinated task and completing bimanual tasks may result in less variability than 

unimanual tasks, or a bimanual advantage. Also, handedness and musical/athletic experience 

have also been shown to influence coordinated performance. The present study examined the 

existence of a bimanual advantage and potential factors influencing coordination in a tapping 

paradigm. Results indicated that the strong-handed individuals displayed a strong bimanual 

advantage; whereas, weak-handed participants had a weak bimanual advantage. Variability did 

not differ by musical/athletic experience. In light of the present findings, relevant studies are 

needed to gain further insight into bimanual coordination and the underlying processes of motor 

movement.  
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Definitions 

1. Anti-phase: Synchronized movement of non-homologous muscles moving 180o out-of-

phase. For example, the right finger and left finger would tap with identical frequencies; 

however, the phase difference between fingers would be exactly 180o. 

2. Bimanual Movements: Coordinated inter-limb movements between two hands or limbs. 

3. In-phase: Simultaneous movement of homologous muscles. For example, the right and 

left fingers would tap in synchrony to execute an in-phase pattern. 

4. Out-of-phase: Asynchronous movements with muscular phase differences ranging from 

0o to 360o. Anti-phase tapping is a form of out-of-phase tapping. For example, a lag 

period between the right finger and left finger tapping produces an out-of-phase pattern. 

5. Unimanual Movements: Coordinated movement of one hand or limb. 
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Introduction 

Every day, humans unconsciously execute coordinated movements between hands; 

however, these ubiquitous tasks require precise coordination patterns with both temporal and 

spatial precision. For instance, putting on a coat appears effortless, but requires each hand to 

function independently yet coordinate together. Deficits in the interhemispheric communication 

required to execute these tasks can result in impairments in motor dexterity and may manifest as 

a symptom of a variety of neurological and psychological disorders (Volman, Laroy, & 

Jongmans, 2006). Gaining insight into bimanual coordination may lead to future clinical 

benefits. 

It is evident that communication across hemispheres is imperative for the execution of 

motor movements; however, the crosstalk between hemispheres may vary depending on 

synchrony and involvement of both hands. For instance, research has revealed that tasks 

requiring in-phase movements of both hands resulted in less variability compared to unimanual 

tasks, or movements incorporating the use of only one hand, suggesting the presence of a 

bimanual advantage (Ivry & Hazeltine, 1995; Helmuth & Ivry, 1996). One potential explanation 

for this observed difference is the increased neural activity, specifically inhibition, which may 

occur across the corpus callosum during unimanual tasks (Duque et al., 2005). Further research 

is still necessary to further exemplify and understand the existence of a bimanual advantage.  

In addition, research findings suggest hand dominance may affect the consistency of the 

patterns of temporal variability previously observed in bimanual and unimanual tasks. For 

instance, it has been found that the strength of handedness, weak versus strong, may influence 

motor performance on in-phase and out-of-phase tasks (Kourtis, Sadler, & Vingerhoets, 2014). 

Additionally, brain-imaging research has shown that individuals with strong and weak 
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lateralization have structural and functional differences in specific brain regions, such as the 

corpus callosum (Fling et al., 2011b; Kourtis et al., 2014; Witelson, 1985 & 1989). Overall, 

further investigation of the effects of handedness is still necessary to fully understand the 

function strong or weak lateralization may have on bimanual motor coordination.  

Furthermore, it has been found that previous musical and athletic experience may relate 

to differences in neural activity. For instance, the degree of neural activity has been shown to be 

less in individuals with extensive experience playing an instrument (Jancke, Shah, & Peters, 

2000). Also, region specific activation may also differ between expert athletes and musicians 

compared to non-musicians or non–athletes (Kim et al., 2008; Munte, Nager, Beiss, Schroeder, 

& Altenmuller, 2003). Evidently, there are neurological differences, such as degree of activity, 

between experienced athletes and musicians compared to those with no experience (Jancke et al., 

2000; Munte et al., 2003). Therefore, musical and athletic experience should be taken into 

consideration and further investigated when assessing motor coordination as neurological 

variations may affect coordinated activities, which is dependent upon neurological 

communication. 

 An extensive body of research has analyzed variability in completing coordination tasks; 

however, the empirical findings on the relationship between handedness and temporal variance 

in coordination in a tapping paradigm are limited. The purpose of this study is to elucidate the 

consistency of variability across unimanual and bimanual movements utilizing a finger tapping 

paradigm and to investigate temporal variance in several coordination patterns by degree of hand 

dominance. Also, this study aims to assess the relationship between previous musical and athletic 

experience on bimanual motor coordination efficiency. The following sections review the 

existing body of literature on the behavioral and neuroanatomical findings of coordination and 
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hand dominance and the manifestation of coordination developmentally and in clinical 

populations. Additionally, the relationship between previous musical and athletic experience 

with bimanual coordination is also discussed. To conclude, a rationale of the aims and proposed 

hypotheses of this study are provided.  
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Literature Review 

Clinical Relevance 

 Impairments in motor dexterity have been observed in many neurological disorders, such 

as Parkinson’s Disease (Brown, Jahanshahi, & Marsden, 1993), Huntington’s Disease (Johnson 

et al., 2000), and cerebellar disease (Serrien & Wisendanger, 2000). Motor deficits are also a 

primary symptom of a wide range of neurodevelopmental disorders, such as Developmental 

Coordination Disorder (DCD) and Autism Spectrum Disorder (ASD) (APA, 2013). It has been 

reported that children with DCD often experience impaired motor coordination development and 

have disordered handwriting (Kirby & Sugden, 2007). Specifically in coordinated tasks, children 

with DCD tend to perform slower on a variety of coordinated tasks (e.g., one hand versus two 

hands and continuous versus discontinuous) compared to children with normal motor 

development (Bo, Bastian, Kagerer, Contreras-Vidal, & Clark, 2008; Huh, Williams, & Burke, 

1998; Volman, Laroy, & Jongmans, 2006). Individuals with ASD also experience motor 

coordination deficits according to a meta-analysis of 83 ASD studies (Fournier, Hass, Naik, 

Lodha, & Cauraugh, 2010). Specifically, children with ASD have been shown to perform 

significantly more variably on both synchronized and asynchronized, or more complex, 

coordination tasks compared to typically developing children (Isenhower et al., 2012). These 

disorders are a few examples of the wide range of motor deficits observed in clinical populations 

and exemplify the importance of continuing to research motor movement. 

 Moreover, gaining more in-depth knowledge of motor coordination can lead to a better 

understanding of psychological diseases that are less commonly associated with motor 

impairments, such as psychotic disorders. For instance, empirical evidence suggests 

schizophrenic patients display reduced motor asymmetries when completing two handed tasks 
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compared to healthy control participants (Tabares-Seisdos et al., 2003). Also, children and 

adolescents presenting with psychosis have displayed decreased stability performing a finger 

tapping task with their dominant hand compared to healthy subjects and individuals with other 

psychological disorders (Gorynia, Dudeck, & Neumarker, 1994). More specifically, Gorynia and 

Schwaiger (2011) found that impairments in coordination can vary even by the duration of the 

psychotic disorder and by the presence or absence of negative symptoms. As suggested by 

Gorynia, Campman, and Uebelhack (2003) gaining insights into motor coordination and the 

underlying neurological processes of coordination in psychotic disorders may lead to 

advancements in prognosis of psychotic disorders. Overall, a wide range of neurological and 

psychological disorders result in motor impairments and may benefit from research focusing on 

the understanding and analysis of coordination.  

Behavioral Findings in Coordination 

Synchrony.  Coordinated inter-limb bimanual, or two-handed, movements can manifest 

in various relative phase patterns. For instance, bimanual movements can be executed with 

homologous muscles moving in-phase (Swinnen, Jardin, Meulenbroek, Dounskaia, & Hofkens-

Van Den Brandt, 1997; Swinnen, 2002). In a tapping paradigm, both the right and left index 

fingers tap simultaneously to maintain an in-phase pattern. Additionally, synchronized bimanual 

movements can also be produced by nonhomologous muscles moving 180o out-of-phase at equal 

frequencies, which is referred to as anti-phase (Kelso, 1984; Swinnen, 2002; Swinnen et al., 

1997).  Moreover, a synchronized, anti-phase pattern can be maintained even if the muscles 

function in opposite directions. For example, in order to maintain anti-phase patterns in a tapping 

paradigm, the right and left index fingers must tap at identical frequencies with a 180o phase 

difference. Furthermore, asynchronous bimanual movements can also be produced with interlimb 
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muscular out-of-phase differences ranging from 0o to 360o (Kelso, 1984; Semjen & Ivry, 2001). 

In a tapping paradigm, an out-of-phase bimanual pattern can be produced by incorporating a lag 

period between the right and left finger tapping. These phase delays in bimanual movements 

often result in more temporal variability and instability in hand coordination (Semjen & Ivry, 

2001; Swinnen, 2002). 

 Specifically in a tapping paradigm, evidence suggests in-phase synchrony to be more 

accurate compared to anti-phase bimanual movements. Work by Serrien (2008) revealed 

bimanual in-phase movements of a two finger combination, index and middle, produced more 

accurate coordination compared to bimanual out-of-phase movements. Additionally, recent 

findings suggested that between hand variability for in-phase repetitive finger tapping was lower 

than variability in asynchronous, out-of-phase finger tapping (Bangert, Reuter-Lorenz, Walsh, 

Schachter, & Seidler, 2010). In both studies, in-phase coordinated bimanual tapping proved to be 

more accurate and stable compared to out-of-phase tapping at various phase delays. 

In addition, in-phase movements have also proven to be the preferred phase of bimanual 

movements. Human bimanual cyclic movements have displayed a tendency to shift from anti-

phase coordination towards in-phase coordination as movement frequencies increase (Kelso, 

1984; Swinnen, 2002). This preference towards in-phase bimanual movements may be a product 

of the desire to produce more energetically efficient movements (Kelso, 1984). In Repp’s (2005) 

extensive review of the literature on sensiomotor synchronization and tapping, he comments that 

rhythmic motor movement in response to external stimuli may be particular to humans due to the 

lack of evidence exemplifying this phenomenon in other animals. These behavioral findings in 

temporal variability and phase transitions suggest that synchronized in-phase bimanual 
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movements have proven to be advantageous compared to out-of-phase or anti-phase bimanual 

actions.  

Bimanual Advantage. Further research also suggests that bimanual movements may be 

more efficient compared to unimanual, or one-handed, movements. In a tapping paradigm, 

tapping with two fingers, one from the right hand and one from the left hand, resulted in reduced 

temporal variance compared to unimanual tapping (Bangert et al., 2010; Drewing & 

Aschersleben, 2003; Drewing, Hennings, & Aschersleben, 2002; Helmuth & Ivry, 1996; 

Studenka, Eliasz, Shore, & Balasubramanian, 2014). This phenomenon has been referred to as a 

“bimanual advantage” and was originally studied by Helmuth and Ivry (1996) by assessing 

tapping variability under various coordination conditions and limb combinations. They found 

within hand temporal variability in a repetitive tapping task was consistently reduced when 

tapping in a bimanual in-phase pattern with both the right and left index fingers compared to 

unimanual tapping (Helmuth & Ivry, 1996). Similarly, this bimanual advantage was observed 

when participants completed the task with nonhomologous muscles (Helmuth & Ivry, 1996). 

Moreover, making coordinated movements with the index finger of one hand combined with the 

fist of another hand resulted in better performance compared to performance of either the index 

finger or fist independently (Helmuth & Ivry, 1996).  

Since the work conducted by Helmuth and Ivry (1996), researchers have published 

controversial findings evident for and against a bimanual advantage. Research on the role of 

sensory information in bimanual coordination has supported the bimanual advantage in a simple 

tapping paradigm (Drewing & Aschersleben, 2003; Drewing et al., 2002; Studenka et al., 2014). 

For instance, Drewing et al. (2002) predicted that increased sensory information would improve 

timing. In this study, participants completed two experimental conditions: tapping with the right 
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hand index finger only and tapping the right hand index and middle fingers in synchrony 

(Drewing et al., 2002).  Results from this study suggest tapping was more consistent tapping 

when the index finger was coupled with the middle finger compared to the index finger tapping 

independently (Drewing et al., 2002). Despite investigating bidigital coordination compared to 

multi-limb bimanual movements, these results still support the concept of a bimanual advantage.  

Additionally, Bangert et al. (2010) found that the bimanual advantage is also reproducible in 

older adults despite potential global deficits in motor coordination, which suggests that this 

advantage may even occur across the lifespan. 

On the contrary, Serrien’s (2008) findings did not support the bimanual advantage. In this 

study, using a two-finger combination of the index and middle fingers, participants completed a 

variety of coordinated experimental conditions: unimanual in-phase, unimanual anti-phase, 

bimanual in-phase, and bimanual anti-phase (Serrien, 2008). Results supported a significant main 

effect by task, unimanual versus bimanual, in that participants had more coordinative accuracy 

on unimanual conditions compared to the bimanual conditions (Serrien, 2008). Unlike the 

Drewing et al. (2002) study, Serrien’s study did not exemplify the presence of a bimanual 

advantage in coordinated tasks. One potential explanation for such discrepancy may be due to 

the different measures used in these studies. Serrien (2008) focused on accuracy measures while 

the other studies primarily focused on the temporal consistency. It was not clear as to whether 

there was a speed/accuracy trade-off in that study (Serrien, 2008). Although the empirical 

evaluation of the bimanual advantage is limited and may suggest variability in the theory of 

bimanual advantage, several researchers have been able to support the idea that temporal 

variability improves during synchronized bimanual tapping compared to unimanual tapping 
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(Bangert et al., 2010; Drewing & Aschersleben, 2003; Drewing et al., 2002; Helmuth & Ivry, 

1996). 

In addition, several researchers have attempted to formulate theories to explain the 

bimanual advantage observed in repetitive tapping tasks. A prominently used and well supported 

model of timing and repetitive motor movements was developed by Wing and Kristofferson 

(1973a, 1973b). This model assumes an internal timer, or timekeeper, controls tapping intervals 

with a motor delay before initiating the motor command, or tap (Drewing & Aschersleben, 

2003). Researchers have attempted to apply the Wing and Kristofferson model to both single 

limb and multi-limb coordination tasks. According to the Wing and Kristofferson model, one 

time keeper would trigger motor commands simultaneously in both limbs during bimanual 

coordination tasks resulting in temporal variability similar to unimanual coordination (Drewing 

& Aschersleben, 2003). However, as previously discussed, Helmuth and Ivry (1996) did observe 

improved temporal variance in bimanual tasks. 

As a result, Helmuth and Ivry (1996) suggested modifications to the Wing and 

Kristofferson (1973a) model that would explain their findings of a bimanual advantage. 

According to Helmuth and Ivry (1996), each effector, or hand, has an individual timer, and the 

outputs for each effector are averaged before the motor commands were triggered. This 

integration of effector-specific timers resulted in decreased variability of bimanual movements 

compared to unimanual movements due to the average of two timer signals being smaller 

compared to that of an individual timer (Drewing & Aschersleben, 2003; Studenka et al., 2014). 

From the perspective of Helmuth and Ivry (1996), a cognitive theory has been postulated to 

explain bimanual advantages; however, researchers have also formulated a sensory or enhanced 

feedback theory to explain this phenomenon. 
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The alternative hypothesis postulates that sensory input from each effector contributes to 

the reduced timing observed in bimanual tasks. This hypothesis is supported by empirical 

findings exemplifying that sensory input to one finger during bimanual tasks can influence the 

temporal variability observed in the alternate finger (Drewing & Aschersleben, 2003; Drewing et 

al., 2002). For instance, when sensory feedback was reduced in participants’ left finger overall 

temporal variance increased in a bimanual task compared to when both fingers received sensory 

input by touching the table (Drewing et al., 2002). In addition to tactile feedback, auditory 

feedback has proven to increase variability in a bimanual task. For example, when auditory input 

was only provided for right handed tapping the bimanual advantage was reduced compared to 

when auditory feedback was provided for both left and right handed tapping (Drewing & 

Aschersleben, 2003). In relation to the model proposed by Wing and Kristoferson 

(1973a,1973b), Drewing & Aschersleben (2003) propose that sensory reafferences may 

strengthen the bimanual advantage by detecting and correcting errors and by predicting future 

movements. 

