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Abstract 

Irrigating vineyards with winery wastewater is an established practice. However, the effect of this 

water on soil enzyme activity is unknown. Soils from four vineyard areas were irrigated, in pots, over 

four simulated seasons with municipal water, and with winery wastewater diluted to a chemical oxygen 

demand of 3000 ml/L. Urease, β-glucosidase and phosphatase activities were determined after each 

season. The experimental soils were: an alluvial vineyard soil from Rawsonville (RS), an aeolian veld 

soil from Lutzville (LS), and shale (SS)—and granite (SG)—derived soils from Stellenbosch. Compared 

with municipal water, irrigating with winery wastewater significantly (p = 0.05) increased urease 

activity in all four soils, and promoted β-glucosidase activity in SS and SG. Conversely, winery 

wastewater suppressed phosphatase activity in the RS, SH and SG soils. Averaged over all soils, winery 

wastewater promoted the activity of β-glucosidase and urease, but suppressed that of phosphatase. 

All-treatment enzyme activities increased in the sequence: LS<RS<SG<SS for urease, LS<RS<SS<SG 

for phosphatase and LS<RS<SG<SS for β-glucosidase. Winery wastewater and municipal water 

therefore affect soil enzyme activity differently. The extent of this activity varies inconsistently between 

soils. Whether similar results would be obtained under vineyard conditions have yet to be determined. 
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1. Introduction 

Use of winery wastewater for vineyard irrigation is increasing (Mulidzi et al., 2015a). Irrigation with 

wastewater, amongst other management practices (Floch et al., 2009) may change the internal soil 

environment in ways that affect the activities and functioning of the microorganisms responsible for the 

breakdown of soil organic matter, and for the mineralization of nutrients (Bardgett et al., 2005). 

Anissimova et al. (2014) suggest that enzyme activity may be stimulated by promoting the activities of 
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enzyme-producing soil microorganisms through the supply of easily decomposable organic material in 

wastewater, a process known as priming. Where enzymes are associated with, and protected by soil 

colloids, they may persist in soils for periods that exceed the life spans of the parent microorganisms 

(Dick, 1994). The rates at which organic compounds break down are therefore likely to be more closely 

related to the abundance and activity of enzymes than to the numbers of microorganisms present 

(Alexander, 1977). Urease, a soil enzyme, facilitates the hydrolysis of urea into NH3
+ and CO2, 

increasing soil pH in the process (Andrews et al., 1989). β-glucosidase, however, biodegrades carbon 

compounds to form glucose, which is an energy source for the soil microbial population (Tabatabai, 

1977). β-glucosidase activity varies with soil organic matter content and type (Tabatabai, 1982), and 

relates positively to water-soluble carbon, total organic carbon and pH (Ma et al., 2010). Phosphatases, 

on the other hand, facilitate the cycling of phosphorus (Spier & Ross, 1978). Soil enzyme activity is 

affected by factors such as soil organic matter content, cropping history, soil amendment applications 

and temperature (Tabatabai, 1977). Enzyme activity reflects short and long term changes in the pools 

of substrate and product that are associated with each enzyme. Enzyme activity is considered to be a 

useful indicator of soil health and fertility (Bandick & Dick, 1999; Salam et al., 1999; Trasar-Cepeda et 

al., 2000; Madejon et al., 2003). The extent to which the activity of soil enzymes change in response to 

irrigation of Western Cape vineyards with winery wastewater is nevertheless unknown. According to 

Acosta-Martinez et al. (2007) enzyme activity in highly weathered soils (oxisols and ultisols) is greater 

than in soils that are too immature to show strong horizon development (inceptisols). Highly weathered 

and immature soils are commonly found in the wine-producing areas of the Western Cape. It is 

therefore likely that enzyme activity responses following irrigation with water containing winery 

wastes, compared with high quality water containing no winery wastes, will differ between soils of 

dissimilar types.  

The research reported here aimed to investigate the effects of multiple irrigation cycles with high 

Chemical Oxygen Demand (COD) winery wastewater, and of irrigating with good quality (municipal) 

water, on the respective activities of urease, β-glucosidase and phosphatase in four dissimilar Western 

Cape vineyard soils. 

