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Abstract 

In this paper, we will be using a simplified method (a geometric distribution statistical approach) 

and move through a more detailed approach (using dynamic programming) to analyze when 

contestants should quit versus when they should stay in the TV game show “1 vs. 100.” We will 

observe optimal contestants’ strategies for when they should statistically quit answering 

questions or stay for the highest probability of a contestant win and the greatest possible 

expected amount of money to walk away with.  

 

1.1 Introduction 

The game show “1 vs. 100” is a trivia-based game show that has become popular in 

many different countries. The objective in the game is for the contestant to win out 

against or beat the mob that contains 100 “mob members” in a battle of wits trivia 

game. For our analysis, we will consider only the U.S. version of the game. 

 

Rules and Game Play 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 



In this game, a single player goes up against the 100 “mob members” by answering 

trivia questions. Each question is given in multiple choice format with only three 

possible answers. If the player answers correctly, he will advance to the next round 

and will be rewarded an amount of money dependent on the number of mob members 

eliminated (by them answering the question incorrectly) and which round he is in. 

The value for mob members eliminated is as follows: $1,000 for each mob member 

eliminated in the first three rounds, in rounds 4-12 they are worth an extra $1,000 

each per round advanced (i.e. $6,000 each for round 8), and for rounds 13 and above, 

the value of the mob members is capped out at $10,000 each. If the player is incorrect 

in his answer, he will automatically be sent home with nothing since there are no 

“safety nets” in this game. Similarly, a mob member that gets a question wrong is 

also eliminated. At each round, before the question is revealed, the player has a 

choice to either quit and take home the amount of money he has accrued up until this 

point or keep on playing. If the player outlasts all 100 mob members throughout the 

course of the game, he is awarded the “jackpot” of $1,000,000 US. In our model, we 

are ignoring the “helps” which are much like the “lifelines” of other game shows.  

There are some more complicated aspects to the game such as the fact that the player 

does not get a chance to decide whether to quit or stay until he makes it through the 

first three rounds. Another thing to consider is that as the player goes further and the 

round gets higher, the questions get more difficult and there is more on the line to 

lose (or gain). As the questions get more difficult, our p-value (probability that the 

player answers correctly) and q-values (probability that each of the mob members 

answers correctly) will decrease the higher the round is, but it will never drop below 

on third because that is the probability of just randomly guessing on the question. 

Lastly, there are three “helps” that the player may use at any point in the game to aid 

in him choosing the correct answer to the trivia question.  

 



Existing Literature 

There is a similar text that uses a dynamic programming model to analyze the game 

show “Who Wants to be a Millionaire.” This text goes through the step by step 

process that went into analyzing the millionaire game show and took into account 

lifelines and optimal strategies. The paper explains in detail the mathematical 

formulas and methods used to solve their model and analyze the data and construct 

game simulations. We have tried to do the very same thing in our project and analysis 

only using a different approach and many different methods of analyzing due to the 

uniqueness and dissimilarities between the two shows. One such dissimilarity is the 

size of the state space being used and analyzed in the two models; the millionaire 

model will have a much smaller state space (even though they took into account 

lifelines in their model) simply due to the enormity of the different possibilities in the 

1 vs. 100 game and the more rigid state space for millionaire (only a few different 

possible rounds and not so many possibilities within those rounds). 

 



2. Beginning Models 

In this section of our analysis, we present two simplified. The first model, section 2.1 

is the simplified model which uses a geometric distribution and also looks at a much 

smaller-scaled game. The results obtained from the first model will be covered in 

section 2.2. The second model, section 3.1, is our detailed dynamic programming 

model which presents an optimal strategy for the game show. Results from our 

second model are contained in section 3.2. 