Overall, empirical findings have supported the existence of a bimanual advantage in 

coordinated tapping tasks. The cognitive, multiple effector model and the sensory, enhanced the 

feedback model’s attempt to better explain the bimanual advantage observed in bimanual tapping 

tasks; however, a conclusive explanation has yet to be discovered. It is also possible that other 

factors influence motor timing variability. Within the present study, laterality of handedness is 

further investigated as a potential moderator of temporal variability in bimanual coordination. 

Handedness 

  In the study of motor coordination, many researchers have been interested in further 

understanding the relationship between hand dominance and various functions, such as motor 
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coordination. Generally, handedness is assumed to be a dichotomous variable with two 

directions, right or left. However, some researchers have empirically conceptualized handedness 

as a continuous variable (Annett, 1976; Corey, Hurley, & Foundas, 2001; Fagard & Durding, 

1978). According to Annett’s (1976) early findings, hand dominance can be categorized as a 

continuous variable from both a performance and preference perspective. In her study, she found 

that participants could be categorized by continuously distributed variables of preference as 

reported by each participant and by each participant’s performance on a peg moving task 

(Annett, 1976). Annett concluded from her findings that future research on manual coordination 

and laterality should focus on subgroups across the distribution of handedness instead of 

focusing primarily on left/right handedness.  

 Similar findings have also been replicated utilizing a finger tapping task. Peters and 

Durding (1978) found that left and right hand differences on a repetitive finger tapping task were 

linearly related to preference as reported by Oldefield’s (1971) laterality quotients. These results 

provide further support for Annett’s (1976) concept of handedness being a continuous variable. 

Additionally, Peters and Durdling (1978) concluded that performance or preference based 

assessments of handedness do not adequately assess for hand dominance alone. Recent findings 

further support this idea and suggest that multiple forms of assessing handedness can distinguish 

distinct handedness subgroups (Corey et al., 2001). All together, these results suggest that hand 

dominance can indeed be formulated as a continuous variable, especially if multiple forms of 

assessing handedness are included. 

 Furthermore, perceiving handedness as a continuous variable can enhance the empirical 

findings on motor coordination. For instance, Gorynia and Egenter found that left handed 

participants with low laterality quotients had significantly higher intermanual coordination and 
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smaller asymmetry in a finger tapping task (2000). In other words, individuals who indicated that 

they were less strongly left-handed could complete tapping tasks using both hands faster and 

with greater efficiency compared to left handed participants with high laterality quotients and 

right handed participants. Additionally, ambidextrous participants have been shown to perform 

more rapidly on a unimanual box task with both hands compared to strongly handed individuals, 

which resulted in a U shaped distribution of hand preference as a continuum and manual 

performance (Ponton, 1987). On the other hand, these results have not been replicated in 

children. In Fagard and Corroyer’s (2002) study, laterality as a continuous index was not found 

to be significantly correlated with several bimanual tasks, including simultaneous and alternating 

finger tapping. Several factors may have contributed to these opposing results, such as 

comparative development of neuronal structures in children and adults and the limited breadth of 

research on the relationship between laterality and motor coordination.  

 In a more recent study, the relationship between motor coordination and laterality was 

analyzed including both right- and left-handed individuals with consistent and inconsistent 

handedness (Kourtis, Saedeleer, & Vingerhoets, 2014). In this study, participants with consistent 

hand dominance performed slower on an asymmetrical task compared to a symmetrical 

visuospatial tapping task (Kourtis et al., 2014). In other words, participants who reported strong 

left or right hand dominance had slower response times on the more complex, asymmetric task. 

However, participants with inconsistent hand dominance performed equally fast on both 

symmetrical and asymmetrical motor tasks (Kourtis et al., 2014). Even though the results varied 

within each group, Kourtis et al. (2014) found that participants with inconsistent hand dominance 

were equally accurate in performing asymmetrical and symmetrical movements as those with 

consistent hand dominance. These results suggest that the degree of handedness may have an 
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influence on the initiation and planning of bimanual movements; however, further investigation 

is needed to assess the influence of hand dominance on bimanual movements. 

In light of these findings, further investigation of the effects of handedness is still 

necessary. Many studies continue to consider handedness as primarily a dichotomous variable or 

completely exclude left-handed individuals from data collection and analysis. Additionally, 

researchers have yet to investigate the relationship between handedness as a continuous variable 

and the bimanual advantage previously observed in coordinated motor movements. Evidently, 

researchers are beginning to consider handedness as a continuous variable; however, this 

conceptualization of hand dominance is still innovative and under studied. 

Functional Neuroscience of Coordination 

	
   Even though the objective of this study is to seek behavioral evidence of a bimanual 

advantage and potential advantages in motor coordination according to hand dominance, it is 

also important to consider the neurological underpinnings of these advantages. In the bimanual 

coordination literature, researchers have identified multiple brain regions that are involved with 

the execution of motor tasks, such as the primary and supplementary motor areas, premotor area, 

cerebellum, cingulate motor cortex, premotor cortex, and corpus callosum (Debaere, Wenderoth, 

Van Hecke, & Swinen, 2004; Swinnen & Wenderoth, 2004). Also, research findings have found 

correlations between specific anatomical regions in the brain and specific motor coordination 

conditions, which are further discussed below. Understanding these correlations can lead to a 

better understanding of the predicted behavioral bimanual advantage. 

 As previously mentioned, behavioral findings have illustrated that out-of-phase bimanual 

tasks result in greater variability compared to in-phase bimanual tasks (Serrien, 2008). According 

to neurological evidence in a positron emission tomography (PET) study, the increased 
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variability observed during out-of-phase bimanual tasks may be a result of increased neural 

activations in brain regions involved in spatial and temporal execution of motor tasks, such as the 

supplementary motor area and dorsal premotor area (Sadato, Yonekura, Waki, Yamada, & Ishii, 

1997).  Also, findings from a functional magnetic resonance imaging (fMRI) study indicated that 

the bilateral superior temporal gyri, in addition to the pre-supplementary motor area, may be 

pertinent for the execution of out-of-phase bimanual movements (Ullen, Forssberg, & Ehrsson, 

2002). Evidently, the increased brain activity observed in asynchronous tasks is functionally 

pertinent to control the precise and independent movements of both hands.  

Neuroimaging of participants completing out-of-phase coordinated motor movements 

have also displayed an up-regulation of intracortical inhibition compared to synchronized motor 

movements (Stinear & Byblow, 2002). Moreover, intracortical inhibition was suppressed when 

completing in-phase bimanual movements compared to out-of-phase bimanual movements. This 

may be a product of the increased demand on controlling two independent muscles and 

movements at opposite phases. Additionally, participants in an EEG study displayed more 

interhemispheric coupling when executing anti-phase conditions compared to in-phase 

conditions (Serrien, 2008). These results, again, exemplify the importance of increased 

information processing in asynchronous tasks compared to synchronized tasks. 

Similarly, unimanual motor tasks require interhemispheric inhibition to suppress the 

movement of the contralateral limb (Duque et al., 2005; Fagard & Hardy-Leger, 2001; Geffen, 

Jones, & Geffen, 1994; Meyer, Roricht, Einsiedel, Kruggel, & Weindl, 1995; Sohn, Jung, 

Kaelin-Lang, & Hallett, 2003; Tinazzi & Zanette, 1998; Vercauteren, Pleysier, Van Belle, 

Swinnen, & Wenderoth, 2008). The corpus callosum functions as a primary center for inhibition 

and facilitation between motor cortices and plays a critical role in motor movements 
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(Vercauteren et al., 2008; Fling, Benson, & Seidler, 2013). During unimanual tasks, 

interhemispheric inhibition occurs across the corpus callosum to counteract the contralateral limb 

from producing default mirror movements of the active hand (Duque et al., 2005). In a sample of 

children, a lack of interhemispheric inhibition resulted in increased mirror movements during the 

execution of a unimanual task (Fagard & Hardy-Leger, 2001). As children’s brains develop and 

interhemispheric communications improve, bimanual efficiency will also increase. Evidently, 

interhemispheric inhibition proves to be an important and necessary component of executing 

both asynchronous bimanual and unimanual tasks. 

On the other hand, synchronized bimanual coordination has displayed an alternate pattern 

of brain activation. For instance, participants have exhibited more bilateral and lower activation 

across the parietal cortex according to functional magnetic resonance imaging of a bimanual task 

compared to a stronger neural response during a unimanual condition (Heitger, Mace, Jastorff, 

Swinnen, & Orban, 2012). In other words, the bimanual conditions appeared to exhibit more 

shared activation patterns with less intensity compared to the unimanual conditions, which had 

stronger activation and more left or right hemisphere dominance.  Additionally, Chen et al. 

(2005) revealed through transcranial magnetic stimulation that neither the right nor left 

hemisphere is dominant during in-phase bimanual movements. Similar results were also found in 

an fMRI study that required participants to complete a two-finger bimanual task by navigating a 

cursor on a computer screen (Koeneke, Lutz, Wustenberg,& Jancke, 2004). The authors 

concluded that bimanual coordination is both less behaviorally demanding and requires less 

neural activation compared to unimanual coordination (Koeneke et al., 2004).  

In addition to differences in functional activity, disparate interhemispheric connectivity 

patterns have also been observed during in-phase bimanual tasks compared to unimanual tasks 
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(Serrien, 2008). These results suggest that more interhemispheric communication is required 

during unimanual movements, which may explain the bimanual advantage observed in 

coordinated tasks. In contrast to interhemispheric connectivity, several researchers have 

hypothesized an alternate neural foundation for synchronized bimanual coordination (Pollok, 

Butz, Gross, & Schnitzler, 2007). This conclusion was made based on observed elevated 

intercerebellar coupling, or communication between the two hemispheres of the cerebellum, 

during the execution of an in-phase bimanual task compared to both bimanual asynchronous and 

unimanual tasks (Pollok et al., 2007). Furthermore, callosotomy patients have displayed the 

bimanual advantage, which suggests that the corpus callosum may not be responsible for 

synchronized bimanual movements (Ivry & Hazeltine, 1999). Reportedly, callosotomy patients 

have displayed intact temporal synchrony when executing motor movements despite having 

spatial variability (Franz, Eliassen, Ivry, & Gazzaniga, 1996; Gerloff & Andre, 2002). Taken all 

together, the exact role of the corpus callosum in bimanual coordination is still uncertain; 

however, the increased interhemispheric inhibition observed during unimanual tasks is a possible 

explanation for the bimanual advantage. 

 Neurological findings can also explain predicted and observed motor performances 

dependent upon hand dominance. In a study assessing strongly right-handed children, stronger 

left hemisphere motor connectivity was positively correlated with higher performance on the 

physical and neurological examination for soft signs (PANESS), which is a battery of motor 

control (Barber et al., 2012). In other words, individuals with greater connectivity in the left 

hemisphere compared to the right, or left hemisphere dominance, performed better on motor 

tasks. This study has several limitations, such as sampling only right-handed participants and 

using a broad motor assessment. However, the increased performance in strongly handed, or left 
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lateralized, participants can support the prediction that strongly handed participants will 

potentially perform better on motor tasks compared to participants with less hand dominance. 

 Moreover, callosal differences have also been observed in those with strong and weak 

hand dominance. Empirical evidence from a study measuring the post mortem callosal size of 

individuals previously given neuropsychological assessments has shown that individuals with 

less hand dominance have larger corpus callosums (Witelson, 1985 & 1989).  Also, data from 

magnetic resonance imaging (MRI) studies have also shown that individuals with less consistent 

hand dominance have larger corpus callosums (Habib et al., 1991; Luders et al., 2010). These 

results suggest that callosal size may be more closely related to the degree of handedness rather 

than the direction of handedness. Additionally, individuals with larger corpus callosums have 

displayed poor performance on out-of-phase bimanual tasks according to an MRI study (Fling et 

al., 2011b). The authors suggest that this relationship may be a result of excessive 

interhemispheric inhibition and improper activation of the motor cortex, which decreases 

temporal performance on out-of-phase tasks (Flint et al., 2011). All together, these results can 

lead to the prediction that individuals with weak hand dominance may have poor performance on 

out-of-phase motor tasks.  

As previously mentioned, empirical evidence has suggested that less interhemispheric 

connectivity is required to execute synchronized bimanual tasks (Pollok et al., 2007; Serrien, 

2008). Therefore, it can also be predicted that individuals with weak hand dominance will 

perform better on in-phase bimanual tasks and yield greater evidence of a bimanual advantage. 

To further support this prediction, recent findings have suggested that individuals with 

inconsistent hand preference, or weak hand dominance, have larger Movement Related 

Potentials (MRP) (Kourtis, Saedeleer, & Vingerhoets, 2014). An MRP is a readiness potential 
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that measures neural activation in the motor cortex and supplementary motor area leading up to a 

motor movement (Kourtis, Saedeleer, & Vingerhoets, 2014). This relationship suggests that 

individuals with decreased hand dominance may have an advantage in the planning of bimanual 

movements, which further supports the prediction of individuals with weak hand dominance 

yielding greater performance on synchronized bimanual tasks. 

Developmental Neuroscience 

 In addition to understanding the functional connectivity involved in motor movements, 

the development of these processes should also be taken into consideration. As previously 

mentioned, the corpus callosum can play a major role in the successful execution of motor 

movements; however, structural differences in the corpus callosum have yielded varying effects 

in younger and older adults (Fling et al., 2011a, 2011b). In an fMRI study, researchers assessed 

the effects of callosal size on cognitive functions through a broad battery of cognitive tests, 

including a reading span task, digit span tasks, and a digit-symbol substitution test (Fling et al., 

2011a). The results of this study indicated that the size of the corpus callosum had no 

relationship with cognitive abilities in younger adults, ages 18 to 30 (Fling et al., 2011a). On the 

other hand, older adults, ranging from 65 to 80 years old, demonstrated a positive relationship 

between callosal size and cognitive performance (Fling et al., 2011a). Within the group of older 

adults, individuals with larger corpus callosums perform better cognitively; however, their 

performances on cognitive tasks were still lower than younger adults with similarly sized corpus 

callosums. 

 Specifically in a tapping paradigm, inconsistencies in performance and callosal sizes have 

been demonstrated in younger and older adults. Fling et al. (2011b) found opposing relationships 

between the size of the corpus callosum and performance on unimanual and out-of-phase 
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bimanual tapping tasks with younger adults demonstrating a negative relationship and older 

adults displaying a positive relationship. In other words, a larger corpus callosum appeared to be 

beneficial for older adults but related to decreased performance in younger adults. No significant 

relationships were found between callosal size and performance during the synchronized 

bimanual condition for both younger and older adults. The authors hypothesize that the 

relationship observed in younger adults may be a result of overflow and excessive inhibition 

across the corpus callosum, which may decrease efficiency when executing out-of-phase and 

unimanual tasks that require precise interhemispheric inhibition (Fling et al., 2011b). 

Furthermore, the authors suggest that the potential overflow experienced in young adults with 

large corpus callosums may not occur in older adults with larger corpus callosum (Fling et al., 

2011b). This hypothesis may explain the improved performance observed in older adults with 

larger corpus callosums. Overall, it is evident that the corpus callosum structure and function 

may vary throughout human development. 

 Handedness has also proven to have varying relationships with functional activity in 

younger and older adults. In young adults, handedness has been shown to be negatively 

correlated with ipsilateral brain activation in a transcranial magnetic stimulation study (Bernard, 

Taylor, & Seidler, 2011). On the other hand, lateralization of dexterity in older adults has been 

shown to be positively correlated with both ipsilateral and contralateral brain activity (Bernard et 

al., 2011). This is yet another example of the potential functional differences of the corpus 

callosum across the life span. Further investigation of the structure-function evolution of the 

corpus callosum throughout human development is still necessary; however, these potential 

developmental alterations must be taken into consideration when studying movement and 

handedness.  
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 In early development, empirical findings suggest the corpus callosum is also undergoing 

significant structural changes. Research shows that callosal size increases throughout childhood 

into adolescence with the greatest increases occurring in early childhood (Gbedd et al., 1999; 

Paus et al., 1999). Reportedly, complete maturation of the human corpus callosum is not 

achieved until an individual is in their twenties (Pujol, Vendrell, Junque, Marti-Vilalta, & 

Capdevila, 1993). But unfortunately, there is a lack of studies on bimanual coordination in early 

development. Further assessment of the neurodevelopment in childhood is still necessary. Taken 

all together, evidence of callosal maturation into late adolescence and developmental changes in 

late adulthood, young to mid-life adults may be an optimal population to examine motor 

coordination. 

