Fuel Cost Hedging in the U.S. Airline Industry

Kun Lu

Follow this and additional works at: http://commons.emich.edu/honors
Part of the Accounting Commons

Recommended Citation

Lu, Kun, "Fuel Cost Hedging in the U.S. Airline Industry" (2012). Senior Honors Theses. 348.
http://commons.emich.edu/honors/348

Fuel Cost Hedging in the U.S. Airline Industry

Degree Type

Open Access Senior Honors Thesis

Department

Accounting and Finance

First Advisor

Robert C. Hanson

Second Advisor
 Asrat Tessema

Subject Categories

Accounting

FUEL, COST HEDGING
IN THE U.S. AIRLINE INDUSTRY

By

Kun Lu

Honors in Accounting and Finance

TableofContents

Acknowledgements 3
Abstract. 4
Introduction 5
Section I: Airline Industry analysis
1.1. Porter's Five Forces analysis 6
1.2 Industry current situation. 8
Section II: Fundamental theory of hedging
2.1 What is fuel hedging 9
2.2 What fuel hedging does. 10
2.3 How does fuel hedging effect on profit 11
Section III: Fuel hedging in the airline Industry
3.1 Fuel Hedging instruments 13
3.2 Trends of fuel hedging in the industry 18
Section IV: Sample airline companies' analysis
3.1. Fuel cost and operating expense of airlines. 22
3.2. Impact of hedging 23
3.3. Hedge position 27
Conclusion 29
Reference 30
Appendix
Appendix 1 32
Appendix 2 33
Appendix 3 37

Acknowledgements

I take this opportunity to express my deep sense of gratitude to all those who have contributed significantly by sharing their knowledge and experience in the completion of this project work. First, I would like to sincerely thank my department Honor advisor, Dr. Asrat Tessema, and my thesis advisor, Dr. Robert C Hanson, for their kind help and support and their valuable guidance throughout my project. I am thankful to them for providing me with necessary insights and helping me out at every single step.

Second, I am highly thankful to Dr. Rebecca Bowers Sipe and John Feldkamp, my Honor college faculty guides. I thank them for their continuous support and mentoring during the tenure of the project.

Finally, thanks to my friends who have been a major source of emotional and social support during the long and arduous task of carrying out the project and preparing this report.

Abstract

The purpose of this thesis is to focus on the effect of the jet fuel hedging on the airline company's profit. Some specific questions will be "who does jet fuel hedging in the U.S. airline industry?' and "How does jet fuel hedging work or effect on the airline company's profit?" To apply these questions into the real world, this thesis will present an analysis of four U.S. based airline companies' latest annual reports, and thereafter, to find out the relationship between the jet fuel hedging strategy and the company's profit and to observe the percentage of operating cost that airline company usually hedge. The four airlines that been selected are Southwest Airlines, Delta Air Lines, US Airways, and American Airlines.

Introduction

Jet fuel costs account for a large portion of an airline's operating expenses, according to the Air Transportation Association (ATA). Fuel cost is an airline's second largest expense after the labor cost and on average it constitutes approximately 13 percent of airline company costs. Hence, jet fuel price risk is economically meaningful to airlines. In addition, due to the highly intensive competition environment of the airline industry, airline companies cannot pass all of the jet fuel costs on to their customers when fuel prices rise dramatically (refer to appendix 1 The volatility of jet fuel price). As a result, most airline companies adopt jet fuel hedging strategy and believe it can protect companies' profit from the unstable fuel price. A good example will be the low-cost airlines such as Southwest that have benefited considerably from an aggressive hedging strategy. However, other airline companies, for example, Delta, claimed that risk would be present regardless of whether they hedged or not.

In order to get a better understanding of fuel hedging strategy, the reasons of jet fuel hedging instruments' implementation will be explored. This paper will be structured as follows: Section I provides an industry analysis to further prove the unfavorable current industry situation for the existing airlines. Section II provides the answer for the questions like what fuel hedging is, how it works, and why airlines hedge. Section III illustrates some major instruments of jet fuel hedging, and Section IV investigates four major airlines' jet fuel hedging positions.

Section I: Airline Industry analysis

1.1 Port's five forces

Threat of New Entrants: The airline industry is a business which requires huge setup costs and large investments. It seems like this industry is quite tough to break into, but today banks have increased possibilities of new entrants through offering long term
loans on less interest to business sectors. If borrowing is cheap, then the likelihood of more airlines entering the industry is higher. Obviously, the threat of new entrants for the existing airlines is increased.

Power of Suppliers: The airline supply business is mainly dominated by Boeing and Airbus. For this reason, Boeing and Airbus have high bargaining power due to large switching costs associated with changing airplanes.

Power of Buyers: Customers have some bargaining power in the domestic airlines industry because of the high competition among airline companies. However, there are high costs involved with switching airplanes, and the quality of each airline company in terms to compete on service is almost equal. This gives the airlines an inability to offset the bargaining power of buyer effectively.

Availability of Substitutes: Substitutes to air travel include cars, buses, and trains. For domestic airlines, the threat might be a little higher than international carriers. Considering domestic airlines, there are options available to the customers like ground transportation but time consumption and convenience are the factors that discourage customers to adopt any one of these substitutes. Cost of air travel however is another barrier that let customers to consider other available options, but this reason is becoming of less concern because of the fairly low switching costs between air travel and its substitutes (the high competition in the airline industry result in a price war among the airline companies). International carriers have very less or no threat regarding other options.

Competitive Rivalry: Rivalry exists in the airline industry and is intense because there are several airlines operating on the same destinations around the world. They compete aggressively with each other through offering different services, lowering prices, frequent flyer membership privileges and other benefits to grab more customers than their competitors.

1.2. Industry current situation

Porter's Five Forces model helps paint a picture of the airline industry. The depressive market situation of the industry has become obvious through intense price wars, strong supplier bargaining power, and high threat from new entrants. Highly competitive industries generally earn low returns because the cost of competition is high. Therefore, airline companies are struggling to find a way to control costs and Iower it to a certain extent as much as possible. It turns out that most airlines are striving to lower their operating cost by doing something the industry calls "hedging" to protect the second largest expense for airlines, the fuel costs.