 

2.1-2.2 Simplified Models and Results 

 The first of the simplified models calculates the expected value of the entire game 

when the player has made it down to just one mob member left regardless of round; 

this value is dependent on the probability of our player answering the question 

correctly (the “p” value) and the remaining mob member answering the question 

correctly (the “q” value). For our example, we will be using probability values that 

start at 0.33 and go up to 1.0 since 0.33 is the “randomly guessing” value. Also in this 

example, the round isn’t important because we are only calculating the value of the 

game once this point has been reached in the game and the only options are that the 

player either wins (value is jackpot) or loses (value is zero). The amount of money on 

hand is also not taken into account because we are only calculating the value of the 

game; the player would obviously quit if his amount of money on hand is higher than 

the expected value of the game. We then take the formula and apply it to a large array 

of different probabilities of our player getting the question right and the last 

remaining mob member getting the question right and compile it into a 68 x 68 matrix 

of expected values. The formula in question for the expected value for our player is as 

follows: 

 

 E[continue] = p*(1-q)*1,000,000 (player wins) + (1-p)*0 (player loses) + 

p*q*E[continue] (both answer correctly) 

 E[continue] – p*q*E[continue] = p*(1-q)*1,000,000 + 0 

 E[continue]*(1-p*q) = p*(1-q)*1,000,000 

E[continue] = [p*(1-q)*1,000,000]/(1-p*q) 



And the following is a selection from the table we obtained from this process: 

  q               
   0.33 0.40 0.50 0.60 0.70 0.80 0.90 1.00
p 0.33 248120 228111 197605 164589 128739 89674 46942 0
 0.40 308756 285714 250000 210526 166667 117647 62500 0
 0.50 401198 375000 333333 285714 230769 166667 90909 0
 0.60 501247 473684 428571 375000 310345 230769 130435 0
 0.70 609883 583333 538462 482759 411765 318182 189189 0
 0.80 728261 705882 666667 615385 545455 444444 285714 0
 0.90 857752 843750 818182 782609 729730 642857 473684 0
 1.00 1000000 1000000 1000000 1000000 1000000 1000000 1000000 500000

 

Table 1 
 

 As we thought, the expected value of the game rises as the player’s probability of 

answering correctly increases and the expected value decreases as the mob member’s 

probability of correctly answering increases. One should note that the probabilities in 

our matrix start at 33% and increase by 1% increments until they reach 100. Another 

side note should be that this computation is fairly easy because the only thing to take 

into consideration and compute for the value is the case where the player answers the 

question correctly since the expected payoff when he answers incorrectly is obviously 

zero. 

  



The second model that we use to simplify the game is an approach that utilizes the 

geometric probability distribution. In this model, we compute the probability that the 

player will outlast the mob, supposing that the player never quits. In our model, we 

treat the number of questions in a row that the player answers correctly as its own 

independent geometric probability distribution dependent on an input “p” (the 

player’s probability of answering the question correctly). Similarly, the time until 

each mob member answers incorrectly has a geometric distribution, with each mob 

member independent of the others and of the player. In using this model, we take 

advantage of the fact that if n represents the player’s distribution, the fact that if 

n>max(100 IID geometric distributions), then n> 1 geometric distribution. Since this 

works, we were able to compile a table of probabilities where, once again, we utilize 

the values “p” and “q” and the data in the table represents the player’s probability of 

winning the game given that he always chooses to continue without ever considering 

walking away with the money. In order to obtain the following table, some 

computational work need be done. The way to compute the data is to set up a 

program that calculates stochastic geometric functions of the following form: 

{[1-q^n]^100  *  (1-p)*p^n} – Where n is just an index number (numbered from 1 to 

1000) and p and q are defined as usual. This table is as follows: 

 

  p     
  33% 50% 66% 83% 99% 
q 33% 0.60% 3.52% 13.33% 39.46% 94.89% 
 50% 0.06% 0.71% 4.94% 24.56% 92.30% 
 66% 0.00% 0.04% 0.81% 10.18% 87.53% 
 83% 0.00% 0.00% 0.01% 0.91% 74.93% 
 99% 0.00% 0.00% 0.00% 0.00% 0.98% 

  

Table 2: the Probability of the Player defeating the Mob Given He Does not Quit 



This data can also be better understood with the help of a visual aid in the form of a 

three-dimensional graph of the player’s probability of winning the game given he 

decides to always keep on playing, as a function of our “p” and “q” values which 

appears as follows: 
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Figure 2: Probability of Player Beating the Mob (Geometric Example) 

 

We can pull a few useful observations from this graph (and the data used to create it). 

First, we can see that it is concave down as a function of p; conversely, it is concave 

up as a function of q. And lastly, when considered as a function of both p and q, it is 

slightly concave up (although it is almost increasing at a constant rate) and it levels 

off at the very end.  