Musical and Athletic Experience 

 In the assessment of motor efficiency, it is important to take into consideration various 

factors that may influence brain activity, which as a result, influence motor abilities. A potential 

influential variable in motor coordination is the level of experience participants have in music or 

sports because experience in these areas have displayed differences in neural activity (Jancke, 

Shah, & Peters, 2000; Hatfield Haufler, Hung, & Spalding, 2004; Ross, Tkach, Ruggieri, Lieber, 

& Lapresto, 2003). For instance, in an fMRI study assessing cortical activation in professional 

pianists, less brain activity was observed in the primary and secondary motor areas in musicians 

compared to non-musicians (Jancke et al., 2000). Similarly, fMRI and EEG studies have found 

that expert athletes have less cortical activation, specifically in the supplementary motor area and 

cerebellum, than to novice athletes (Hatfield et al., 2004; Ross et al., 2003). Also, decreased 

muscle activation has been observed in individuals who practice motor tasks (Lay, Sparrow, 

Hughes, & O’Dwyer, 2002). However, empirical findings also suggest that the reduced 
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neurological activity observed by an EEG may only occur when experts, e.g., marksmen and 

shooters, are completing motor tasks that they have practiced extensively, and the decreased 

activation may not occur when experts complete novel motor tasks (Haufler, Spalding, Santa 

Maria, & Hatfield, 2000). Nonetheless, musicians and athletes have displayed decreased brain 

activity when completing motor tasks. As suggested by Milton, Solodkin, Hlustik,and Small 

(2007), experts may have a refined and efficient neural organization, while novices have less 

neural filtering and efficiency. Therefore, expert athletes and musicians may not need as much 

neural activity to execute motor tasks.  

 Furthermore, brain imaging research has shown that different brain regions are activated 

when experts complete motor tasks compared to novices. For example, event-related brain 

potential studies have found that musicians have different neural correlates for processing 

auditory cues compared to non-musicians (Munte, Altenmuller, & Jancke, 2002; Munte, Nager, 

Beiss, Schroeder, & Altenmuller 2003). More specifically, the authors concluded that these 

differences may be even more specific to the training of the musician, such as conductor versus 

pianist (Munte, Nager, Beiss, Schroeder, & Altenmuller, 2003). Differences in region-specific 

neural activation have also been observed in athletes. In an fMRI study, when expert archers 

aimed, they displayed more activation at the occipital gyrus and temporal gyrus than novice 

archers; however, novices had more activation in the frontal area than experts when aiming (Kim 

et al., 2008). Evidently, athletes and musicians have regional differences in brain activity in 

addition to the level of activity.  

 In addition to differences in regional cortical activity, researchers have also observed 

differences in callosal size in musicians compared to non-musicians. For instance, an MRI study 

revealed that the anterior half of the corpus callosum was significantly larger in male musicians 
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than male non-musicians; however, female musicians did not display any significant differences 

than female non-musicians (Lee, Chen, & Schlaug, 2003). As well, fMRI studies have revealed 

that individuals that began performing musically at a young age had significantly larger corpus 

callosum than musicians that began playing later in life and non-musicians (Schlaug, 2001; 

Schlaug, Jancke, Huang, Staiger, & Steinmetz, 1995). Furthermore, a diffusion tensor imaging 

study found that extensive piano practicing can result in an increase in white matter plasticity, 

specifically when training occurred during childhood, a period when the most myelination occurs 

(Bengtsson, Nagy, Skare, Forsman, Forssberg, & Ullen, 2005). Altogether, this data further 

exacerbates the critical involvement of specific brain regions, such as the primary motor area and 

corpus callosum, in coordinating bimanual movements. Furthermore, individuals with musical 

and athletic experience appear to have neurological differences compared to those with no 

experience. A more in depth understanding of these differences and their function may lead to a 

broader understanding of the musically/athletically experienced brain and bimanual coordination.  

Assessing Handedness 

 Many researchers and clinicians incorporate a measure of handedness into data collection 

and evaluations. The most commonly used measure of handedness is the Edinburgh Handedness 

Inventory (EHI) (Oldfield, 1971). The EHI is a brief 10-item self-report questionnaire that 

prompts individuals to indicate whether or not they complete an everyday task with their right or 

left hand and the strength of that preference with one check indicating average preference and 

two checks indicating strong preference. Scoring of the EHI provides a laterality quotient (LQ) 

that ranges from -1 to +1 (Oldfield, 1971). The EHI was developed primarily as a screener for 

handedness. In fact, Oldfield reported in his 1971 manuscript that he did not intend for his 

measurement of handedness to be used in research assessing clinical populations and that his 
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inventory was not the most ideal measurement (Oldfield, 1971). Yet in psychological research, 

the EHI is commonly used as a primary assessment of handedness for a variety of research 

questions and clinical populations. 

 Since the development of the EHI, several researchers have also attempted to create 

alternative and more efficient measures of handedness. For instance, Marian Annett (1970) 

attempted to create a handedness measure that efficiently conceptualized handedness as a 

continuous variable rather than dichotomizing handedness as either right-handed or left-handed. 

The Annett handedness measure consists of 12 questions assessing whether an individual uses 

their right, left, or either hand for completing everyday tasks, such as cutting with scissors 

(Annett, 1970). The items are divided into primary and secondary questions, which Annett 

formulated from an association analysis. Also, participants can be grouped as either consistent or 

inconsistent right-handers or left-handers or left or right ambidexters (Annett, 1970). Even 

though the Annett handedness inventory categorizes participants into different groups, the 

groupings are still considered to be a part of a larger continuum of handedness. 

 In general, the Edinburgh Handedness Measure and the Annett Hand Preference 

Questionnaire have many similarities, such as containing six of the same items. Additionally, 

both measures have relatively high retest reliabilities. The Annett Hand Preference Questionnaire 

has a reported kappa coefficient of agreement score equal to +0.80 (McMeekan & Lishman, 

1975). In this study, a kappa coefficient was utilized to determine retest reliability since the 

participants were classified instead of given a numerical score. Also, this study indicated that a 

sample of participants that was tested twice using the EHI (with fourteen weeks between each 

testing period) had a product moment correlation coefficient equal to +0.97; however, when the 

laterality quotient scores were divided into positive and negative values the retest reliability 
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coefficient was +0.75 and +0.86 respectively (McMeekan & Lishman, 1975). In addition, the 

EHI and Annett questionnaire have reported relatively high internal consistency, coefficient 

alpha scores of 0.93 and 0.87 respectively (Williams, 1991). According to retest reliability and 

internal consistency scores, neither measurement appears to be superior to the other. 

 One major difference, and potential disadvantage of each questionnaire, is the format for 

scoring the handedness inventories. For instance, the Annett Hand Preference Questionnaire 

groups individuals into specific groups based on their responses, which fails to indicate where 

each participant falls on the continuum of handedness (McMeekan & Lishman, 1975). Also, the 

EHI has some methodological drawbacks in scoring. For instance, the validity of the one-tick 

versus two tick instructions for the participant is questionable (McMeekan & Lishman, 1975). 

This system of scoring results in little distinction between degrees of right or left-handedness. 

Furthermore, the questions on the EHI are not weighted as they are on the Annett Hand 

Preference Questionnaire; therefore, two ticks versus one tick may have varying degrees of 

impact on the final LQ based on the weight of that item. It appears that both measures have equal 

superiority, and yet each measure has flaws in the procedure and scoring.  

 Since the development of these two measures, Briggs and Nebes (1975) attempted to 

improve the quality of the Annett Hand Preference Questionnaire and developed a modified 

version. This altered form has an adjusted scoring procedure, which includes a 5-point scale for 

participants to indicate their strength of preference for each question (Briggs & Nebes, 1975). 

This scoring system replaces the grouping system of Annett’s original measurement and results 

in a continuum of handedness. Also, this scoring procedure attempts to better classify individuals 

of mixed handedness or ambidextrous. This modified version results in a continuous variable 
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rather than a categorical variable; therefore, it can be more accurately compared to the 

continuous range of scores drawn from the EHI. 

 For the purposes of this study, both the Briggs and Nebes (1975) modified version of 

Annett’s Hand Preference Questionnaire and the Edinburgh Handedness Inventory will be used 

to assess hand preference. The EHI is widely used in psychological research; however, this 

measurement also has flaws; therefore, the Briggs and Nebes questionnaire will be used as an 

alternate form of assessing handedness. All data analyses will be conducted twice using both the 

EHI and Briggs and Nebes questionnaires. Additionally, future secondary analysis can be 

conducted to evaluate the comparative differences between these two measures. However, a 

statistical analysis comparing the two measures is out of the scope of the aims of this project and 

will therefore be conducted in the future. 
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Aims of the Proposed Study 

 The overall purpose of the present study was to gain further understanding of the 

relationship between hand dominance, as a continuous variable, and temporal variability in 

bimanual motor coordination. Previously, significant findings have supported the presence of a 

bimanual advantage when completing in-phase bimanual tasks compared to out-of-phase and 

unimanual tasks (Helmuth & Ivry, 1996; Drewing, Hennings, & Aschersleben, 2002; Studenka et 

al., 2014). On the contrary, Serrien (2008) found that participants had more temporal efficiency 

when executing unimanual tasks. Even though empirical evidence has supported the presence of 

a bimanual advantage, it is still worthy of further investigation to fully understand the potential 

advantages of various coordinated tasks. Additionally, a more in-depth understanding of 

bimanual coordination may add to the existing knowledge of motor deficits within clinical 

populations. 

In addition, handedness can be further evaluated as a potential contributing factor to the 

variability observed in coordinated motor tasks. Recent behavioral findings suggest that 

individuals with strong or weak hand dominance may have varying performance on 

synchronized and asynchronized motor tasks (Kourtis et al., 2014); however, the exact 

relationship between handedness and motor coordination remains unclear. Handedness may be a 

vital moderator in the successful execution of various motor tasks, including bimanual 

coordination. Therefore, this project will attempt to expand upon the existing literature on 

handedness and bimanual coordination.  

Specific Aim 1: To investigate the presence of a bimanual advantage in the execution of in-

phase bimanual tapping tasks compared to other coordinated conditions in healthy young adults. 
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Hypothesis 1 (a): Individuals will perform with less efficiency, or greater temporal 

variability, on the unimanual tapping condition thanthe bimanual synchronized condition, which 

would further support the presence of a bimanual advantage.  

Hypothesis 1 (b): Temporal variability will be larger in the out-of-phase bimanual 

condition than both the unimanual and synchronized bimanual conditions. 

Specific Aim 2: To investigate the relationships between hand dominance and bimanual 

coordination in an adult population.  

Hypothesis 2 (a): Individuals with strong hand dominance will perform with greater 

efficiency, or less temporal variability, on the unimanual and out-of-phase bimanual conditions 

than individuals with weak hand dominance.  

 Hypothesis 2 (b): Individuals with weak hand dominance will perform with greater 

efficiency, or less temporal variability, on the in-phase, bimanual condition than individuals with 

strong hand dominance.  

Specific Aim 3: To explore the relationship between previous musical and athletic experience 

and motor coordination in an adult population. 

 Hypothesis 3 (a): Individuals that self-report previously participating in musical 

experience and/or athletic experience will perform with greater efficiency on each experimental 

tapping condition than individuals that report no extensive musical or athletic experience. 
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Research Design and Methodology 

Participants 

Participants for the present study include a sample of 56 young adults ranging in age 

from 18 to 39 (M=23.6, SD=6.3; 41 females). Seventy-three percent of participants were 

Caucasian, 14% were African American, 4% were Hispanic, 4% were Asian, and 5% belonged 

to other racial groups. In regard to musical and athletic experience, 60% had prior musical 

experience and 80% had prior athletic experience. Exclusionary criteria for the present study 

included any serious head injury or bone fracture, as these conditions may have confounded the 

participants’ performance on coordinated motor tasks. Additionally, participants were excluded 

from the study if they had been diagnosed with a neurodevelopmental disorder (attention-deficit/ 

hyperactivity disorder, autism spectrum disorder, developmental coordination disorder, or 

learning disabilities). This exclusion is due to the fact that these disorders may result in motor 

impairments, difficulties reading, or difficulties focusing, which are each necessary functions for 

completing this proposed study (Bo et al., 2008; APA, 2013). 

For the present study, participants were recruited through the posting of flyers (see 

Appendix A) in academic buildings at Eastern Michigan University and through advertisement 

on the SONA Systems experiment management system at Eastern Michigan University. The 

announcements posted called for healthy male and female volunteers between the ages of 18 and 

40 with varying degrees of hand dominance who were interested in participating in a research 

study (titled Handedness and Bimanual Motor Coordination) about the effects of hand 

dominance on hand coordination tasks. Recruited participants were expected to have normal or 

corrected-to-normal vision. Before recruitment began, Institutional Review Board approval was 

obtained.  
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Procedure 

 For this study, undergraduate students at Eastern Michigan University were trained by the 

principal investigator to collect data. Training included learning the appropriate administration of 

all measures, practicing administration with the principal investigator, and administrating the 

measures to a research participant under supervision. Each participant completed all components 

of the study at Eastern Michigan University and the experiment took approximately 30 minutes 

to complete. Before beginning the testing procedures, participants were read and asked to sign an 

informed consent form (see Appendix B). The consent form was read aloud by the principal 

investigator or research assistant and signed by the participant.  

Once participants agreed to participate by signing the informed consent, they completed a 

brief demographic and health history questionnaire (see Appendix C). Next participants were 

asked to complete two handedness inventories (see Appendix D and E) and a Grooved Pegboard 

Test. Finally, participants completed a tapping task guided by computer instructions to assess 

bimanual coordination. Participants received extra credit in their academic courses for 

completing the study; however, the amount of extra credit was professor and course dependent.  

Measures 

Questionnaire. Participants received a brief demographic and health history 

questionnaire that consisted of ten questions, such as age, history of vision impairments, and 

experience playing instruments (See Appendix C). Participants were encouraged to complete the 

questionnaire in its entirety. If a participant endorsed any exclusion criteria on the questionnaire, 

as stated previously, no further data was collected for that participant.  

 Handedness Inventories. The participant’s handedness was assessed by means of the 

Edinburgh Handedness Questionnaire (EHI) (Oldfield, 1971) and The Handedness Inventory 
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modified from the Annett Hand Preference Questionnaire (Annett, 1970; Briggs & Nebes, 1975). 

In order to avoid bias, participants were asked to complete the two handedness questionnaires in 

random order. According to assigned participant codes, participants with even numbered codes 

completed the EHI first and participants with odd numbered codes completed The Handedness 

Inventory first. 

 The EHI is a 10-item self-report questionnaire assessing hand preference in everyday 

activities, such as writing, using a spoon, or opening a box lid (See Appendix D). Participants 

were asked to indicate their preference for each item with a check mark for either their right or 

left hand. If the participant’s hand preference for that task is strong and they would definitively 

not use their opposite hand, they were instructed to place two check marks for the appropriate 

hand. The instructions provided also gave participants the option to indicate whether they 

complete a task equally with both their right and left hand, in which they placed one check mark 

in each box next to that item.  

 The items were scored by totaling the number of check marks in both the left and right 

columns. These totals were inserted into the formula below to produce a laterality quotient 

(Oldfield, 1971):   

𝐻 =
𝑅 − 𝐿
𝑅 + 𝐿 ∗ 100 

In this formula, R is equal to the number of ticks totaled for the right hand and L is equal to the 

number of ticks totaled for the left hand. Laterality quotients can range from -100 to +100 in 

which -100 signifies complete sinistrality, or left-handedness, and +100 signifies complete 

dextrality, or right-handedness.  

For the main purposes of this study, handedness was analyzed as a continuous variable. 

However, for additional analyses, handedness was also categorized into four groups according to 
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the scores from the EHI: consistent right-handers, inconsistent right-handers, consistent left 

handers, and inconsistent left-handers. The consistent left-handers have scores ranging from -70 

to -100, and consistent right-handers have scores ranging from +70 to +100. The inconsistent 

left-handers have scores ranging from -69 to 0, and consistent right-handers have scores ranging 

from 0 to +69. These ranges have been chosen to reflect those utilized in previous literature 

(Goyrnia & Egenter, 2000). 