Section II: Fundamental theory of hedging

2.1 What is fuel hedging

Fuel hedging is a contractual tool for some large fuel consuming companies, such as airline companies, to lock in the cost of future fuel purchases. In the airline industry, airline companies enter into hedging contracts to reduce their exposure to future fuel prices changes, which may be higher than current prices, and to set a known fuel cost for budgeting purposes. There are several instruments that the company can use to hedge, and different combination of these instruments can produce different results of hedging. In section III, we will provide more detail of some major hedge instruments in the airline industry, but let's see one common example of these instruments to start an understanding of fuel hedging.

If the airline company buys a fuel call option at $\$ 40$ per barrel and the price of fuel increases to $\$ 45$, the company will receive a return on the option that offsets their actual cost of fuel. On the other hand, if the price of fuel decreases to $\$ 35$, the company will not receive a return on the option but they will benefit from having the right to not exercise the option and buying fuel at the then lower cost (call options are only obligation for the sellers).

Call premium	$\$ 2$
Strick price	$\$ 40$
Spot price	$\$ 35$ or $\$ 45$

Today		Expration		
Buy call	-2		$\mathrm{St}=35$	St=45
		Buy the Oil	-St 35	-St=45
		Own call	$\operatorname{Max}[0, \mathrm{St}-40]=0$	Max[0, St-40]=(45-40)
		Payoff	-St=35	-40
		Profit	-35-2=-34	$-40-2=-42$

From the table and graph showed above, we can simply observe that this airline locked the fuel price at $\$ 42$ against the potential of price increase and can still enjoy the benefits by following the spot price when it drops lower than the strike price. This protects against sudden losses from rising fuel prices, and stabilizes fuel cost overall across airline costs.

2.2 What fuel hedging does

One important topic of this paper is to illustrate why airlines hedge. The earlier example in this paper may provide a clue for the reason of hedging, that is, hedging stabilize fuel prices and therefore overall costs, cash flows, and profits. The theory behind airline fuel hedges is to reduce a major source of swings in profits, and thus higher prices for the airlines' stocks. The variability of jet fuel price has high correlation with airlines stock price for two reasons: first, based
on the five forces analysis that we did earlier in this paper, travel demand is sensitive to consumer confidence, which is highly correlated with stock market performance; second, airlines themselves are highly leveraged, in the sense that the total value of outstanding stock is a small portion of the company's annual incomes. Small changes in profits make for large changes in the return to stock shares. Therefore, most traded airlines today hedge fuel costs.

2.3 How does fuel hedging effect on profit

For airlines, fluctuation of jet fuel is not easy to predict or to control, and the profit of airlines is hugely affected by the rise or fall of the jet fuel. As the intrinsic theory behind the jet fuel hedging implied, airlines want to increase the value of the shareholders by reducing the risk of fuel price variability. However, the question remains on how jet fuel hedging works. Here, three general incentives of these airlines that do hedge jet fuel price are stated as follow:

1. If airlines do not enter into any agreement that fix the price of jet fuel over any period of time, an increase in the cost of jet fuel will be immediately passed through to the airlines by suppliers. Recall from the industry analysis, the airline cannot pass the stress of increased jet fuel price to the passengers because of the high competition in the airline industry. Therefore, the airlines will experience reduced margins because they are unable to increase fares to compensate for such higher fuel costs. In addition, it is impossible for an airline to stock large
amounts of jet fuel, due to financing and storage costs. Hence, an effective strategy for airlines is to hedge fuel costs to avoid huge swings in expenses.
2. One may argue that average profitability over the years will be the same whether the variability in the cost is large or small. It is true when there is no other systemic influence such as tax liabilities to the earnings. From the accounting perspective, the corporate tax liabilities may have a positive influence on the earnings, but it is actually a side effect to the value of the company's shareholder. Which means the more the variability in earnings, the less the average value of the firm (Song, 2006). Therefore, managers would choose to implement hedging against the variability of the cost because of the systemic effect of corporate tax liability. It is a matter of course to implement hedging instruments when the cost of hedges is smaller than the benefit.
3. From another aspect, by reducing the volatility of earning, thereby reducing the chance of financial distress, hedging increases debt capacity. Since the cost of equity decreases by the decrease in the risk premium, the firm can increase debt to keep the cost of capital at the same or at a lower level. If debt increases in response to the greater debt capacity, the associated increase in interest deductions reduces tax liabilities and therefore increases the firm value. Thus the ability to increase debt capacity provides an additional tax incentive to hedge.

Section III: Fuel hedging in the airline Industry

3.1. Fuel Hedging instruments by airlines

This section describes the most commonly used hedging contracts by airlines: futures contracts and forwards contracts, call options (including caps), collars (including zero-cost and premium collars), and swap contracts. At the beginning of this paper, an example of hedging with call options was given. In practice, fuel price risk can be managed in a number of ways:

Futures and Forward Contracts

A futures contract is an agreement to buy or sell a specified quantity and quality of a commodity for a certain price at a designated time in the future. The buyers have a long position, which means buyers agree to buy the underlying assets. The sellers have a short position, which means sellers agree to sell the underlying assets. Futures contracts are traded on an exchange, which specifies the contracts in term of quantity, quality, and delivery time and guarantees their performance. Only a small percentage of futures contracts traded result in delivery of the underlying assets. Instead, buyers and sellers of futures contracts generally offset their position.

A forward contract is the same as a futures contract except for two important distinctions: (1) Futures contracts are standardized and traded on exchanges, whereas forward contracts are typically customized and not traded on an exchange; and (2) Futures contracts are daily based marking to market
transaction, whereas forward contracts are settled at maturity only. For the futures contract, marking to market daily transaction means that each day during the life of the contract, there is a daily cash settlement depending on the current value of the underlying assets being hedged.

Call Options (Caps)

A call option is the right to buy a particular underlying asset at a predetermined fixed price (the strike price) at a predetermined date. OTC options in the oil industry are usually cash settled, while exchange-traded oil options on the NYMEX have physical settlement. Their settlement is normally based on the average price for a period, commonly a month. Airlines like settlement against average prices because an airline usually refuels its aircraft several times a day. Since the airline is effectively paying an average price over the month, they usually prefer to settle hedges against an average price, which are called average price options.

