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Abstract

The number theoretic conjecture we examine in this paper originates when trying to construct

a characterizable generating set for the complex cobordism polynomial ring. To date there is

no efficient, universal method for characterizing such a generating set. Wilfong conjectures

that smooth projective toric varieties can act as these generators [7]. Toric varieties are related

to polytopes by a bijective correspondence. Studying the combinatorial structure of these

polytopes is much more manageable than studying properties of toric varieties directly. This

gives rise to the number theoretic conjecture considered here. A proof of this number

theoretic conjecture would in turn prove the conjecture that smooth projective toric varieties

provide a generating set for the complex cobordism polynomial ring. Here, we do not provide

a complete proof of the number theoretic conjecture, rather we give more evidence to the

conjecture, building on prior work of Wilfong and Parry.
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Characterizing the Properties of Specific Binomial Coefficients in Congruence Relations

1. Introduction: Wilfong’s Conjecture in Context

The number theoretic conjecture we examine in this paper originates in the topological

work of Andrew Wilfong [7]. In Wilfong’s work on toric varieties, the question arises of

constructing a characterizable generating set for the complex cobordism polynomial ring. To

date there is no efficient, universal method for characterizing such a generating set. It is a

primary conjecture in the work of Andrew Wilfong that a smooth projective toric variety for

each generator is possible [7]. An algebraic variety is the solution set of a system of

polynomial equations. A toric variety is an algebraic variety that has an added structure

coming from a torus action. For more details refer to [1, 3]. A nice feature of toric varieties is

that many of their topological properties stand in bijective correspondence to the

combinatorial structure of the polytopes, which is more easily studied than the topological

properties of toric varieties. One topological property of toric varieties that can be computed

in terms of the combinatorics of polytopes includes determining whether or not toric varieties

are polynomial generators of the complex cobordism ring, which leads to the number theory

conjecture examined in this thesis.

To better understand the complex cobordism polynomial ring, we formally introduce

cobordism.

Definition 1. (Additionally, refer to [5].) Two smooth compact n-dimensional manifoldsM1

andM2 are cobordant if their disjoint unionM1 ⨿M2 forms the boundary of an

n+ 1-dimensional smooth manifold.

A cobordism of real manifolds consists of two n-dimensional manifolds connected by a

smooth manifold of dimension n+ 1. We can visualize a cobordism using the following

example. Consider the three circles defining the waist and the ankles of a pair of pants. The

circles are disjoint. Taken together, these circles define the boundary of the surface of the

pants. The material connecting these one-dimensional circles is the manifold defined by the

cobordism, the two-dimensional surface of the pants.



The cobordism relation has many useful properties. One of its primary properties is that

cobordism is an equivalence relation. A second key property is that the set of equivalence

classes of cobordant manifolds forms a ring under disjoint union and cross product. The

complex cobordism ring, denoted ΩU
∗ , has a definition similar to cobordism of real manifolds.

We modify the definition for complex cobordism since complex cobordism of two real

n-dimensional manifolds would similarly require that a complex manifold of real dimension

n+ 1 could be constructed with the manifolds of dimension n defining the boundaries of that

manifold. However, complex spaces are always of even dimension, so the construction of a

cobordism meeting this definition is not possible. Instead, we define a complex cobordism to

be a cobordism of stably complex manifolds. This is a weakening of the condition for a

manifold to be complex. There are odd-dimensional stably complex manifolds, so this

construction provides a framework in which to define complex cobordism [6, 7].

With the definition of cobordism in mind, we introduce the following theorem, which

shows the algebraic structure of the complex cobordism ring.

Theorem 2 (Milnor, Novikov). ΩU
∗
∼= Z [α1, α2, · · · ] is a polynomial ring with one generator

αn in each positive even dimension 2n.

Smooth projective toric variety polynomial generators for ΩU
∗ have been constructed in

all dimensions except for those in which n is even and not one less than a prime power.

Wilfong has also verified the conjecture using computational software for the case when n is

even and not one less than a prime power for all n through 100 000. The case when n is even

and not one less than a prime power is the subject of this thesis. If the number theory

conjecture is true, it will prove that there are polynomial generators of ΩU
∗ in these remaining

dimensions. Refer to [7] for details. We now turn to the number theory conjecture studied in

this paper.

Here we introduce the expression Rn (ε) = n− ε+ (−1)ε
(
n−1
ε

)
, which arises in

Wilfong’s work on the combinatorics of polytopes. The number n in this expression relates to

the complex dimension of the manifolds connected by the complex cobordism. Our goal is to
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identify choices for ε, for which the quantity Rn (ε) and the number n+ 1 are relatively

prime. We state this formally in the following conjecture.

Conjecture 3. (See [7] for background.) For a given even n, n not one less than a power of a

prime, the equation

gcd(Rn (ε) , n+ 1) = 1 (1.1)

has a solution ε, where Rn (ε) is defined as Rn (ε) = n− ε+ (−1)ε
(
n−1
ε

)
, and ε is in the

range {2, · · · , n− 1}.

We will refer to this conjecture as conjecture 1.1 throughout the rest of this paper.

Conjecture 1.1 is the primary focus of this paper. We build on previous results from

Wilfong and Parry to provide more evidence that the conjecture is true. As the conjecture

states, we need a choice for ε making Rn (ε) and the number n+ 1 relatively prime. Since

n+ 1 is not a prime power, it has at least two primes in its prime factorization. To verify that

Rn (ε) and n+ 1 are relatively prime for a given choice for ε, we can verify that each prime

dividing n+ 1 does not divide the quantity Rn (ε). To do this, we verify that the range

{2, · · · , n− 1} contains at least one choice for ε satisfying the condition Rn (ε) ̸≡ 0 mod pi

for each prime pi dividing n+ 1.

We note that n ≡ −1 mod pi for any prime pi dividing n+ 1. We can rewrite the

expression Rn (ε) in a congruence with a prime number modulus pi, where the prime pi

divides n+ 1, as

Rn(ε) = n− ε+ (−1)ε
(
n− 1

ε

)
≡ −1− ε+ (−1)ε

(
n− 1

ε

)
mod pi

= − (ε+ 1) + (−1)ε
(
n− 1

ε

)
mod pi.

Using the previous congruence, we see that our task of proving conjecture 1.1 is identical to

showing that we can guarantee at least one choice for ε in the range {2, · · · , n− 1} satisfying

3



the condition

(−1)ε
(
n− 1

ε

)
̸≡ ε+ 1 mod pi (1.2)

for each prime pi dividing n+ 1.

If a choice for ε satisfies condition 1.2 for the number n and for each prime pi dividing

n+ 1, then that choice for ε satisfies conjecture 1.1 for the number n as defined. This follows,

since if the quantity Rn (ε) is not divisible by any prime pi dividing n+ 1, then the quantity

Rn (ε) and the number n+ 1 are relatively prime. For that reason, we can eliminate particular

choices for ε by showing that the given choice does not satisfy condition 1.2 for at least one

prime pi dividing n+ 1. If the expression Rn (ε) is divisible by any of the primes dividing

n+ 1, it follows immediately that this choice for ε also fails to satisfy conjecture 1.1 for the

number n. This is the primary method that we use to establish that a given choice for ε

satisfies conjecture 1.1 for the number n. Though the general prime factorization of such a

number can be given by n+ 1 = pm1
1 · pm2

2 · · · pmt
t , there are many hurdles to tackling this

form of the problem directly. We begin instead with special forms of the problem and build in

complexity.

In Sections 2 and 3, we restrict ourselves to the case that the primes dividing n+ 1 are

squarefree. The propositions in Section 2, incorporating Lucas’ Theorem, help us to identify

choices for ε satisfying condition 1.2 for individual primes dividing the number n+ 1. The

propositions show intervals and specific positions where no suitable choices for ε exist and

intervals in which choices for ε necessarily satisfy condition 1.2 for a given prime pi dividing

the number n+ 1. The long-range goal is to characterize the choices for ε completely and to

show that there is always a choice for ε satisfying conjecture 1.1 for any even n that is not one

less than a prime power. Section 3 analyzes some simplified versions of the conjecture.

Theorem 18 of Section 3 analyzes numbers n+ 1 that are products of two squarefree primes.

The proof that choices for ε exist satisfying conjecture 1.1 for an even number n, where n+ 1

is of this form, was shown by Wilfong in unpublished notes. We also analyze numbers n+ 1

with multiple squarefree prime factors. These numbers look like n+ 1 = p1 · p2 · · · pt where

each pi is prime.

4



Our goal in Sections 4, 5, 6, and 7 is to gradually extend our analysis to even n where

n+ 1 has the generic prime factorization n+ 1 = pm1
1 pm2

2 · · · pmt
t . In Section 5 we extend

Theorem 18 to the general case allowing numbers n+ 1 that are products of two

nonsquarefree primes. These numbers look like n+ 1 = pm1
1 · pm2

2 where p1 and p2 are both

prime. This theorem was proved originally by Walter Parry [4], but we offer an alternative

proof here using methods developed in this paper. The new propositions proved in this paper

provide extensions to previous results and verify the conjecture in new cases, especially where

factors in the prime factorization of n+ 1 are not squarefree. We restrict ourselves to some

partial cases and do not offer a general proof of conjecture 1.1.

Walter Parry has examined conjecture 1.1 and achieved some sophisticated

generalizations. In his paper [4], Parry reformulates conjecture 1.1 to gain more leverage on

the problem. New, equivalent conditions arise on a choice for ε to satisfy conjecture 1.1 for a

number n. His reformulation reveals more of the underlying structure relating the number n

and the corresponding choices for ε. One of his major results is intuitively labeled The Big

Exponents Theorem. In that theorem, the use of continued fractions leads to a separation of

the original conjecture into two cases. He is able to show that for any finite set S of odd

primes, S = {p1, p2, · · · , pt}, there exists a positive integer r such that if each prime is raised

to at least the power of r, then there is a guaranteed choice for ε satisfying conjecture 1.1 for

the number n. That is, if for each number in {r1, r2, · · · , rt} we have ri > r, this theorem

guarantees a choice for ε satisfying conjecture 1.1 for the number n where

n+ 1 = pr11 pr22 · · · prtt . Currently, this requires that the number n be very large, since each

prime power must be very large. What makes his work exciting is that it addresses the general

case directly and can potentially be refined to improve the bound on the prime powers

dividing n+ 1. If the exponents ri can be reduced, the approach could eventually provide a

general proof to the conjecture. It is possible that a general proof will require more advanced

methods, like those used in the work of Parry.

Evaluating the binomial coefficient
(
n−1
ε

)
in condition 1.2 is the main challenge to

identifying choices for ε satisfying conjecture 1.1 for the number n. Lucas’ Theorem provides
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a way of rewriting a binomial coefficient
(
m
n

)
in a congruence with a prime number modulus

as a product of binomial coefficients taken from the pi-adic expansions of the integersm and

n. This rewriting strategy is a key component of the approach taken in this paper to prove

conjecture 1.1. We state and prove the theorem below.

Theorem 4 (Lucas’ Theorem). For nonnegative integers m and n and a prime p, the

following congruence relation holds:(
m

n

)
≡

k∏
i=0

(
mi

ni

)
mod p

where m and n are expressed in their base p expansions as

m = mkp
k +mk−1p

k−1 + · · ·+m1p+m0 and

n = nkp
k + nk−1p

k−1 + · · ·+ n1p+ n0.

Here, we use the convention that if m < n, then
(
m
n

)
= 0.

Proof. (This proof is attributed to Nathan Fine. See [2].) If p is prime and n is an integer

satisfying 1 ≤ n ≤ p− 1, then the numerator of the binomial coefficient(
p

n

)
=

p · (p− 1) · · · (p− n+ 1)

n · (n− 1) · · · 1

is divisible by p, but the denominator is not.

Clearly, p must divide
(
p
n

)
.We recall the identity (using ordinary generating functions)

(1 +X)p ≡ 1 +Xp mod p.

In fact, for every nonnegative integer i we have (by induction)

(1 +X)p
i

≡ 1 +Xpi mod p.

Recall thatm is a nonnegative integer and p is a prime. As before, we writem in its

base p expansion, yieldingm =
∑k

i=0mip
i for some nonnegative integers k andmi, in which

the bound 0 ≤ mi ≤ p− 1 holds for eachmi by the definition of p-adic expansion.

6



We can then write

m∑
n=0

(
m

n

)
Xn = (1 +X)m =

k∏
i=0

((1 +X)pi)
mi

≡
k∏

i=0

(
(1 +X)p

i
)mi

=
k∏

i=0

(
mi∑

ni=0

(
mi

ni

)
Xnip

i

)

≡
k∏

i=0

(
p−1∑
ni=0

(
mi

ni

)
Xnip

i

)
=

m∑
n=0

(
k∏

i=0

(
mi

ni

))
Xn mod p,

where in the final product the ni represent the coefficients of the p-adic expansion of n, which

is unique. Since the expansion of n is unique, the theorem is proved. �

Before moving to the propositions, we introduce a small lemma that will prove useful

for simplifying expressions resulting from the application of Lucas’ Theorem. In order to

apply Lucas’ Theorem, we often need to characterize the value of ε according to its pi-adic

expansion for the prime pi. We use the convention ε = b0 + b1pi + · · · where the nonnegative

integers {b0, b1, · · · } are less than pi. This convention of using b0 for the first coefficient in the

pi-adic expansion for ε motivates the choice of the integer b0 in the following lemma.