 Additionally, participants were asked to complete The Handedness Inventory, which is a 

modified version of the Annett Hand Preference Questionnaire (Annett, 1970; Briggs & Nebes, 

1975). The Handedness Inventory is a 12-item self-report questionnaire assessing hand 

preference in everyday activities, similar to those on the EHI (See Appendix E). Examples of 

questions on The Handedness Inventory include which hand is preferred to use a racquet, shovel, 

or deal cards. Each item was scored on a 5-point scale with “always” equal to two points, 

“usually” equal to one point, and “no preference” equal to zero points. Participants were asked to 

indicate their preference for each item and were instructed to place one check mark in one 

response box for each item.  

In order to score The Handedness Inventory, the left-handed responses were scored with 

negative point values and the right-handed responses were scored with positive point values. 

Therefore, for the entire 12-item questionnaire participants could receive total scores ranging 

from -24 to +24. A score of -24 signifies complete sinistrality and a score of +24 signifies 

complete dextrality. For alternative analyses, handedness was grouped by left handed, mixed 

handed, and right handed using The Handedness Inventory. According to Briggs and Nebes 

(1975), the total score from the 12-item questionnaire can be divided by 3, which is reported as 

an arbitrary dividend by the authors. Therefore, those with scores -24 or less are in the left 
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handed group, score between -13 and +13 are in the mixed handed group, and scores above +24 

are in the right handed group.  

 Tapping Paradigm. For the finger tapping task, each participant was seated at a 

computer desk and visual stimuli were presented on the computer monitor. Participants were 

asked to distance themselves at an appropriate length from the computer monitor (approximately 

24 inches) so that they could properly see the visual stimuli presented and comfortably reach the 

keyboard with their hands. The tapping task was written in E-Prime and took approximately 20 

minutes to complete five experimental conditions. Instructions were provided before each 

experimental condition and participants did not receive feedback during the experiment. In order 

to counterbalance the order of presentation, the experimental tapping conditions were ordered 

randomly for each participant (See Appendix F for recording). 

 Each participant completed all five experimental conditions with their index fingers of 

either both (bimanual) or one (unimanual) hand: unimanual left, unimanual right, bimanual in-

phase, bimanual right-lead out-of-phase, and bimanual left-lead out-of-phase. Conditions with a 

lead included a 180 millisecond delay relative to the leading finger. During the unimanual 

conditions, participants were asked to rest their inactive hand at the side of the keyboard. Each 

experimental condition consisted of five blocks of 12 trials with 180 millisecond inter-tap 

intervals. Participants were asked to press the “J” key with their right index finger and “F” key 

with their left index finger. For each condition, participants were instructed to fixate on a blue 

cross in a 32.5 cm x 27 cm white box on the computer screen. Blue ovals (height = 7 cm) will 

flash 4 cm from either side of the fixation cross to pace participants’ responses. The side of the 

presented oval corresponded with the participants tapping hand. See Appendix G for screen stills 

of the visual stimuli presented during the tapping paradigm. 
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 In addition to the visually cued conditions, participants were asked to complete five 

blocks of 12 trials for each of the above mentioned experimental conditions without visual cues. 

After each visually cued trial, participants were asked to continue the tapping at the requested 

coordinated speed and format while fixating on only the blue cross in the middle of the screen. 

This required participants to use internal timing skills without any visual stimuli or feedback as 

they attempted to maintain the target interval. After 12 non-cued tapping responses, the trial 

ended. 

Data Analysis 

All data collected for this study were entered, coded, and double checked for errors 

before analyses was performed. All of the original copies of data are password protected on the 

lab computer or locked within a filing cabinet in the Cognitive Neuroscience Lab at Eastern 

Michigan University for future potential data checking. The analysis of the data collected by E-

prime for the tapping task were performed in MATLAB, which included the mean, standard 

deviation, and the coefficient of variation for each block consisting of 12 trials. For the bimanual 

conditions, these values were calculated for both the right and left hands independently and the 

average difference between the right and left hand. These values were only calculated once for 

the respective hand in the unimanual conditions (e.g., right hand for right tapping condition). For 

analysis, all data were transferred to the SPSS software version 18.0 (SPSS Inc., Chicago). For 

data analysis, the following variables were entered and coded as dependent variables for each 

participant: Edinburgh Handedness Inventory laterality quotient (absolute value), The 

Handedness Inventory score (absolute value), mean standard deviation across five trials for each 

experimental tapping condition in milliseconds, and descriptive variables, including musical and 

athletic experience, sex, ethnicity, and age.  
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Specific Aim 1: To investigate the presence of a bimanual advantage in the execution of 

in-phase bimanual tapping tasks compared to other coordinated conditions in healthy young 

adults. Each hypothesis under Specific Aim 1 was analyzed using one-way analysis of variance 

(ANOVA). The independent variables for this analysis were the experimental conditions, 

including unimanual right, unimanual left, bimanual, right-lead out-of-phase, and left-lead out-

of-phase. The dependent variable was the average standard deviation in response time in 

milliseconds for each condition. Post hoc comparisons using bonferroni corrections were 

performed when significant results were found in ANOVA. For these analyses, the significance 

level will be set at 0.05. 

Specific Aim 2: To investigate the relationships between hand dominance and bimanual 

coordination in an adult population. The hypotheses under Specific Aim 2 were analyzed using 

correlational analyses to assess the relationship between handedness, as measured by The 

Handedness Inventory, and temporal variability for each experimental condition. The correlation 

coefficients for the five analyses would be compared using Fisher’s Z-Test if significant 

correlations were found. 

Alternatively, Specific Aim 2 was analyzed by making handedness a categorical variable 

instead of a continuous variable. A two-way ANOVA was utilized to assess handedness and each 

experimental tapping condition. The between-subject factor was the handedness group, as 

determined separately by the EHI and The Handedness Inventory, and the within-subject factor 

was the experimental tapping condition. The Tukey HSD post-hoc analysis was conducted 

following significant two-way ANOVA results. 

 Specific Aim 3: To explore the relationship between previous musical and athletic 

experience and motor coordination in an adult population. Aim 3 was analyzed using one-way 
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analysis of variance (ANOVA). The analysis was run separately for both music and sports, and 

each analysis was conducted for each experimental condition. The independent variable for this 

analysis was the experimental groups, individuals with musical experience, individuals with 

athletic experience, individuals with no musical experience, and individuals with no athletic 

experience. The dependent variable was the average standard deviation in response time in 

milliseconds for each condition. The bonferroni post-hoc analysis was conducted following 

significant ANOVA results. For these analyses, the significance level was set at 0.05.  
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Results 

Missing Data 

 For the present study, data was collected from 70 participants (ages 18 to 39 years); 

however, data for 14 participants were excluded. Three individuals participated in the study and 

received extra credit for their academic class; however, due to exceeding the age limit of 40, 

their data were not included in data analysis. Additionally, the tapping data were thoroughly 

assessed for each block within a condition for each participant. Data were assessed by hand and 

no statistical software was utilized to calculate missing data for each participant. If an individual 

was missing more than fifty percent of the data for more than two trials, their data was 

considered invalid for that condition. If a participant’s data was considered invalid for any 

condition, their data was excluded from all five experimental conditions. In total, data from 11 

participants were excluded from data analysis due to having invalid data for at least one 

experimental condition. 

Descriptive Statistics 

All participants completed the Edinburgh Handedness Inventory and The Handedness 

Inventory. According to the EHI, 40 participants were categorized as being right-handed (i.e., 

positive laterality quotient) and 16 as left-handed (i.e., negative laterality quotient). The 

participants were also separated into four groups based on the consistency of their handedness 

according to the EHI (see Table 1). The Handedness Inventory identified 41 participants as right-

handed (i.e., positive value) and 15 as left-handed (i.e., negative value). Also, the participants 

were separated into three groups based on their handedness as reported by The Handedness 

Inventory (See Table 2). Correlational analysis of the two handedness measures revealed a 

positive correlation (r(56)=0.941, p < 0.01) when categorizing right and left handers and a 
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positive correlation (r(56)=0.69, p < 0.01) when categorizing participants based on strength of 

handedness (i.e. EHI and The Handedness Inventory scores as absolute values). 

Table 1 

Descriptive Statistics for Edinburgh Handedness Inventory 
Variable N 

Consistent Right Hander (CRH) 23 
Inconsistent Right Hander (IRH) 17 
Consistent Left Hander (CLH) 8 
Inconsistent Left Hander (ILH) 8 
Note. CRH = 70 to 100; IRH = 0 to 69; CLH = -100 to -70; ICL = -69 to 0.  

Table 2 

Descriptive Statistics for The Handedness Inventory 
Variable N 

Right-Handed 25 
Mixed-Handed 19 
Left-Handed 12 
Note. Right Handed = 13 to 24; Left Handed = -24 to -13; Mixed Handed = -12 to 12. 

Bimanual Advantage 

 Hypothesis 1a.	
  It was hypothesized that individuals would have greater variability on the 

unimanual condition than the bimanual in-phase condition.  

Consistency in tapping was measured by the average standard deviation across blocks 

within a condition. The variability in tapping was measured for the right hand, left hand, and the 

difference between hands for each bimanual condition and for the right hand or left hand for the 

unimanual conditions. In regards to only performance in the right hand, a one-way analysis of 

variance (ANOVA) yielded significant variation in temporal variability among the experimental 

tapping conditions, (F(3,220) = 6.39, p ≤ 0.01). The means and standard deviations for each 

condition are presented in Table 3. Post hoc comparisons using the LSD test revealed the 

bimanual in-phase and unimanual right conditions differed significantly (p < 0.01) for the right 

hand (See Table 4). Also, bivariate correlations revealed a significant correlation for right hand 



HANDEDNESS AND BIMANUAL MOTOR COORDINATION 38 
	
  

performance between the unimanual right and bimanual in-phase conditions (p < 0.05). These 

results suggest that the unimanual condition resulted in greater temporal variability than the 

bimanual in-phase condition, supporting the presence of a bimanual advantage.  

Within left hand performance, a one-way ANOVA yielded significant variation in 

temporal variation among the experimental conditions, (F(3,220)=3.35, p = 0.02). The means and 

standard deviations for the experimental conditions are presented in Table 3. Post hoc analysis 

using the LSD test revealed that the bimanual in-phase and unimanual left conditions differed 

significantly (p < 0.05) (See Table 4). Also, results from bivariate correlations revealed a 

significant correlation for left hand performance between the unimanual left and bimanual in-

phase conditions (p<0.001). Together, these results also support the presence of a bimanual 

advantage, as the unimanual left condition resulted in greater temporal variability compared to 

the bimanual in-phase condition.  

Table 3 

Descriptive Statistics for Temporal Variability  
Condition Mean (ms.) Standard Deviation (ms.) 

Between Hands   
Bimanual In-phase 10.46 6.84 
Right-lead Out-of-phase 41.72 20.21 
Left-lead Out-of-phase 40.99 14.62 
Right Hand   
Bimanual In-Phase 79.47 39.60 
Right-lead Out-of-phase 106.55 49.79 
Left-lead Out-of-phase 83.99 49.79 
Unimanual Right 113.52 55.24 
Left Hand   
Bimanual In-Phase 93.63 55.71 
Right-lead Out-of-phase 84.71 51.00 
Left-lead Out-of-phase 106.41 59.13 
Unimanual Left 116.22 60.69 
Note. Means and standard deviations were calculated across the sample.  
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Table 4 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions  
Condition Mean Difference Significance 

Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase -30.53 < 0.001** 
Bimanual In-phase Right-Lead Out-of-Phase -31.26 < 0.001** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase -0.73 0.796 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase -4.53 0.962 
Bimanual In-phase Right-Lead Out-of-Phase -27.08 0.021* 
Bimanual In-phase Unimanual Right -34.06 0.002** 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase -22.55 0.077 
Left-Lead Out-of-Phase Unimanual Right -29.53 0.010** 
Right-Lead Out-of-Phase Unimanual Right -6.98 0.878 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase -12.78 0.235 
Bimanual In-phase Right-Lead Out-of-Phase 8.92 0.406 
Bimanual In-phase Unimanual Left -22.59 0.036* 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 21.70 0.044* 
Left-Lead Out-of-Phase Unimanual Left -9.81 0.361 
Right-Lead Out-of-Phase Unimanual Left -31.51 0.004** 
*p<0.05 **p<0.01 
 

Hypothesis 1b.	
  It was hypothesized individuals would show the greatest amount of 

temporal variability on the out-of-phase bimanual conditions compared to the unimanual and 

bimanual synchronized conditions.  

In regard to the difference in performance between hands, a one-way ANOVA revealed 

significant variation between the experimental conditions, (F(2,165) = 79.91, p < 0.001). The 

means and standard deviations are presented in Table 3. Post hoc comparisons using the LSD test 

revealed that the bimanual and out-of-phase conditions differed significantly (p ≤ 0.01) in 

regards to the between hands difference, with the out-of-phase conditions having greater 

temporal variability than the bimanual synchronized condition (See Table 4). These results 
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suggest that participants performed more variably on the out-of-phase bimanual conditions than 

the bimanual synchronized condition, which is consistent with the proposed hypothesis. 

Within right hand performance, a one-way ANOVA revealed significant variation 

between the experimental conditions (F(3,220)=6.39, p ≤0.001). Means and standard deviations for 

the experimental conditions are presented in Table 3. Post hoc analyses revealed a significant 

difference between performances on the right-lead out-of-phase condition and the bimanual in-

phase condition (p < 0.05), but no significant difference with the unimanual right condition (See 

Table 4). Furthermore, participants did perform significantly more variable on the right-lead out-

of-phase condition than the bimanual in-phase condition, but not the unimanual right condition. 

However, bivariate correlations did reveal a significant correlation between the right-lead out-of-

phase and unimanual right conditions (p<0.01) when evaluating performance in the right hand. 

Together, these results suggest that the right-lead out-of-phase condition was more variable 

compared to the bimanual in-phase and unimanual right conditions within right hand 

performance, which is consistent with the proposed hypothesis. In addition, post hoc analyses 

revealed a significant difference between performances on the left-lead out-of-phase condition 

with unimanual left tapping (p < 0.01), but no significant difference with the bimanual in-phase 

condition (See Table 4). However, the unimanual condition performed more variably compared 

to the left-lead out-of-phase condition, which does not support the proposed hypothesis. Notably, 

post hoc comparisons revealed a significant difference between the right-lead out-of-phase and 

left-lead out-of-phase conditions (p<0.05), see Table 4. Together, these results suggest that the 

proposed hypothesis was supported in right hand performance when considering the right-lead 

out-of-phase condition, but the hypothesis was not supported when considering right hand 

performance in the left-lead out-of-phase condition. 
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Within left hand performance, a one-way ANOVA revealed significant variation between 

experimental conditions (F(3,220)=3.35, p<0.05). Means and standard deviations are presented in 

Table 3. Post hoc analyses revealed a significant difference between performances on the right-

lead out-of-phase condition with the unimanual left tapping condition (p < 0.01), but no 

significant difference with the bimanual in-phase condition (See Table 4). However, the 

unimanual left condition performed more variably than the right-lead out-of-phase condition. For 

left hand performance, post hoc comparisons revealed no significant differences between right-

lead out-of-phase and the bimanual in-phase and unimanual left conditions (See Table 4). 

Additionally, post hoc comparisons revealed a significant difference between the right-lead out-

of-phase and left-lead out-of-phase conditions (p<0.05), see Table 4. These results suggest that 

the proposed hypothesis was not supported when considering left hand performance. 

Coordination and Handedness 

	
   Hypothesis 2a and 2b:	
  It was hypothesized that individuals with strong hand dominance 

would perform with greater efficiency on the unimanual and out-of-phase conditions, while those 

with weak hand dominance would perform more efficiently on the bimanual synchronized 

condition.  

Handedness scores were transformed for both the EHI and The Handedness Inventory to 

the absolute values to represent handedness as strong and weak handedness versus right or left-

handed. Bivariate correlations revealed no significant differences between both hand dominance 

questionnaires and the experimental tapping conditions, as shown in Table 5. These results 

suggest the degree of handedness, weak versus strong, was not significantly related to 

performance across the tapping conditions. Additionally, bivariate correlations of pre-

transformed handedness scores revealed no significant differences between both hand dominance 
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questionnaires and the tapping consistency for all experimental conditions, as shown in Table 6, 

with the exception of a significant correlation between performance on the unimanual left 

condition and handedness scores on the EHI (p<0.05) and The Handedness Inventory (p<0.01). 