 

2. Materials and Methods 

2.1 Soils, Water and Trial Layout 

The soils and waters used in this trial were described in detail by Mulidzi et al. (2015, 2016a) as were 

the design and layout. Briefly, the soils consisted of an alluvial fine sand soil from a vineyard in 

Rawsonville (8% coarse sand), an aeolian fine sand from Lutzville (2% coarse sand), a granite-derived 

coarse sandy loam (35% coarse sand) soil from the Stellenbosch area, and a shale-derived fine sandy 

clay loam (12% coarse sand), also from Stellenbosch. Chemical characteristics of these soils are 

presented in Table 1. All were bulked and mixed composite samples (30 per location) obtained from 

lower A/upper B2 horizons (0-30 cm). The gravimetric soil water content of each soil was determined. 
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Subsamples of each soil were packed at a density of 1.5 g/cm3 into 4.5 dm3 PVC pots, each 200 mm 

high, with an inner diameter of 150 mm. Mesh-covered drainage holes were provided. The filled pots 

were arrayed on a bed of gravel under a 20 m x 40 m translucent fiberglass roof. Each pot was fitted 

with a metal cross-piece perforated with four uniformly-spaced holes through which drip irrigation 

pipes were inserted. Each pipe terminated in a two L/h button dripper. Irrigation water was obtained 

from two sources: The Stellenbosch municipal water supply and the wastewater collection dam at a 

winery near Rawsonville. The winery wastewater was diluted to a COD of c. 3000 mg/L before use. 

The average composition of these waters is presented in Table 2. At each irrigation event, sufficient 

water was supplied to saturate the soil.  

The pots were weighed daily. Irrigation was repeated after each soil had lost weight equivalent to a 

decrease in soil water content from field capacity to 85% soil water depletion. Six consecutive 

irrigation events constituted a simulated season. Each soil was subjected to four such simulated seasons, 

totaling 24 irrigation events. Averaged over the four simulated seasons, the Rawsonville sand, Lutzville 

sand, Stellenbosch shale and Stellenbosch granite soils received, respectively, 1156, 1126, 987 and 728 

mm of water over four seasons (Mulidzi et al., 2016a). Four pots, each receiving the same soil x water 

treatment were distributed at random in each of four blocks. After each season, one pot was removed 

from each soil x water treatment per block. The soil from the 0-10 cm, and 10-20 cm depth interval in 

each pot was removed and stored separately. 

 

Table 1. Chemical Characteristics of the Four Soils Used in the Lysimeter Trial, Prior to the First 

Irrigation Event 

 Rawsonville sand Lutzville sand Stellenbosch shale Stellenbosch granite 

Ph (KCl) 5.7 6.7 4.2 4.4 

ECe# (dS/m) 0.3 0.5 0.1 0.2 

Org C (%) 1.0 0.2 1.2 1.2 

P (mg/kg) 217 6.0 8.0 15 

K (mg/kg) 87 183 137 126 

Naex* (cmol(+)/kg) 0.1 0.1 0.1 0.2 

Kex (cmol(+)/kg) 0.2 0.5 0.4 0.3 

Caex (cmol(+)/kg) 3.5 2.4 1.6 1.8 

Mgex (cmol(+)/kg) 1.6 0.8 0.8 0.8 

# electrical conductivity. 

* exchangeable. 
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Table 2. Characteristics of Municipal Water and of Winery Wastewater after Dilution to 3000 

mg/L COD, Averaged over Four Consecutive Simulated Seasons 

Variables Municipal water Winery wastewater 

pH 7.4 5.4 

Electrical Conductivity (EC) mS/m 8.6 104 

Na mg/L 7.8 84.4 

K mg/L 1.0 196 

Ca mg/L 5.9 18.6 

P mg/L 1.1 4.7 

Mg mg/L 1.4 7.2 

Fe mg/L 0.1 2.5 

Cl mg/L 17.0 33.0 

HCO3 mg/L 24.9 539 

SO4 mg/L 3.9 89.0 

B mg/L 0.1 0.4 

Sodium Adsorption Ratio (SAR) 0.8 4.6 

Chemical Oxygen Demand (COD) mg/L 27.9 3210 

 