Lemma 5. For integer b0 bounded by 0 ≤ b0 < p, the binomial coefficient
(
p−2
b0

)
is equivalent

to (−1)b0 (b0 + 1) modulo the prime p.

Proof. We note that each of p− 2 and b0 is less than the prime p itself. Noting this, we can

rewrite the binomial coefficient
(
p−2
b0

)
modulo the prime p as

(
p− 2

b0

)
=

(p− 2)!

b0! (p− 2− b0)!

=
(p− 2) (p− 3) · · · (p− b0) (p− (b0 + 1)) (p− (b0 + 2))!

2 · 3 · · · b0 (p− (b0 + 2))!

≡ (−2) (−3) · · · (−b0) (− (b0 + 1))

2 · 3 · · · b0
mod p

≡ (−1)b0 (2) (3) · · · (b0) (b0 + 1)

2 · 3 · · · b0
mod p.

7



Since each factor 2, 3, · · · , b0 is less than p, we can associate factors in the numerator and

denominator and simplify as follows:(
p− 2

b0

)
≡ (−1)b0

(
2

2

)
·
(
3

3

)
· · ·
(
b0
b0

)
· (b0 + 1) mod p

≡ (−1)b0 (b0 + 1) mod p.

From the preceding, we have proved the identity(
p− 2

b0

)
≡ (−1)b0 (b0 + 1) mod p.

�

We can simplify the binomial coefficient
(
p−2
b0

)
modulo the prime p in this way

whenever the nonnegative integer b0 is also less than p.

8



2. Propositions from Wilfong

We give credit to Wilfong for the following propositions and lemmas, proved in

unpublished notes. The results of this section are used to prove the theorems of Section 3.

Some propositions identify particular choices for ε, as well as ranges containing choices for ε,

that can never satisfy conjecture 1.1 for an even number n not one less than a prime power.

See especially Propositions 6 and 9, Corollary 10, Lemma 12, and Corollary 13. Other results

establish ranges containing choices for ε that satisfy condition 1.2 for any prime pi dividing

n+ 1. See especially Proposition 11, Corollaries 14 and 15, Lemma 16, and Corollary 17.

Here, we initially restrict ourselves to the case n+1 = p1 · p2 · · · pt where n+1 is the product

of t distinct, squarefree primes. To standardize our method, we unfailingly adhere to the

convention p1 < p2 < · · · < pt .

As stated earlier, in order to utilize the notational convenience of Lucas’ Theorem to

evaluate choices for εmore efficiently, we often need to rewrite the number n− 1 in its pi-adic

expansion for a given prime pi dividing n+ 1. We write n+ 1 in its expanded pi-adic form as

n+ 1 = a1pi + a2p
2
i + · · · ,

where it is guaranteed that a1 ̸= 0, since pi | n+ 1, but p2i - n+ 1. Subtracting two, we can

write n− 1 in expanded pi-adic form as

n− 1 = (pi − 2) + (a1 − 1) pi + a2p
2
i + · · · .

From this expression, we can read off the pi-adic coefficients of n− 1 directly.

The following proposition shows that choices for ε that are too small can never satisfy

conjecture 1.1 for an even number n not one less than a prime power. Recall that n+ 1 is of

the form p1p2 · · · pt with the convention p1 < · · · < pt, and
(
a
b

)
≡ 0 mod pi, whenever a < b

for integers a and b.

9



Proposition 6. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. If ε ≡ −1 mod pi

for a given prime pi, that choice for ε does not satisfy condition 1.2 for the prime pi and the

number n.

Proof. For the prime pi dividing n+ 1, condition 1.2 requires that the statement

(−1)ε
(
n−1
ε

)
̸≡ ε+ 1 mod pi hold for a suitable choice for ε. We consider any choice for ε in

any suitable range. We can write ε in its expanded pi-adic form as

ε = (pi − 1) + b1pi + b2p
2
i + · · · where the integral coefficients {b1, b2, · · · } are in the range

0 ≤ b1, b2, · · · < pi. Applying Lucas’ Theorem to the binomial coefficient
(
n−1
ε

)
, we can write(

n− 1

ε

)
≡

(
pi − 2

pi − 1

)(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi

≡ 0 mod pi.

This holds since pi − 2 < pi − 1 and the value of the binomial coefficient
(
pi−2
pi−1

)
is equal to

zero by convention. It follows that

(−1)ε
(
n− 1

ε

)
≡ 0 ≡ −1 + 1 ≡ ε+ 1 mod pi.

For any prime pi dividing n+ 1 and any choice for ε, where ε ≡ −1 mod pi, that

choice for ε never satisfies condition 1.2 for the prime pi and the number n. �

The following corollary emphasizes the fact that any choice ε ≡ −1 mod pi not only

fails to satisfy condition 1.2 for a prime pi dividing n+ 1, but also fails to satisfy conjecture

1.1 for the number n.

Corollary 7. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. For any prime pi

dividing n+ 1, a choice ε ≡ −1 mod pi cannot satisfy conjecture 1.1 for the even number n.

The following proposition is especially useful to gain insight into the work of Walter

Parry. This result enables the construction of choices for ε satisfying condition 1.2 for

particular primes dividing the number n+ 1. This result is a crucial component of Parry’s Big

Exponents Theorem. The proposition also guarantees that a choice for ε that fails to satisfy
10



condition 1.2 for a particular prime pi dividing n+ 1 cannot have pi-adic coefficient b1 equal

to pi − 1 when b0 ̸= pi − 1. An example of this is seen in Lemma 16.

Proposition 8. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. For a prime pi

dividing n+ 1, any choice for ε with b1 = pi − 1, b0 ̸= pi − 1 and pi-adic expansion given by

ε = b0 + b1pi + b2p
2
i + · · · necessarily satisfies condition 1.2 for the prime pi dividing n+ 1.

Proof. In this case, by Lucas’ Theorem and the convention on binomial coefficients stated

there, we have (
n− 1

ε

)
≡

(
pi − 2

b0

)(
a1 − 1

pi − 1

)(
a2
b2

)
· · · mod pi

≡
(
pi − 2

b0

)
· (0) ·

(
a2
b2

)
· · · mod pi

≡ 0 mod pi.

This is true since a1 < pi immediately implies a1 − 1 < pi − 1. It follows that

(−1)ε
(
n− 1

ε

)
≡ 0 mod pi.

Proposition 6 requires that ε ̸≡ −1 mod pi, and since ε ≡ b0, we know that b0 ̸≡ −1

mod pi. It follows that

ε+ 1 ≡ b0 + 1 ̸≡ 0 mod pi.

Taken together we see that

(−1)ε
(
n− 1

ε

)
≡ 0 ̸≡ ε+ 1 mod pi.

Therefore, any choice for ε with b1 = pi − 1 always satisfies condition 1.2 for the prime

pi. �

The preceding proposition plays an integral role in Parry’s Big Exponents Theorem,

enabling the construction of choices for ε satisfying condition 1.2 for particular primes

dividing n+ 1.
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Proposition 9. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. For a prime pi

dividing n+ 1, any choice for ε in the range {2, · · · , pi − 2} never satisfies condition 1.2 for

the prime pi and the number n.

Proof. For any prime pi dividing n+ 1, the possible choices for ε, where ε < pi, are restricted

to the range {2, · · · , pi − 2} by the statement of conjecture 1.1 and Proposition 6. The pi-adic

expansion of any choice for ε in this range consists solely of a constant term since the prime pi

is larger than ε. Specifically, we have ε = b0 where b0 is a nonnegative integer less than

pi − 1. We wish to determine whether any choice for ε in this range satisfies condition 1.2 for

the prime pi. We apply Lucas’ Theorem and express the binomial coefficient
(
n−1
ε

)
as(

n− 1

ε

)
≡
(
pi − 2

b0

)(
a1 − 1

0

)(
a2
0

)(
a3
0

)
· · · ≡

(
pi − 2

b0

)
mod pi.

By Lemma 5 we can rewrite the binomial coefficient
(
pi−2
b0

)
as (−1)b0 (b0 + 1) mod pi.

We multiply by the factor (−1)ε on the left and right hand sides of the congruence above to

match the full expression in condition 1.2. We recall that b0 is identical with ε, and we write

(−1)ε
(
n− 1

ε

)
≡ (−1)ε

(
p− 2

b0

)
mod pi

≡ (−1)ε (−1)b0 (b0 + 1) ≡ (−1)ε (−1)ε (ε+ 1) mod pi

≡ ε+ 1 mod pi.

It follows from this that any choice for ε, where ε < pi, never satisfies condition 1.2 for

the prime pi and the number n. �

The following corollary follows directly by replacing the generic prime pi in the

previous proposition with the prime pt, the largest prime factor of n+ 1.

Corollary 10. Let n+ 1 = p1 · · · pt with the convention p1 < · · · < pt. No choice for ε less

than pt satisfies conjecture 1.1 for the even number n. That is, there is no choice for ε in the

range {2, · · · , pt − 1} satisfying conjecture 1.1 for the number n.
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In the following propositions and lemmas, we characterize ranges containing choices for

ε that always satisfy condition 1.2 for a prime pi dividing n+ 1. In order for a choice for ε to

satisfy conjecture 1.1 for the number n, it is necessary that that choice for ε satisfies condition

1.2 for each prime pi dividing n+ 1. It is therefore helpful to identify ranges containing

choices for ε satisfying condition 1.2 for individual primes dividing n+ 1. Once these ranges

are established for each individual prime, we know that choices for ε in the intersection of

these ranges–where these intervals overlap–satisfy conjecture 1.1 for the number n.

For a prime pi dividing n+ 1, Proposition 11 shows that all choices for ε in the range

{pi, · · · , 2pi − 2} satisfy condition 1.2 for the prime pi and the number n. For a prime pi

dividing n+ 1, Corollary 15 shows that if a multiple of pi, call it kpi where k is an integer,

satisfies condition 1.2 for the prime pi and the number n, then all choices for ε in the range

{kpi, · · · , (k + 1) pi − 2} also satisfy the condition for the prime pi and the number n. For

individual primes dividing n+ 1, these results guarantee entire ranges containing choices for

ε that satisfy condition 1.2 for the prime pi and the number n. This is a crucial step in

establishing the existence of a choice for ε satisfying conjecture 1.1 for the number n.

For notational consistency and ease of reading, we always characterize the pi-adic

expansion of ε as ε = b0 + b1pi + b2p
2
i + · · · where the nonnegative integer coefficients

{b0, b1, · · · } are less than pi. We include the restriction b0 ̸= pi − 1 since these choices for ε

fail to satisfy conjecture 1.1 by Corollary 7. We continue with the assumption that n+ 1 is a

product of squarefree primes with factorization n+ 1 = p1p2 · · · pt, following the convention

p1 < p2 < · · · < pt.

For each prime dividing n+ 1, the following proposition establishes a range containing

choices for ε, all of which satisfy condition 1.2 for that prime and the number n.

Proposition 11. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. For a prime pi

dividing n+ 1, all choices for ε in the range pi ≤ ε < 2pi − 1 satisfy condition 1.2 for the

prime pi and the number n.

Proof. Any choice for ε in the range {pi, · · · , 2pi − 2} contains two nonzero terms in its

pi-adic expansion. Namely, we have ε = b0 + pi. Since ε is strictly less than 2pi − 1, the
13



constant term b0 in the pi-adic expansion of ε is strictly less than pi − 1. So, we have b0 in the

bound 0 ≤ b0 < pi − 1. We apply Lucas’ Theorem and Lemma 5 to rewrite the binomial

coefficient
(
n−1
ε

)
as(

n− 1

ε

)
≡

(
pi − 2

b0

)(
a1 − 1

1

)(
a2
0

)
· · · mod pi

≡ (−1)b0 (b0 + 1) (a1 − 1) mod pi.

We multiply both sides of the congruence by the factor (−1)ε to match the expression in

condition 1.2. We have

(−1)ε
(
n− 1

ε

)
≡ (−1)ε (−1)b0 (b0 + 1) (a1 − 1) mod pi

≡ − (b0 + 1) (a1 − 1) mod pi

≡ (b0 + 1) (1− a1) mod pi.

For a prime pi dividing n+ 1, we wish to verify that any choice for ε in the range

{pi, · · · , 2pi − 2} satisfies the condition (−1)ε
(
n−1
ε

)
̸≡ ε+ 1 mod pi for the number n.

Since we have (−1)ε
(
n−1
ε

)
≡ (b0 + 1) (1− a1) mod pi, we need to check whether

(−1)ε
(
n−1
ε

)
≡ ε+ 1 ≡ (b0 + 1) (1− a1) mod pi. We can write ε as b0 + pi. This leads

directly to the congruence ε+ 1 ≡ b0 + 1 mod pi. Therefore, (−1)ε
(
n−1
ε

)
≡ ε+ 1

mod pi if and only if a1 = 0. Since a1 ̸= 0 by assumption, this means that all choices for ε in

the range {pi, · · · , 2pi − 2} satisfy condition 1.2 for any prime pi dividing n+ 1. �

Lemma 12. Consider n+ 1, where n is even, and n+ 1 is the product of squarefree prime

factors. For a prime pi dividing n+ 1, any choice for ε with its pi-adic coefficient b0 fixed in

the range {0, · · · , pi − 2} fails to satisfy condition 1.2 for the prime pi dividing n+ 1 if and

only if ε− b0 also fails to satisfy condition 1.2 for the prime pi and the number n.