Another way to implement options is to to hedge cross-market risks. For example, in the airline industry, an airline could buy an option on crude oil as a cross-market hedge against a rise in the price of jet fuel. Of course, cross-market hedges should only be used if the prices are highly correlated.

Airlines value the flexibility that fuel options provide, but fuel options can be seen as expensive relative to other options. The reason is the high volatility of oil commodities, which causes the option to have a higher premium. For this reason, collars, which will be discussed next, are often used.

Collars

A collar is a combination of a put option and a call option. For a hedger who is planning to purchase an underlying asset with a collar, they need to sell a put option with a strike price below the current underlying asset price and buy a call option with a strike price higher than the current underlying asset price. The call protects the hedger from adverse price increases above its strike price, while selling a put option limits the advantage it can take of price reductions below its strike price. However, more and more airlines have moved toward using this combination of a call and a put option because the total cost of taking the two options is the call option premium paid less the put option premium received, and the premium received from selling the put option helps offset the cost of the call option.

The implement of collar helps airlines to lock in the price that will be paid for fuel between two known values. Therefore, a collar can limit the risk to a small range of price moves. In addition, the cost of efficiency of this hedging instrument is improved by offsetting two options premium.

Premium collar: If the increase of underlying asset price is more concerned, the hedger will buy a call option with lower strike price. On the contrary, if more benefit from declining prices is desired, the hedger will sell a put with a lower strike price. With a premium collar, the cost of the call option is only partially offset by the premium received from selling a put option. Later at the end of this
section, a descriptive graph will be provided to compare the premium collar strategy with other strategy.

SWAP

SWAP is an agreement whereby a floating price is exchanged for a fixed price over a certain period of time. It is an off-balance-sheet financial arrangement, which involves no transfer of the physical item. Both parties settle their contractual obligations by means of a transfer of cash. In a fuel swap, the swap contract specifies the volume of fuel, the maturity of the swap, and the fixed and floating prices for fuel. The differences between fixed and floating prices are settled in cash for specific periods. At the time the contract matured, if the spot price exceeds the strike price, the counter-party would pay the airline the difference times the amount of fuel. However, if the spot price were lower, then the airline would pay the difference. The figure below illustrates fuel hedging with a swap contracts graphically.

Fuel Hedging Using Swap Contracts

In summary, jet fuel itself can only be hedged through over-the-counter arrangements with the additional counter-party risk. Hedging oil on exchanges such as NYMEX that regulate standardized contracts eliminates counter-party risk. These also are more liquid, and allow an airline to sell before the due date. For longer periods into the future only crude oil instruments have good liquidity. Jet fuel contracts only have liquidity for shorter periods.

The graph below provides a conceptual illustration for hedging gains or losses using swap, call options, and premium collars when locking into a 60-cents/gallon price of jet fuel.

Swap, Call option, Premium Collar
 (Examples of hedging at 60 cents/gallon)

3.2 Trends of fuel hedging in the industry

As jet fuel prices are rising, there are signs that point toward an upward trend for airlines to enhance their hedging positions. According to International Air Transport Association (IATA) fuel consulting, the airline industry profitability has been experiencing significant downward pressure in 2011 and
2012. The reason for that is the increased profile of oil prices and dramatically decreased world trade growth (refer to the figure below).

Source from IATA Industry financial Forecast Report
Oil price rose from $\$ 79$ a barrel in 2010 to an average of $\$ 110$ in 2012 , or $\$ 127.7$ a barrel for jet fuel. The global airline industry is expected to spend $\$ 207$ billion in 2012 (refer to the Table 1 below), which means that roughly 33% of airlines expenses will be allocated to fuel alone. This is an increase of $\$ 31$ billion over 2011 and is almost 5 times the year 2003's fuel expenses of $\$ 44$ billion (refer to the Table 2 below).

TABLE1 Fuel impact on operating expense
Fuel Impact on Operating Costs

Year	\% of Operating Costs	Average Price por Barrol of Crude	Broakeoven Price per Barrol	Total Fuel Cost
2003	14%	$\$ 28.8$	$\$ 23.4$	$\$ 44$ billion
2004	17%	$\$ 38.3$	$\$ 34.5$	$\$ 65$ billion
2005	22%	$\$ 54.5$	$\$ 51.8$	$\$ 91$ billion
2006	26%	$\$ 65.1$	$\$ 68.3$	$\$ 117$ billion
2007	28%	$\$ 73.0$	$\$ 62.2$	$\$ 135$ billion
2008	33%	$\$ 99.0$	$\$ 82.5$	$\$ 189$ billion
2009	26%	$\$ 62.0$	$\$ 58.9$	$\$ 125$ billion
2010	26%	$\$ 79.4$	$\$ 69.6$	$\$ 139$ billion
2011	30%	$\$ 111.2$	$\$ 116.1$	$\$ 176$ billion
\mathbf{F}	2012	33%	$\$ 110.0$	$\$ 111.9$
F			$\$ 207$ billion	