2.2 Soil Sampling and Analysis 

After simulated seasons 3 and 4, the soil material representing the 0-10 cm and 10-20 cm depth 

intervals from each pot were analysed in the ARC Infruitec-Nietvoorbij soil microbiology laboratory to 

determine the activities of β-glucosidase (EC 3.2.1.21), acid phosphatase and urease. β-glucosidase 

activity was determined in field-moist soil in a reaction mixture containing 1.0 g soil, 0.25 mL toluene, 

1.0 mL 25 mM p-nitropheny l-β-D-glucopyranoside (as substrate), and 4.0 mL Modified Universal 

Buffer (MUB) at pH 6.0 (method of Eivazi & Tabatabai, 1988). The mixture was incubated at 37°C for 

60 min after which the reaction was terminated by adding 1.0 mL of 0.5 M CaCl2 and 4.0 mL of 0.1 M, 

pH 12, tris (hydroxymethyl) aminomethane buffer. The amount of p-nitrophenol liberated during 

enzymatic hydrolysis was determined at 410 nm with a digital UV–Vis spectrophotometer by reference 

to a calibration curve corresponding to a p-nitrophenol standard (Sigma-Aldrich) incubated with each 

soil under the same conditions as the samples, and after subtracting the absorbance values of the 

control. In the standard samples the substrate was not added until after the reaction was stopped, 

immediately before filtration of the resulting soil suspension through Whatman no. 2V filter paper. 

Acid phosphatase (EC 3.1.3.2) activity was determined by the method of Tabatabai and Bremner (1969) 

except that the reaction mixture consisted of 1.0 mL 25 mM p-nitrophenol phosphate as substrate, 4.0 

mL MUB and 0.25 mL toluene, and that the released p-nitrophenol was extracted with 4.0 mL of 0.5 M 

NaOH at pH 6.5. Activities of β-glucosidase and of acid phosphatase were expressed as µg 
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p-nitrophenol g/h. Urease activity (EC 3.5.1.5) was determined by the unbuffered method of Kandeler 

& Gerber (1988). 2.5 mL of non-buffered urea solution (80 mM) were added to each 5.0 g field-moist 

soil sample which was then incubated for 2.0 h at 37°C. Controls received deionized water. The NH4
+ 

released by the action of the enzyme on its substrate was extracted with 50 mL KCl solution (1 N KCl 

and 0.01 N HCl). The solutions were shaken for 30 min on an orbital shaker. Determinations were 

based on the reaction of sodium salicylate with NH4
+ in the presence of sodium dichloroisocyanurate. 

Extinction was measured at 690 nm with a digital UV–Vis spectrophotometer against the reagent blank. 

The NH4
+ content was calculated by reference to a calibration curve obtained with standards containing 

0, 1.0, 1.5, 2.0 and 2.5 mg NH4
+/mL. Sodium nitroprusside was used as a catalyst. Activity was 

expressed as µg ammonium g/2 h. Two replicates and one control from each soil were analyzed for the 

β-glucosidase and acid phosphatase assays, and three replicates and one control for the urease 

determinations. Enzyme activities were expressed on a moisture-free basis. Soil moisture content was 

determined from the loss in weight after drying at 105°C for 24 h.  

2.3 Design and Statistics 

Each of the soil (4) x water (2) treatments was replicated in four blocks in a fully randomized split-plot 

design. The plots were split on sample depth (2), with soil as main and depth interval sampled as 

sub-plot factors. The data were tested for normality by the method of Shapiro and Wilk (1965), found 

to be acceptably normally distributed and subjected to analysis of variance (ANOVA) using SAS 

version 9.2 (SAS, 2008). Student’s t-least significant difference values (LSD) were calculated at the 

5% probability level to facilitate comparison between treatment means (Ott, 1998). Means within data 

sets that differed at the 5% probability level were considered significantly different. The enzyme 

activity data were subjected to Discriminate Analysis (DA) as described by Rencher (2002).  

 

3. Results 

3.1 Urease 

Averaged over simulated season, water type and depth, urease activity in the soils decreased in the 

sequence: Stellenbosch shale > Stellenbosch granite, Rawsonville sand > Lutzville sand (Table 3). 