Proof. For a prime pi dividing n+ 1, we consider an arbitrary choice for ε in any suitable

range, where ε ̸≡ −1 mod pi, and ε = b0 + b1pi + · · · . To determine whether the choice for

ε satisfies condition 1.2 for the prime pi, we use Lucas’ Theorem and Lemma 5 to rewrite the

14



binomial coefficient
(
n−1
ε

)
modulo the prime pi as(

n− 1

ε

)
≡

(
pi − 2

b0

)(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi

≡ (−1)b0 (b0 + 1)

(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi.

Multiplying both sides of the congruence above by a factor of (−1)ε and rewriting ε in terms

of its pi-adic expansion, we have

(−1)ε
(
n− 1

ε

)
≡ (−1)(2·b0+b1pi+b2p2i+··· ) (b0 + 1)

(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi.

It follows that (−1)ε
(
n−1
ε

)
≡ ε+ 1 ≡ b0 + 1 mod pi if and only if

ε+ 1 ≡ (−1)(b1pi+b2p2i+··· ) (b0 + 1)

(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi.

Since b0 is strictly less than pi − 1, we know that b0 + 1 is strictly less than pi and we can

divide both sides of the congruence by b0 + 1. Simplifying, we see that (−1)ε
(
n−1
ε

)
≡ ε+ 1

mod pi if and only if

1 ≡ (−1)(b1pi+b2p2i+··· )
(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi.

The above congruence shows that this property is completely independent of the value

of b0. For any prime pi dividing n+ 1, any choice for ε with its pi-adic coefficient b0 fixed in

the range {0, · · · , pi − 2} fails to satisfy condition 1.2 if and only if the choice ε− b0 also

fails to satisfy the condition for the prime pi and the number n. �

The following corollary follows immediately from the preceding lemma.

Corollary 13. If ε = kpi, where k is an integer, fails to satisfy condition 1.2 for the prime pi

dividing n+ 1, then all choices for ε in the range {kpi, · · · , (k + 1) pi − 2} also fail to satisfy

condition 1.2 for the prime pi and the number n.

The following corollary is identical to Lemma 12 but stated in a positive sense,

describing ranges containing choices for ε that satisfy condition 1.2 for the prime pi dividing
15



n+ 1. From the earlier proof, the congruence

1 ≡ (−1)(b1pi+b2p2i+··· )
(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi

does not contain the pi-adic coefficient b0. This shows that the value of b0, assuming

b0 ̸= pi − 1, does not affect whether a choice for ε satisfies condition 1.2 for a prime pi

dividing n+ 1. So, if any choice for ε with b0 fixed in the range {0, · · · , pi − 2} satisfies

condition 1.2 for the prime pi, then all choices for ε with b0 fixed in that range also satisfy the

condition for the prime pi and the number n.

Corollary 14. For any prime pi dividing n+ 1, any choice for ε with its pi-adic coefficient b0

fixed in the range {0, · · · , pi − 2} satisfies condition 1.2 for the prime pi and the number n if

and only if ε− b0 also satisfies condition 1.2 for the prime pi and the number n.

The following corollary is identical to Corollary 13 but stated in a positive sense.

Corollary 15. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. If ε = kpi, where

the prime pi divides n+ 1 and k is an integer, satisfies condition 1.2 for the prime pi, then all

choices for ε in the range {kpi, · · · , (k + 1) pi − 2} also satisfy condition 1.2 for the prime pi

and the number n.

Lemma 12 and the related corollaries allow us to characterize the suitability of entire

ranges containing choices for ε. In the following lemma, we use Lemma 12 and Corollaries

13–15 to simplify the pi-adic expansion of our choice for ε, letting ε ≡ 0 mod pi so that the

pi-adic coefficient b0 is identically equal to zero.

Lemma 16. If a choice ε′ ̸≡ −1 mod pi fails to satisfy condition 1.2 for the prime pi

dividing n+ 1, it then follows that ε = ε′ + pi necessarily satisfies the condition for the prime

pi. In other words, if

(−1)ε
′
(
n− 1

ε′

)
≡ ε′ + 1 mod pi,
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then ε′ fails to satisfy condition 1.2 for the prime pi by definition, and it then necessarily

follows that

(−1)(ε
′+pi)

(
n− 1

ε′ + pi

)
̸≡ (ε′ + pi) + 1 mod pi,

so that ε = ε′ + pi satisfies condition 1.2 for the prime pi and the number n.

Proof. Simplifying by the property of Lemma 12, we can let ε′ ≡ 0 mod pi. We characterize

ε′ with the pi-adic expansion ε′ = b1pi + b2p
2
i + · · · . Applying Lucas’ Theorem, we can

rewrite the binomial coefficient
(
n−1
ε′

)
as(

n− 1

ε′

)
≡
(
pi − 2

0

)(
a1 − 1

b1

)(
a2
b2

)
· · · ≡

(
a1 − 1

b1

)(
a2
b2

)
· · · mod pi.

By assumption ε′ fails to satisfy condition 1.2 for the prime pi, so

(−1)ε
′
(
n− 1

ε′

)
≡ ε′ + 1 ≡ 1 mod pi.

Using the form for
(
n−1
ε′

)
derived above, we can write

(−1)ε
′
(
n− 1

ε′

)
≡ (−1)ε

′
(
a1 − 1

b1

)(
a2
b2

)
· · · ≡ 1 mod pi.

The choice ε′ fails to satisfy condition 1.2, and we wish to establish that ε = ε′ + pi satisfies

condition 1.2 for the prime pi. We note that ε has the pi-adic expansion given by

ε = ε′ + pi = (b1 + 1) pi + b2p
2
i + · · · . Proposition 8 guarantees that b1 + 1 is less than pi

since b1 = pi − 1 would imply that the choice for ε necessarily satisfies condition 1.2 for the

prime pi.

We have
(
n−1
ε

)
=
(
n−1
ε′+pi

)
, and we can write(

n− 1

ε′ + pi

)
≡
(
pi − 2

0

)(
a1 − 1

b1 + 1

)(
a2
b2

)
· · · ≡

(
a1 − 1

b1 + 1

)(
a2
b2

)
· · · mod pi.

17



In order to evaluate the right hand side completely, we will need to rewrite some of the

factors. In particular, notice that we can expand and rewrite the binomial coefficient
(
a1−1
b1+1

)
as(

a1 − 1

b1 + 1

)
=

(a1 − 1)!

(a1 − 1− (b1 + 1))! (b1 + 1)!

=
(a1 − 1− b1) · (a1 − 1)!

(a1 − 1− b1) · (a1 − 1− (b1 + 1))! (b1)! · (b1 + 1)

=
a1 − (b1 + 1)

(b1 + 1)
·
(
a1 − 1

b1

)
.

Continuing to simplify the binomial coefficient
(
n−1
ε

)
=
(
n−1
ε′+pi

)
, we have(

n− 1

ε′ + pi

)
≡

(
a1 − 1

b1 + 1

)(
a2
b2

)
· · · mod pi

≡ a1 − (b1 + 1)

(b1 + 1)
·
(
a1 − 1

b1

)
·
(
a2
b2

)
· · · mod pi

≡ a1 − (b1 + 1)

(b1 + 1)
·
(
n− 1

ε′

)
mod pi.

So we see that (
n− 1

ε

)
=

(
n− 1

ε′ + pi

)
≡ a1 − (b1 + 1)

(b1 + 1)
·
(
n− 1

ε′

)
mod pi.

Note that ε+ 1 = (ε′ + pi) + 1 ≡ 1 mod pi. We incorporate the factor (−1)ε to match the

expression in condition 1.2. We have

(−1)ε
(
n− 1

ε

)
= (−1)(ε

′+pi)

(
n− 1

ε′ + pi

)
≡ − (−1)ε

′ a1 − (b1 + 1)

b1 + 1
·
(
n− 1

ε′

)
mod pi

≡ −a1 − (b1 + 1)

b1 + 1
·
(
(−1)ε

′

·
(
n− 1

ε′

))
mod pi

≡ −a1 − (b1 + 1)

b1 + 1
mod pi.

From this, we can conclude that (−1)ε
(
n−1
ε

)
is congruent to 1 modulo the prime pi if

and only if the condition a1−(b1+1)
b1+1

≡ −1 mod pi holds for the expression derived above.

Rewriting, we see that this happens if and only if a1 − (b1 + 1) ≡ − (b1 + 1) mod pi, which
18



holds if and only if a1 ≡ 0 mod pi. Since we have assumed that a1 is not identically zero,

this condition cannot hold. This tells us that ε = ε′ + pi does indeed satisfy condition 1.2 for

the prime pi dividing n+ 1. So we see that if a particular choice ε′ ̸≡ −1 mod pi fails to

satisfy condition 1.2 for the prime pi dividing n+ 1, then the choice ε = ε′ + pi satisfies

condition 1.2 for the prime pi along with choices for ε with b0 in the range {0, · · · , pi − 2} by

Corollary 15. �

The preceding lemma holds for any choice for ε where ε is a multiple of the prime pi.

For convenience, call it ε = kpi where k is an integer. We make this explicit in the corollary

directly below, which follows immediately from the lemma.

Corollary 17. Let n+ 1 = p1p2 · · · pt with the convention p1 < · · · < pt. If ε′ = kpi, where

the prime pi divides n+1 and k is an integer, fails to satisfy condition 1.2 for the prime pi and

the number n, then the choice ε = ε′ + pi = (k + 1) pi satisfies condition 1.2 along with all

values in the range {ε, · · · , ε+ pi − 2} = {(k + 1) pi, · · · , (k + 2) pi − 2}.
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3. Cases in which the Conjecture Holds

The following theorems rely on the propositions and lemmas of Section 2 for their

proofs. These theorems were proved independently by Walter Parry [4] and in unpublished

notes by Andrew Wilfong. To build up to the complexity of the general case, where odd n+ 1

has an arbitrary prime factorization, we begin with simplified versions of the conjecture as

presented in this section.

The following theorem considers the specific case where n+ 1 is the product of two

primes. We begin with this most reduced form of the conjecture and gradually build to more

general forms of n+ 1.

Theorem 18. If n+ 1 = p · q, where p < q and p and q are both prime, there is a choice for ε

in the range {q, · · · , n− 2} that satisfies the equation gcd (Rn (ε) , n+ 1) = 1, which is

conjecture 1.1.

Proof. (This proof is attributed to Andrew Wilfong.)

Case 1. p = 3 and q = 5. In the special case that p = 3 and q = 5, we note that ε = 7 is a

particular choice for ε satisfying conjecture 1.1 for the number n = 14. For the

remaining cases, assume (p, q) ̸= (3, 5).

Case 2. q < 2p− 1. For the number n+ 1 and the prime p, we know from Proposition 11

that all choices for ε in the range {p, · · · , 2p− 2} satisfy the condition

(−1)ε
(
n−1
ε

)
̸≡ ε+ 1 mod p. We also know that the corresponding condition is

satisfied for the prime q by all choices for ε in the range {q, · · · , 2q − 2}. Since

p < q < 2p− 1, and p and q are odd, the prime number q is in the range

{p+ 2, · · · , 2p− 2}. By Proposition 11, q is a particular choice for ε satisfying the

condition on Rn (ε) for both the prime p and the prime q. This guarantees a choice

for ε ensuring that the expressions Rn (ε) and n+ 1 are relatively prime, which is

the claim of conjecture 1.1.

Case 3. q = 2p− 1. Given this specific relation for the primes p and q, we can express the

value of 2q as 4p− 2. By Proposition 11, we know that all choices for ε in the range
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{q, · · · , 2q − 2} = {2p− 1, · · · , 4p− 4} satisfy condition 1.2 for the prime q. By

its structure, this range contains the numbers 2p and 3p, so long as (p, q) ̸= (3, 5).

(For this circumstance, see Case 1.) By Lemma 16, either ε = 2p or ε = 3p must

satisfy condition 1.2 for the prime p. Both choices for ε satisfy condition 1.2 for the

prime q. This guarantees a choice for ε satisfying conjecture 1.1 for the number n.

Case 4. q ≥ 2p+ 1. In this case the interval {q, · · · , 2q − 2} contains at least 2p elements,

since the interval {q, · · · , 2q − 2} is identical to {2p+ 1, · · · , 4p} at its smallest

when q = 2p+ 1. In general, this guarantees at least two multiples of p in the

interval. For convenience, call them kp and (k + 1) p where k is an integer. By

Lemma 16, either the choice ε = kp or ε = (k + 1) p must satisfy condition 1.2 for

the prime p. Both choices satisfy the condition for the prime q. This guarantees a

choice for ε satisfying conjecture 1.1 for the number n.

These cases taken together show that there is a guaranteed choice for ε satisfying

conjecture 1.1 for n when n+ 1 is the product of two squarefree primes.

�

We informally characterize the following theorem by the property that the prime factors

of the number n+ 1 are far apart.

Theorem 19. Let n+ 1 = p1 · p2 · · · pt−1 · pt with the convention p1 < · · · < pt. If the

difference pk − pk−1 is large for all prime factors pk of n+ 1–specifically, if the bound

pk ≥ 3pk−1 +1 is satisfied for all consecutive prime factors pk and pk−1 of n+1–then there is

a choice for ε satisfying conjecture 1.1 for the number n.