Source from IATA Industry financial Forecast Report

TABLE 2 Industry selected financial data

System-wide global commercial airlines	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 F	2013F
									Central forecast		
REVENUES, \$ billion	322	379	413	465	510	570	476	547	597	636	660
\% change	5.2	17.7	9.1	12.5	9.6	11.7	-16,5	14.9	9.3	64	3.9
Passenger	249	294	323	365	399	444	374	425	468	505	528
Cargo	40	47	48	53	59	63	48	66	69	68	68
Trafic volunes											
Passenger growh, tkp, \%	2.3	14.9	7.0	5.0	6.4	1.5	-2.1	7.3	5.9	53	4.5
Sched passenger numbers, millions	1,776	1,982	2,123	2,233	2.418	2,485	2,479	2,681	2,830	2,973	3,101
Cargo growt, tkp, \%	3.9	7.9	0.4	4.8	4.8	-1.0	-9.8	18.7	-0.7	0.4	2.4
Freight tonnes, millions	33.5	36.7	37.6	40.0	42.0	41.0	40.7	48.0	47.6	47.3	48.3
Word economic growh, \%	2.8	4.2	3.4	4.0	3.8	1.7	-2.3	3.9	2.5	21	25
Passenger yield, \%	2.4	2.6	27	7.8	2.7	9.5	-14.0	6.1	4.0	2.5	0.0
Cargo yield\%	2.0	7.4	24	5.9	5.5	7.4	-14.2	15.0	5.5	20	1.5
EXPENSES, $\$$ billion	323	376	409	450	490	51	474	525	580	626	643
\% change	4.0	16.2	8.9	10.1	8.8	16.5	-16.9	10.7	10.6	78	27
Fuel	44	65	91	117	135	189	125	139	176	208	208
\% of expenses	14	17	22	26	28	33	26	26	30	33	32
Cude oil price, Brent, Sib	28.8	38.3	54.5	65.1	73.0	99.0	62.0	79.4	111.2	110.0	105.0
Jet kerosene price, ${ }_{\text {\% }}$ b	34.7	49.7	71.0	81.9	90.0	126.7	71.1	91.4	127.5	127.7	1229
Non-Fuel	279	311	318	333	355	382	349	386	404	418	434
cents per aik (nor-tuel init cost)	38.9	39.5	38.6	38.9	39.3	41.8	39.6	41.6	41.4	41.4	41.4
\% change	0.3	1.4	2.1	0.8	0.8	6.4	5.2	5.1	-0.5	0.0	0.0
Breakeven weight load factor, \%	61.1	61.9	62.0	61.2	60.9	63.2	62.3	63.1	63.0	641	63.4
Weight load factor achiesed, \%	60.8	62.5	62.6	63.3	63.4	63.1	62.6	65.7	64.9	65.1	65.1
Passenger boad factor achieved, \%	71.5	73.4	74.9	76.1	77.7	76.0	76.0	78.4	78.3	79.2	79.3
OPERATING PROFIT; \$ billion	-1.4	3.3	4.4	15.0	19.9	-1.1	1.9	21.7	17.0	9.9	17.3
\% margin	-0.4	0.9	1.1	3.2	3.9	-0.2	0.4	4.0	2.9	16	2.6

Source: ICAO data to 2009-11.IATA forecasts for 2012 and 2013.
Comparing the jet fuel cost with the total operating expense in the industry, the percentage of 14% in 2003 increases to 30% in 2011 , and it will continuously rise in the subsequent two years. More and more airlines realize that this is an unnecessary financial and environmental waste that can only get worse as fuel prices increase and carbon emissions are taxed. Therefore, a trend back to hedging is a matter of course.

Section IV: Sample airline company analysis

In the article, "Does Fuel Hedging Make Economic Sense?," Carter and Rogers indicated that airlines typically hedge between one and two thirds of their expected fuel costs in the U.S. industry. Most airlines look forward six months in their hedging. Few hedges are forward more that a year out. In this section, we select four airlines as samples to analyze and observe their jet fuel hedging position in the most recent six years. The four airlines are American Airlines, U.S. Airways, Southwest Airlines and Delta Airlines.

4.1 Fuel Costs and Operation of Airlines

As discussed above, fuel costs represents a large portion of the operation expense in an airline. Figure 1 shows four airlines' jet fuel costs to operation expenses ratio from 2007 to 2012. Since Q4 of 2012 has not been disclosed to SEC filings, data of nine months ended September 30 (Q1-Q3) of 2012 was used for the calculation.

	2007	2008	2009	2010	2011	2012
American Airlines	30.40\%	35.10\%	26.50\%	29.30\%	33.20\%	34.84\%
US Airways	30.70\%	33.30\%	23.80\%	28.60\%	35.80\%	35.68\%
Southwest Airlines	29.70\%	35.10\%	30.20\%	32.60\%	37.70\%	37\%
Delta Airlines	31\%	38\%	29\%	30\%	36\%	30\%

Figure 1. Fuel Costs to Operation Expense of Airlines (SEC Filngs)

Figure 1 also shows an upward trend of the jet fuel costs over the airlines' operation expenses. Among many possible reason for this trend, increasing jet fuel costs seem to be the most influential.

4.2 Impact of Hedging

For further analysis of the percentage that airlines typically hedged for fuel, the tables below provide some supportive data.

Table 1. Airline's Operating Income and [Hedge Gain or loss] (USD, million) (SEC Filngs)

		2008	2009	2010	2011	2012*
Americain 4 						
USAirways	533	$(1,800)$	118	781	426	731
	[245]	[-356]	[-7]		1	
Soulfuestini 		Ki49	46848			58
Delta Airlines	796	$(8,314)$	(324)	2,217	1,975	1,824
	[51]	[-65]	[-1.4]	[-89]	[420]	[-106]

* data of nine months ended September 30 (Q1-Q3), 2012

As Table 1 shows, hedging instruments are double-edged swords. Due to the volatility of jet fuel price, it is impracticable for airlines to always gain from their hedging. Also, the zero gain or loss for US Airways from 2010 to 2012 is because
they had not entered into any new transactions to hedge their fuel consumption since the third quarter of 2008 (refer to the appendix 2 Disclosure of Airlines' fuel hedging data).

Based on the hedge gain or loss for each airline, Table 2 indicated the difference of the fuel cost before and after hedges (refer to the appendix $2 \& 3$ Disclosure of Airlines' fuel hedging data) .

Table 2. Fuel cost before and after hedges

* data of nine months ended September 30 (Q1-Q3), 2012

In Table 2, jet fuel costs reflect adjustment of gain or loss from using hedging instruments. Among the four airlines studied, each airline has its own long-term or short-term fuel-hedging plan. Here, Figure 2 shows each airline's jet fuel costs
to operation expenses ratio before and after adjustment of its fuel hedges.

Figure 2. Airline's Jet Fuel Costs to Operation Expenses Before and After Hedge Gain (SEC

Filngs)

After hedges Before hedgos

2007	2008	2009	2010	2011	2012^{*}
30.36%	35.14%	26.54%	29.27%	33.17%	34.84%
31.15%	36.62%	23.43%	28.63%	34.61%	34.89%

US Airways

Figure 3. Airline's Jet Fuel Costs to Operation Expenses Before and After Hedge Gain (SEC

Filngs) continued.