Average urease activity was greater in season 3 than in season 4, although the effects of season on 

Rawsonville sand and Stellenbosch granite were not significant. Urease activities in the 0-10 cm depth 

intervals exceeded those in the 10-20 cm intervals in all four soils. Likewise, urease activities were 

higher in the winery wastewater than the municipal water treatments in the four soils. In both seasons 3 

and 4, urease activities were high in the 0-10 cm interval of the wastewater treatment of the 

Stellenbosch shale soil. 
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Table 3. Effect of Municipal Water and Winery Wastewater on Urease Activity (μg NH4
+ g/h) in 

Four Soils at two Depth Intervals over Simulated Seasons 3 and 4 in a Randomised Lysimeter 

Trial 

Simulate

d season 

Water Depth 

(cm) 

Soil Mean 

Rawsonville 

sand 

Lutzville 

sand 

Stellenbosch 

Shale  

Stellenbosch 

Granite  

 

3 municipa

l 

0-10 27.9fghijk* 8.3mno 14.2jklmno 12.6lmno 15.7d 

10-20 11.6lmno 3.9no 8.5mno 17.2ijklmn 10.3de

Waste 0-10 50.1d 47.0d 188.6a 65.0c 87.7a 

10-20 28.7fghij 20.4hijklm 32.2efgh 40.8def 30.7c 

 4 Municipa

l 

0-10 13.5klmno 7.4mno 10.1mno 9.6mno 10.1de

10-20 9.5mno 2.5o 9.1mno 12.2lmno 8.3e 

Waster 0-10 45.9de 18.2hijklm

n 

130.6b 70.2c 66.3b 

10-20 25.0ghijkl 5.7mno 39.0defg 29.9fghi 24.9c 

Season x 

soil 

Season 3 29.6cd 19.9d 63.5a 33.9c 36.1a 

Season 4 23.5cd 8.5e 47.3b 30.5cd 27.4b 

Depth x 

soil 

0-10 (cm) 34.3b 20.2c 85.9a 39.3b 45.0a 

10-20 (cm) 18.7c 8.1d 21.3c 25.0c 18.2b 

Water x 

soil 

Municipal water 15.6de 5.5e 10.5e 12.9de 11.1b 

Wastewater 37.5c 22.8d 103.6a 51.5b 52.8a 

Mean  26.5b 14.2c 55.0a 32.2b - 

* values in the same data set, that are followed by the same letter, do not differ at p = 0.05. 

 

3.2 Phosphatase  

All-treatment average phosphatase activities (Table 4) decreased in the sequence: Stellenbosch granite 

> Stellenbosch shale > Rawsonville sand > Lutzville sand. Activities were, on average, higher in 

season 3 than 4, although of the four soils, only two (Stellenbosch shale and granite) differed 

significantly. Soil depth had no effect on phosphatase activity in any of the soils. Average phosphatase 

activity was greater in the municipal water than in the wastewater treatments. Only in the Lutzville 

sand was the effect of water quality not significant. 
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Table 4. Effect of Municipal Water and Winery Wastewater on Phosphatase Activity (μg 

p-nitrophenol g/2h) in Four Soils at two Depth Intervals over Simulated Seasons 3 and 4 in a 

Randomised Lysimeter Trial 

Simulated 

season 

Water Depth 

(cm) 

Soil Mean 

Rawsonville 

sand 

Lutzville 

sand 

Stellenbosch 

Shale 

Stellenbosch 

Granite  

 

3 Municipal 0-10 148.2hi* 10.3k 187.4fg 314.9b 165.2a

b 

 10-20 133.9i 8.4k 203.7fg 345.5a 172.9a 

Wastewat

er 

0-10 55.2j 11.9k 202.7fg 316.1ab 146.5c 

 10-20 54.8j 8.6k 192.0fg 278.9c 128.3d 

4 Municipal 0-10 133.9i 6.5k 189.4fg 247.8d 144.4c 

 10-20 132.6i 1.9k 213.6ef 259.9cd 152.0b

c 

Wastewat

er 

0-10 58.8j 11.6k 118.0i 236.8de 106.3e 

 10-20 55.8j 10.9k 120.9i 177.0gh 91.2e 

Season x 

soil 

SS3 98.0e 9.8f 196.9c 313.9a 153.7a 

SS4 95.3e 7.7f 160.5d 230.4b 123.5b 

Depth x 

soil 

0-10 (cm) 99.0c 10.1d 174.4b 278.9a 140.6a 

0-20 (cm) 94.3c 7.4d 181.7b 265.3a 136.2a 

Water x 

soil 

MW 137.2d 6.8f 198.5c 292.0a 158.6a 

WW 56.1e 10.7f 155.4d 252.2b 117.8b 

Mean  96.7c 8.8d 177.9b 272.1a - 

*values in the same data set, that are followed by the same letter, do not differ at p = 0.05. 