Proof. By Corollary 10, the number pt is the smallest possible choice for ε satisfying

conjecture 1.1 for the number n. By Proposition 11, we know that all choices for ε in the

range {pt, · · · , 2pt − 2} satisfy condition 1.2 for the prime pt. The range {pt, · · · , 2pt − 2}

contains pt − 1 elements. By assumption, consecutive primes pt and pt−1 satisfy the bound

pt ≥ 3pt−1 + 1. This means that the interval {pt, · · · , 2pt − 2} contains at least 3pt−1

elements, which guarantees at least three multiples of pt−1 in the interval. Equivalently, the
21



interval must contain at least two complete, consecutive intervals of the form

{lpt−1, · · · , (l + 1) pt−1 − 2} where l is an integer. Using this labeling, the next consecutive

guaranteed interval is {(l + 1) pt−1, · · · , (l + 2) pt−1 − 2}. Corollaries 15 and 17 guarantee

that in at least one of the given ranges, {lpt−1, · · · , (l + 1) pt−1 − 2} or

{(l + 1) pt−1, · · · , (l + 2) pt−1 − 2}, all choices for ε satisfy condition 1.2 for the prime pt−1.

The choices for ε in both of these ranges satisfy the condition for the prime pt, so this

guarantees a range containing choices for ε that simultaneously satisfy condition 1.2 for the

primes pt and pt−1.

Considering analogously the prime pt−2, we can similarly establish a range containing

choices for ε that simultaneously satisfy condition 1.2 for the primes pt, pt−1, and pt−2.

Continuing inductively, we can establish a nonempty interval containing choices for ε that

satisfy condition 1.2 for all prime factors pi of n+ 1. This guarantees at least one choice for ε

satisfying conjecture 1.1 for the number n. �

The following theorem is informally characterized by the property that the prime factors

of n+ 1 are close together.

Theorem 20. Let n+ 1 = p1 · p2 · · · pt−1 · pt with the convention p1 < · · · < pt. If the prime

factors pi of n+ 1 are sufficiently close together–specifically, if the bound pt < 2p1 − 1 is

satisfied–then we can guarantee the existence of at least one choice for ε satisfying conjecture

1.1 for the number n.

Proof. By Proposition 11, all choices for ε in the range {pi, · · · , 2pi − 2} satisfy condition 1.2

for the prime pi dividing n+ 1. The string of inequalities p1 ≤ pi ≤ pt < 2p1 − 1 ≤ 2pi − 2

holds for all primes pi dividing n+ 1. The particular choice ε = pt is in the interval

{pi, · · · , 2pi − 2} for each prime pi dividing n+ 1, simultaneously satisfying condition 1.2

for each prime factor of n+ 1. This guarantees the existence of at least one choice for ε

satisfying conjecture 1.1 for the number n when the squarefree prime factors of n+ 1 are

sufficiently close together. �
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4. Generalization of Many Propositions and Lemmas of Section 2

In this section, we prove generalizations of many of the propositions and lemmas of

Section 2. We increase the complexity of the prime factorization of n+ 1, considering the

general prime factorization n+ 1 = pm1
1 pm2

2 · · · pmt
t . We assume that the exponentsmi are

integer-valued. We adhere to the convention pm1
1 < · · · < pmt

t , so that pmt
t is the largest prime

power dividing n+ 1. We do not place any restrictions on the relative sizes of the primes pi

themselves. For example, we do not require that the prime p1 be the smallest, nor that the

prime pt be the largest, of the primes pi dividing n+ 1.

These generalizations provide tools to prove conjecture 1.1 in cases where n+ 1 is not

squarefree. We provide a generalization of Corollary 10, showing that no choice for ε less

than the smallest prime power dividing n+ 1 satisfies conjecture 1.1 for the number n. We

generalize Proposition 11, proving that for any prime power pmi
i dividing n+ 1, all choices

for ε in the interval {pmi
i , · · · , 2pmi

i − 2}, except where ε ≡ −1 mod pi, satisfy condition 1.2

for the prime pi and the number n. We prove generalizations of Corollaries 14 and 15,

showing that if a particular multiple of the prime power pmi
i dividing n+ 1, a number of form

k · pmi
i where k is an integer, satisfies condition 1.2 for the prime pi, then so do all choices for

ε in the range {kpmi
i , · · · , (k + 1) pmi

i − 2}, except those choices where ε ≡ −1 mod pi. We

also generalize Lemma 16 and Corollary 17, showing that if a particular choice ε′ ̸≡ −1

mod pi fails to satisfy condition 1.2 for the prime pi and the number n, then the choice

ε = ε′ + pmi
i must satisfy the condition for the prime pi dividing n+ 1. This result entails the

property that if the choices for ε contained in a range of the form {kpmi
i , · · · , (k + 1) pmi

i − 2}

fail to satisfy the condition on Rn (ε) for the prime pi, then the choices for ε in the next

consecutive range {(k + 1) pmi
i , · · · , (k + 2) pmi

i − 2} do satisfy the condition for the prime

pi, excluding those choices for which ε ≡ −1 mod pi.

In the following propositions and lemmas, we will rewrite the number n− 1 in its

pi-adic expansion for a prime pi dividing n+ 1 many times, so we choose to include here a

summary of the steps taken to rewrite n− 1 in this way.
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Remark 21. The number n+ 1 has generic prime factorization given by

n+ 1 = pm1
1 pm2

2 · · · pmt
t . In order to focus our attention on a particular prime power pmi

i in the

prime factorization of n+ 1, we choose to rewrite n+ 1 in its pi-adic expansion. This is

necessary to make use of the notational convenience provided by Lucas’ Theorem. In the

following, we rewrite pmi
i as pm and represent the product of the other t− 1 prime power

divisors of n+ 1 by a single integer. We write

n+ 1 = pm1
1 · · · pmt

t =
(
pm1
1 pm2

2 · · · pmi−1

i−1 p
mi+1

i+1 · · · pmt
t

)
· pmi

i = q · pm.

In order to simplify this expression further, we write the number q in p-adic form as

q = c0 + c1p+ · · · .

Using these expressions, we rewrite n+ 1 in the following way

n+ 1 = q · pm

= pm (c0 + c1p+ · · · )

= c0 · pm + c1p
m+1 + · · · .

In the p-adic expansion of n+ 1 directly above, the terms p0, · · · , pm−1 are absent, so

the coefficients on these terms are identically zero. Subtracting two from the expression

above, we can now write the p-adic expansion of n− 1 as

n− 1 = (p− 2) + (p− 1) · p+ · · ·+ (p− 1) · pm−1 + (c0 − 1) · pm + c1 · pm+1 + · · · .

We use this form repeatedly in the following propositions and lemmas.

Before proceeding to the generalizations of the propositions and lemmas of Section 2,

we include a small lemma reminiscent of Lemma 5 that provides a way of rewriting the

binomial coefficient
(
p−2
b0

)
in congruences with a prime number modulus. The following

lemma helps to simplify binomial coefficients of the form
(
p−1
b

)
when evaluated in a

congruence with a prime number modulus.
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Lemma 22. For the prime p, the value of the binomial coefficient
(
p−1
b

)
, where 0 ≤ b < p, is

congruent to (−1)b mod p. That is,
(
p−1
b

)
≡ (−1)b mod p.

Proof. We note that p− 1 and b are both less than p, so we can reduce fractional expressions

in a congruence base p without worry. Rewriting the value of the binomial coefficient
(
p−1
b

)
modulo the prime p, we have(

p− 1

b

)
=

(p− 1)!

(p− 1− b)! · b!

=
(p− 1) (p− 2) · · · (p− b) (p− b− 1)!

(p− b− 1)! · b!

≡ (−1) (−2) · · · (−b) (p− b− 1)!

b! (p− b− 1)!
mod p

≡ (−1)b · b!
b!

mod p

≡ (−1)b mod p.

This proves the congruence
(
p−1
b

)
≡ (−1)b mod p where 0 ≤ b < p. �

Proposition 23. [Generalization of Proposition 9]. Let n+ 1 = pm1
1 · pm2

2 · · · pmt
t with the

convention pm1
1 < · · · < pmt

t . For a prime power pmi
i dividing n+ 1, any choice for ε less

than pmi
i does not satisfy condition 1.2 for the prime pi and the number n.

Proof. We rewrite n− 1 according to Remark 21, for a prime power pmi
i dividing n+ 1. We

have

n− 1 = (pi − 2) + (pi − 1) · pi + · · ·+ (pi − 1) · pmi−1
i + (c0 − 1) · pmi

i + c1 · pmi+1
i + · · · .

Consider a choice for ε that is less than the prime power pmi
i with b0 ̸= pi − 1. Let ε have

generic pi-adic expansion ε = b0 + b1pi + · · ·+ bmi−1 · pmi−1
i , where each bκ is in the range

0 ≤ bκ < pi, and κ is an integer. Applying Lucas’ Theorem, we can now rewrite the binomial
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coefficient
(
n−1
ε

)
modulo the prime pi as(

n− 1

ε

)
≡

(
pi − 2

b0

)
·
(
pi − 1

b1

)
· · ·
(
pi − 1

bmi−1

)
·
(
c0 − 1

0

)
·
(
c1
0

)
· · · mod pi

≡
(
pi − 2

b0

)
·
(
pi − 1

b1

)
· · ·
(
pi − 1

bmi−1

)
mod pi.

Applying Lemmas 5 and 22, we can neatly rewrite the binomial coefficients
(
pi−2
b0

)
and(

pi−1
bκ

)
in the congruence where κ is an integer. By Lemma 5, we have(

pi−2
b0

)
≡ (−1)b0 (b0 + 1) mod pi, and, by Lemma 22, we have

(
pi−1
bκ

)
≡ (−1)bκ mod pi for

each bκ. Simplifying the expansion for
(
n−1
ε

)
above, we have(

n− 1

ε

)
≡

(
pi − 2

b0

)
·
(
pi − 1

b1

)
· · ·
(
pi − 1

bmi−1

)
mod pi

≡ (−1)b0 (b0 + 1) · (−1)b1 · · · (−1)bmi−1 mod pi

≡ (−1)b0 · (−1)b1 · · · (−1)bmi−1 (b0 + 1) mod pi.

We wish to express the exponents in the expression above in terms of ε, and we note

that taking each term (−1)bκ and raising it to the power of pκi preserves the value of the factor.

This is true since pκi is odd, so
(
(−1)bκ

)pκi
=
(
(−1)p

κ
i

)bκ
= (−1)bκ . Using this property, we

can rewrite the expression above as(
n− 1

ε

)
≡ (−1)(b0+b1+···+bmi−1) (b0 + 1) mod pi

≡ (−1)(b0+b1pi+···+bmi−1·p
mi−1
i ) · (b0 + 1) mod pi

≡ (−1)ε (b0 + 1) mod pi.

Finally, we incorporate the factor (−1)ε to match the expression in condition 1.2, giving

(−1)ε
(
n− 1

ε

)
≡ (−1)ε · (−1)ε · (b0 + 1) mod pi

≡ b0 + 1 mod pi,
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which is congruent to ε+ 1 mod pi since

ε+ 1 =
(
b0 + b1 · pi + b2 · p2i + · · ·+ bmi−1 · pmi−1

i

)
+ 1

≡ b0 + 1 mod pi.

This means that for any prime power pmi
i dividing n+ 1, the congruence

(−1)ε
(
n−1
ε

)
≡ ε+ 1 mod pi holds for any ε < pmi

i . This shows that any choice for ε in the

range {2, · · · , pmi
i − 2} fails to satisfy condition 1.2 for the prime pi dividing n+ 1. �

The corollary below follows immediately from the preceding proposition.

Corollary 24. Let n+ 1 = pm1
1 · pm2

2 · · · pmt
t where max {pm1

1 , pm2
2 , · · · , pmt

t } = pmt
t . Any

choice for ε less than the number pmt
t fails to satisfy conjecture 1.1 for the number n.

As a matter of notation, the preceding corollary shows that all choices for ε in the range

{2, · · · , pmt
t − 1} fail to satisfy the conjecture for the number n.

The following proposition generalizes Proposition 11, which states that all choices for ε

in the range {pi, · · · , 2pi − 2} satisfy condition 1.2 for any prime pi dividing

n+ 1 = p1p2 · · · pt. This generalization considers the number n+ 1 with the generic prime

factorization n+ 1 = pm1
1 pm2

2 · · · pmt
t .

Proposition 25. [Generalization of Proposition 11]. Let n+ 1 = pm1
1 pm2

2 · · · pmt
t with the

convention pm1
1 < · · · < pmt

t . We are guaranteed that all choices for ε in the range

{pmi
i , · · · , 2pmi

i − 2}, provided that ε ̸≡ −1 mod pi, satisfy condition 1.2 for the prime pi

and the number n.

Proof. We rewrite n− 1 according to Remark 21 for an arbitrary prime power pmi
i dividing

n+ 1. We have

n− 1 = (pi − 2) + (pi − 1) · pi + · · ·+ (pi − 1) · pmi−1
i + (c0 − 1) · pmi

i + c1 · pmi+1
i + · · · .
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We consider choices for ε in the range {pmi
i , · · · , 2pmi

i − 2}, which we characterize with the

generic pi-adic expansion

ε = b0 + b1 · pi + · · ·+ bmi−1 · pmi−1
i + 1 · pmi

i .

Applying Lucas’ Theorem, we can rewrite the binomial coefficient
(
n−1
ε

)
as(

n− 1

ε

)
≡

(
pi − 2

b0

)
·
(
pi − 1

b1

)
· · ·
(
pi − 1

bmi−1

)
·
(
c0 − 1

1

)
·
(
c1
0

)
· · · mod pi

≡
(
pi − 2

b0

)
·
(
pi − 1

b1

)
· · ·
(
pi − 1

bmi−1

)
· (c0 − 1) mod pi.