Southwest Airlines

Delta Airlines

In Figure 2, we can see that Southwest was the only one that maintained aggressive long-term fuel hedging, As shown in Table 1, except year 2009 and 2010, it will not be an exaggeration to say that hedge gain contributes the most portion of Southwest airlines' operating income. For the other three airlines, they may not benefit from hedging as much as Southwest did. But it cannot be denied that hedging balanced, more or less, the side effect of the volatile jet fuel price on the operating expense.

4.3 Hedge position

The table below shows the historical data (2009-2012) of the four airlines hedge position. The percentages represent the volume that each airline hedged. These percentages are depending on each airline's estimated fuel requirement of the next year.

Table 3. Fuel hedge positions of selected airlines
$20092010 \quad 2011 \quad 2012$

American Airlines	35%	24%	35%	21\%
US Airways	0\%	0\%	0\%	0\%
Southwest Airlines,	10\%	50\%		38\%
Delta Airlines	9\%	24\%	38\%	2\%

As shown in Table 3, since the third quarter of 2008, US Airways have not entered into any new transactions to hedge their fuel consumption, and they
have not had any fuel hedging contracts remaining since the third quarter of 2009; they didn't hold any fuel hedge position in the past 4 years. For the other three selected airlines, American Airlines' average hedge position is 28.75%, Southwest Airlines is as aggressive as usual, holding a 34.5% (on average) of its estimated fuel consumption of next year, and Delta Airlines has a average percentage of 18.25%.

In summary, the analysis of the four airlines' fuel cost and their different hedging strategies indicated that hedge instruments are not used to earn more money; to be more specific, they are used to smooth out year to year's earnings, and benefit from predictable and stable jet fuel prices, and by doing so they can create value to the firms. To be an effective hedger, the company should set up an effective hedging assumption and continuously improve the assumption.

Conclusion

Fuel prices continue to present one of the industry's most significant challenges, as the cost of fuel has been at historically high levels over the last few years and has been unpredictable, and as airlines are inherently dependent upon energy to operate, a small change in market fuel prices can significantly affect airlines' profitability. For that reason, airlines face an incentive to hedge fuel price risk. By using the hedging instruments like forward or future contract, options, collars, and swap, airlines can avoid huge swings in expenses.

Furthermore, our analysis of the four U.S. based airlines indicated that there is no such right answer for the question "how much should we hedge?" Different airlines have different hedging positions that depend on their own company situation and hedging policy. However, the historical financial data of these airlines implied that an airline might successfully hedge the fuel risk from the volatility of its price by maintaining a long-term and consistent hedging strategy.

References

Carter, D. A., Rogers, D. A., \& Simkins, B. J. (May, 2003). Does Fuel Hedging Make Economic Sense? The Case of the US Airline Industry. Oklahoma State University; Portland State University.

Jin, Y., \& Jorion, P., (July 2007). Does Hedging Increase Firm Value? Evidence from the Gold Mining Industry. University of California at Irvine; California State university.

Hull, J. C., (2000); Futures, and Other Derivatives, Prentice-Hall.
Nadeem, N., Mohammad P. K., \& Mroso G. (2011) VALUE OF HEDGING IN U.S. AIRLINE INDUSTRY: A Perspective on Firm Value and Accounting Performance. Lund University

International Air Transport Association. Annual Report 2011. Singapore: $67^{\text {th }}$ Annual General Meeting, 2011.

International Air Transport Association. Annual Report 2012. Beijing: 68 ${ }^{\text {th }}$ Annual General Meeting, 2012.

International Air Transport Association. Industry Outlook Sep. 2012, Financial forecast. www.iata.org/economics.

Widjajakusuma, R., Liao, C., Yin, J., \& Lin, M. (June 2011) Jet Fuel Hedging Analysis: Strategy analysis and Recommendation. Portland State University.

Morrell, P., \& Swan, W. (2006) Airline Jet Fuel Hedging: Theory and Practice. Department of Air Transport, Cranfield University.

Cobbs, R., \& Wolf, A. (2005) Jet Fuel Hedging Strategies: Options Available for Airlines and A Survey of Industry Practices. Accessed on November 2009 at http://www.kellogg.northwestern.edu/research/fimrc/papers/jet fuel.pdf

Carter, D. A., Rogers, D. A., \& Simkins, B. J. (May, 2003). Does Fuel Hedging Make Economic Sense? The Case of the Southwest Airlines. Oklahoma State University; Portland State University .

USA TODAY/Money article, July 24, 2008; Can fuel hedges keep Southwest in the money?. http://usatoday30.usatoday.com/money/industries/travel/ 2008-07-23-southwest-jet-fuel_N.htm

Song, C. (2006) HOW MUCH SHOULD WE USE DERIVATIVES HEDGES? A Study in Airline Industry. Fordham University.

AMR Corporation. 10-Q report 2012. SEC filing (2012).
AMR Corporation. 10-K report 2011. SEC filing (2011).
AMR Corporation. 10-K report 2010. SEC filing (2010).
AMR Corporation. 10-K report 2009. SEC filing (2009).
US Airways Group, Inc. 10-Q report 2012. SEC filing (2012).
US Airways Group, Inc. 10-K report 2011. SEC filing (2011).
US Airways Group, Inc. 10-K report 2010. SEC filing (2010).
US Airways Group, Inc. 10-K report 2009. SEC filing (2009).
Southwest Airlines Co. 10-Q report 2012. SEC filing (2012).
Southwest Airlines Co. 10-K report 2011. SEC filing (2011).
Southwest Airlines Co. 10-K report 2010. SEC filing (2010).
Southwest Airlines Co. 10-K report 2009. SEC filing (2009).
DELTA AIR LINES, INC. 10-Q report 2012. SEC filing (2012).
DELTA AIR LINES, INC. 10-K report 2011. SEC filing (2011).
DELTA AIR LINES, INC. 10-K report 2010. SEC filing (2010).
DELTA AIR LINES, INC. 10-K report 2009. SEC filing (2009).

Appendix 1. The volatility of Jet fuel price

This figure shows the average cost per gallon paid per month by US airlines based on data compiled by the Air Transport Association from January 1998 -June 2010.