 

3.3 β-glucosidase 

β-glucosidase activity in the experimental soils (Table 5) decreased in the sequence: Stellenbosch shale 

> Stellenbosch granite > Rawsonville sand > Lutzville sand. Average β-glucosidase activities were 

greater in season 4 than 3, although Lutzville sand did not differ between simulated seasons. Although 

the average β-glucosidase activity was greater in the 0-10 cm than the 10-20 cm samples, only 

Stellenbosch shale and Stellenbosch granite differed significantly. Average β-glucosidase activities 

were higher in the winery wastewater than in the municipal water treatments. Activities in the sands 

from Rawsonville and Lutzville did not differ significantly.  
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Table 5. Effect of Municipal Water and Winery Wastewater on β-glucosidase Activity (μg 

p-nitrophenol g/2h) in Four Soils at Two Depth Intervals over Simulated Seasons 3 and 4 in a 

Randomised Lysimeter Trial 

Simulated 

season 

Wate

r 

Depth 

(cm) 

Soil Mean 

Rawsonville 

sand 

Lutzville 

sand 

Stellenbosch 

Shale  

Stellenbosch 

Granite 

 

3 MW 0-10 25.8mno* 4.2st 55.4hi 12.2pqrst 24.4e 

 10-20 29.1lmn 3.9st 60.7h 12.2pqrst 26.5e 

WW 0-10 34.8klm 9.8pqrst 93.5de 17.6nopqr 38.8d 

 10-20 20.9nop 3.0t 77.2g 15.0opqrs 29.0e 

4 MW 0-10 37.5jklm 8.5qrst 75.2g 105.9c 56.8bc 

 10-20 39.4jkl 7.3qrst 80.4fg 84.4efg 52.9c 

WW 0-10 44.3ijk 18.4nopq 125.5b 141.5a 82.4a 

 10-20 49.1hij 6.6rst 89.2ef 101.7cd 61.6b 

Season x 

soil 

Season 3 27.5e 5.2f 71.7c 14.3f 29.7b 

Season 4 42.6d 10.2f 92.6b 108.4a 63.4a 

Depth x soil 0-10 (cm) 35.5e 10.2f 87.4a 69.3c 50.6a 

10-20 (cm) 34.6e 5.2f 76.9b 53.3d 42.5b 

Water x soil Municipal water 33.0d 6.0e 67.9b 53.7c 40.1b 

Wastewater 37.2d 9.4e 96.4a 68.9b 53.0a 

Mean  35.1c 7.7d 82.1a 61.3b  

* values in the same data set, that are followed by the same letter, do not differ at p = 0.05. 

 

3.4 Correlations 

Urease activity correlated significantly with β-glucosidase activity, but not with phosphatase activity 

(Table 6). β-glucosidase and phosphatase activities correlated significantly, but not strongly. 

 

Table 6. Pearson Correlation Coefficients (r) for Urease, Phosphatase and β-Glucosidase (n = 95) 

Enzymes correlated r p 

Urease β-glucosidase 0.4294 <0.0001 

Urease  Phosphatase 0.1496 0.1478 

Glucosidase Phosphatase 0.3740 0.0002 
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3.5 Discriminant Analysis 

Within the space delimited by discriminant axes F1 and F2, which respectively represent 57.37% and 

35.22% of the total variability of 92.59% (Figure 1A), centroids representing soil x simulated season x 

water (over sample depth) were irregularly spaced along the F1 axis. The dominant parameter on the 

F1 axis was soil. There was nevertheless overlap along the F1 axis between centroids representing the 

different simulated season x water quality treatments of each soil. For each soil, centroids for the 

winery wastewater x simulated season’s treatments tended to plot at higher positive values on the F2 