 

  



We decided that the best way for us to get what we wanted out of our model was to 

take an approach that uses dynamic programming to devise and assess “optimal 

strategies” for this game show. In order to take on such a great task as that of 

considering all of the different possible states in a matrix of 15 rounds, 100 mob 

members, and 1000 different monetary amounts possible, we had to start off with 

something small. So, we worked through a much simpler model by hand. Since the 

computation gets out of hand quite quickly, our hand-worked model only considers a 

game that has a maximum of 3 rounds, 3 mob members and 9 possible monetary 

amounts. 

 In this model, we consider the possibility of the player eliminating all three mob 

members as a win and thus reward the jackpot at whichever point in the game the 

player achieves this. The first number under each round heading represents the 

probability of that particular state which is computed using a binomial distribution 

dependent on the number of mob members left, the number answering the question 

wrong and the probabilities of correctly answering for the mob and for the player. 

The second column underneath the row heading is the number of mob members 

eliminated in that particular round and the third column represents the expected value, 

then, of each state possible in every single round. The final number underneath the 

expected values for round one is the expected value of the game. All of these values 

were computed given a mob probability q = 0.55 and a player probability p = 0.40. In 

order for this to be a real dynamic program, we begin our analysis and computation 

for the last round first then compute the conditional expected values in each round 

prior until we came to the first round and were done with our computations overall. 

 The importance of doing a hand-worked model far surpasses what is expected at first 

glance. The reason we did this hand-worked model first was so that we could have a 

guideline all set up for us, or a reference, to go by in writing our code for Scilab to 

take on the task of solving the full-sized game where massive amounts of calculations 

would need to be done on the computer rather than by hand. 

 



3. Model – Two 

This section contains our more complicated and more detailed model which makes 

use of dynamic programming in order to find the optimal policy for the player for the 

game show; it also contains the results that we obtained in researching our model. 

 

3.1-3.2 Furthering the Model and Results 

In order to take our model to the next level, we must turn to a computer program 

(Scilab) to do the numerous calculations necessary for figuring this all out. So we set 

out to program a model that uses dynamic programming to evaluate the model 

statistically and feeds us a possible optimal strategy for the game. The way dynamic 

programming works is by evaluating the last round first and calculating all of the 

values there where the computations are simpler and easier to do (since either the 

player loses or wins, or walks away and it doesn’t hinge on future rounds). We chose 

to limit the number of rounds to 15 for the ease of computation and in our 

computations, the difference in changing the round higher is minimal enough to 

ignore since the probability of even getting to the 15th round is quite low. After 

completing the computations for the final round, the dynamic program then moves on 

to the penultimate round and assesses the computational values there where now each 

possible state in this round is dependent on where the player could possibly end up in 

the next round. The computation then depends on a recursion based on binomial 

probability distributions and value functions for each possible state in the next round. 

After computing all of these values, the program moves on to the third-to-last round, 

and so on and so forth, until it finally reaches the first round and is able to give us an 

all-around expected value for the game. All of these computations are dependent 

upon the possible combinations of round, mob members remaining, and amount of 

money accrued (which is given in thousands of dollars so that “m” varies from 1 to 

1,000), and each is a function of our “p” and “q” values. Our recursion function was 

completed as follows: 



Definition: V(m,n,r) = Expected value of being in round #r with $m dollars in hand 

 and n # of mob members remaining. 

Computationally: 

 

 

 V

 

 

In order to determine which states we should exclude and which states we should 

keep, we must take into consideration which states are attainable given the rules of 

the game. To do this, we set our program up so that it automatically discarded 

impossible states such as ones where the money amount is higher than the number of 

mob members eliminated up until that particular point multiplied by the value of each 

mob member in the preceding round. In our computation above, binpmf(i; n,q) is a 

binomial probability mass function of the number of mob members eliminated given 

the number of mob members remaining at this point and the probability that each mob 

member answers the question correctly. Also, in the above formula, rv(i) stands for 

round value of each mob member eliminated (this is dependent on which round we 

are in). 