By Lemma 5, we can rewrite the binomial coefficient
(
pi−2
b0

)
as (−1) (b0 + 1) mod pi and by

Lemma 22, we can rewrite the binomial coefficient
(
pi−1
bκ

)
as (−1)bκ mod pi for each bκ.

This allows us to rewrite our expansion above as(
n− 1

ε

)
≡ (−1)b0 · (b0 + 1) · (−1)b1 · · · (−1)bmi−1 (c0 − 1) mod pi

≡ (−1)b0 · (−1)b1 · · · (−1)bmi−1 · (b0 + 1) · (c0 − 1) mod pi.

We can rewrite the above expression using similar methods to those used in Proposition

23. We collect the factors (−1)b0 · (−1)b1 · · · (−1)bmi−1 , reconstructing the pi-adic expansion

of ε in the exponents of these factors by raising each factor (−1)bκ to the power pκi . Since

each power pκi is odd, the value of each factor is unchanged. We rewrite the factors

(−1)b0 · (−1)b1 · · · (−1)bmi−1 in the expression above as

(−1)b0 · (−1)b1pi · · · (−1)bmi−1p
mi−1
i .

To fully represent the value for ε we must include the term (−1)p
mi
i . This term is identical to

−1, so we include an additional factor of −1 to preserve the original value of the expression.
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Incorporating these factors, we have

(−1)b0 · (−1)b1pi · · · (−1)bmi−1p
mi−1
i = (−1)b0 · (−1)b1pi · · · (−1)bmi−1p

mi−1
i · (−1)p

mi
i · (−1)

= (−1)(b0+b1pi+···+bmi−1p
mi−1
i +pmi ) · (−1)

= − (−1)ε .

Collecting together the various expressions above, we can simplify our expansion of the

binomial coefficient
(
n−1
ε

)
as(

n− 1

ε

)
≡ (−1)b0 · (−1)b1 · · · (−1)bmi−1 (b0 + 1) (c0 − 1) mod pi

≡ − (−1)ε (b0 + 1) (c0 − 1) mod pi

≡ (−1)ε (b0 + 1) (1− c0) mod pi.

Incorporating the factor (−1)ε to match the expression in condition 1.2, we have

(−1)ε
(
n− 1

ε

)
≡ (−1)2ε (b0 + 1) (1− c0) mod pi

≡ (b0 + 1) (1− c0) mod pi.

Choices for ε in the range {pmi
i , · · · , 2pmi

i − 2} fail to satisfy condition 1.2 for the prime

pi dividing n+ 1 if and only if

(−1)ε
(
n− 1

ε

)
≡ ε+ 1 ≡ b0 + 1 mod pi.

This happens if and only if

(b0 + 1) (1− c0) ≡ b0 + 1 mod pi.

Since we are considering all choices for ε in the range pmi
i ≤ ε ≤ 2pmi

i − 2 with b0 ̸= p− 1,

we know that b0 ≤ pi − 2, so we necessarily have b0 + 1 ≤ pi − 1. Since b0 + 1 < pi, we can
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divide by b0 + 1 in the above congruence, and we have

1− c0 ≡ 1 mod pi

c0 ≡ 0 mod pi.

This tells us that a choice for ε in this range fails to satisfy condition 1.2 for the prime pi

if and only if c0 ≡ 0 mod pi. We have written n+ 1 as the product q · pmi
i according to

Remark 21 where q and pi are relatively prime. If c0 ≡ 0 mod pi, then pi|q, which is not

possible. This proves that all choices for ε in the range {pmi
i , · · · , 2pmi

i − 2} with b0 ̸= pi − 1

satisfy condition 1.2 for the prime pi dividing n+ 1. �

Lemma 26. [Generalization of Lemma 12]. Let n+ 1 = pm1
1 pm2

2 · · · pmt
t with the convention

pm1
1 < · · · < pmt

t . For a prime pi dividing n+ 1, we give ε the generic pi-adic expansion

ε = b0 + b1pi + · · ·+ bmi−1p
mi−1
i + bmi

pmi
i + · · · . Any choice for ε with its pi-adic coefficient

b0 fixed in the range {0, · · · , pi − 2} and pi-adic coefficients {b1, · · · , bmi−1} fixed in the

range {0, · · · , pi − 1} fails to satisfy condition 1.2 for the prime pi and the number n if and

only if ε−
(
b0 + b1 · p+ · · ·+ bmi−1 · pmi−1

i

)
also fails to satisfy the condition for the prime

pi and the number n.

Proof. We rewrite n− 1 according to Remark 21 for an arbitrary prime power pmi
i dividing

n+ 1, and we have

n− 1 = (pi − 2) + (pi − 1) pi + · · ·+ (pi − 1) pmi−1
i + (c0 − 1) pmi

i + c1p
mi+1
i + · · · .

We give ε the generic pi-adic expansion

ε = b0 + b1pi + · · ·+ bmi−1p
mi−1
i + bmi

pmi
i + bmi+1p

mi+1
i + · · · ,
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where b0 ̸= pi − 1, so that ε ̸≡ −1 mod pi. Applying Lucas’ Theorem, Lemma 5, and

Lemma 22, we can rewrite the binomial coefficient
(
n−1
ε

)
as(

n− 1

ε

)
≡

(
pi − 2

b0

)(
pi − 1

b1

)
· · ·
(
pi − 1

bmi−1

)(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi

≡ (−1)b0 · (b0 + 1) · (−1)b1 · · · (−1)bmi−1 ·
(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi

≡ (−1)b0 · (−1)b1 · · · (−1)bmi−1 · (b0 + 1)

(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi.

Here, as in Propositions 23 and 25, we wish to unify the factors

(−1)b0 · (−1)b1 · · · (−1)bmi−1

by rewriting the exponents of these factors in terms of ε. The pi-adic expansion for ε given as

b0 + b1pi + · · · has an unspecified final term. We can still include the remaining factors, but

we do not know whether the factor (−1)ε is positive or negative. To be specific, we

reconstruct ε in the exponents of the factors of (−1) as we did before, writing

(−1)b0 · (−1)b1 · · · (−1)bmi−1 = (±1) (−1)b0 · (−1)b1pi · · · (−1)bmi−1p
mi−1
i · (−1)bmip

mi
i · · ·

= (±1) (−1)(b0+b1pi+···+bmi−1p
mi−1
i +bmip

mi
i +··· )

= (±1) (−1)ε .

The factor (±1) is included to preserve the original value of the expression, since the value of

(−1)ε may be positive or negative.

Using the above expression, we now incorporate the factor (−1)ε to match the

expression in condition 1.2, and we have

(−1)ε
(
n− 1

ε

)
≡ (−1)ε (±1) (−1)ε (b0 + 1)

(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi

≡ (±1) (b0 + 1)

(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi.

31



We recall that ε+ 1 ≡ b0 + 1 mod pi. It follows that (−1)ε
(
n−1
ε

)
≡ ε+ 1 ≡ b0 + 1 mod pi

if and only if

ε+ 1 ≡ (±1) (b0 + 1)

(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi,

which holds if and only if

±1 ≡
(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi.

When this congruence holds, we know that the choice for ε fails to satisfy condition 1.2

for the prime pi. We note that this property is completely independent of the firstmi of ε’s

pi-adic coefficients {b0, b1, · · · , bmi−1} as is seen in the congruences above. This shows that a

choice ε ̸≡ −1 mod pi fails to satisfy condition 1.2 for a prime pi if and only if

ε−
(
b0 + b1 · p+ · · ·+ bmi−1 · pmi−1

i

)
also fails to satisfy the condition for the prime pi and

the number n. �

The following corollary follows immediately from the preceding lemma.

Corollary 27. Let n+ 1 = pm1
1 pm2

2 · · · pmt
t with the convention pm1

1 < · · · < pmt
t . If ε = kpmi

i ,

where the prime power pmi
i divides n+ 1 and k is an integer, fails to satisfy condition 1.2 for

the prime pi, then all choices for ε in the range {kpmi
i , · · · , (k + 1) pmi

i − 2} also fail to

satisfy condition 1.2 for the prime pi and the number n.

The following corollary is identical to Lemma 26 but stated in a positive sense,

describing ranges containing choices for ε that satisfy condition 1.2 for the prime pi dividing

n+ 1. From the earlier proof, the congruence

±1 ≡
(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi

does not contain the pi-adic coefficients {b0, · · · , bmi−1}. This shows that the value of these

coefficients do not affect whether a choice ε ̸≡ −1 mod pi satisfies condition 1.2 for a prime

pi dividing n+ 1. So, if any choice for ε with coefficient b0 fixed in the range {0, · · · , p− 2}

and coefficients {b1, · · · , bmi−1} fixed in the range {0, · · · , p− 1} satisfies condition 1.2 for
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the prime pi, then all choices for ε with coefficients bκ fixed in these ranges also satisfy the

condition for the prime pi and the number n.

Corollary 28. Take a number n+ 1 not a prime power with n even. For any prime power pmi
i

dividing n+ 1, any choice for ε with its pi-adic coefficient b0 fixed in the range

{0, · · · , pi − 2} and pi-adic coefficients {b1, · · · , bmi−1} fixed in the range {0, · · · , pi − 1}

satisfies condition 1.2 for the prime pi and the number n if and only if the choice

ε−
(
b0 + b1 · p+ · · ·+ bmi−1 · pmi−1

i

)
also satisfies the condition for the prime pi and the

number n.

The following corollary is identical to Corollary 27 but stated in a positive sense.

Corollary 29. Let n+ 1 = pm1
1 pm2

2 · · · pmt
t with the convention pm1

1 < · · · < pmt
t . If ε = kpmi

i ,

where the prime power pmi
i divides n+ 1 and k is an integer, satisfies condition 1.2 for the

prime pi, then all choices for ε in the range {kpmi
i , · · · , (k + 1) pmi

i − 2}, except where

ε ≡ −1 mod pi, also satisfy condition 1.2 for the prime pi and the number n.

We take a moment to generalize Proposition 8, to verify that a similar property holds

when n+ 1 has a generic prime factorization.

Proposition 30. Let n+ 1 = pm1
1 pm2

2 · · · pmt
t with the convention pm1

1 < · · · < pmt
t . For a

prime pi dividing n+ 1, any choice for ε with bmi
= pi − 1 and b0 ̸= pi − 1 necessarily

satisfies condition 1.2 for the prime pi dividing n+ 1.

Proof. We rewrite n− 1 according to Remark 21 for an arbitrary prime power pmi
i dividing

n+ 1, which gives

n− 1 = (pi − 2) + (pi − 1) pi + · · ·+ (pi − 1) pmi−1
i + (c0 − 1) pmi

i + c1p
mi+1
i + · · · .

We assume that ε has pi-adic coefficient bmi
equal to pi − 1. By Lemma 26, we can give ε the

pi-adic expansion (pi − 1) pmi
i + bmi+1p

mi+1
i + · · · , where each bκ is a nonnegative integer

less than pi, and the coefficients {b0, · · · , bmi−1} are identically equal to zero. Applying
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Lucas’ Theorem and the convention on binomial coefficients stated there, we have(
n− 1

ε

)
≡

(
p− 2

0

)(
p− 1

0

)
· · ·
(
p− 1

0

)(
c0 − 1

pi − 1

)(
c1

bmi+1

)
· · · mod pi

≡ (1) · · · (1) (0)
(

c1
bmi+1

)
· · · mod pi

≡ 0 mod pi.

This is true since c0 < pi immediately implies c0 − 1 < pi − 1. It follows that

(−1)ε
(
n− 1

ε

)
≡ 0 ̸≡ 1 ≡ ε+ 1 mod pi.

This shows that any choice for ε with pi-adic coefficient bmi
= pi − 1 immediately

satisfies condition 1.2 for the prime pi dividing n+ 1. �

The following lemma generalizes Lemma 16. We consider again the number n+ 1 not a

prime power. For any prime power pmi
i dividing n+ 1, we know by Lemma 26 that all

choices for ε in a range characterized as {kpmi
i , · · · , (k + 1) pmi

i − 2}, where k is an integer

and ε ̸≡ −1 mod pi, either satisfy condition 1.2 for a prime pi, or they do not. Now, we want

to show that if the choices for ε, where b0 ̸= pi − 1, in such a range do not satisfy condition

1.2 for the prime pi, then the suitable choices for ε in the next consecutive range

{(k + 1) pmi
i , · · · , (k + 2) pmi

i − 2} do satisfy the condition.

Lemma 31. [Generalization of Lemma 16]. Take n+ 1 not a prime power with n even. If the

choice ε′ ̸≡ −1 mod pi for the prime power pmi
i dividing n+ 1 fails to satisfy condition 1.2

for the prime pi, then the choice ε = ε′ + pmi
i satisfies the condition for the prime pi and the

number n.