In other words, lower EHI scores, indicating strong left hand dominance, resulted in more 

temporal variability on the unimanual left conditions. 

Table 5 

Correlation Coefficients for Handedness (Strong Handedness vs. Weak Handedness) and 
Coordination Measures 
 EHI The Handedness Inventory 
EHI 1.00  
The Handedness Inventory 0.69** 1.00 
Bimanual – Between hands 0.05 0.12 
Bimanual – Right hand -0.08 -0.04 
Bimanual – Left hand -0.21 -0.12 
Right-lead – Between hands 0.06 0.02 
Right-lead – Right hand -0.03 -0.09 
Right-lead – Left hand -0.14 -0.04 
Left-lead – Between hands -0.15 -0.01 
Left-lead – Right hand -0.05 -0.09 
Left-lead – Left hand -0.08 -0.05 
Right tapping – Right hand 0.00 0.03 
Left tapping – Left hand -0.02 -0.02 
Note. The Edinburgh Handedness Inventory laterality quotients and The Handedness Inventory 
scores were transformed to absolute values to capture strong versus weak handedness before data 
analysis was conducted.  
**p<0.01 
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Table 6 
 
Correlation Coefficients for Handedness (Extreme Right Handed vs. Extreme Left-handed) and 
Coordination Measures 
 EHI The Handedness Inventory 
EHI 1.00  
The Handedness Inventory 0.94** 1.00 
Bimanual – Between hands 0.05 0.10 
Bimanual – Right hand 0.17 0.18 
Bimanual – Left hand 0.08 0.12 
Right-lead – Between hands 0.15 0.12 
Right-lead – Right hand -0.01 -0.03 
Right-lead – Left hand -0.08 -0.10 
Left-lead – Between hands -0.09 -0.08 
Left-lead – Right hand -0.04 -0.07 
Left-lead – Left hand 0.19 0.20 
Right tapping 0.12 0.05 
Left tapping 0.34* 0.37** 
*p<0.05 **p<0.01 

EHI Categorical Analysis. Alternative analyses were conducted with handedness as a 

categorical variable. In regard to EHI, the strong-handed participants were assessed by 

combining the consistent right handers and consistent left handers. Similarly, the weak-handed 

participants were assessed by combining the inconsistent left handers and inconsistent right-

handers.  

It was hypothesized that participants with strong hand dominance would not display a 

bimanual advantage and perform with greater temporal variability on the bimanual synchronized 

condition compared to the unimanual and out-of-phase conditions. The means and standard 

deviations for each experimental condition for the strong-handed participants are presented in 

Table 7. For the strong-handed group (n=31), one-way ANOVA results revealed significant 

variation between the experimental conditions for performance between hands (F(2,90) = 39.84, p 

< 0.001), in the right hand (F(3,120)=4.81, p < 0.01), and in the left hand (F(3,120) = 3.11, p < 0.05). 

Post hoc comparisons using the LSD test revealed the bimanual in-phase and out-of-phase 



HANDEDNESS AND BIMANUAL MOTOR COORDINATION 44 
	
  

conditions differed significantly (p ≤ 0.001) in regard to the between hands difference, with the 

out-of-phase conditions having greater temporal variability than the bimanual in-phase condition 

(See Table 8). This result is inconsistent with the proposed hypothesis, as strong-handed 

individuals were expected to perform more variably on the bimanual in-phase condition. For 

right hand performance, post hoc comparisons revealed the bimanual in-phase condition differed 

significantly with the right-lead out-of-phase condition (p < 0.05) and the unimanual right 

condition (p<0.01), with the right-lead out-of-phase and unimanual right conditions having 

greater temporal variability than the bimanual in-phase condition. Also, in the right hand 

performance, post hoc comparisons revealed the left-lead out-of-phase condition differed 

significantly with the right-lead out-of-phase condition (p <0.05) and the unimanual right 

condition (p < 0.01), with the right-lead out-of-phase and unimanual right conditions having 

greater temporal variability than the left-lead out-of-phase condition. For the left hand 

performance, post hoc comparisons revealed the unimanual left condition differed significantly 

than the bimanual in-phase (p<0.01) and right-lead out-of-phase (p<0.05) conditions, with the 

unimanual left condition having greater temporal variability than the bimanual in-phase and 

right-lead out-of-phase conditions. Overall, these results revealed that the bimanual synchronized 

condition did not result in the greatest amount of variability. The bimanual advantage was 

present within the strong-handed participants for both right and left hand performance, which is 

inconsistent with the proposed hypothesis.  
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Table 7 

Descriptive Statistics of Temporal Variability (ms.) for Strong-Handed Participants (EHI) 
 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

9.72 6.97 79.74 34.68 74.68 29.56 

Left-Lead Out-
of-Phase 

38.60 12.28 102.07 61.52 79.43 56.95 

Right-Lead 
Out-of-Phase 

42.89 23.68 83.72 49.55 106.57 52.60 

Unimanual   113.63 51.15 115.45 58.70 
 

Table 8 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Strong-Handed 
Participants (EHI) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 28.88 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase 33.17 0.000** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 4.29 0.291 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 4.75 0.714 
Bimanual In-phase Right-Lead Out-of-Phase 31.89 0.015* 
Bimanual In-phase Unimanual Right 40.77 0.002** 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 27.14 0.038* 
Left-Lead Out-of-Phase Unimanual Right 36.02 0.006** 
Right-Lead Out-of-Phase Unimanual Right 8.88 0.493 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 22.33 0.082 
Bimanual In-phase Right-Lead Out-of-Phase 3.98 0.755 
Bimanual In-phase Unimanual Left 33.89 0.009** 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 18.35 0.152 
Left-Lead Out-of-Phase Unimanual Left 11.56 0.366 
Right-Lead Out-of-Phase Unimanual Left 29.91 0.020* 
*p<0.05 **p<0.01 
  

 It was hypothesized that weak-handed participants would perform with greater temporal 

variability on the unimanual and out-of-phase conditions compared to the bimanual synchronized 

condition displaying a strong bimanual advantage. The means and standard deviations for each 
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experimental condition for the weak-handed participants (n=25) are presented in Table 9. For the 

weak handed group, one-way ANOVA results revealed significant variation between the 

experimental conditions for performance between hands, (F(2,72)=42.49, p<0.001). Post hoc 

comparisons using the LSD test revealed the bimanual in-phase and out-of-phase conditions 

differed significantly (p ≤0.001) in regards to the between hands difference, with the out-of-

phase conditions having greater temporal variability than the bimanual synchronized condition 

(See Table 10). These results are consistent with the proposed hypothesis. One-way ANOVA 

results revealed no significant variation between the experimental conditions for performance in 

the right hand (F(3,96)=1.69, p=0.17) or the left hand (F(3,96)=1.299, p=0.28). These results suggest 

the bimanual advantage was not present in the weak-handed group of participants for both the 

right and left hand performance, which is inconsistent with the proposed hypothesis.  

Table 9 

Descriptive Statistics of Temporal Variability (ms.) for Weak Handed Groups (EHI) 
 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

11.37 6.71 110.86 71.07 85.40 49.34 

Left-Lead Out-
of-Phase 

43.94 16.89 111.80 56.81 89.65 44.63 

Right-Lead 
Out-of-Phase 

40.26 15.22 85.94 53.74 106.51 47.14 

Unimanual   119.44 71.77 111.13 51.73 
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Table 10 

Post Hoc (LSD) Analysis of Variability between Experimental Conditions for Weak 
Handed/Ambidextrous Participants (EHI) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase -32.57 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase -28.90 0.000** 
Right Lead Out-of-Phase Left-Lead Out-of-Phase 3.68 0.345 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase -4.25 0.756 
Bimanual In-phase Right-Lead Out-of-Phase -21.11 0.125 
Bimanual In-phase Unimanual Right -25.73 0.063 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase -16.86 0.220 
Left-Lead Out-of-Phase Unimanual Right -21.48 0.119 
Right-Lead Out-of-Phase Unimanual Right -4.62 0.736 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase -0.94 0.959 
Bimanual In-phase Right-Lead Out-of-Phase 24.92 0.171 
Bimanual In-phase Unimanual Left -8.57 0.636 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 25.85 0.156 
Left-Lead Out-of-Phase Unimanual Left -7.64 0.673 
Right-Lead Out-of-Phase Unimanual Left -33.49 0.067 
*p<0.05 **p<0.01 
 
 Due to the above results, distribution of the data, and empirical curiosity, strong right 

handers and strong left handers were assessed separately utilizing one-way ANOVAs. As 

previously mentioned, it was hypothesized that strong-handed individuals would perform with 

greater temporal variability on the bimanual synchronized condition than the unimanual and out-

of-phase conditions and would not display a strong bimanual advantage. The means and standard 

deviations for each experimental condition for the strong right-handed participants (n=23) are 

presented in Table 11. For the strong right-handed group, one-way ANOVA results revealed 

significant variation between the experimental conditions for performance between hands 

(F(2,66)=25.89, p<0.001), in the right hand (F(3,88)=3.27, p<0.05), and in the left hand (F(3,88)=4.26, 

p<0.01). Post hoc comparisons using the LSD test revealed the bimanual in-phase and out-of-

phase conditions differed significantly (p≤0.001) in regards to the between hands difference, 
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with the out-of-phase conditions having greater temporal variability than the bimanual in-phase 

condition (See Table 12). For right hand performance, post hoc comparisons revealed the 

unimanual right condition differed significantly with the bimanual in-phase (p<0.01) and left-

lead out-of-phase (p<0.05) conditions, with the unimanual condition having greater temporal 

variability than the bimanual in-phase and left-lead out-of-phase conditions. For the left hand 

performance, post hoc comparisons revealed the unimanual left condition differed significantly 

than the bimanual in-phase (p<0.01) and right-lead out-of-phase (p<0.01) conditions, with the 

unimanual left condition having greater temporal variability than the bimanual in-phase and 

right-lead out-of-phase conditions. These results suggest that the bimanual advantage was 

present in both right and left hand performance for strong right handers, which, again, is 

inconsistent with the proposed hypothesis. 

Table 11 

Descriptive Statistics of Temporal Variability (ms.) for Strong Right-Handed Group (EHI) 
 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

9.95 7.54 80.23 33.41 76.80 30.30 

Left-Lead Out-
of-Phase 

37.23 12.13 110.12 67.60 81.97 63.14 

Right-Lead 
Out-of-Phase 

44.16 25.84 84.43 53.91 105.00 56.30 

Unimanual   128.11 48.89 119.84 57.73 
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Table 12 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Strong Right 
Handed Participants (EHI) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 27.28 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase 34.21 0.000** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 6.92 0.358 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 5.17 0.744 
Bimanual In-phase Right-Lead Out-of-Phase 28.20 0.077 
Bimanual In-phase Unimanual Right 43.04 0.008** 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 23.03 0.147 
Left-Lead Out-of-Phase Unimanual Right 37.87 0.018* 
Right-Lead Out-of-Phase Unimanual Right 14.84 0.349 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 29.89 0.056 
Bimanual In-phase Right-Lead Out-of-Phase 4.20 0.786 
Bimanual In-phase Unimanual Left 47.88 0.003** 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 25.69 0.100 
Left-Lead Out-of-Phase Unimanual Left 17.99 0.247 
Right-Lead Out-of-Phase Unimanual Left 43.68 0.006** 
*p<0.05 **p<0.01 
 

 Strong left-handed participants (n=8) were also assessed and their means and standard 

deviations are presented in Table 13. For the strong left handed group, one-way ANOVA results 

revealed significant variation between the experimental conditions for between hands 

performance, F(2,21)=17.31, p≤0.001. Post hoc comparisons using the LSD test revealed the 

bimanual in-phase and out-of-phase conditions differed significantly (p≤0.001) in regards to the 

between hands difference, with the out-of-phase conditions having greater temporal variability 

than the bimanual in-phase condition (See Table 14). One-way ANOVA results revealed no 

significant variation between the experimental conditions for performance in the right hand 

(F(3,28)=0.11,p=0.96) and the left hand (F(3,28)=1.84,p=0.16).  
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Table 13 

Descriptive Statistics of Temporal Variability (ms.) for Strong Left-Handed Group (EHI) 
 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual 9.06 5.37 78.34 40.55 68.59 28.31 
Left-Lead Out-
of-Phase 

42.55 12.62 78.93 32.20 72.14 35.87 

Right-Lead 
Out-of-Phase 

39.25 16.85 81.68 37.19 111.10 43.17 

Unimanual   72.00 32.16 102.84 63.64 
 

Table 14 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Strong Left-
Handed Participants (EHI) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left Lead Out-of-Phase 33.48 0.000 
Bimanual In-phase Right Lead Out-of-Phase 30.19 0.000 
Right-Lead Out-of-Phase Left Lead Out-of-Phase 3.29 0.860 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 3.55 0.875 
Bimanual In-phase Right-Lead Out-of-Phase 42.51 0.068 
Bimanual In-phase Unimanual Right 34.25 0.137 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 38.96 0.092 
Left-Lead Out-of-Phase Unimanual Right 30.70 0.181 
Right-Lead Out-of-Phase Unimanual Right 8.26 0.715 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 0.59 0.974 
Bimanual In-phase Right-Lead Out-of-Phase 3.34 0.853 
Bimanual In-phase Unimanual Left 6.33 0.726 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 2.75 0.879 
Left-Lead Out-of-Phase Unimanual Left 6.92 0.701 
Right-Lead Out-of-Phase Unimanual Left 9.67 0.592 
*p<0.05 **p<0.01 
 

All together, these results revealed similarities between the strong left-handed group and 

the weak-handed group. Both groups revealed no significant variations across experimental 

conditions when considering right or left hand performance. Furthermore, no significant 

variations were observed between the unimanual and bimanual in-phase conditions for the right 
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or left hand in either the strong left-handed and weak-handed groups, indicating there was no 

bimanual advantage present. On the other hand, the results revealed the strong right handers had 

a different pattern of performance. For instance, there was a significant difference in 

performance between the bimanual in-phase and unimanual conditions for both right and left 

hand performance, supporting the presence of a bimanual advantage. Due to the apparent 

differences between the strong right-handed group and the weak- and left-handed participants, a 

follow up analysis was conducted assessing the relationship between tapping performance and 

handedness, with handedness categorized into two groups: strong right handers and strong 

left/weak handers.  

A two-way ANOVA was conducted to evaluate the interaction effect on tapping 

variability between tapping conditions and handedness, with handed groups (strong right handers 

vs. combined strong left/weak handers) as a between-subject factor and conditions as a within-

subject factor. Results revealed no significant interaction for performance between hands (F(1.73, 

93.35)=2.17, p =0.13), in the right hand (F(2.84,153.06)=0.40, p=0.74), and in the left hand 

(F(2.59,139.92)=2.16, p=0.10). The main effect for tapping was significant for performance between 

hands (F(1.73,93.35)=99.95, p ≤	
 0.001), in the right hand (F(2.83,153.06)=9.30, p ≤	
 0.001), and in the 

left hand (F(2.59,139.92)=6.11, p < 0.01). Due to these significant main effects, a one-way ANOVA 

was conducted to assess performance across the tapping conditions within the combined group of 

strong left- and weak-handed participants. 

The means and standard deviations for each experimental condition for the combined 

handedness group (n=33) are presented in Table 15. For the combined group, one-way ANOVA 

results revealed significant variation between the experimental conditions for performance 

between hands (F(2,96)=60.88,p≤0.001) and in the right hand (F(3,128)=3.148,p<0.05). Post hoc 



HANDEDNESS AND BIMANUAL MOTOR COORDINATION 52 
	
  

comparisons using the LSD test revealed the bimanual in-phase and out-of-phase conditions 

differed significantly (p≤0.001) in regards to the between hands difference, with the out-of-phase 

conditions having greater temporal variability than the bimanual in-phase condition (See Table 

16). For right hand performance, post hoc comparisons revealed the bimanual in-phase condition 

differed significantly with the right-lead out-of-phase (p<0.05) and the unimanual right (p<0.05) 

conditions, with the right-lead out-of-phase and unimanual right conditions having greater 

temporal variability than the bimanual in-phase condition. Also, the left-lead out-of-phase and 

unimanual right conditions differed significantly (p<0.05) in regards to the right hand 

performance, with the unimanual right condition having greater temporal variability than the left-

lead out-of-phase condition. One-way ANOVA results revealed no significant variation between 

the experimental conditions for performance in the left hand, F(3,128)=3.15, p=0.41.These results 

suggest that the bimanual advantage was present for the combined group in right hand 

performance, but it was not present in the left hand performance.  