Confident in our success from the simplified model, we must test our program on a 

full-scale version of the game and run calculations with 100 mob members, 15 rounds 

and 1500 different possible money amounts (from $1,000 up to $1,500,000)in order 

to grasp the concepts we are utilizing. At first, this simulation seemed cumbersome 

on the Scilab program, so we observed the process and decided that by moving the 

reference index for the round in our value model to be the first index, we would 

increase the computation speed. This increase in speed is due to the fact that, in our 

first model, the program was referencing code in many different places for data for 

each round, but the change made it so that the program had all of the data for each 

round in the same place which made for quick and efficient referencing. This change 

made such a great difference in processing speed (from about 15 minutes per set of 

calculations down to around 90 seconds) that it enabled us to do much more analysis 

more quickly than if we had been running it through the way we originally had set it 

up. 
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As we do the computations, we record which decision (quit or stay) is optimal for 

each combination of round, money amount, and number of remaining mob members.  

Figure 3 shows, for round 13, when the player should quit or stay based on the 

number of remaining mob members and the accumulated money.  States above or 

below the blue/black wedge are impossible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 
 

This matrix graph considers whether the player should stay or quit given the number 

of mob members remaining and the amount of money won already. In the above 

graph, the blue blocks represent a decision for the player to quit since it is statistically 

better to do so and the black blocks represent the player’s decision to stay and play 

since the expected value of doing so is greater than the amount of money on hand for 

the player. All of these values are also dependent upon the p and q values within the 

model (for the above graph, p-value = 0.75 and q-value = 0.65). 



A few interesting interpretations can be obtained through analysis of Figure 3. The 

first of these is that for any constant number of mob members remaining in any 

round, there is a distinct cutoff point (in the money value) above which the player 

should quit and below which a player should stay. This cutoff is clearly marked by 

the crossover between the black and blue colors in the graph. 

A second, perhaps more peculiar interpretation of the above graph is that for a 

constant money amount there can either be no cutoff points, one cutoff point, or two 

cutoff points in terms of mob members remaining and the quit/stay decision. This 

occurrence happens because, first, there are money amounts that are so low in 

comparison to the expected money value of the game that they would never be above 

the cutoff in a given round; secondly, because there are states where the number of 

mob members remaining only matters to a certain point (very few left) after which the 

player is better off just quitting anyways; and finally, because the amount of money 

on hand is such that if there are a good number of mob members left, it is better to 

stay because your likelihood of eliminating enough of them to drive up your expected 

value is relatively high, and on the other end of the spectrum, there are so few 

remaining that you should stay in the game because the likelihood of receiving the 

jackpot and defeating the mob is such that it also drives up your expected winnings. 

This set of different possibilities leads to a U-shaped cutoff point in each of the 

rounds in our example. 
 



Instead of plotting each round separately, Figure 4 shows for all rounds just the 

boundary between quit and stay decisions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4 
 

In this graph, anywhere above each of the u-curves represents an area where the 

player would quit instead of staying for each round respectively. The last round is the 

highest curve, with the second-to-last round as the second highest curve, all the way 

down to the lowest curve representing the second or third round decisions. As seen in 

the picture above, these calculations were made with a p-value of 0.75 and a q-value 

of 0.6 and these values are based on a maximum of $1,000,000. 
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When we had a good chance to go over all of the different statistics, print-outs, and 

models that we had considered so far, there were a couple more things that we 

discovered we could analyze from this game. First, we figured that we could write 

another program that actually ran random simulations of the game in Scilab given all 

the rules and restrictions we had placed on the game. So, in essence, it played out 

games according to our rules and captured the statistics in order to give us an idea of 

how well our model worked and where the players would end up. Our findings can be 

seen in the following histogram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 
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This histogram, which was computed using a p-value of 0.75 and a q-value of 0.60, 

shows the distribution of how much money our player went home with in the 

simulations of the game. As you can see, nearly 85% or 8,500 of our 10,000 

simulations for these particular p and q values ended in the player failing or 

answering the question incorrectly since it was hard for the player to reach a state 

where the expected value of playing was lower than the amount of money on hand. 

We can also see that somewhere around 400 of our simulations ended in the player 

winning it all and beating the mob; this translates to about 4% of the time. Also, there 

are various spots throughout the histogram where the player walked away (portrayed 

between $100,000 in winnings and $200,000 in winnings in the histogram above). 

These data go along with the expected value of the game table that we calculated. 