Proof. We rewrite n− 1 according to Remark 21 for an arbitrary prime power pmi
i dividing

n+ 1, which gives

n− 1 = (pi − 2) + (pi − 1) pi + · · ·+ (pi − 1) pmi−1
i + (c0 − 1) pmi

i + c1p
mi+1
i + · · · .
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We select an ε′ that fails to satisfy condition 1.2 for the prime pi dividing n+ 1. By

Lemma 26 we can give ε′ the pi-adic expansion bmi
pmi
i + bmi+1p

mi+1
i + · · · , where each bκ is

a nonnegative integer less than pi, and the coefficients {b0, · · · , bmi−1} are identically equal to

zero. Since ε′ fails to satisfy proposition 1.2 for the prime pi by assumption, we have

(−1)ε
′ (n−1

ε′

)
≡ ε′ + 1 ≡ 1 mod pi. We now let ε = ε′ + pmi

i , which has the pi-adic

expansion given by ε = (bmi
+ 1) pmi + bmi+1p

mi+1 + · · · . We know that the inequality

bmi
+ 1 < pi holds since if bmi

= pi − 1, then the choice ε′ would satisfy condition 1.2 for the

prime pi by Proposition 30, but the choice ε′ fails to satisfy the condition by assumption.

Applying Lucas’ Theorem and some rewriting techniques similar to those used in

Lemma 16, we can rewrite the binomial coefficient
(
n−1
ε

)
as(

n− 1

ε

)
≡

(
p− 2

0

)(
p− 1

0

)
· · ·
(
p− 1

0

)(
c0 − 1

bmi
+ 1

)(
c1

bmi+1

)
· · · mod pi

≡
(
c0 − 1− bmi

bmi
+ 1

)(
c0 − 1

bmi

)(
c1

bmi+1

)
· · · mod pi

≡
(
c0 − (bmi

+ 1)

bmi
+ 1

)(
n− 1

ε′

)
mod pi.

We now incorporate the factor (−1)ε to match the expression contained in condition 1.2,

which gives

(−1)ε
(
n− 1

ε

)
≡ (−1)ε

′+p
mi
i

(
c0 − (bmi

+ 1)

bmi
+ 1

)(
n− 1

ε′

)
mod pi

≡ −
(
c0 − (bmi

+ 1)

bmi
+ 1

)
·
[
(−1)ε

′
(
n− 1

ε′

)]
mod pi

≡ −
(
c0 − (bmi

+ 1)

bmi
+ 1

)
· [1] mod pi

≡ −
(
c0 − (bmi

+ 1)

bmi
+ 1

)
mod pi.

This choice for ε fails to satisfy condition 1.2 if and only if

(−1)ε
(
n− 1

ε

)
≡ ε+ 1 = 1 mod pi,
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which happens if and only if

−
(
c0 − (bmi

+ 1)

bmi
+ 1

)
≡ 1 mod pi

c0 − (bmi
+ 1) ≡ − (bmi

+ 1) mod pi

c0 ≡ 0 mod pi.

Recall that c0 is the first pi-adic coefficient of the number q, which was defined to be

relatively prime to pi in Remark 21. So, the congruence above is impossible, since q ≡ c0 ≡ 0

mod pi implies pi divides q. This shows that if a choice ε′ ̸≡ −1 mod pi fails to satisfy

condition 1.2 for the prime pi dividing n+ 1 = pm1
1 · · · pmt

t , then the choice ε = ε′ + pmi
i must

satisfy condition 1.2 for the prime pi and the number n. �

The following corollary states the preceding proposition in terms of ranges containing

choices for ε.

Corollary 32. Let n+ 1 = pm1
1 pm2

2 · · · pmt
t with the convention pm1

1 < · · · < pmt
t . If ε′ = kpmi

i

for integer k fails to satisfy condition 1.2 for the prime pi dividing n+ 1, then the choice

ε = ε′ + pmi
i = (k + 1) pmi

i satisfies condition 1.2 for the prime pi and the number n. By

Corollary 28 and Corollary 29 all choices for ε in the range

{ε, · · · , ε+ pmi
i − 2} = {(k + 1) pmi

i , · · · , (k + 2) pmi
i − 2}, where ε ̸≡ −1 mod pi, also

satisfy condition 1.2 for the prime pi and the number n.
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5. Generalization: Two Prime Powers

The following theorem generalizes Theorem 18, which shows that for any odd number

n+ 1 composed of two squarefree prime factors, there is always a choice for ε satisfying

conjecture 1.1 for the even number n. For the generalization we consider the number n+ 1

with nonsquarefree prime factors. The generic factorization for this number can be written as

n+ 1 = pm1
1 · pm2

2 with the convention pm1
1 < pm2

2 . No conditions are placed on the relative

size of the primes p1 and p2. This theorem was proved by Walter Parry using a significantly

different method. Though this is not an entirely new result, an alternative form of the proof is

included here as it is instructive in developing a general proof for conjecture 1.1 using the

methods of this paper.

Theorem 33. [Alternative Proof of a Theorem of Walter Parry]. If n+ 1 = pm1
1 · pm2

2 , where

p1 ̸= p2 are both prime and pm1
1 < pm2

2 , there is a choice for ε in the range {pm2
2 , · · · , n− 2}

that will make the expression Rn (ε) and the number n+ 1 relatively prime, satisfying

conjecture 1.1 for the number n.

Proof. By Corollary 24, the smallest choice for ε that can possibly satisfy conjecture 1.1 for

the number n is pm2
2 . By Proposition 25 all choices for ε in the range {pm2

2 , · · · , 2pm2
2 − 2},

except where ε ≡ −1 mod p2, satisfy condition 1.2 for the prime p2. By the same

proposition, all choices for ε in the range {pm1
1 , · · · , 2pm1

1 − 2}, except where ε ≡ −1

mod p1, satisfy the condition for the prime p1.

Case 1. pm2
2 < 2pm1

1 − 1. By assumption pm2
2 is odd. The number 2pm1

1 − 2 is even.

Therefore, the inequality pm2
2 ≤ 2pm1

1 − 3 must hold. The bound ensures that the

numbers pm2
2 and pm2

2 + 1 must be contained in the interval {pm1
1 , · · · , 2pm1

1 − 2}.

If pm2
2 ̸≡ −1 mod p1, then ε = pm2

2 simultaneously satisfies condition 1.2 for the

primes p1 and p2. On the other hand, if pm2
2 ≡ −1 mod p1, then pm2

2 + 1 ≡ 0

mod p1, and the choice ε = pm2
2 + 1 simultaneously satisfies condition 1.2 for both

primes. One of these must hold. This guarantees a choice for ε satisfying

conjecture 1.1 for the number n.
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Case 2. pm2
2 = 2pm1

1 − 1. By the condition of this case, we can express the range

{pm2
2 , · · · , 2pm2

2 − 2} equivalently as {2pm1
1 − 1, · · · , 4pm1

1 − 4}. This interval

contains the numbers 2pm1
1 , 3pm1

1 , and 3pm1
1 + 1 by the nature of its structure. (This

is true as long as pm1
1 > 3. See Theorem 18, Case 1 for the case when pm1

1 = 3 and

pm2
2 = 2pm1

1 − 1 = 5.) By Lemma 31, either ε = 2pm1
1 or ε = 3pm1

1 must satisfy

condition 1.2 for the prime p1. In the current case, the choice ε = 2pm1
1 ̸≡ −1

mod p2 satisfies condition 1.2 for the prime p2, and if this choice also satisfies the

condition for the prime p1, we are done. If this choice does not satisfy condition 1.2

for the prime p1, then by Lemma 31 the choices ε = 3pm1
1 and ε = 3pm1

1 + 1 must

satisfy the condition for the prime p1. If 3pm1
1 ≡ −1 mod p2, then ε = 3pm1

1 + 1

satisfies condition 1.2 for both primes. One of the choices for ε in the set

{2pm1
1 , 3pm1

1 , 3pm1
1 + 1} must satisfy condition 1.2 for both primes p1 and p2. This

guarantees a choice for ε satisfying conjecture 1.1 for the number n.

Case 3. pm2
2 ≥ 2pm1

1 + 1. By this condition, the smallest possible value for pm2
2 is 2pm1

1 + 1.

In that case the interval {pm2
2 , · · · , 2pm2

2 − 2} is equivalent to

{2pm1
1 + 1, · · · , 4pm1

1 }, which has exactly 2pm1
1 elements. This guarantees at least

two multiples of pm1
1 in the interval {pm2

2 , · · · , 2pm2
2 − 2} since in all other cases

the value of pm2
2 is greater. Call these multiples kpm1

1 and (k + 1) pm1
1 where k is an

integer. In the subrange {kpm1
1 , · · · , (k + 1) pm1

1 } there are exactly pm1
1 + 1

elements. This leaves at least pm1
1 − 1 = 4 elements remaining in the interval

{pm2
2 , · · · , 2pm2

2 − 2}, since the minimum of pm1
1 is 5, and there are at least 2pm1

1

elements in the interval. These elements must be less than kpm1
1 or greater than

(k + 1) pm1
1 . If even one element is greater than (k + 1) pm1

1 , then we can guarantee

that the subrange {(k + 1) pm1
1 − 3, · · · , (k + 1) pm1

1 + 1} is in the interval

{pm2
2 , · · · , 2pm2

2 − 2}. By Lemma 31 and Corollary 32 either ε = (k + 1) pm1
1 − 2

or ε = (k + 1) pm1
1 must satisfy condition 1.2 for the prime p1 and the number n. If

for either choice we have ε ≡ −1 mod p2, then select either ε = kpm1
1 − 3 or

ε = kpm1
1 + 1 from the corresponding ranges, and we are done. On the other hand,
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if (k + 1) pm1
1 is the largest element in the interval {pm2

2 , · · · , 2pm2
2 − 2}, then there

are at least four elements smaller than the number kpm1
1 , which guarantees that the

subrange {kpm1
1 − 3, · · · , kpm1

1 + 1} is contained in the interval. By a similar

argument employing the same lemma and corollary, this subrange must contain a

choice for ε satisfying condition 1.2 for both primes p1 and p2. This guarantees a

choice for ε satisfying conjecture 1.1 for the number n.

Taking Cases 1–3 together, we have shown that for the number n+ 1 = pm1
1 · pm2

2 , a

choice for ε exists that will make the expression Rn (ε) and the number n+ 1 relatively

prime, satisfying conjecture 1.1 for the number n.

�
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6. Primes Far Apart: Partial Generalization of Theorem 19

In this section, we provide a partial generalization of Theorem 19. That theorem

considers a number n+ 1 of form n+ 1 = p1p2 · · · pt where the primes pi are far apart from

each other. In that theorem, the bound pk ≥ 3pk + 1 for consecutive prime factors of n+ 1

guaranteed the result. In the generalization given here, we consider a number n+ 1 with

possibly many nonsquarefree prime factors. We express the generic prime factorization of this

number as n+ 1 = pm1
1 pm2

2 · · · pmt
t .

The methods needed for a direct generalization of Theorem 19 are beyond the scope of

this paper. A complete generalization would require a more intensive treatment of the

relations among the primes since we would need to verify that a choice for ε is not congruent

to −1 for any of the t prime factors of n+ 1. The difficulties of this task can be seen in the

complexities of the proof of Theorem 33, where we take care to ensure that our choice for ε is

not congruent to −1 for either of the primes p1 or p2. In that case, the number n+ 1 had only

two prime factors. In the current situation, the number n+ 1 has t prime factors where t can

be any positive integer. This means that the method used in the proof of Theorem 33 would be

cumbersome and is not preferred for this case. We offer a partial generalization that still

allows us to handle many new even numbers n where n+ 1 is neither squarefree nor a prime

power.

Theorem 34. Let n+ 1 = pm1
1 · pm2

2 · · · pmt−1

t−1 · pmt
t with the convention

pm1
1 < pm2

2 < · · · < p
mt−1

t−1 < pmt
t . If the bound pk ≥ p

mk−1

k−1 + 2pk−1 is satisfied for all

consecutive factors pk and pk−1 of n+ 1, then there is a choice for ε satisfying conjecture 1.1

for the number n.

Proof. By Proposition 25, we know that all choices for ε in the range

{pmt
t , · · · , pmt

t + pt − 2} satisfy condition 1.2 for the prime pt and the number n without

exception since the specified range contains no numbers that are one less than a multiple of pt.

The range {pmt
t , · · · , pmt

t + pt − 2} contains pt − 1 elements, and the bound stated in the

theorem guarantees the inequality pt − 1 ≥ p
mt−1

t−1 + 2pt−1 − 1. There is at least one multiple
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of the prime power pmt−1

t−1 in the interval. For convenience, call it lpmt−1

t−1 where l is an integer.

If there are at least pt−1 elements smaller than lpmt−1

t−1 contained in the larger interval, which is

allowed by the bound on consecutive primes, then by Proposition 32 all choices for ε in one of

the subintervals,
{
lp

mt−1

t−1 − pt−1, · · · , lpmt−1

t−1 − 2
}
or
{
lp

mt−1

t−1 , · · · , lpmt−1

t−1 + pt−1 − 2
}
, are

guaranteed to satisfy condition 1.2 for the primes pt−1 and pt without exception. But suppose

there are at most pt−1 − 1 elements smaller than lpmt−1

t−1 contained in the interval, so that in the

worst case scenario the smallest element in the interval is lpmt−1

t−1 − pt−1 − 1. Then, by the

bound on the consecutive prime factors of n+ 1, we know that the element(
lp

mt−1

t−1 − pt−1 − 1
)
+
(
p
mt−1

t−1 + 2pt−1 − 1
)
= (l + 1) p

mt−1

t−1 + pt−1 − 2 is guaranteed to be in

the interval. In one of the subintervals, either
{
lp

mt−1

t−1 , · · · , lpmt−1

t−1 + pt−1 − 2
}
or{

(l + 1) p
mt−1

t−1 , · · · , (l + 1) p
mt−1

t−1 + pt−1 − 2
}
, all choices for ε are guaranteed to satisfy

condition 1.2 for the primes pt−1 and pt, unconditionally. This guarantees a range containing

choices for ε satisfying condition 1.2 for the primes pt and pt−1, simultaneously.