(mainly water) axis, but more negative values on the F1 axis, than the centroids for the municipal water 

treatments. The effect of water quality x simulated season was smallest in the case of the Lutzville soil, 

but relatively great in the Stellenbosch shale soil. Scattering of data points around their respective 

centroids was ascribed to the effects of simulated season, water quality and depth. In this statistical 

treatment (Figure 1B), phosphatase plotted high on the F1 (mainly soil) axis, but low on the F2 (mainly 

water quality x simulated season) axis. β-glucosidase plotted lower on the F1 axis, but higher on the F2 

axis than phosphatase. Urease plotted close to zero on the F1 axis, and at a value that was between 

β-glucosidase and phosphatase on the F2 axis.  

The effects of water quality x soil (over simulated season and depth) are shown in Figure 2A in which 

the centroids for soil show displacement along the F1 (mainly soil) axis. This axis accounts for 93.27% 

of the total variability of 99.60% (higher than in Figure 1A). Although displacement along the F2 axis 

(mainly water quality) for centroids representing each soil x water treatment was apparent, the 

variability accounted for by the displacement due to water quality was small (6.34%). Centroids 

representing each soil x water treatment tended to become increasingly positive along the F1 axis in the 

sequence: Lutzville sand < Rawsonville sand < Stellenbosch shale < Stellenbosch granite. Scatter of 

points around the centroid for Stellenbosch shale was particularly wide, as was the displacement along 

the F2 axis between water treatments for this soil. In the case of the Lutzville soil, displacement along 

the F1 axis between the municipal water and winery wastewater treatments was almost zero. The 

distribution of all three enzymes (Figure 2B) plotted in much the same pattern as in Figure 1B. In both 

cases urease plotted near zero on the F1 axis and phosphatase near zero on the F2 axis.  

Centroids representing the soil x depth (over water and season) treatments (Figure 3A) show 

displacement along the F1 (mainly soil) axis in the sequence: Lutzville > Rawsonville > Stellenbosch 

shale > Stellenbosch granite. For each soil, centroids for the 1-10 cm depth intervals plotted higher on 

the F2 axis than the 10-20 cm samples. Urease, β-glucosidase and phosphatase (Figure 3B) were 

distributed in much the same pattern as in Figures 1B and 2B. Also similar to soil x water quality 

(Figure 2A), the displacement due to depth (Figure 3A) was small, contributing only 3.10% to the total 

variability of 99.15%. 
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Figure 1. (Left) Discriminant Analysis for the Factors: Soil (S1, Rawsonville; S2, Lutzville; S3, 

Stellenbosch Shale; 

S4, Stellenbosch Granite) Water (WW, Winery Wastewater; MW, Municipal Water) and 

Simulated Season 

(3, Simulated Season 3; 4, Simulated Season 4), over Two Sample Depths. 1B (Right): 

Discriminant Analysis for the Variables: 

Urease Activity, β-Glucosidase Activity and Phosphatase Activity 

 

 

Figure 2. 2A (Left): Discriminant Analysis for the Factors Water (WW, Winery Wastewater; 

MW, Municipal Water) and Soil (1, Rawsonville; 2, Lutzville; 3, Stellenbosch Shale; 4. 

Stellenbosch Granite), 



http://www.scholink.org/ojs/index.php/se                 Sustainability in Environment                     Vol. 1, No. 2, 2016 

151 
Published by SCHOLINK INC. 

Water (WW Winery Wastewater; CW, Municipal Water) over Two Simulated Seasons and Two 

Soil Depths. 

2B (Right): Discriminant Analysis for the Variables Urease Activity, β-glucosidase Activity and 

Phosphatase Activity 

 

 

Figure 3. 3A (Left): Discriminant Analysis for the Factors Soil (1, Rawsonville; 2, Lutzville; 3, 

Stellenbosch Shale; 4, Stellenbosch Granite) and Sample Depth (0-10 cm; 10-20 cm) over Two 

Water Treatments and Two Simulated Seasons. 3B (right): Discriminant Analysis for the 

Variables Urease Activity, β-glucosidase activity and Phosphatase Activity 

 

4. Discussion 

The results presented in this article concern seasons 3 and 4 only. Data from seasons 1 and 2 were 

ignored on the grounds that equilibration between soil and water was less likely to have been complete 

in the two earlier seasons. 