This table follows: 

 

Game value at start (in thousands of $) 

Player's 
probability of 

being right 

0.85 285 193 121 103

0.75 114 59 51 42

0.65 43 38 32 25

0.55 30 27 22 16

   0.5 0.6 0.7 0.8

    Mob member's probability of being right
 

Table 3 
 

An interesting observation of this table is that the first row is concave up as the q-

value changes and rows three and four are concave down as the q-value changes; 

also, row two is neither concave up or concave down. This seems to imply that there 

is some cutoff point for the expected value of the game as the p-value increase above 

which the expected value is concave up as a function of the q-value and below which 

the expected value is concave down as a function of the q-value. 



On a side note, here we see that as the player’s probability of getting a question right 

goes up, the expected value of the entire game increases with it. Also, when the mob 

members’ probability of answering correctly increases, the expected value of the 

game for the player then decreases. We came up with these same observations as we 

analyzed our earlier models, which shows consistency and gives us a good idea of 

where we are. Thus, the table turned out as we would have expected it to and now we 

can work on further analysis of our model. 

 



4. Conclusions 

4.1 Conclusions from Earlier Work 

In our earlier work, we dealt with the more simplified models such as the “one mob 

member remaining” scenario and the geometric distribution approach. And from 

these models we were able to draw a few different conclusions. We found out that the 

geometric probability approach was not a bad way of going about analyzing since it 

did give us a good idea of how the probabilities in the game turn out. This also gave 

us a good idea of what kinds of things we should be looking for in the future as far as 

being to analyze the game and devise an optimal policy. And lastly, we figured out 

that we were going to need a completely different type of approach and model 

altogether if we were going to accurately come up with a way to devise an optimal 

policy for the game as a whole. This led us to taking up the dynamic programming 

approach that we used in our simplified (smaller scale) version of the game and our 

hand-worked model. This gave us the tools that we needed in order to construct the 

full-size game and be able to get things right without having to go through all of the 

pain of trying to start it from scratch. It also provided us a nice guide to go by in order 

to work out the kinks of the full-size model and get to analyze the real data. All of 

these things working together brought us to the conclusion that something more 

powerful was needed and thus we devised the full version model using a dynamic 

programming approach. 



4.2 Conclusions from Present Work 

From the full-size model and the most recent group of work that we did, we dealt 

with a dynamic programming model and used that to devise an optimal strategy or at 

least a list of statistics to aid in devising an optimal strategy for the game show “1 vs. 

100.” We were able to construct, simulate, and obtain pertinent data from the models 

that we created using the software Scilab and running our dynamic program through 

that. From this work we were came up with some interesting conclusions. 

We came up with a way to record the decisions that a player should choose and put 

them into a matrix that we called the decision matrix of our model. This matrix was 

represented by the blue and black graph in section 3 and it tells us the decision that 

the player should choose statistically in every single possible state within a single 

round. Each round has its own, unique decision matrix and set of possible states that 

could be attained in it. The black blocks represent a state where the player should 

choose to stay and continue to play because statistically, the money amount he has in 

hand is less than he is statistically expected to win given the specific number of mob 

members that are left in the single evaluation for that specific round. The blue blocks 

represent the opposite, a choice made by the player to simply walk away from the 

game because the amount of money he has accrued is greater than the expected 

amount he is to win given the specific set of parameters for that state. 



From these graphs we were able to obtain a different graph or set of graphs that let us 

know about where the general cut-off ranges for our model was depending on the 

specific round that we were in. This gave us a good idea of what levels and cutoffs we 

can expect we would have to obtain in order to be better off in the coming rounds 

ahead. This lets us know a good general idea of when to quit and also allows for us to 

make a bit more of an observation based on when we should really look at quitting 

given the lower probability of making it through the higher rounds. 

From all of this analysis, we can see that a good general rule for quitting in the game 

would be that if you make it above $200,000-$250,000 at any point in the first several 

rounds (perhaps first ten rounds), then you should statistically just “take the money 

and run,” because you are not expected to statistically get higher than that. Another 

reason you should quit at this amount even though the higher rounds have cut-off 

levels higher than $250,000 is because the probability that you get through the higher 

rounds is not very good and you will really only be able to go so far. This is a game 

show that is designed to make you take risks and lose the game; therefore, you 

shouldn’t get caught up in the greed that is built into the game if you would like to 

maximize your winnings. Just take it easy, relax, and play smart and in the end you 

could maximize your winnings by getting out with the money while you still can and 

not succumbing to the greed. You will definitely be better off if you adopt this 

approach to playing the game. 