Considering the prime power pmt−2

t−2 and applying a similar analysis to that above, we

can establish a range containing choices for ε that satisfy condition 1.2 for the primes pt, pt−1,

and pt−2, unconditionally. Continuing inductively, we can establish a nonempty interval

containing choices for ε that simultaneously satisfy condition 1.2 for all primes pi dividing

n+ 1. This guarantees a choice for ε satisfying conjecture 1.1 for the number n. �

Directly below, we give an example of a number n+ 1 for which the previous theorem

guarantees a choice for ε satisfying conjecture 1.1 for the number n. We note here that the

numbers covered by this proposition, including the particular n of the example below, are not

covered by any of the previously known results.

Example 35. Consider the number n+ 1 = 33 · 372 · 1 447 = 53 485 461. We note that the

bounds required by the theorem are satisfied since 1 447 ≥ 372 + 2 · 37 = 1 443 and

37 ≥ 33 + 2 · 3 = 33. This guarantees a choice for ε in the interval

{1 447, · · · , 2 · 1 447− 2} = {1 447, · · · , 2 892} satisfying conjecture 1.1 for the number n.

By the bound on the consecutive primes, we are guaranteed that the interval contains at

least one multiple of the prime power 372 = 1369. The particular multiple contained in this
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interval is 2 · 1 369 = 2 738. By the proposition, we can construct our subintervals around this

multiple of 192 if there are at least pt−1 = 37 elements smaller than 2 738 contained in the

interval. In this case the condition holds, and the guaranteed subintervals{
lp

mt−1

t−1 − pt−1, · · · , lpmt−1

t−1 − 2
}
= {2 738− 37, · · · , 2 738− 2} = {2 701, · · · , 2 736} and{

lp
mt−1

t−1 , · · · , lpmt−1

t−1 + pt−1 − 2
}
= {2 738, · · · , 2 738 + 37− 2} = {2 738, · · · , 2 773} are in

the interval. At least one of these ranges must contain choices for ε that satisfy condition 1.2

for the prime 37. Checking, we have

(−1)2 738
(
53 485 459

2 738

)
≡
(
35
0

)(
36
0

)(
33
2

)(
19
0

)(
28
0

)
= 528 ≡ 10 ̸≡ 1 ≡ 2 738 + 1 mod 37. This

shows that choices for ε in the range {2 738, · · · , 2 773} satisfy condition 1.2 for the prime 37.

Considering now the prime pt−2 = 3, the bound of the theorem guarantees that the range

{2 738, · · · , 2 773} contains at least one multiple of 33 = 27. In fact, we have the multiple

102 · 33 = 2754 in the interval. Again, by the theorem, if there are pt−2 = 3 elements smaller

than 2 754 contained in the interval, we can construct our subintervals around this multiple of

27. There are, and we are guaranteed that choices for ε in one of the intervals

{2 754− 3, · · · , 2 754− 2} = {2 751, · · · , 2 752} or

{2 754, · · · , 2 754 + 3− 2} = {2 754, · · · , 2 755} satisfy condition 1.2 for the prime

pt−2 = 3. Checking we have

(−1)2 754
(
53 485 459

2 754

)
≡
(
1
0

)(
2
0

)(
2
0

)(
0
0

)(
2
1

)(
0
2

)(
0
0

)(
0
1

)(
1
0

)
· · · ≡ 0 ̸≡ 1 ≡ 2 754 + 1 mod 3. So,

choices for ε in the range {2 754, · · · , 2 755} satisfy condition 1.2 for the prime factor 3. (In

fact, choices for ε in the alternate range also satisfy the condition for the prime 3.)

These choices simultaneously satisfy condition 1.2 for the primes 1447, 37, and 3. This

guarantees at least one choice for ε satisfying conjecture 1.1 for the number n = 53 485 460.

(There are more choices than the ones stated.)
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7. Primes Close Together: Partial Generalizations

In this section we offer a few partial generalizations of Theorem 20. In that theorem we

saw that if the squarefree prime factors of n+ 1 are sufficiently close together, then there is a

guaranteed choice for ε satisfying conjecture 1.1 for the number n. We wish to generalize to

the case where the primes dividing the number n+ 1 are possibly of degree greater than one.

We give n+ 1 the arbitrary prime factorization

n+ 1 = pm1
1 · pm2

2 · · · pmt
t

with the convention pm1
1 < · · · < pmt

t .

If the bound pmt
t ≤ 2pm1

1 − 1, which is similar to the bound required in Theorem 20,

holds on the prime powers dividing n+ 1, and if 2pm1
1 − 1 is relatively prime to n+ 1, then

there is a guaranteed choice for ε satisfying conjecture 1.1 for the number n. The additional

condition on the number 2pm1
1 − 1 is absent from Theorem 20. As mentioned in the

introduction to Section 6, identifying whether a given choice for ε is congruent to −1 for any

of the primes {p1, · · · , pt} dividing n+ 1 requires much attention when working with

nonsquarefree prime factors. This difficulty is averted in the following proposition by

introducing this additional condition.

Proposition 36. Let n+ 1 = pm1
1 · pm2

2 · · · pmt
t with the convention pm1

1 < · · · < pmt
t . If the

bound pmt
t < 2pm1

1 − 1 holds and if 2pm1
1 − 1 and n+ 1 are relatively prime, then there is a

guaranteed choice for ε satisfying conjecture 1.1 for the number n.

Proof. By assumption, for any prime pi dividing n+ 1, we have 2pm1
1 − 1 ̸≡ 0 mod pi. It

follows that 2pm1
1 − 2 ̸≡ −1 mod pi for any prime dividing n+ 1. The bound

pmt
t < 2pm1

1 − 1 ensures that the string of inequalities

pm1
1 ≤ pmi

i ≤ pmt
t < 2pm1

1 − 2 ≤ 2pmi
i − 2 holds for all prime powers pmi

i dividing n+ 1.

From this string of inequalities, we see that the value ε = 2pm1
1 − 2 is in the range

{pmi
i , · · · , 2pmi

i − 2} for every prime power pmi
i dividing n+ 1. By Proposition 25 the choice
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ε = 2pm1
1 − 2 simultaneously satisfies condition 1.2 for each prime pi dividing n+ 1. This

guarantees a choice for ε satisfying conjecture 1.1 for the number n. �

Remark 37. The preceding proposition holds immediately in the case that the number

2pm1
1 − 1 is prime since n+ 1 and 2pm1

1 − 1 are then immediately relatively prime. (The

bound pmt
t < 2pm1

1 − 1 guarantees that the prime 2pm1
1 − 1 does not divide n+ 1, so the

choice ε = 2pm1
1 − 2 is guaranteed to satisfy conjecture 1.1 for the number n.)

Here we provide an example of a number n+ 1 for which the previous proposition

guarantees a choice for ε satisfying conjecture 1.1 for the number n.

Example 38. Consider the number n+ 1 = 75 · 17 011 · 1312 · 1372 · 1392 · 39 · 21 011 · 1492 ·

1512 · 293·1572 · 1632 · 1672 · 28 031 · 134 · 313 · 1732 · 1792 · 1812.

The bound pmt
t ≤ 2pm1

1 − 2 of Proposition 36 is satisfied since

1812 = 32 761 ≤ 33 612 = 2 · 75 − 2. By the construction of the number n+ 1, we see that

the choice for ε given by 2pm1
1 − 2 = 2 · 75 − 2 = 33 612 falls in the range

{pmi
i , · · · , 2pmi

i − 2} for each prime dividing n+ 1. We note further that the number

2pm1
1 − 1 = 2 · 75 − 1 = 33 613 is prime. As mentioned in Remark 37, since 2pm1

1 − 1 is

prime, the choice ε = 33 612 is not congruent to −1 for any prime pi dividing n+ 1. This is a

guaranteed choice for ε satisfying conjecture 1.1 for the number n where n+1 is given above.

We continue with a variety of partial generalizations of Theorem 20. The purpose of the

following propositions is to explore the difficulties that arise as we approach an unconditional

generalization of the theorem. The original theorem considers the case when the number

n+ 1 is the product of squarefree prime factors. In the following propositions, we allow an

increasing number of nonsquarefree primes in the prime factorization of n+ 1. We hope to

document the difficulties of the approach taken in this paper, as well as to identify methods

that might enable a general solution.

In the following propositions, we use the expression pmi
i to represent an arbitrary prime

power dividing n+ 1, including whenmi = 1. In the following proposition, we allow the first
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prime factor of n+ 1 to have degree greater than one. We see that this does not change the

result given in Theorem 20.

Proposition 39. Let n+ 1 = pm1
1 · p2 · · · pt with the convention pm1

1 < p2 < · · · < pt. If the

bound pt < 2pm1
1 − 1 is satisfied, then we are guaranteed a choice for ε satisfying conjecture

1.1 for the number n.

Proof. The bound pt < 2pm1
1 − 1 ensures that the string of inequalities

pm1
1 ≤ pmi

i ≤ pt ≤ 2pm1
1 − 3 < 2pm1

1 − 2 ≤ 2pmi
i − 2 holds for all pmi

i dividing n+ 1,

including whenmi = 1. From this string of inequalities, we see that the value ε = 2pm1
1 − 2 is

in the range {pmi
i , · · · , 2pmi

i − 2} for every prime pi dividing n+ 1. We see that

2pm1
1 − 2 ̸≡ −1 mod pi for any prime pi dividing n+ 1; otherwise, we would have

2pm1
1 − 1 ≡ 0 mod pi for some prime pi dividing n+ 1. But this contradicts the string of

inequalities above. By Proposition 25 the choice ε = 2pm1
1 − 2 satisfies condition 1.2 for each

prime pi dividing n+ 1. This guarantees a choice for ε satisfying conjecture 1.1 for the

number n. �

We give an example of a number n+1 for which the preceding proposition guarantees a

choice for ε satisfying conjecture 1.1 for the number n .

Example 40. Consider the number n+ 1 = 53 · 127 · 229 · 241, which fits the factorization of

the previous proposition. The bound pmt
t ≤ 2pm1

1 − 2 of Proposition 36, wheremt = 1, is

satisfied since 53 = 125 < 241 ≤ 2 · 53 − 2 = 248. The choice ε = 248 falls in the range

{pmi
i , · · · , 2pmi

i − 2} for each prime dividing n+ 1, including whenmi = 1. By the previous

proposition this is the choice for ε guaranteed to satisfy conjecture 1.1 for the number

n = 876 125 374.

In the following proposition we allow the prime factors p1 and pt of n+ 1 to possibly

have degree greater than one. We see that this minimally affects the result of Theorem 20.

Again, we let pmi
i represent a generic prime power dividing n+ 1, including whenmi = 1.
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Proposition 41. Let n+ 1 = pm1
1 · p2 · · · pt−1 · pmt

t with the convention

pm1
1 < p2 < · · · < pt−1 < pmt

t . If the bound pmt
t < 2pm1

1 − 1 is satisfied, then we are

guaranteed a choice for ε satisfying conjecture 1.1 for the number n.

Proof. The bound pmt
t < 2pm1

1 − 1 ensures that the string of inequalities

pm1
1 ≤ pmi

i ≤ pmt
t < 2pm1

1 − 2 ≤ 2pmi
i − 2 holds for all prime powers pmi

i dividing n+ 1,

including whenmi = 1. From this string of inequalities, we see that the choice ε = 2pm1
1 − 2

is in the range {pmi
i , · · · , 2pmi

i − 2} for every prime power pmi
i dividing n+ 1 (in most cases

mi = 1).

Propositions 11 and 25 guarantee that these ranges contain choices for ε satisfying

condition 1.2 for each prime pi dividing n+ 1, individually. We see that 2pm1
1 − 2 ̸≡ −1

mod pi for any squarefree prime pi dividing n+ 1; otherwise, we would have 2pm1
1 − 1 ≡ 0

mod pi for some squarefree prime pi dividing n+ 1. But this contradicts the string of

inequalities above.

Since pmt
t ≤ 2pm1

1 − 3, it is possible that 2pm1
1 − 1 ≡ 0 mod pt, in which case

2pm1
1 − 1 ≥ pmt

t + pt must hold since the string of inequalities above ensures that

2pm1
1 − 1 > pmt

t . It then follows that 2pm1
1 − 3 > pmt

t since pt ≥ 3. If that happens, then the

choice ε = 2pm1
1 − 3 is a suitable choice for ε. In either case, Proposition 25 guarantees a

choice for ε in this range simultaneously satisfying condition 1.2 for each prime pi dividing

n+ 1. This guarantees a choice for ε satisfying conjecture 1.1 for n where

n+ 1 = pm1
1 · p2 · · · pt−1 · pmt

t . �

Example 42. Consider n+ 1 = 72 · 53 · 61 · 34, which fits the form of n+ 1 of the previous

proposition. The bound of Proposition 36 is satisfied since

72 = 49 < 34 = 81 < 2 · 72 − 1 = 97. The choice ε = 96 falls in the range

{pmi
i , · · · , 2pmi

i − 2} for every prime power dividing n+ 1, including whenmi = 1. We only

need to verify whether ε = 96 is a suitable choice for the prime pt = 3, and since 96 ≡ 0

mod 3, this choice satisfies condition 1.2 for each prime dividing n+ 1. (The proposition

guarantees that either ε = 2pm1
1 − 2 or ε = 2pm1

1 − 3 satisfies the conjecture. In this case it is
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the former.) There is at least one choice for ε satisfying conjecture 1.1 for the number

n = 12 831 776, as guaranteed by the previous proposition.