Table 15 

Descriptive Statistics of Temporal Variability (ms.) for the Combined Strong Left-Handed and 
Weak Handed Participants (EHI) 

 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual 
In-phase 

10.81 6.41 102.98 65.94 81.32 45.33 

Left-Lead Out-
of-Phase 

43.60 15.78 103.83 53.40 85.40 42.82 

Right-Lead 
Out-of-Phase 

40.02 15.36 84.91 49.72 107.62 45.59 

Unimanual   107.94 67.20 109.12 53.90 
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Table 16 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Strong Left-
Handed and Weak-Handed Participants (EHI) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 32.80 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase 29.21 0.000** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 3.59 0.274 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 4.08 0.725 
Bimanual In-phase Right-Lead Out-of-Phase 26.30 0.025* 
Bimanual In-phase Unimanual Right 27.80 0.018* 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 22.22 0.058 
Left-Lead Out-of-Phase Unimanual Right 23.72 0.043* 
Right-Lead Out-of-Phase Unimanual Right 1.50 0.897 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 0.85 0.954 
Bimanual In-phase Right-Lead Out-of-Phase 15.07 0.220 
Bimanual In-phase Unimanual Left 4.96 0.736 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 18.92 0.199 
Left-Lead Out-of-Phase Unimanual Left 4.11 0.780 
Right-Lead Out-of-Phase Unimanual Left 23.03 0.119 
*p<0.05 **p<0.01 
 

The Handedness Inventory Categorical Analysis. Similar analyses were performed 

using The Handedness Inventory to group three handed groups. The strong-handed participants 

were assessed first by combining the right-handed and left-handed groups. The weak-handed 

participants were assessed by analyzing the mixed handedness group. 

 It was hypothesized that participants with strong hand dominance would not display a 

bimanual advantage and perform with less temporal variability on the unimanual and out-of-

phase conditions compared to the bimanual synchronized condition. The means and standard 

deviations for each experimental condition for the strong handed group (n=37) are presented in 

Table 17. For the strong handed participants, one-way ANOVA results revealed significant 

variation between the experimental conditions for performance between hands (F(2,108)=68.01, 
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p≤0.001) and in the right hand (F(3,144)=4.88, p <0.01) similar to EHI results. Performance within 

the right hand, according to The Handedness Inventory, differed slightly from right hand 

performance when using EHI. For instance, the right-lead out-of-phase condition was not 

significantly more variable than the left-lead out-of-phase and bimanual in-phase conditions as 

was seen with the EHI (See Table 18). For left hand performance, one-way ANOVA results 

revealed no significant variation between the experimental groups (F(3,144)=2.50, p =0.06), and 

this relationship was significant for the EHI. Also, in The Handedness Inventory, post hoc 

comparisons of left hand performance revealed the right-lead out-of-phase and unimanual right 

conditions differed significantly with the unimanual right condition having greater temporal 

variability (See Table 18). This relationship was not significant in the EHI. Overall, these results 

were consistent with those for the EHI in that the bimanual advantage was present for right hand 

performance and the out-of-phase condition resulted in greater variability for between hands 

performance than the bimanual in-phase condition; however, these results are not consistent with 

the proposed hypothesis for strong-handed individuals. Notably, The Handedness Inventory did 

not reveal a bimanual advantage in left hand performance as was seen with the EHI.  

Table 17 

Descriptive Statistics of Temporal Variability (ms.) for the Strong-Handed Participants (The 
Handedness Inventory) 

 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

11.14 7.79 89.25 58.82 79.30 45.25 

Left-Lead Out-
of-Phase 

42.16 15.39 101.00 49.76 80.91 36.01 

Right-Lead 
Out-of-Phase 

40.06 13.89 81.80 45.61 99.87 40.30 

Unimanual   113.91 60.53 113.67 56.59 
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Table 18 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Strong-Handed 
Participants (The Handedness Inventory) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 31.02 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase 28.93 0.000** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 2.10 0.761 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 1.60 0.879 
Bimanual In-phase Right-Lead Out-of-Phase 20.57 0.052 
Bimanual In-phase Unimanual Right 34.36 0.001** 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 18.97 0.073 
Left-Lead Out-of-Phase Unimanual Right 32.76 0.002** 
Right-Lead Out-of-Phase Unimanual Right 13.80 0.191 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 11.74 0.351 
Bimanual In-phase Right-Lead Out-of-Phase 7.46 0.554 
Bimanual In-phase Unimanual Left 24.66 0.052 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 19.20 0.129 
Left-Lead Out-of-Phase Unimanual Left 12.92 0.306 
Right-Lead Out-of-Phase Unimanual Left 32.12 0.012* 
*p<0.05 **p<0.01 
 

 It was also hypothesized that participants with weak handedness would perform with 

greater variability on the unimanual and out-of-phase conditions compared to the bimanual in-

phase condition, which would support the presence of a bimanual advantage. The means and 

standard deviations for each experimental condition for the weak-handed participants, or mixed 

handed group, (n=19) are presented in Table 19. For the weak-handed participants, one-way 

ANOVA results revealed significant variation between the experimental groups for between 

hand performance, F(2,54)=20.14, p≤0.001. Similar to the EHI, post hoc comparisons revealed the 

out-of-phase conditions resulted in greater variability than the bimanual in-phase condition (See 

Table 20). Also similar to the EHI, one-way ANOVA results revealed no significant variation 
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between the experimental groups for performance in the left hand (F(3,72)=0.095, p=0.42) and in 

the right hand (F(3,72)=2.05, p=0.12). Unlike the EHI, post hoc comparisons revealed the right-

lead out-of-phase condition was significantly more variable than the bimanual in-phase condition 

(p<0.05) in right hand performance (See Table 20). Altogether, these results suggest that the 

bimanual advantage was not present for the weak handed participants in either left or right hand 

performance, which is inconsistent with the proposed hypothesis. These results are consistent 

with those seen in weak-handed participants according to the EHI. 

Table 19 

Descriptive Statistics of Temporal Variability (ms.) for the Weak (Mixed) Handed Participants 
(The Handedness Inventory) 

 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

9.13 4.33 102.17 49.47 79.78 26.38 

Left-Lead Out-
of-Phase 

38.69 13.09 116.96 74.52 90.00 74.10 

Right-Lead 
Out-of-Phase 

44.94 29.08 90.39 61.11 119.54 63.68 

Unimanual   120.72 62.41 113.24 54.05 
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Table 20 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Weak (Mixed) 
Handed Participants (The Handedness Inventory) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 29.57 0.000 
Bimanual In-phase Right-Lead Out-of-Phase 35.81 0.000 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 6.24 0.305 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 10.22 0.585 
Bimanual In-phase Right-Lead Out-of-Phase 39.76 0.036 
Bimanual In-phase Unimanual Right 33.46 0.076 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 29.84 0.117 
Left-Lead Out-of-Phase Unimanual Right 23.81 0.216 
Right-Lead Out-of-Phase Unimanual Right 6.30 0.736 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 14.80 0.468 
Bimanual In-phase Right-Lead Out-of-Phase 11.78 0.563 
Bimanual In-phase Unimanual Left 15.55 0.363 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 26.57 0.194 
Left-Lead Out-of-Phase Unimanual Left 3.75 0.854 
Right-Lead Out-of-Phase Unimanual Left 30.33 0.139 
*p<0.05 **p<0.01 
 
 Similar to the EHI, strong right handers and strong left handers were assessed separately 

for The Handedness Inventory. The means and standard deviations for each experimental 

condition for the right handed group (n=25) are presented in Table 21. For the right-handed 

group, one-way ANOVA results revealed significant variation between the experimental groups 

for performance between hands (F(2,72)=42.37, p≤0.001), in the right hand (F(3,96)=3.46, 

p<0.05) and in the left hand (F(3,96)=4.35, p<0.01). Post hoc comparisons for The Handedness 

Inventory revealed identical results as seen with the EHI (See Table 22). However, in left hand 

performance, the left-lead out-of-phase condition was significantly more variable (p <0.05) 

compared to the right-lead out-of-phase condition (See Table 22). This significant relationship 

was not observed in the EHI. Overall, these results suggest that the bimanual advantage was 
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indeed present for the strong right-handed group in both left and right hand performance, which 

was also observed in strong right-handed participants according to the EHI. 

Table 21 

Descriptive Statistics of Temporal Variability (ms.) for the Right-Handed Participants (The 
Handedness Inventory) 

 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

11.59 8.98 96.59 66.71 86.02 51.62 

Left-Lead Out-
of-Phase 

41.27 15.48 109.16 55.46 75.65 29.78 

Right-Lead 
Out-of-Phase 

40.65 13.74 74.21 35.64 94.84 41.23 

Unimanual   131.00 64.50 115.00 53.04 
 

Table 22 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Right-Handed 
Participants (The Handedness Inventory) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 29.68 0.000 
Bimanual In-phase Right-Lead Out-of-Phase 29.06 0.000 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 0.62 0.868 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 10.37 0.416 
Bimanual In-phase Right-Lead Out-of-Phase 8.82 0.489 
Bimanual In-phase Unimanual Right 28.98 0.025 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 19.18 0.134 
Left-Lead Out-of-Phase Unimanual Right 39.35 0.003 
Right-Lead Out-of-Phase Unimanual Right 20.17 0.116 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 12.57 0.437 
Bimanual In-phase Right-Lead Out-of-Phase 22.38 0.168 
Bimanual In-phase Unimanual Left 34.41 0.035 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 34.95 0.032 
Left-Lead Out-of-Phase Unimanual Left 21.84 0.178 
Right-Lead Out-of-Phase Unimanual Left 56.79 0.001 
*p<0.05 **p<0.01 
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The means and standard deviations for the left-handed group (n=12) are presented in 

Table 22. For the left-handed group, one-way ANOVA results revealed significant variation 

between the experimental groups for between hand performance, F(2,33)=24.62, p≤0.001, as was 

seen with the EHI. Also, as was also seen in the EHI, one-way ANOVA results revealed no 

significant variation between the experimental groups for performance in the left hand 

(F(3,44)=0.761, p =0.52) and in the right hand (F(3,44)=2.61, p=0.06); however, variation in the 

right hand approached significance. Notably, the bimanual in-phase condition was significantly 

less variable compared to the right-lead out-of-phase condition (p<0.05) and the unimanual right 

condition (p<0.05), which was not observed in the EHI. Overall, these results suggest that the 

bimanual advantage was present during right hand performance for the left-handed participants, 

but not during left hand performance. These results are partially in support of the proposed 

hypothesis. Inconsistent with the EHI, the bimanual advantage was not supported in the right or 

left hand performance.  

Table 23 

Descriptive Statistics of Temporal Variability (ms.) for the Left-Handed Participants (The 
Handedness Inventory) 

 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

10.20 4.61 73.96 35.14 65.31 23.92 

Left-Lead Out-
of-Phase 

44.03 15.71 83.98 30.44 91.85 46.00 

Right-Lead 
Out-of-Phase 

38.84 14.74 97.60 60.27 110.36 37.79 

Unimanual   78.32 29.49 110.89 65.79 
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Table 24 

Post Hoc (LSD) Analysis of Variability between Experimental Conditions for Left-Handed 
Participants (The Handedness Inventory) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 33.83 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase 28.64 0.000** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 5.19 0.582 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 26.54 0.164 
Bimanual In-phase Right-Lead Out-of-Phase 45.05 0.021* 
Bimanual In-phase Unimanual Right 45.58 0.019* 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 18.51 0.329 
Left-Lead Out-of-Phase Unimanual Right 19.04 0.316 
Right-Lead Out-of-Phase Unimanual Right 0.53 0.978 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 10.02 0.551 
Bimanual In-phase Right-Lead Out-of-Phase 23.64 0.163 
Bimanual In-phase Unimanual Left 4.36 0.795 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 13.62 0.418 
Left-Lead Out-of-Phase Unimanual Left 5.66 0.736 
Right-Lead Out-of-Phase Unimanual Left 19.28 0.254 
*p<0.05 **p<0.01 
 

 Similar to the EHI, similarities were observed between the strong left-handed group and 

the mixed-handed group according to The Handedness Inventory. For instance, both the left- and 

mixed-handed groups did not display the bimanual advantage in left hand performance; however, 

the left-handed participants did display the bimanual advantage in the right hand performance, 

which was not observed in the mixed-handed group. Due to an observed similarity between the 

left-handed group and the mixed-handed group, these two groups were combined. Follow up 

analysis was conducted assessing the relationship between tapping performance and handedness, 

with handedness categorized into two groups: right handers and mixed/left handers. 

 As was seen with the EHI, a repeated measures two-way ANOVA revealed no significant 

interaction in performance between hands (F(1.72,92.90)=2.14, p=0.13), in the right hand (F(2.86, 
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154.38)=1.23, p=0.30), or in the left hand (F(2.66,143.73)=1.67, p=0.18); however, the main effect for 

tapping was significant for performance between hands (F(1.72,92.90)=102.36, p≤0.001), in the right 

hand (F(2.86,154.38)=9.33, p≤0.001), and in the left hand (F(2.66, 143.73)=4.68, p≤0.001). Similar to the 

EHI, a follow up one-way ANOVA was conducted on the combined group of left- and mixed-

handed participants.  

The means and standard deviations for each experimental condition for the combined 

group (n=31) are presented in Table 25. For the combined group, one-way ANOVA results 

revealed significant variation between the experimental groups for performance between hands 

(F(2,90)=39.31,p≤0.001) and in the right hand (F(2,120)=4.29, p<0.01), which was also observed 

with the EHI. Post hoc comparisons for The Handedness Inventory were identical to results for 

the EHI, except the unimanual right condition was not significantly more variable than the left-

lead out-of-phase condition in right hand performance as was seen with the EHI (See Table 26).  

Also, as was seen with the EHI, one-way ANOVA results for The Handedness Inventory 

revealed no significant variation between the experimental conditions for performance in the left 

hand (F(3,120)=0.476, p=0.699). Overall, these results suggest that the bimanual advantage was 

present in right hand performance for the combined group, but was not present in left hand 

performance. These results partially support the proposed hypothesis, as the unimanual condition 

was not the most variable in both left and right hand performance. Also, these results were also 

seen in the EHI combined group of strong left- and weak-handed participants. 
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Table 25 

Descriptive Statistics of Temporal Variability (ms.) for the Left-Handed and Mixed-Handed 
Participants (The Handedness Inventory) 

 Between Hands Left Hand Right Hand 
 m SD m SD m SD 

Bimanual In-
phase 

9.54 4.39 91.25 46.00 74.18 26.05 

Left-Lead Out-
of-Phase 

40.76 14.15 104.20 62.76 90.72 63.80 

Right-Lead 
Out-of-Phase 

42.58 24.42 93.18 59.88 115.99 54.57 

Unimanual   104.30 55.65 112.33 57.80 
 

Table 26 

Post Hoc (LSD) Analysis of Variability Between Experimental Conditions for Left-Handed and 
Mixed-Handed Participants (The Handedness Inventory) 

Condition Mean Difference Significance 
Between Hands    
Bimanual In-phase Left-Lead Out-of-Phase 31.22 0.000** 
Bimanual In-phase Right-Lead Out-of-Phase 33.03 0.000** 
Right-Lead Out-of-Phase Left-Lead Out-of-Phase 1.82 0.901 
Right Hand    
Bimanual In-phase Left-Lead Out-of-Phase 16.54 0.218 
Bimanual In-phase Right-Lead Out-of-Phase 41.81 0.002* 
Bimanual In-phase Unimanual Right 38.15 0.005* 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 25.27 0.061 
Left-Lead Out-of-Phase Unimanual Right 21.61 0.108 
Right-Lead Out-of-Phase Unimanual Right 3.66 0.785 
Left Hand    
Bimanual In-phase Left-Lead Out-of-Phase 12.95 0.368 
Bimanual In-phase Right-Lead Out-of-Phase 1.93 0.893 
Bimanual In-phase Unimanual Left 13.06 0.364 
Left-Lead Out-of-Phase Right-Lead Out-of-Phase 11.02 0.444 
Left-Lead Out-of-Phase Unimanual Left 0.11 0.994 
Right-Lead Out-of-Phase Unimanual Left 11.13 0.439 
*p<0.05 **p<0.01 
 
Coordination and Musical/Athletic Experience 

Hypothesis 3a and 3b. It was hypothesized that participants with previous musical or 

athletic experience greater than one year would display less temporal variability across all 
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experimental conditions. An independent samples t-test was conducted to compare temporal 

variability in the experimental tapping conditions in the athletic and no athletic groups. 