 



4.3 Possible Future Work 

Having gone through our analysis and having come to the conclusions that we have 

come to, there is still a great deal that we have not considered in our model. Some 

possible things to think about for future analyses would be very helpful in learning to 

understand this game on an even greater level. A couple of very important things that 

we should definitely look at, first of all, would be to incorporate the “helps” into our 

model and devise a way of using these helps at certain levels in order to maximize our 

winnings and develop an optimal strategy that is more all-encompassing. Another 

important detail we should incorporate into future work would be the new rule 

changes that the show has made; these new rules were made regarding the money 

amounts the player wins and are given now as follows:  

# of Mob Members Left Player's Total Winnings 
100 to 91 $0  
90 to 81 $1,000  
80 to 71 $5,000  
70 to 61 $10,000  
60 to 51 $25,000  
50 to 41 $50,000  
40 to 31 $75,000  
30 to 21 $100,000  
20 to 11 $250,000  
10 to 1 $500,000  

0 $1,000,000  
Table 4 

 

These new rule changes could have an effect on the expected value of the game 

overall and will definitely change all of the dynamics of the game and the analysis as 

we have done it into a completely different model that will still use a dynamic 

programming approach. 



A few other things that we could look at would be those such as decreasing p and q 

values as the round number gets higher and higher to try to make up for the greater 

difficulty of the questions in the higher rounds; coming up with a formula or function 

for the probability values for both the player and the mob in order to accurately 

describe what is going on (this could be done by either evaluating and devising a 

function or taking the function from analysis of the game show itself to get an idea of 

the actual p and q values); and evaluating the game based on the risk-seeking 

behavior that is always present on game shows – this is contrary to human nature 

since we are naturally risk-neutral most of the time, but on game shows, this behavior 

tends to be risk-seeking due to nerves, adrenaline, the crowd, and a number of other 

things. So, as you can see, there is still quite a bit more work that could be done on 

our model and will hopefully be done in the near future. 



5. References 

 Perea, Federico and Justo Puerto. "Dynamic programming analysis of the game “Who 

Wants to be a Millionaire?"." European Journal of Operational Research 01 Dec 2007 

805-811. 08 Jan 2008. 

 

 "1 vs. 100 official rules." 1 vs 100. 18 Feb 2007. NBC. 25 Apr 2008 

<http://www.nbc.com/Casting/Applications/1v100_rules.pdf>. 

 

Dreyfus, Stuart. The Art and Theory of Dynamic Programming. Berkeley: ASUC 

Custom Publishing Service, 1996.



6. Appendices 
 

Carefully calculating and going through our own mini-dynamic programming scheme 

for this simplified version of the game, yielded the following figure: 

 

 



In this model, we considered the possibility of the player eliminating all three mob 

members as a win and thus rewarded the jackpot at whichever point in the game the 

player achieved this. The first number under each round heading represents the 

probability of that particular state which was computed using a binomial distribution 

dependent on the number of mob members left, the number answering the question 

wrong and the probabilities of correctly answering for the mob and for the player. 

The second column underneath the row heading is the number of mob members 

eliminated in that particular round and the third column represents the expected value, 

then, of each state possible in every single round. The final number underneath the 

expected values for round one is the expected value of the game. All of these values 

were computed given a mob probability of q = 0.55 and a player probability of  

p = 0.40. We have highlighted the optimal path (based on expected value) in red in 

the figure above. In order for this to be a real dynamic program, we began our 

analysis and computation for the last round first then computed the conditional 

expected values in each round prior until we came to the first round and were done 

with our computations overall. 



Another useful grouping of data that we were able to obtain from the data was a transpose matrix 

of the value function of the game for a given round vs. the number of mob members remaining, 

which appears as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analysis of this graph is that the lines represent the value of the game given a 

certain number of mob members left for round 13 which is given above; that is that 

the colorful lines are what the game is worth, all other things considered in round 13 

with the differing numbers of mob members left in the game. This graph is actually a 

transposed three-dimensional graph projected on a two-dimensional plane where the 

curvature of the tail actually causes this graph to curve up on itself near the bottom 

right where the colors are more sporadic and dispersed. 
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