In the following proposition, we allow the first two prime factors of n+ 1 to possibly

have degree greater than one.

Proposition 43. Let n+ 1 = pm1
1 · pm2

2 · p3 · · · pt with the convention

pm1
1 < pm2

2 < p3 < · · · < pt. If the bound pt < 2pm1
1 − 1 is satisfied, then we are guaranteed a

choice for ε satisfying conjecture 1.1 for the number n.

Proof. The bound pt < 2pm1
1 − 1 ensures that the string of inequalities

pm1
1 ≤ pmi

i ≤ pt ≤ 2pm1
1 − 3 < 2pm1

1 − 2 ≤ 2pmi
i − 2 holds for all prime powers pmi

i dividing

n+ 1 wheremi = 1 for i > 2. From this string of inequalities, we see that the choices

ε = 2pm1
1 − 3 and ε = 2pm1

1 − 2 are in the range {pmi
i , · · · , 2pmi

i − 2} for every prime pmi
i

dividing n+ 1, including the cases wheremi = 1.

By Propositions 11 and 25, choices for ε in these ranges satisfy condition 1.2 for each

prime pi, individually. We see that 2pm1
1 − 2 ̸≡ −1 mod pi for any squarefree prime pi

dividing n+ 1; otherwise, we would have 2pm1
1 − 1 ≡ 0 mod pi, which would contradict the

string of inequalities above.

It is possible that 2pm1
1 − 2 ≡ −1 mod p2, but then the choice ε = 2pm1

1 − 3 satisfies

condition 1.2 for the prime p2 as well as for all other primes dividing n+ 1. By Proposition

25, the choice ε = 2pm1
1 − 2 or ε = 2pm1

1 − 3 must satisfy condition 1.2 for each prime pi

dividing n+ 1. This guarantees a choice for ε satisfying conjecture 1.1 for the number n

where n+ 1 = pm1
1 pm2

2 p3 · · · pt. �

Example 44. Consider the number n+ 1 = 35 · 73 · 347 · 479, which fits the prime

factorization of the preceding proposition. The prime powers of n+ 1 satisfy the bound of

Proposition 36 since we have 35 = 243 < 479 < 2 · 35 − 1 = 485. The choice

ε = 2p1 − 2 = 484 is in the range {pmi
i , · · · , 2pmi

i − 2} for each prime dividing n+ 1. We

only need to verify whether the choice ε = 484 is suitable for the prime p2 = 7 since this

prime is not squarefree. We have 484 ≡ 1 mod 7. It follows that the choice ε = 484 satisfies
47



condition 1.2 for each prime dividing n+ 1. This is one of the potential choices for ε

guaranteed by the previous proposition to satisfy conjecture 1.1 for the number

n = 13 853 687 336.

In the following proposition, consideration of the possible values that the prime factors

of n+ 1 could take on forces us to divide our proof into two cases.

Proposition 45. Let n+ 1 = pm1
1 · pm2

2 · p3 · · · pt−1 · pmt
t with the convention

pm1
1 < pm2

2 < p3 < · · · < pt−1 < pmt
t . If the bound pmt

t < 2pm1
1 − 1 is satisfied, then we are

guaranteed a choice for ε satisfying conjecture 1.1 for the number n.

Proof. In both cases presented here, the string of inequalities

pm1
1 ≤ pmi

i ≤ pmt
t ≤ 2pm1

1 − 3 < 2pm1
1 − 2 ≤ 2pmi

i − 2 holds for all prime powers pmi
i

dividing n+ 1, including whenmi = 1.

Case 1. p1 ̸= 3.

Case i. p2, pt - 2pm1
1 − 1. The string of inequalities above and Proposition 36

guarantee that ε = 2pm1
1 − 2 satisfies conjecture 1.1 for the number n.

Case ii. 2pm1
1 − 2 ≡ −1 mod p2. By Proposition 25 the choice ε = 2pm1

1 − 3 is

guaranteed to satisfy condition 1.2 for the prime p2 and number n. If we

additionally have that 2pm1
1 − 3 ≡ −1 mod pt, then we know that

2pm1
1 − 2 ≥ pmt

t + pt, so the choice ε = 2pm1
1 − 4 is greater than pmt

t is

in the interval {pmt
t , · · · , 2pmt

t − 2} and satisfies condition 1.2 for the

prime pt. Since p1 ̸= 3, we see that the choice ε = 2pm1
1 − 4

simultaneously satisfies condition 1.2 for all primes dividing n+ 1. This

guarantees a choice for ε satisfying conjecture 1.1 for the number n.

Case iii. 2pm1
1 − 2 ≡ −1 mod pt. By this condition, we know that 2pm1

1 − 1 ≡ 0

mod pt, so we must have 2pm1
1 − 1 ≥ pmt

t + pt since 2pm1
1 − 1 > pmt

t by

the string of inequalities above. It follows that ε = 2pm1
1 − 3 > pmt

t , so

this choice for ε falls in the range {pmt
t , · · · , 2pmt

t − 2}. If

2pm1
1 − 3 ≡ −1 mod p2, then we can choose ε = 2pm1

1 − 4, which is in
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both ranges {pmt
t , · · · , 2pmt

t − 2} and {pm1
1 , · · · , 2pm1

1 − 2}. Since

p1 ̸= 3, we see that this choice simultaneously satisfies condition 1.2 for

all primes dividing n+ 1. This guarantees a choice for ε satisfying

conjecture 1.1 for the number n.

Case 2. p1 = 3.

Case i. p2, pt - 2pm1
1 − 1. By Proposition 36 we can guarantee a choice for ε

satisfying conjecture 1.1 for the number n.

Case ii. 2pm1
1 − 2 ≡ −1 mod p2. The string of inequalities above guarantees

that the choice ε = 2pm1
1 − 3 is in the range {pm2

2 , · · · , 2pm2
2 − 2} and

satisfies condition 1.2 for the prime p2. Suppose additionally that

2pm1
1 − 3 ≡ −1 mod pt. We then know that 2pm1

1 − 2 ≥ pmt
t + pt and

that the choice ε = 2pm1
1 − 4 satisfies condition 1.2 for the prime pt. But

p1 = 3, so we know that 2pm1
1 − 4 ≡ −1 mod p1 (p1 = 3). We can then

choose ε = 2pm1
1 − 5. (Note that ε ≥ pmt

t , since pt ̸= 3.) Now this

choice for ε satisfies condition 1.2 for all primes dividing n+ 1. This

guarantees a choice for ε satisfying conjecture 1.1 for the number n.

Case iii. 2pm1
1 − 2 ≡ −1 mod pt. Since pmt

t < 2pm1
1 − 1 and 2pm1

1 − 1 ≡ 0

mod pt, we know that 2pm1
1 − 1 ≥ pmt

t + pt. The string of inequalities

above and Proposition 25 guarantee that the choice ε = 2pm1
1 − 3

satisfies condition 1.2 for the prime pt. Suppose further that

2pm1
1 − 3 ≡ −1 mod p2, then the choice ε = 2pm1

1 − 4 satisfies

condition 1.2 for the prime p2. But we know that 2pm1
1 − 4 ≡ −1

mod p1 (p1 = 3). We can then choose ε = 2pm1
1 − 5. (Note that ε ≥ pmt

t ,

since pt ̸= 3.) This choice for ε must satisfy condition 1.2 for each prime

dividing n+ 1. This guarantees a choice for ε satisfying conjecture 1.1

for the number n.

Taking Cases 1 and 2 together, we have shown that we can always guarantee a choice

for ε satisfying conjecture 1.1 for n where n+ 1 = pm1
1 · pm2

2 · p3 · · · pt−1 · pmt
t .
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Example 46. Consider the number n+ 1 = 53 · 132 · 173 · 35, which fits the factorization of

n+ 1 in Case 1 of the preceding proposition. The prime powers of n+ 1 satisfy the bound

pmt
t < 2pm1

1 − 1 of Proposition 36 since 53 = 125 < 35 = 243 < 2 · 53 − 1 = 249. The choice

ε = 248 is in the bound {pmi
i , · · · , 2pmi

i − 2} for each prime power dividing n+ 1. It is left

only to check whether this choice is congruent to −1 for either p2 = 13 or pt = 3. We have

248 ≡ 1 mod 13 and 248 ≡ −1 mod 3. This choice for ε fails to satisfy condition 1.2 for

the prime pt = 3. This places us in subcase iii of the argument above. As noted in that

subcase, since 2pm1
1 − 2 ≡ −1 mod 3, it is guaranteed that this number is greater than or

equal to pmt
t + pt = 35 + 3 = 246. This guarantees that the number 2pm1

1 − 3 = 247 is in the

interval {243, · · · , 485} by construction. Now, the choice ε = 247 ̸≡ −1 mod 3 and we only

need to check whether ε = 247 fails for the prime p2 = 13. This choice for ε is one less than

the preceding choice, so ε = 247 ≡ 0 mod 13. It follows that the choice ε = 247 satisfies

conjecture 1.1 for the number n = 888 073 874.
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8. Conclusion

A full proof of conjecture 1.1 is not yet known. The conjecture is known to be true for

certain cases when the prime power factors of n+ 1 are close together and when they are far

apart. It is also known to be true for any number n+ 1 where the degree of each prime power

dividing n+ 1 is large as was proved by Parry [4]. As noted in Wilfong [7], there is

substantial numerical evidence to support the claim for all n up to 100 000. The conjecture

remains to be verified in cases between the extremes covered. These cases provide a

challenge to deal with analytically.

The previously known results of Section 3 place special conditions on the relations of

the squarefree prime factors of n+ 1. The generalizations of the propositions and lemmas of

Section 2 presented in Section 4 provide tools that could potentially be used for a complete

proof. The generalizations in Sections 6 and 7 of theorems contained in Section 3 provide

more evidence that the conjecture is true in general. The main results are Propositions 34 and

36, which, respectively, partially generalize Theorem 19 where the primes dividing n+ 1 are

far apart, and Theorem 20 where the primes dividing n+ 1 are close together.

The presentation here is no way an exhaustive study of the conjecture. There are many

unexplored avenues that could be used to identify choices for ε that satisfy conjecture 1.1 for

an arbitrary even n not one less than a prime power. One possible approach is to examine the

interplay between various ranges containing choices for ε that satisfy condition 1.2 for the

prime factors of n+ 1 individually. One could examine consecutive multiples of prime

powers pmi
i dividing n+ 1 wheremi is an integer. There is preliminary evidence suggesting

that for a given prime power pmi
i dividing n+ 1, a majority of the choices for ε in the set

{l · pm, (l + 1) pm, · · · , (pm − 1) pm}, where l is an integer, satisfy condition 1.2 for the

number n and the prime pi, and that periodic patterns arise when consecutive numbers from

this set are used as choices for ε in the equivalence relation involving Rn (ε) of condition 1.2.

If we could characterize the pattern for multiples of a prime power pmi
i acting as a choice for ε

in condition 1.2 for the prime pi dividing n+ 1, we might then be able to identify overlaps in

various ranges containing choices for ε that satisfy condition 1.2 for particular primes pi
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dividing n+ 1. Ranges of this type can be large, especially when the primes dividing n+ 1

are nonsquarefree. Given the sheer number and size of these intervals, it is hopeful that the

methods used in this paper could be extended to identify a single choice for ε satisfying

conjecture 1.1 for any even number n.

A weakness of the approach taken in this paper is that it relies on counting arguments

that can quickly become unwieldy; however, coupling this approach with specific choices for

ε having convenient properties should help to overcome these difficulties. For example, for

any prime number p, the choice ε = p− 1 can only be congruent to −1 for that one particular

prime. If this particular prime p does not divide n+ 1, then the choice ε = p− 1 is a

promising candidate as a choice for ε. This property was exploited in Example 38 and made

explicit in Remark 37 where we noted that Proposition 36 is immediately satisfied if the

number 2pm1
1 − 1 is prime. Another variety of candidate choices for ε includes numbers of the

form 2k − 1 where k is an integer. The number 2k is not divisible by any odd prime, so the

choice ε = 2k − 1 has the property that it cannot be congruent to −1 for any (odd) prime

dividing n+ 1. A choice for ε of this form was made in Theorem 18, Case 1 where we state

that ε = 23 − 1 = 7 satisfies conjecture 1.1 for the number n = 14. Numbers of the form

ε = kp1p2 · · · pt, which for integer k are multiples of the product of the prime factors of n+ 1,

could potentially help in a proof of conjecture 1.1. Such a choice for ε has the property that

ε ≡ 0 mod pi for each prime dividing n+ 1. Numbers of such form are promising

candidates to act as choices for ε.

The line of research followed by Walter Parry in his unpublished notes gives a

promising method that is general and far-reaching in scope. It is possible that the more

advanced techniques employed there will be needed to provide a full proof of the conjecture.

This depends on whether the limitations of the approach used in this paper can be overcome.

There is no evidence against the conjecture, and there are many promising, unexplored

avenues that could yield a proof. The conjecture is supported by theoretical as well as

numerical results, and a full proof is hopeful within the next few years.
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