Independent samples t-tests revealed no significant difference between participants with and 

without athletic experience for temporal variability across conditions between hands (see Table 

27), in the right hand (see Table 28), and in the left hand (see Table 29). These results suggest 

that athletic experience did not influence the participants’ performance on the tapping conditions.  

Table 27 

t-test Results Comparing Athletic and No Athletic Experience on Temporal Variability in 
Tapping Between Hands 
 Mean and SD by Condition   
 Athletic No Athletic t sig 
Bimanual In-
phase 

10.40 
(7.03) 

10.70 
(6.30) 

-0.131 0.896 

Left-lead Out-of-
phase 

39.96 
(13.96) 

45.20 
(17.16) 

-1.067 0.291 

Right-Lead Out-
of-phase 

39.18 
(11.85) 

52.08 
(38.49) 

-1.098 0.297 

Note. Standard deviations appear in parentheses below means.  

Table 28 
 
t-test Results Comparing Athletic and No Athletic Experience on Temporal Variability in 
Tapping for the Right Hand 
 Mean and SD by Condition   
 Athletic No Athletic t sig 
Bimanual In-
phase 

81.82 
(42.66) 

69.82 
(22.16) 

0.900 0.372 

Left-lead Out-of-
phase 

79.89 
(38.82) 

100.76 
(87.41) 

-0.773 0.456 

Right-Lead Out-
of-phase 

104.56 
(43.05) 

114.67 
(73.40) 

-0.439 0.669 

Unimanual Right 109.22 
(52.84) 

131.13 
(63.84) 

-1.184 0.242 

Note. Standard deviations appear in parentheses below means.  

 

 



HANDEDNESS AND BIMANUAL MOTOR COORDINATION 64 
	
  

Table 29 

t-test Results Comparing Athletic and No Athletic Experience on Temporal Variability in 
Tapping for the Left Hand 
 Mean and SD by Condition   
 Athletic No Athletic t sig 
Bimanual In-
phase 

92.67 
(54.72) 

97.57 
(62.23) 

-0.259 0.797 

Left-lead Out-of-
phase 

98.93 
(42.22) 

137.04 
(100.51) 

-1.232 0.244 

Right-Lead Out-
of-phase 

86.10 
(47.04) 

79.03 
(67.24) 

0.409 0.684 

Unimanual Left 111.91 
(51.40) 

133.85 
(90.61) 

-1.076 0.287 

Note. Standard deviations appear in parentheses below means.  

 Independent samples t-test were also conducted to compare temporal variability across all 

experimental conditions between participants with and without musical experience. The t-test 

results revealed no significant difference between participants with and without musical 

experience for temporal variability across conditions between hands (see Table 30), in the right 

hand (see Table 31), and in the left hand (see Table 32). These results suggest that previous 

musical experience did not influence participants’ performance on the tapping conditions. 

Table 30 

t-test Results Comparing Musical and No Musical Experience on Temporal Variability in 
Tapping Between Hands 
 Mean and SD by Condition   
 Music No Music t sig 
Bimanual In-
phase 

10.57 
(7.85) 

10.29 
(5.06) 

0.147 0.884 

Left-lead Out-of-
phase 

39.69 
(14.14) 

43.00 
(15.46) 

-0.822 0.415 

Right-Lead Out-
of-phase 

42.58 
(13.85) 

40.38 
(27.67) 

0.395 0.694 

Note. Standard deviations appear in parentheses below means.  
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Table 31 
 
t-test Results Comparing Participants Musical and No Musical Experience on Temporal 
Variability in Tapping for the Right Hand 
 Mean and SD by Condition   
 Music No Music t Sig 
Bimanual In-
phase 

82.49 
(43.48) 

74.55 
(33.14) 

0.707 0.483 

Left-lead Out-of-
phase 

75.55 
(36.34) 

97.04 
(67.90) 

-1.540 0.129 

Right-Lead Out-
of-phase 

106.71 
(47.11) 

106.29 
(54.81) 

0.030 0.976 

Unimanual Right 111.49 
(46.93) 

116.66 
(67.19) 

-0.339 0.736 

Note. Standard deviations appear in parentheses below means.  

Table 32 

t-test Results Comparing Musical and No Musical Experience on Temporal Variability in 
Tapping for the Left Hand 
 Mean and SD by Condition   
 Music No Music t sig 
Bimanual In-
phase 

99.20 
(64.61) 

85.03 
(37.97) 

0.928 0.357 

Left-lead Out-of-
phase 

110.94 
(54.71) 

99.41 
(66.10) 

0.710 0.481 

Right-Lead Out-
of-phase 

83.65 
(40.53) 

86.35 
(65.00) 

-0.192 0.849 

Unimanual Left 121.60 
(61.50) 

107.92 
(59.88) 

0.821 0.415 

Note. Standard deviations appear in parentheses below means.  
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Discussion 

 The present study sought out to further understand the relationship between hand 

dominance and bimanual motor coordination in a young adult community sample. As previously 

hypothesized, the synchronized, in-phase coordination of two hands results in less temporal 

variability when tapping compared to unimanual tapping, which has been referred to as a 

bimanual advantage (Helmuth & Ivry, 1996). Also, hand dominance has been shown to have 

varying effects on bimanual performance (Fagard & Corroyer, 2012; Kourtis et al., 2014; 

Ponton, 1987). However, studies examining this relationship are limited. The present study 

aimed at expanding upon the existing body of literature examining the existence of a bimanual 

advantage and potential factors influencing bimanual coordination, including hand dominance 

and musical/athletic experience. 

Hypothesis 1a 

	
   It was hypothesized that individuals would perform with less efficiency, or greater 

temporal variability, on the unimanual tapping conditions compared to the bimanual in-phase 

condition, which would further support the presence of a bimanual advantage. Data from the 

present study supported this hypothesis as evidenced by significantly greater temporal variability 

in the unimanual conditions compared to the bimanual in-phase conditions for both right and left 

hand performance. These results are consistent with previous findings suggesting the presence of 

a bimanual advantage (Helmuth & Ivry, 1996). Moreover, this evidence suggests that using two 

fingers, or effectors, results in greater efficiency compared to tapping with one finger.  

Hypothesis 1b 

In regard to out-of-phase performance, it was hypothesized that the out-of-phase 

conditions would result in the greatest amount of variability compared to the unimanual and 
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bimanual in-phase conditions. In the present study, mixed findings were found for this 

hypothesis. For between hands performance, the results were consistent with previous findings 

(Bangert et al., 2010) and the proposed hypothesis, such that both the right-lead out-of-phase and 

left-lead out-of-phase conditions were significantly more variable compared to the bimanual in-

phase condition. Moreover, consistency in performance between hands was more variable when 

a more complex phase pattern was incorporated.  

 Within right and left hand performance, the findings of the present study were 

inconsistent and did not clearly mirror previous findings (Serrien, 2008). For instance, the right-

lead out-of-phase condition performed significantly more variably compared to the bimanual in-

phase condition, as expected; however, there were no other significant differences between the 

conditions as predicted. Additionally, within left hand performance, there was only one 

significant relationship in the out-of-phase conditions with significantly more variability in the 

right-lead out-of-phase condition compared to the unimanual left condition. Despite these two 

significant relationships, it appears that the proposed hypothesis was not consistently supported 

in right and left hand performance.  

 The inconsistent findings in the present study may be attributed to the difference in 

experimental methods between the present study and previous research. For instance, 

participants in Serrien’s (2008) study completed two finger combinations for each experimental 

condition, whereas the present study asked participants to use one finger from each hand. 

Additionally, Serrien’s (2008) study measured temporal accuracy, while the present study 

measured temporal consistency. Also, the previous study conducted by Serrien (2008) was not 

interested in the relationship between hand dominance and bimanual coordination; therefore, 

only right-handed participants were incorporated in the study. The fact that the present study 
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included a heterogeneous sample based on hand dominance may have contributed to the non-

significant findings (see discussion for hypothesis 2).  

 Additionally, the lack of significant findings in the present study may be indicative of the 

fact that there is no real significant difference in tapping variability between the out-of-phase 

condition with either the bimanual in-phase or unimanual conditions. The bimanual advantage 

appears to be present (i.e., significant difference between the unimanual and bimanual in-phase 

conditions); however, it is possible that the out-of-phase condition is truly not significantly 

different from the other tapping conditions. Moreover, the present study demonstrated that out-

of-phase tapping resulted in the greatest amount of variability when considering between hands 

performance, but this relationship was not consistently demonstrated when assessing 

performance independently in either the right or left hand. This finding is slightly surprising 

because it has been consistently demonstrated in previous studies that out-of-phase bimanual 

tapping results in greater variability compared to less complex patterns of tapping, such as 

bimanual in-phase and unimanual tapping (Bangert et al., 2010; Serrien, 2008).  

Hypothesis 2 

It was predicted that temporal variability across the experiential conditions would be 

significantly related to hand dominance. The original regression analysis in the present study 

assessing handedness as a continuous variable revealed no significant differences between hand 

dominance, as reported by the EHI and The Handedness Inventory, and tapping variability across 

the experimental conditions. As suggested by Annett (1976), handedness should not be 

categorized as a dichotomous variable, but rather as subgroups across a distribution. Therefore, 

follow-up analyses were conducted to assess the relationship between temporal variability and 

hand dominance as a categorical variable with subgroups across the distribution of handedness. 
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Hypothesis 2a.	
  It was hypothesized that individuals with strong hand dominance would 

perform with greater efficiency (i.e., less variability) on the unimanual and out-of-phase 

conditions and more variability on the bimanual in-phase condition (i.e., limited bimanual 

advantage) compared to those with weak hand dominance. The results of the present study 

revealed that participants with strong hand dominance performed more variably on the out-of-

phase conditions compared to the bimanual in-phase condition when considering between hands 

performance. Additionally, participants with strong hand dominance performed more variably on 

the unimanual condition compared to the bimanual in-phase condition when considering 

performance in both the left and right hands. Notably, this difference was only significant in the 

right hand for The Handedness Inventory. Altogether, these results do not support the proposed 

hypothesis and are inconsistent with some of the findings in the neuroscience literature. It has 

been reported that individuals with weak hand dominance have smaller corpus callosums (Luders 

et al., 2010), and small callosal size has been shown to be related to poor performance on out-of-

phase conditions (Flint et al., 2011a). Thus, individuals with strong hand dominance should show 

better performance in the out-of-phase and unimanual conditions. However, the current results 

showed the opposite pattern: stronger laterality is actually associated with poorer performance on 

unimanual and out-of-phase bimanual tasks. It appears that the bimanual advantage is 

significantly present within strong-handed individuals. 

It is interesting that some of the findings in the previous behavior studies were actually 

consistent with the current finding. It has been found that participants with strong hand 

dominance performed more variably on unimanual tasks (Ponton, 1987) and complex out-of-

phase tasks (Kourtis et al., 2014) compared to those with inconsistent or weak hand dominance. 

The discrepancy between these studies and the findings from the previous neuroscience literature 
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may be related to measures of the corpus callosum. It has been shown that larger corpus 

callosums correlate with more variability in performance on motor tasks requiring more 

interhemispheric communication, such as the out-of-phase bimanual and unimanual tasks (Flint 

et al., 2011a) and that individuals with strong hand dominance have larger corpus callosums 

(Luders et al., 2010). The present study, as well as those behavioral studies, did not incorporate 

neuroimaging to assess callosal size; therefore, it is possible that callosal size did not 

significantly differ between the strong- and weak-handed participants in the present study. 

Moreover, a lack of difference between callosal size may explain why the results of the present 

study did not support the proposed hypothesis. Additionally, Fling and colleagues (2011a) study 

only included strongly right-handed participants. Thus, it is possible that the relationship 

between callosal size and performance on motor tasks requiring more interhemispheric 

communication would differ for strong left handers, which were included in the present study.  

	
   Hypothesis 2b.	
  Alternatively, it was proposed that weak-handed participants would 

perform with greater variability on the unimanual and out-of-phase conditions displaying a 

bimanual advantage. Results of the present study partially supported the proposed hypothesis in 

regards to predictions of out-of-phase performance as weak handed participants had significantly 

greater variability on the out-of-phase conditions compared to the bimanual in-phase condition in 

regards to between hands performance. In contrast, there was no significant difference between 

the out-of-phase and in-phase conditions within right or left hand performance for the weak-

handed participants as reported by the EHI. Analysis using the Handedness Inventory revealed 

one significant relationship with performance in the right-lead out-of-phase condition being 

significantly more variable compared to the bimanual in-phase condition within right hand 

performance. Overall, the results partially support the proposed hypothesis in regards to weak-



HANDEDNESS AND BIMANUAL MOTOR COORDINATION 71 
	
  

handed participants and out-of-phase performance (i.e., out-of-phase performance more variable 

than bimanual in-phase in between hands comparison); however, this pattern was not consistent 

across the results, including performance in the left and right hand. 

Lack of significant difference between the unimanual conditions and the bimanual in-

phase condition (either left or right hand performance using both the EHI and The Handedness 

Inventory) indicated that the bimanual advantage was not necessarily present for the weak-

handed participants. This is an interesting result because Luders and colleagues (2010) have 

suggested that out-of-phase and unimanual bimanual coordination required high demands of 

interhemispheric communication compared to the in-phase bimanual movements. The poor 

performance in these two types of tasks was partially due to the small callosal size in the weak 

handers. The current data suggest that the demands of interhemipheric communication for out-

of-phase bimanual coordination may be even higher than that for the unimanual movements. 

Therefore, differences between the unimanual and the bimanual in-phase condition, or a 

bimanual advantage, were not observed, but the results of the present study did reveal a 

significant difference between the bimanual out-of-phase and in-phase conditions. 

There are a few possible explanations for why the bimanual advantage was not clearly 

observed in the weak-handed group. For instance, researchers have displayed that individuals 

with weak hand dominance perform equally fast on both asymmetrical and symmetrical tasks, 

whereas strong-handed individuals display differences in performance across conditions (Kourtis 

et al., 2014). Although this study did not assess unimanual performance, these results may 

explain the results of the present study. Therefore, it may be possible that equal lateralization 

across hemispheres may be advantageous when completing motor tasks, resulting in a truly 

insignificant difference in performance between tapping conditions. However, in the present, the 
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advantage of equal lateralization, or weak handedness, does not result in a bimanual advantage 

and, instead, suggests bimanual in-phase performance results in less variability than unimanual 

performance.  

Another possible explanation, as previously mentioned, is that experimental factors (i.e., 

sampling, experimental paradigm) may account for the non-significant finding. For instance, the 

proposed hypothesis was dependent upon research findings of callosal size (Flint et al., 2011a), 

which only assessed performance and corpos callosum sizes in individuals with strong right hand 

dominance. Therefore, it is possible that the results would have differed if weak-handed and left-

handed participants were assessed. Also, it is possible that strong-handed and weak-handed 

participants had similar corpus callosum sizes, which was not assessed in the study.  

Follow up analysis in the present study revealed unique characteristics and similarities 

across the strong- and weak-handedness groups. Evaluation of the strong right-handed 

participants revealed the presence of a bimanual advantage, as was seen in the analysis of the 

strong-handed participants. In contrast, the strong left-handed participants displayed a different 

pattern of performance. The strong left-handed participants performed similar to the weak-

handed participants in that they did not display a bimanual advantage or significant differences 

across performance in either the right or left hand. Furthermore, the combined group of strong 

left-handed and weak-handed participants revealed that the bimanual advantage was present for 

performance in the right hand, but was not present in left hand performance. Overall, these 

results suggest that strong left hemisphere lateralization results in a more pronounced bimanual 

advantage compared to those with strong right hemisphere or weak lateralization. 
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Hypothesis 3 

	
   It was hypothesized that participants with reported musical and athletic experience 

greater than one year would perform less variably on all experimental tapping conditions 

compared to those with no musical or athletic experience. Results from the present study were 

inconsistent with the proposed hypothesis. Moreover, participants with musical and athletic 

experience did not perform significantly more or less variable compared to those without 

previous musical and athletic experience.  