Jet Fuel Prices (monthly data, not seasonally adjusted) January 1998-June 2010

This figure shows the regional variability of jet fuel prices and crude oil price.

Appendix 2 Disclosure of Airlines' fuel hedging data

American Airlines

Fred

 jears 2009 thaugh 2011 were:

Year	Gatas Consimed (in mians	Tralcest (in miches)	Pescalon (foctars)	Fersert of AHRS Operting Expenses
009 -	2702	4,5,59	-4x-400	220.5
2010	2.784		236	293
	2756	8.508	Haxamanc.	302

During 2011, 2010 and 2009, the Company's fuel hedging program increased (decreased) the Company's fuel exponse by approximately $\$(335)$ million, $\$ 142$ million and $\$ 651$ million, respectively. As of Jamuary 2012, the Company had cash flow hedges covering approximately 21 percent of ifs estimated 2012 fuel requirements. The consumption hedged for 2012 is capped at an average price of approximately $\$ 3.08$ per gallon of jet fuel, with protection capped on 2 percent of estimated consumption, through the use of sold call options, at an ayerage of $\$ 3.49$ per gallon of jet feel. The Company's collars represent appreximately 16 percent of its estimated 2012 fuel requitements and have an average floor price of approximately $\$ 2.24$ per gallon of jet fuel (both the capped and floor priee exelude taxes and transportation eosts). A deterioration of the Company's financial position could negatively affect the Company's abilty to hedge fuel in the future. See the Risk Factors under Item $1 \wedge$ for additional information regarding fuel.

Year	Gallons Consumed (in millions)	Total Cost (iin millions)		\qquad		Percent of AMR's Opecating Expenses
2007	3,130	s	6,670	§	2.131	30,4\%
2008	2,971		9,014		3.034	35.1
2009	2,762		5,553		2.010	26.5

The impact of fuel price changes on the Company and its compctitors depends on various factors, including hedging strategies. The Company has a fuel hedging program in which it enters into jof fuel and heating oil hedging contracts to dampen the impart of the volatility of jet fuel priees. During 2009, 2008 and 2007, the Company's fuel hedging program increased (decreased) the Company's fuel expense by approximately $\$ 651$ million, ($\$ 380$) million and ($\$ 239$) million, respectively. As of January 2010_{2} the Company had cash flow hedges, with option contracts, primarily heating oil collars and call options, covering approximately 24 percent of its estimated 2010 fuel requirements. The consumption hedged for 2010 by cash flow hedges is capped at an average price of approximately $\$ 2.48$ per gallon of jet fiel, and the Company's collars have an average floor price of approximately $\$ 1.80$ per gallon of jet fuel (both the capped and floor price exclude taxes and transportation costs). A deterioration of the Company's financial position could negatively affect the Company's ability to hedge fare in the future. See the Risk Factors under ltem IA for additional information regarding fuel.

[^0]
US Airways

Fuel
The average mainline and Express price per gallon of fuel was $\$ 3.11$ in 2011 as compared to an average cost per gallon of $\$ 2.25$ in 2010 , an increase of 38.2%. Accordingly, our mainline and Express fuel expense was $\$ 4,46$ billion in 2011 , which was $\$ 1.28$ billion, or 40.5%, higher than 2010 on a $1,0 \%$ incrase in total system capacity.

Since the third quarter of 2008, we have not entered into any new transactions to hedge our facl consumption, and we have not had any fuel hedging contracts outstanding since the third quartor of 2009 .

Aviation Fuel

The average cosit of a gallon of aviation fiel for our mainline and Express operations decreased 44,8\% from 2008 to 2009, and our total mainline and Express fuel expense decreased $\$ 2.28$ billion, or 48%, from 2008 to 2009 . We estimate that a one cent per gallon increase in aviation fuel prices would result in a $\$ 14$ million increase in annual fuel expense based on our 2010 forecasted mainline and Express fuel consumption.

Since the thind quarter of 2008, we have not entered into any new fuel hedging transactions and, as of Deceniber 31, 2009, we had no remaining outstanding fuel hedging contracts. During 2009, 2008 and 2007, we neognized a net loss of $\$ 7$ million, a net loss of $\$ 356$ million and a net gain of $\$ 245$ nillion, respectively, related to our fued hedging program.
*Source from SEC filing

Southwest Airlines

RESULTS OF OPERATIONS

2011 compared with 2010

The Conpany's consolidated net income of $\$ 178$ million ($\$ 23$ per share, diluted) in 2011 decreased by $\$ 281$ million, or 61,2 percent, compared to its 2010 net income of $\$ 459$ million ($\$.61$ per share, diluted). The results in cach year were significantly impacted by the Company's fuel hedge program and the accounting requirenents related to the denvative instruments used in the Company's hedging activitics. As a result of the fuel hedges the Company had in place duning 2011-including those that settled during 2011 and those that will sette in future yearsthe Company recognized a net total of $\$ 259$ million in losses allocated between Fuel and oil expense and Other (gains) losses, net, in the Consolidated Statement of lncome. During 2010 , the Company recognized a net total of $\$ 26$ million in losses as a result of its fuel hedging activities, allocated between Fuel and oil expense and Other (gains) losses, nee. Each of these totals for 2011 and 2010 includes the net premium costs the Company paid to enter into a portion of its fuel derivative instruments such as option contracts which are classified as a component of Other (gains) losses, net. See Note 10 to the Consolidated Financial Statements for furtherinformation on fuel derivative instruments. The Company's results for 2011 also induded a charge for asset impaiment of $\$ 17$ million (before the impact of profitsharing or taxes) rlated to the Company's decision not to equip its Classic (737,3001500) aireraft with RNP capabilities and AirTran acquisition and integrationaciated expenses of $\$ 134$ million (before the impact of profitsharing or taxes). The Company's 2011 operating income of $\$ 693$ million was lover than the Company's 2010 operating income of $\$ 988$ million, as the 34,6 percent increase in operating expenses outpaced the 29.4 percent increase in operating revenues.