4.1 Soil 

The discriminate analysis suggests that much of the variability in the trial was due to differences 

between soils as indicated by displacement along the F1 (mainly soil) axis. This axis accounted for 

most of the total total variability: 57.37% of 92.59% in Figure 1A (soil x water x season), 93.27% of 

99.6% in Figure 2A (soil x water) and 96.06% of 99.15% in Figure 3A (soil x depth). In all three 

figures the soils tended to plot along the F1 axis in the general sequence: Lutzville sand < Rawsonville 

sand < Stellenbosch shale < Stellenbosch granite. A similar soil sequence was followed by the 

all-treatment averages in Tables 3 (urease activity) and 5 (β-glucosidase). However, phosphatase 
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activity (Table 4) was greater in the Stellenbosch granite than in the Stellenbosch shale. Conceivably, 

the coarse texture of the granite soil may have promoted phosphatase activity relative to the finer 

textured shale soil (Mulidzi et al., 2016b), whereas the opposite was the case for urease and 

β-glucosidase. The activities of both these enzymes peaked in the coarser textured Stellenbosch granite 

soil. The lowest activity of all three enzymes were observed in the Lutzville soil which, like 

Rawsonville was dominated by the fine sand fraction (Mulidzi et al., 2016a). Despite similarities in 

texture between the Rawsonville and Lutzville soils the all-treatment average activities of urease, 

phosphatase and β-glucosidase (Tables 3, 4 and 5, respectively) were significantly greater in the 

Rawsonville than the Lutzville soil. Soil texture therefore does not have a consistent effect on enzyme 

activity. This observation supports Noorbakhsh et al. (2001) who showed that in a population of 20 arid 

region soils, urease activity correlated with neither sand, silt nor clay percentage. Whether the fact that 

the Lutzville soil was characterised by a lower initial organic carbon content and higher pH (Table 2) 

than the other experimental soils contributed to the low enzyme activities in the Lutzville soil was 

unclear. That urease correlated moderately well with β-glucosidase, and β-glucosidase correlated, 

though weakly, with phosphatase, whereas urease did not correlate with phosphatase (Table 6), implies 

that urease and phosphatase have different soil environmental requirements. Factors that correlate 

positively with urease activity include soil organic matter and total nitrogen contents (Noorbakhsh et al., 

2001). However, because all of the soils received winery wastewater and the wastewater differed little 

in composition, the urease activities in the wastewater-treated soils should have been similar, provided 

that differences due to the characteristics of the four soils were small. The fact that the urease activities 

in the winery wastewater treatments differed between soils suggests that the effects of the soils on 

enzyme activity were large in comparison with that of the wastewater. In the municipal water 

treatments, urease activities did not differ significantly between soils but the activities of both 

phosphatase and β-glucosidase were appreciably greater in the Stellenbosch shale and Stellenbosch 

granite soils than in the Rawsonville and Lutzville soils. The fact that the Stellenbosch soils were 

initially more acid, and contained less exchangeable calcium than the Rawsonville and Lutzville soils 

may have contributed to the greater activities of β-glucosidase and phosphatase in the Stellenbosch 

soils following irrigation with municipal water. Such a pH effect nevertheless seems improbable in 

view of the slight alkalinity (pH 7.4) of the municipal water. 

4.2 Water Quality 

The effect of water quality on enzyme activity varied in extent from soil to soil. As shown in Figure 2A, 

displacement along the F2 (mainly water) axis was large in the Stellenbosch shale compared with the 

Lutzville sand. Despite this variability, each enzyme responded consistently to the water treatments 

across all four soils, urease and β-glucosidase activities tending to be higher (but not always 

significantly so) in the wastewater than the municipal water treatment (Tables 3 and 5, respectively), 

whilst the converse was the case for phosphatase (Table 4). That higher exchangeable Ca levels, and 

higher pH’s observed in the Rawsonville and Lutzville sands, compared with the Stellenbosch soils 
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(Table 2) may have contributed to the nonsignificant phosphatase activity differences between the 

water treatments in the Rawsonville and Lutzville soils. However, the high initial soil Bray P level in 

the vineyard-derived Lutzville soil (217 mg/kg, Mulidzi et al., 2016b) may also have inhibited 

phosphatase activity in accordance with mass action principles. It seems likely that phosphatase 

requires lower levels of P in the soil solution than were present in the winery wastewater treatments to 

function effectively.  

4.3 Soil Depth 

Phosphatase activities did not differ between soil depth intervals in any of the soils tested (Table 4), 

despite the wide range of phosphatase activities between the soils, from low (c. 10 μg p-nitrophenol 

g/2h) in the Lutzville sand to high (c. 270 μg p-nitrophenol g/2h) in the Stellenbosch granite soil. 

Neither did the all-soil averages differ significantly between depth intervals. In contrast, average 

activities of urease (Table 3) and β-glucosidase (Table 5) were significantly greater in the 0-10 than the 

10-20 cm depth interval. These results were in agreement with the discriminate analysis (Figure 3A). 

Assuming that the enzymes were uniformly distributed through the soil columns at the outset, this 

observation suggests either that the higher urease and β-glucosidase activities in the 0-10 cm horizon 

was due to: (1) enrichment of the 0-10 cm material with metabolisable substrate by the winery 

wastewater, relative to the 10-20 cm interval, (2) that enzyme activity was suppressed in the lower 

regions of the pots, possibly by poor aeration, or (3) by a combination of both factors. Sample depth 

had little effect on organic carbon in any of the soils or water treatments (data not shown). Better gas 

exchange in the 0-10 cm interval may therefore be the most likely reason why urease and β-glucosidase 

activities were greater in the 0-10 cm than the 10-20 cm sample depth interval. Compared with these 

two enzymes, phosphatase activity may be less sensitive to low soil oxygen levels. 

4.4 Simulated Season 

Average activities of urease (Table 3) and phosphatase (Table 4) were higher in season 3 than in season 

4. Conversely average β-glucosidase activity (Table 5) was greater in season 4 than season 3. The 

seasonal difference in β-glucosidase activity was large, relative to other soils, in the Stellenbosch 

granite. Across all the factors tested, urease activity (Table 3) was greatest in season 3 (Stellenbosch 

shale, 0-10 cm interval, winery wastewater), phosphatase activity (Table 4) was greatest in season 3 

(Stellenbosch granite, 10-20 cm interval municipal water, and β-glucosidase (Table 5) in season 4 

(Stellenbosch granite, 0-10 cm interval, winery wastewater. There was thus no consistency in the peak 

enzyme activities in response to these treatment combinations. It may nevertheless be pertinent that 

lowest observed activities of all three enzymes occurred in the 10-20 cm depth interval of the Lutzville 

soil. 

 

5. Conclusions 

Under the prevailing experimental conditions irrigating a population of four Western Cape soils with 

winery wastewater promoted urease and β-glucosidase activities, but suppressed that of phosphatase, 
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compared with municipal water. The four soils differed, though not consistently, in terms of the extent 

of their enzyme activity responses to the two water treatments.  

It is nevertheless unclear whether similar results would have been obtained if the activity responses to 

wastewater had been compared with those of water from boreholes, rivers and dams, which differ 

widely in chemical composition. It is also possible that similar soils possessing different levels of soil 

enzymes, prior to irrigation with winery wastewater, would not exhibit the same responses as those 

observed in this trial. However, because multiple irrigation cycles with winery wastewater are likely to 

cause the microbial/enzymatic balance in the soil to shift from its initial (pre wastewater irrigation) 

state to a new equilibrium condition, the initial microbiological status of the soil is likely to be of little 

practical importance. In practice, soil microbiological parameters are likely to change with season, due 

to differences in composition between rainwater in winter and winery wastewater in summer. Further 

research is needed to determine how enzyme activities compare where wastewaters from different 

wineries are compared with waters that span the range of compositions which occur in those water 

sources from which irrigation water is currently draw in the Western Cape winegrowing areas. In each 

water x soil treatment, the microbial status of the soil should be monitored to determine the rate at 

which microbial/enzymatic maturity becomes established.  
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