 The non-significant findings in the present study may be attributable to several 

experimental factors. For instance, participants were asked to indicate whether they had musical 

or athletic experience beyond one year in the form of a yes or no question. Additionally, some 

participants reported more specific details regarding their experience, such as type of instrument 

or sport, length of experience, and age at onset of training. However, the questions on the 

demographic questionnaire did not specifically prompt participants to provide more detailed 

information regarding their experience; therefore, this information was not available for all 

participants. Previous research suggests that neural correlates may differ not only between 

musicians and non-musicians but also by the individual’s specific training, such as conductor or 

pianist (Munte et al., 2003). Additionally, previous research suggests practicing musical 

instruments increase white matter plasticity, specifically when training began earlier in life 

(Bengtsson et al., 2005). Moreover, these factors may account for variability observed between 

musicians or athletes and those with no experience.  

 Additionally, to knowledge, assessment of bimanual motor performance in musicians and 

athletes has not been previously studied. Therefore, the present hypothesis may be a novel 

experimental question. The current data did not support that the musical or athletic training could 
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significantly impact the bimanual coordination. However, future studies are needed to justify the 

current findings. Previous studies have suggested that differences in neural activity between 

novice and expert athletes diminish when participants completed novel motor tasks (Haufler et 

al., 2000). Thus, it is also possible that the present study resulted in insignificant findings due to 

the fact that participants completed a novel task, tapping, instead of a task consistent with their 

previous experience, such as playing a musical instrument or completing an athletic routine.  
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Limitations 

 Several limitations are evident in the present study. A primary limitation of the present 

study was that the distribution of the sample included an unbalanced representation across the 

continuum of handedness. Unfortunately, an equal distribution of weak and strong right- and 

left-handed individuals does not exist in the general population; therefore, sampling across the 

continuum of handedness can be challenging (Kourtis et al., 2014). In the current study, more 

efforts were put forward towards recruiting left handers in order to maximize the possibility of 

covering a reasonable range of the handedness continuum. As a result, the percentage of the left 

handers in the present study (see Table 1) is much higher than that in the population (~10%).  

Another potential limitation of the present study was the tapping paradigm used to 

measure bimanual coordination. Tapping has been consistently shown to be an efficient measure 

of bimanual coordination as it utilizes minimal activation of muscles and allows researchers to 

easily assess different degrees of interhemispheric interaction by using varying phase patterns 

(Fling et al., 2011a). However, there are a variety of formats of tapping, which include minor 

differences in the requested actions (i.e., cued tapping or repetitive tapping), cues (i.e., visual or 

auditory), complexity of coordinated phases (i.e., lag time in out-of-phase conditions), and 

digital involvement (i.e., bidigital or unidigital). Therefore, the discrepancy of the current results 

with previous literature needs to be interpreted with caution. The inability to collect 

neuroimaging data limits further interpretation of some of the conflicting results.  

 In addition, there were several notable weaknesses regarding the examination of musical 

and athletic experience. As previously mentioned, the limited format for assessing musical and 

athletic experience may have affected the findings of the present study. Moreover, the present 

study did not thoroughly evaluate the musical and athletic performance of participants by asking 
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questions regarding length, onset, and type of experience. Nonetheless, assessing the relationship 

between musical and athletic experience on bimanual coordination appears to be a novel 

question. Despite the lack of significant findings, the present study was an initial attempt at 

understanding this relationship and resulted in innovative ideas for future research in this area, 

which will be further discussed in the following section.  
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Future Directions 

Even though the present study generally supported the presence of a bimanual advantage 

in a tapping paradigm, there are several empirical questions that can be further assessed in future 

research. For instance, the present study revealed that performance in coordinated conditions 

significantly varies for individuals with strong, or consistent, hand dominance; however, a 

similar pattern was not observed in individuals with weak handedness. Moreover, it appears that 

individuals with strong left-handedness behave similar to those with weak handedness. It is 

important for future research to continue to assess the patterns of performance on coordinated 

tasks across the entire continuum of handedness. Additionally, the underlying processes of these 

patterns of behavior also need to be further assessed. Neuroimaging may be a vital instrument in 

gaining a more in-depth understanding of the processes underlying handedness consistency and 

bimanual coordination.  

 In addition, the present study did not find significant differences in tapping variability 

between those with musical or athletic experience and those with no previous experience; 

however, future research may incorporate alternative methods and samples to further understand 

this relationship. For instance, a more thorough assessment of musical and athletic experience 

could allow researchers to more accurately distinguish potential differences in performance. 

Moreover, participants could be prompted to provide information regarding the type, length, and 

onset of their experience. Even further, future researchers may also be interested in assessing 

baseline bimanual coordination performance before participants participate in music or athletic 

training. This would allow researchers to further understand whether musical or athletic 

experience enhances bimanual coordination in everyday tasks or that efficient bimanual 

coordination is an innate characteristic.   
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 Additionally, future research assessing bimanual coordination may be beneficial to 

further understanding various clinical populations. For instance, as previously mentioned, motor 

deficits are commonly observed in neurodevelopmental disorders, such as developmental 

coordination disorder and autism spectrum disorder (APA, 2013). Additionally, it has been 

shown that performance on bimanual tasks can be diagnostically useful in psychiatric 

populations (Gorynia et al., 2003). Overall, a more in depth understanding of bimanual 

coordination in relation to hand dominance and the underlying processes of coordination may 

enhance the conceptualization and treatment of various psychological disorders with motor 

impairments.  
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Conclusion 

 The present study used a tapping paradigm to examine bimanual coordination and a 

potential bimanual advantage. Also, this study examined the effects of hand dominance and 

musical/athletic experience on coordination. Across the entire sample, the bimanual advantage 

was evident; however, the out-of-phase conditions were not significantly more variable as 

predicted. Despite overall evidence of the bimanual advantage, this pattern was not consistently 

displayed across the handedness continuum. Moreover, strong-handed participants displayed a 

strong bimanual advantage, whereas weak-handed participants displayed a weak or absent 

bimanual advantage. Several other studies have found varying performance in bimanual 

coordination across the continuum of hand dominance; however, the present study expands upon 

the existing literature and understanding of this relationship. Additionally, no significant 

differences were observed between those with and without musical/athletic experience. In the 

future, studies assessing coordination using a tapping paradigm should also incorporate 

neuroimaging methods to further understand the underlying processes of bimanual coordination 

and the effects of handedness on coordination. Relevant studies are needed as they will 

contribute to further understanding motor deficits commonly observed in a wide range of clinical 

populations. Overall, the results of the present study will be relevant for future studies concerned 

with bimanual coordination and the underlying processes of motor movement. 
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APPENDIX B 

Informed Consent 

Project Title: The Effects of Handedness on Bimanual Motor Coordination 

Investigator: Kaitlin Oswald, Graduate Student, Department of Psychology, Eastern Michigan University  

Purpose of the Study: The overall objective of this study is to gain a better understanding of motor 
behavior in individuals with varying consistencies in hand preference. This proposal will investigate the 
mechanism that underlies motor coordination and the role hand dominance plays in coordinated tasks in 
adults. This work will advance our understanding of motor control and brain/behavior relationships. 

Procedure:  A research assistant will explain the study to you, answer any questions you may have, and 
witness your signature to this consent form.  

You have been invited to participate in this study because you are at least 18 years old. No 
gender, ethnic or racial backgrounds will be excluded from this research.  Participants will be excluded if 
they have any medical or mental conditions, such as head injuries, Attention-Deficit Hyperactivity 
Disorder, Learning Disability, Developmental Coordination Disorder, or Autism Spectrum Disorder.  

 You will first be asked to complete a questionnaire about your demographic information and 
general health history. Sample questions include, history of a head injury or bone fractures, and years of 
experience playing a musical instrument. Additionally, you will complete two brief questionnaires 
assessing your hand preference in various daily tasks, such as writing or opening a box. These questions 
and assessments will help us determine whether participants are representative of their respective age 
groups and characterize the motor status of our sample.  

 After completing screening tests, participants will be asked to perform tapping tasks using a 
computer keyboard while sitting in a chair viewing a computer monitor.  When using the button press 
device, participants will be asekd to press correpondeding buttons in resonse to the placement of visual 
stimuli (shapes) on the computer screen. This computerized task will take approximately 20 minutes to 
complete.  

 Additionally, participants will be asked to perform a manipulative dexterity task using their hands 
which requires participants to place pegs into a pegboard while sitting in a chair. Participants will be 
asked to complete this task with both their dominant and non-dominant hand. This task takes 
approximately 5 minutes to complete. 

 You will be given a duplicate copy of this informed consent after you sign this form. The 
approximate total time to complete the study is 30 minutes. 

Confidentiality:  Only a code number will identify your data.  The results will be stored separately from 
the consent form, which includes your name and any other identifying information.  At no time will your 
name be associated with your responses.   

 All information will be kept in locked file cabinets of the study investigator.    

Expected Risks: The risks of participating in this study are minimal. All measures are noninvasive. 
Possible risks may include fatigue and tedium. The researchers will try to minimize these risks by 
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allowing you to stop testing either temporarily or permanently if you are unable or do not wish to 
continue.  There will be breaks during testing to allow you to rest.   

Expected Benefits: You will not directly benefit from participating in this  
study; however, your participation will be beneficial for us to gain a better understanding of motor 
coordination. 

Voluntary Participation:  Participation in this study is voluntary.  You may choose not to participate.  If 
you do decide to participate, you can change your mind at any time and withdraw from the study without 
experiencing negative consequences. Refusing to participate will not involve penalty or loss of benefits. 

Use of Research Results:  Results will be presented in aggregate form only.  No names or individually 
identifying information will be revealed.  Results may be presented at research meetings and conferences 
and in scientific publications. 

Future Questions:  If you have any questions concerning your participation in this study now or in the 
future, you can contact Kaitlin Oswald at koswald@emich.edu or Jin Bo, Ph.D. at jbo@emich.edu. 

 This research protocol and informed consent document has been reviewed and approved by the 
Eastern Michigan University Human Subjects Review Committee for use from 9/5/2014 to 9/14/2015. If 
you have questions about the approval process, please contact UHSRC administrative co-chair at 
human.subjects@emich.edu or call 734-487-0042. 

Consent to Participate:  I have read or had read to me all of the above information about this research 
study, including the research procedures, possible risks, side effects, and the likelihood of any benefit to 
me.  The content and meaning of this information has been explained and I understand.  All my questions, 
at this time, have been answered.  I hereby consent and do voluntarily offer to follow the study 
requirements and take part in the study.   

All participants must be 18 years or older. By signing this consent form, you are confirming that you are 
at least 18 years old. 

PRINT NAME: _________________________________________________________          

Signatures:  

  

 ______________________________________ __________________________           

Participant or Parents/guardians (your signature)     Date  

 

  

______________________________________ ___________________________           

Investigator or Specified Designee      Date  
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APPENDIX C 
Questionnaire 

Participant ID: ________________________ Date: ___________________ 

Please	
  make	
  the	
  appropriate	
  selections.	
  If	
  you	
  do	
  not	
  feel	
  comfortable	
  answering	
  a	
  question,	
  please	
  just	
  

continue	
  on	
  to	
  the	
  next	
  question.	
  

1. Age: ________________________ 

2. Sex: 

� Female � Male 

3. Ethnicity: 

� African American � Asian  

� Caucasian � Other (Please Specify): _____________________ 

� Hispanic  

4. Do you take any medications regularly?  

� Yes � No � If yes, please specify: ___________________ 

5. Do you have any impairments in vision? 

� Yes � No � If yes, please specify if corrected 
(glasses/contacts): ___________________ 

6. Have you ever had any head injuries?  

� Yes � No � If yes, please specify: ___________________ 

7. Do you have any bone fractures?  

� Yes � No � If yes, please specify: ___________________ 

8. Have you ever been diagnosed with any of the following: Attention-Deficit Hyperactivity 

Disorder (ADHD), Learning Disability (LD), Developmental Coordination Disorder (DCD), 

or Autism Spectrum Disorder (ASD)?  

� Yes � No 

9. Do you have experience playing an instrument for one year or more? 

� Yes � No � If yes, please specify: ___________________ 

10. Do you have experience playing a sport for one year or more? 

� Yes � No � If yes, please specify: ___________________ 

 

 



HANDEDNESS AND BIMANUAL MOTOR COORDINATION 95 
	
  

APPENDIX D 

Edinburgh Handedness Inventory 

	
   Please	
  indicate	
  your	
  preferences	
  in	
  the	
  use	
  of	
  hands	
  in	
  the	
  following	
  activities	
  by	
  putting	
  +	
  in	
  the	
  
appropriate	
  column.	
  	
  Where	
  the	
  preference	
  is	
  so	
  strong	
  that	
  you	
  would	
  never	
  try	
  to	
  use	
  the	
  other	
  hand	
  
unless	
  absolutely	
  forces	
  to,	
  put	
  ++.	
  	
  If	
  any	
  case	
  you	
  are	
  really	
  indifferent	
  put	
  +	
  in	
  both	
  columns.	
  

	
   Some	
  of	
  the	
  activities	
  require	
  both	
  hands.	
  	
  In	
  these	
  cases	
  the	
  part	
  of	
  the	
  task,	
  or	
  object,	
  for	
  
which	
  hand	
  preference	
  is	
  wanted	
  is	
  indicated	
  in	
  brackets.	
  

	
   Please	
  try	
  to	
  answer	
  all	
  the	
  questions,	
  and	
  only	
  leave	
  a	
  blank	
  if	
  you	
  have	
  no	
  experience	
  at	
  all	
  of	
  
the	
  object	
  or	
  task.	
  

	
   Left	
   Right	
  

1.	
  Writing	
   	
   	
  

2.	
  Drawing	
   	
   	
  

3.	
  	
  Throwing	
   	
   	
  

4.	
  	
  Scissors	
   	
   	
  

5.	
  	
  Toothbrush	
   	
   	
  

6.	
  	
  Knife	
  (without	
  fork)	
   	
   	
  

7.	
  	
  Spoon	
   	
   	
  

8.	
  	
  Broom	
  (upper	
  hand)	
   	
   	
  

9.	
  	
  Striking	
  Match	
  (match)	
   	
   	
  

10.	
  	
  Opening	
  box	
  (lid)	
   	
   	
  

	
   	
   	
  

i.	
  	
  Which	
  foot	
  do	
  you	
  prefer	
  to	
  kick	
  with?	
   	
   	
  

ii.	
  	
  Which	
  eye	
  do	
  you	
  use	
  when	
  using	
  only	
  one?	
   	
   	
  

	
  

L.Q.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Leave	
  the	
  spaces	
  blank	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DECLE	
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APPENDIX E 

The Handedness Inventory 
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APPENDIX F 

Tapping Paradigm Record Form 

Participant ID: ________________________  

Date: ___________________ Time: ___________________ 

	
  
Participant	
  Mood	
  Notes:	
  ________________________________________________________	
  
_____________________________________________________________________________________
______________________________________________________________________.	
  

Additional	
  Notes:	
  ______________________________________________________________	
  
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
__________________________________________________	
  

Grooved	
  Pegboard	
  Test	
  

Dominant	
  Hand	
  	
   	
   	
  Time	
  	
   	
   	
  Drops	
  	
   	
  	
  Pegs	
  Placed	
   	
   	
  Total	
  	
   	
   	
  

Non-­‐Dom.	
  Hand	
  	
   	
   	
  Time	
  	
   	
   	
  Drops	
  	
   	
  	
  Pegs	
  Placed	
   	
   	
  Total	
  	
   	
   	
  

Tapping	
  Paradigm	
  Order:	
  	
  

1.__________________________________________________________________	
  
2.____________________________________________________________________________	
  
3.	
  ____________________________________________________________________________	
  
4.____________________________________________________________________________	
  
5.____________________________________________________________________________	
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APPENDIX G 

Tapping Paradigm Screen Displays 
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