RESULTS OF OPERATIONS

2009 compared with 2008

The Company's net income of $S 99$ million ($\$.13$ per share, diluted) in 2009 represented a decrease of $\$ 79$ million, or 44.4 percent, compared to it 2008 net income of $\$ 778$ million ($\$ 2.24$ per sharc, diluted). The results in each yearwees significantly impacted by the Company's fuel hedge program and the accounting requirements related to the derivativo instruments used in the Company'shedging activities. As a result of the fuel hedges the Company had in place duing 2009 - -including those that settled duning 2009 and those that will settle in future years the Company recognized a net total ofS408 million in losses allocated between Fuul and oil expense and Other (gains) losses, net, in the Consolidated Statement of Income. During 2008, the Company had recognized a total of $\$ 1.0$ billion in net gains as a result ofits fuel hedging activitics, allocated betwcen Fuel and oil expense and Other (gains) losses, net. Exch of these totals for 2009 and 2008 includes the net prenium costs tho Company paid to enter into a portion of its fuel derivative instuments such as option contracts which is classified as a component of Other (gains) losses, ne: See Note 10 to the Consolidated Financial Satements for further information on fuel derivative instruments.

2008 compared with 2007

The Conpany's net income of $\$ 78$ million ($\$.24$ persharc, diluted) in 2008 represented a decrease of $\$ 467$ million, or 72.4 perent, compared to it 2007 net income of $\$ 645$ million ($\$.84$ per share, diluted). The majonty of the dedino in net income was due to the fluctuation of certain gains and losscs recorried in association with fluctuations in value of the Company's fuel hedge portfolio. These included adjustments impacting camings through the reconding of gains and or losses in 2008 and 2007 associated with fued derivatives expiring in future periods, and settementexpiration offued derivative instruments for cash in 2008 or 2007 , but for which gains and/or losses had been recorded in camings in a proor period. Sce Note 10 to the Consolidated Financial Statements for further information, Both of these types of adjustments ser erlated to the ineffectiveness of hedges and the loss of bedgen accounting for cerain fued derivatives. Ajussments associated with fued derivative instrmments included $S 19$ million in net losses 5 for 2008 , and $\$ 360$ million in net gains for 2007. These are
*Source from SEC filing

Delta Airlines

Fuel

Our results of operations are significantly impacted by changes in the price and availability of arcraft fuel. The following table shows our uircreft fiel consumption and costs.

[^1]
Fuel

Our nosults of operations are significantly impacted by changes in the price and availability of aircraft fucl. The following table shows our aireraft fuel constumtion and costs for 2007 through 2009.

(1) inchudes Northwest operations for the entire period.
(2) Includes Northwest operations for the period from October 30 to Decomber 31, 2008.
(3) Includes the operations of our contract carriers under capacity purchase agreements.
(4) Nef of fuel hedge (losses) gsins under our fuel hedging program of S(1.4) bilion, S(65) million and S51 milion for 2009, 2008 and 2007 , respectively.
(5) Total operating expense for 2008 reflects a $\$ 7.3$ bilion non-cash charge from an impaiment of goodwill and other intangible asscts and \$1.1 billton in primanily non-cash merger-related charges. fneluding these charges, fiel costs accounted for 28% of total operating expense.
*Source from SEC filing

Appendix 3 Disclosure of Airlines' operating expense data

American Airlines

an millions)

Operating Expenses	Year ended December 31; 2009		Change from 2008		Percentage Change
Wages, salaries and benefits	S	6,807	\$	152	2.3\%
Aincraft fixel		5,553		$(3,461)$	(38.4) (a)
Other rentals and landing fees		1,353		55	4.2
Depreciation and amortization		1,104		(103)	(8.5)
Maintenance, matorials and repairs		1,280		43	3.5
Eomntssions, booking fees and credit card expense		853		(144)	(14.4) (b)
Aireraft rentals		505		13	2.6
Food service		487		(31)	(6.0)
Special chargess		171		(1,042)	(85.9) (c)
Ther operating expenses		2808		(216)	(7.1) (d)
Total operating expenses	S	20,921	5	(4,734)	(18.5)

Pporiting Expenses	Yearended December 31, 2008		Change from 2007		Percentage Change	
Wages, salaries and benefits	S	6.655	S	(115)	(1.7)	
Aircraft fuel		9,014		2,344	35.1	(a)
Other rentals and landing fees		1,298		20	1.6	
Depreciation and amortization		1,207		5	0.4	
Maintenance, materials and repairs		1.237		180	17.0	(b)
Commissions, booking fees and credit card expense		997		(31)	(3.0)	
Bircraft rentals		492		(99)	(16.8)	(c)
Food service		518		(16)	(3.0)	
Special charges		1,213		1,150	*	(d)
Other operating expenses		3,024		247	8.9	(c)
Total operating exponses	S	25,655	S	3.685	16.8\%	

*Source from SEC filing

US Airways

Operating Exponses:

Total operating expenses were $\$ 12.63$ billion in 2011 , an incwase of $\$ 1.50$ billion, or 33.5%, compared to 2010 . The 2011 increase in operating expenses was diyen by a $\$ 1.28$ billion, or 40.5%, increase in mainline and Express fuel costs on a 1.0% increase in total system caparity. The average price per gallon of fuel increased 38.2% to $\$ 3.11$ in 2011 from $\$ 2.25$ in 2010 .

Opcrating Expenses:

Total operating expenses were $\$ 11.13$ bilion in 2010 , an increase of $\$ 787$ miltion, or 7.6%, compared to 2009, Mainline operating expenses were $\$ 8.4$ billion in 2010 , an inorease of $\$ 577$ million, or 7.4% from 2009 , while mainline capacity incrensed $1,2 \%$.

Oparaing Expenses:

		2009	2008	Percent Change
		(In ramlens)		
Operatianexpensest				
Aircraft fuch and related taxes		S 1,863	\$ 3,618	(48.5)
Realized		382	(140)	nm3
Unrealized	\because - Naver	(375)	496	- ${ }^{\text {a }}$
Salarios and related costs		2,165	2.231	(3,0)
Aircraftrent		695 :	- 724	$\cdots=(4.0)$
Airemat maintenance		700	783	(10.6)
Othersent adanting.fees	\%	560.	-	- $\quad 0.5$
Selling expenses		382	439	(13,0)
Special items, ict	$\because \mathrm{B}$		- 7 76	(27.3)
Dopreciation and amortization		242	215	12.5
Goodvill impaiment			$\square 622$	\% mm
Other		1,152	1,243	(7.4)
2-1. Total maintinc operating ex	\%-6	7.821	-10,869	(280)
Express expenses:				
Fucl		609	4-7,137	(464)
Other		1,910	1,912	(0.1)
Total Expressexpenses		2519	- 3 3,049	(174)
Total operating expenses		S 10,340	S 13,918	(25.7)

Total operating expenses were $\$ 10.34$ biliton in 2009 , a decrease of $\$ 3.58$ bilfon or 25.7% compared to 2008 . Mainline operating expenses were 57.82 bilion in 2009 , a decrease of $S 3.05$ billion or 28% from 2008 , white ASMs decreased 4.6%.

Oparating Expansas:

Total operating expenses were $\$ 13,92$ bition in 2008 ; an increase of $\$ 2.75$ billion or 24.6% compared to 2007 . Mainline operating expenses were $\$ 10.87$ biltion in 2008 , an increase of $\$ 2,3$ billion or 26.8% from 2007 , while ASMs decreased 2.2%.
*Source from SEC filing

Southwest Airlines

Operating expenses

Consolidated operating expenses for 2011 increased by $\$ 3.8$ billion, or 34.6 percont, compared to 2010 , while capacity increased 22.5 percent compared to 2010. The increase in consolidated operating expenses was primarily due to the inclusion of Airfran's 2011 operating expenses following the acquisition. Historically, except for changes in the price of fuel, changes in operating expenses for airlines are largely driven by changes in capacity, or ASMs. Excluding the results of Airfran following the acquisition, operating expenses increased 17.0 percent. The following tables present the Company's operating expenses per ASM for 2011 and 2010, and year-over-year dollar elanges for the same periods showing a reconciliation of the impact of the AirTran acquisition on the comparative results, followed by explanations of these changes on a perALM basis andfor on a dollar basis:

(In rents: exeppt for percentage) Salaries, wages, and benefits \qquad	
Maintenance matenals and repairs	
Aircraft rentals	
Landing fees and other rentals, . . .	
Depreciation and amortization	
Acquisitionand integration	
Other operating expenses	
	Naxterex

	Yearcmided December 31.	
	2011	2010
Endy	3.624	- $\mathrm{T}^{3} 376$
	4.68	3.68
,2x+mer	. 79	$\square \times 76$
	. 26	. 18
	80	- 88
	. 59	. 64
	11	¢
	1.56	1.45
4 23x ${ }^{\text {a }}$	$\underline{12.41 t}$	$\underline{11296}$

Per- ASM chanpe	Pcrces: change
(14)\%	(37) \%
1.00	27.2
$03 \mathrm{BE=}$	3.9
. 08	44,4
(02)	(2.4)
(.05)	(7.8)
$11=$	n.a.
. 11	7.6
$1{ }^{122}=$	9.9\%

Operating expenses

Consolidated operating expensea for 2009 decrased $\$ 486$ million, or 4.6 percent compared to a 5.1 percent decrease in capacity. Historically, except forchanges in the price of fuel, changes in operating expenses for airlines are largely driven by changes in capacity, or ASMs. The following presents the Company's operating expenses per ASM for 2009 and 2008 followed by explanations of these changes on a per*ASM basis and/or on a dellar basis (in cents, exeept for percentages);

Operating expenses

Consolidated operating expenses for 2008 increased $\$ 1.5$ bilion, or 16.6 percent, compared to a 3.6 percent increase in capacity. Historically, except for changes in the price of fuel, changes in operating expenses for airlines axe largely driven by changes in capacity, or ASMs. The following presents the Company'soperating expenses per ASM for 2008 and 2007 folloved by explanations of these changes on a pera A SM basis andor on a dollar basis (in eonts, except for percentages);

Delta Airlines

Operating Expense

(thmilitions)	Year Ended Decenter 31,		$\begin{gathered} \text { fitrease } \\ \text { (Decrease) } \end{gathered}$	\% Increase (Deercase)
	2011	2010		
	9330 S	7,594 S	2,136	He 28%
Salaries and plated costs	6,894	6,751	143	2\%
	3470	4,305	1,65	4 27%
Aircrat maintenance materials and outside repaits	1,765	1,569	19	12%
Passengeccommssions and other selling expenses, , - x -	1.682	1509	173	- 11%
Contrated sorvices	1,642	1,549	93	6\%
Deprechation and amotization	1.523	1511	-12	- 1%
Landing fees and otherents	1,281	1,281	-	-\%
Passengerservice	121.	$\square 673$		- $1 /$
Aiccraft fent	298	387	(89)	(23) $/ 4$
Profit slaining 48		- 313	- (49)	- 16)
Restructunig and other items	242	450	(208)	(46)\%
Other \#	1,628	1,646:	- \quad (18)	$\cdots=10 \%$
Total openting expense	$33,140 \mathrm{\$}$	$29,538 \mathrm{~S}$	3,602	12\%

Operating Expense

(fin millilons)	Year Ended Deetuber 31,			inctedes (Detrease)		\% linereast (Decreasc)
	2010		2009			
Airsin fuiland relatedtaxes	S	7,594	$S: 2.1384$	S	210	518\% 3%
Solaries and related costs		6,751	6,838		(87)	(1)\%
		4,305	$\square 3,823$		482	1.20 13%
Airenff maintenance materials and outside repairs		1,569	1,434		135	9\%
Passenger commissions ind other selling expenscs		1,509	1.405		104	\% 7%
Contracted services		1,549	1,595		(46)	
		-1311	- 1.536		(25)	= $=20 \%$
Landing fees and other rents		1,281	1289		(8)	
passengerscrive		673	4-2) 638		35	W. 5%
Aiceaft rent		387	480		(93)	(19)\%
Profiththaing -		313	Ster		313	5. $\mathrm{AM}=$
Restructuring and otheritems		450	407		43	11\%
Ohhs		1,645	- 1,558		88	\%
Total operating expense	\$	29,338	S 28,387	S	1,151	4\%

Operating Expense

[^0]: *Source from SEC filing

[^1]:

