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RESUMEN: En este artículo debatiremos la contribución hecha 
por Alan Turing (1912-1954) a la fundamentación matemática 
de la Biología del Desarrollo. Para ello, repasaremos brevemente 
su punto de vista en el único trabajo que publicó sobre este 
tema, y describiremos su impacto tanto en las Matemáticas 
como en la Biología.
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ABSTRACT: In this work we will discuss on the contribution 
made by Alan Turing (1912-1954) towards a mathematical 
foundation of Developmental Biology. To do so, we will briefly 
review the approach he laid out in his only published work 
on the subject, and then describe the impact of his work on 
Mathematics on one hand, and on Biology on the other. 
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1. TURING´S PROPOSAL: A MATHEMATICAL THEORy 
OF dEVELOPMENT

Alan Turing published a single paper on what we 
now call Mathematical Biology (Turing, 1952). He 
had however a keen interest in biological problems, 
and left unfinished a number of manuscripts on is-
sues such as phyllotaxis, the way in which leaves 
are spatially distributed in plants (see http://www.
turingarchive.org/). Interestingly enough, the word 
Mathematics does not appears in the title of that 
work (The chemical basis of morphogenesis, see Ref. 
Turing, 1952). However, the approach in that article is 
deeply mathematical, and some of the results derived 
in it have had a considerable influence in Physics and 
Mathematics, where they fueled a whole new area 
known as Pattern Formation. This happened, though, 
only after his ideas had remained largely forgotten for 
many years. The impact of Turing´s approach in Biolo-
gy is arguably far more modest, and his vision remains 
out of the main stream even today.

In his work (Turing, 1952), Turing was concerned 
with morphogenesis, a key issue in what it is today 
called Developmental Biology. Roughly speaking, the 
term morphogenesis is used to describe the whole set 
of processes by which a fully grown living being un-
folds from a fertilized embryo. How such a complex 
object as an adult person could develop from a quite 
small, almost homogeneous initial stage, poses a for-
midable scientific problem. Indeed, many of its crucial 
aspects remain largely unknown, in spite of the out-
standing amount of information gathered on that area 
during the last century.

It has been long suspected before Turing that chemical 
substances should be instrumental in morphogenesis. 
Such assumption is however made precise in the very 
first lines of (Turing, 1952) with unmatched precision:

…It is suggested that a system of chemical substanc-
es, called morphogens, reacting together and diffus-
ing through a tissue, is adequate to account for the 
main phenomena of morphogenesis. Such a system, 
although it may originally be quite homogeneous, 
may later develop a pattern or structure due to an 
instability of the homogeneous equilibrium, which is 
triggered off by random disturbances. Such reaction-
diffusion systems are considered in some detail in the 
case of an isolated ring of cells, a mathematically con-
venient, though biologically unusual system...

And now a key technical point is stated:

…The investigation is chiefly concerned with the onset 
of instability…

In Turing´s approach simplicity is crucial. A few lines 
below, our author makes clear that he only intends to 
make use of a few basic physical principles to address 
his ambitious goal:

…The purpose of this paper is to discuss a possible 
mechanism by which the genes of a zygote may deter-
mine the anatomical structure of the resulting organ-
ism. The theory does not make any new hypotheses; 
it merely suggests that certain well-known physical 
laws are sufficient to account for many of the facts…

Simple his proposal may be, but mastering it re-
quires some background, which is precisely described:

...The full understanding of the paper requires a good 
knowledge of mathematics, some biology, and some 
elementary chemistry…

These few remarkable lines encode the gist of 
Turing´s ideas on morphogenesis. Chemical species, 
which mediate the shaping of unfolding living pat-
terns (such as organs or limbs), are postulated to op-
erate according to a number of physical mechanisms, 
which are reduced to a bare minimum. In fact, only 
two such principles are discussed in detail. The first of 
them is diffusion, which accounts for random, unbi-
ased molecular motion at the microscopic scale. The 
second is represented by chemical reactions, whereby 
new molecular substances are generated from the 
interactions between existing ones. It was shown in 
(Turing, 1952) that, from the point of view of math-
ematical modelling, reaction and diffusion suffice to 
explain the appearance of nontrivial patterns which 
were initially absent in a featureless initial medium. 
Mechanical aspects, however important they may be 
in practice, are not dealt with in the paper (Turing, 
1952). That makes life simpler for the modeller, but 
has been a source of criticism ever since.

As recalled before, biological patterns are proposed 
to be the consequence of instabilities arising from a 
homogeneous state, which was initially stable from 
the point of view of reaction kinetics (described math-
ematically in terms of ordinary differential equations, 
ODEs). Such instabilities are a result of (arbitrarily 
small) random disturbances which introduce hetero-
geneity in such medium. This in turn induces diffusion 
(represented in mathematical terms by partial dif-
ferential equations, PDEs). Diffusion is a mass trans-
port mechanism, which in an attempt to suppress 

http://dx.doi.org/10.3989/arbor.2013.763n5011
http://www.turingarchive.org/
http://www.turingarchive.org/


ARBOR Vol. 189-764, noviembre-diciembre 2013, a081. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2013.764n6004

M
iguel A

. H
errero

3

a087

heterogeneity, moves chemicals from regions where 
their concentrations are higher (with respect to the 
global spatial average) to others where they are lower. 
Oddly enough, and this was one of Turing’s significant 
mathematical contributions (Turing, 1952), this at-
tempt to return to homogeneity results in the onset 
of unbounded disturbance growth when at least two 
reacting chemical substances are considered; see the 
Appendix at the end of this paper for further details.

Turing was well aware that his suggestion that sym-
metry breaking could be induced by arbitrarily small 
random disturbances might (and actually did) look 
surprising at first glance. In (Turing, 1952), page 41, 
he wrote:

…There appears superficially to be a difficulty con-
fronting this theory of morphogenesis, or, indeed, al-
most any other theory of it. An embryo in its spherical 
blastula stage has spherical symmetry, or if there are 
any deviations from perfect symmetry, they cannot be 
regarded as of any particular importance, for the de-
viations vary greatly from embryo to embryo within a 
species, though the organisms developed from them 
are barely distinguishable. One may take it therefore 
that there is perfect spherical symmetry. But a system 
which has spherical symmetry, and whose state is 
changing because of chemical reactions and diffusion, 
will remain spherically symmetrical forever. (The same 
would hold true if the state were changing according to 
the laws of electricity and magnetism, or of quantum 
mechanics.) It certainly cannot result in an organism 
such as a horse, which is not spherically symmetrical…

Turing´s answer to his own carefully worded state-
ment goes as follows (Turing, 1952, p. 42):

…There is a fallacy in this argument. It was assumed 
that the deviations from spherical symmetry in the 
blastula could be ignored because it makes no par-
ticular difference what form of asymmetry there is. 
It is, however, important that there are some devia-
tions, for the system may reach a state of instability 
in which these irregularities, or certain components of 
them, tend to grow. If this happens a new and stable 
equilibrium is usually reached, with the symmetry en-
tirely gone…

We have already noticed that the seemingly coun-
terintuitive fact that symmetry breaking could be in-
duced by any small, random perturbation is supported 
in (Turing, 1952) by means of a simple mathematical 
model (cf. Appendix). However, the final statement in 
the previous excerpt, namely the fact that eventu-

ally “a new and stable equilibrium is usually reached, 
with the symmetry entirely gone” would require for 
its justification of additional, and highly sophisticated, 
mathematical tools of a nonlinear nature. We shall 
presently return to this point in Section 2 below.

Turing´s description of the initial stages of Pattern 
Formation in an embryo as a diffusion-induced destabi-
lization of an initially stable, homogeneous steady state 
instantly appeals to a mathematically-minded reader 
for various reasons. It is elegant, simple, looks quite 
general and can be illustrated by means of elementary 
arguments. However, it just looks too good to be true, 
and the limitations of his approach were apparent to 
Turing himself. As a matter of fact, in page 37 in (Turing, 
1952), a few lines after his already quoted excerpt at 
the beginning of his note, he plainly declared:

…In this Section a mathematical model of the growing 
embryo will be described. This model will be a simpli-
fication and an idealization, and consequently a fal-
sification. It is to be hoped that the features retained 
for discussion are those of greatest importance in the 
present state of knowledge…

Indeed, the Mathematics behind Turing´s argu-
ments were known to their author to be insufficient 
to fully achieve his purpose. A key technical limita-
tion in his work is that significant results could only 
be obtained under the assumption of linearity in the 
equations involved. This is plainly declared in a final 
Section 13 of (Turing, 1952, cf. p. 71 there), where a 
few conclusions are gathered:

…The ‘wave’ theory which has been developed here 
depends essentially on the assumption that the reac-
tion rates are linear functions of the concentrations, 
an assumption which is justifiable in the case of a 
system just beginning to leave a homogeneous condi-
tion. Such systems certainly have a special interest as 
giving the first appearance of a pattern, but they are 
the exception rather than the rule. Most of an organ-
ism, most of the time, is developing from one pattern 
into another, rather than from homogeneity into a 
pattern. One would like to be able to follow this more 
general process mathematically also…

The last goal is acknowledged to be out of reach by 
the author at that time (1952).

…The difficulties are, however, such that one cannot 
hope to have any very embracing theory of such proc-
esses, beyond the statement of the equations…

http://dx.doi.org/10.3989/arbor.2013.764n6004
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(Turing, 1952, loc. cit.). Nevertheless, Turing con-
ceived a possible way out of this stalemate by embrac-
ing what we would today call Computational Biology:

…It might be possible, however, to treat a few particu-
lar cases in detail with the aid of a digital computer. 
This method has the advantage that it is not so nec-
essary to make simplifying assumptions as it is when 
doing a more theoretical type of analysis. It might 
even be possible to take the mechanical aspects of the 
problem into account as well as the chemical, when 
applying this type of method. The essential disadvan-
tage of the method is that one only gets results for 
particular cases…

It may well be guessed from the previous sentences 
that Turing clearly foresaw the impending power of 
computers, a technology that he himself contributed 
to develop, as a tool to address biological problems, 
developmental and otherwise. However, state-of-the-
art computers in 1952 where unable to yield any sci-
entific breakthrough in a mathematically-based theo-
ry of Pattern Formation.

2. THE IMPACT OF TURING´S IdEAS IN MATHEMATICS 
ANd BIOLOGy

How was Turing´s work received at his time? It 
would be fair to say that his proposals remained large-
ly forgotten during the fifties and the sixties of pre-
vious century. Several facts conspired to that effect. 
To begin with, his untimely death in 1954, only two 
years after (Turing, 1952) was published, prevented 
him from further developing his ideas and methods. 
Moreover, some momentous events happened at that 
time which contributed to diverting biologists atten-
tion away from Turing´s work.

Indeed, only one year after (Turing, 1952) appeared, 
Watson and Crick published their seminal work on the 
structure of DNA (Watson and Crick, 1953) that led 
generations of scientists to dig deeper and deeper into 
genetics. On the other hand, in the same year 1952 
A. Hodgkin and A. Huxley published the first of a se-
ries of articles (Hodgkin and Huxley, 1952) concerned 
with a key issue in neuroscience, that of modelling 
the propagation of signals in nerves. Oddly enough, 
Mathematics was paramount to the techniques used 
in Watson and Crick (1953) (crystallography) and in 
Hodgkin and Huxley (1952) (numerical simulation of 
ODEs) systems. Why it was that mathematical model-
ling failed to appeal to developmental biologists?

It could well be that Crystallography had been 
grounded on Mathematics and Physics since its very 

beginning, and that Neurosciences were ripe enough 
to benefit from mathematical tools while Develop-
mental Biology was not. In a way, the question was re-
lated to that of selecting a problem which was at the 
same time important and within reach of already ex-
isting mathematical techniques. It is interesting in this 
respect to read what Francis Crick, a physicist turned 
biologist, revealed to Lewis Wolpert, a distinguished 
developmental biologist, during a scientific interview. 
Their dialogue went as follows:

Lewis Wolpert: How do you choose your theoretical work?

Francis Crick: Well, what I do is, not choose a problem, 
but to choose a subject, and then try to move around 
in this subject until I find an idea that yields: some-
thing that clicks together.

I don´t say that I am going to try and solve such and 
such problem, because it may turn out, especially in 
biology, that it´s insoluble. The problem of how pro-
teins fold up, for example. We showed great discrimi-
nation in not choosing that problem. It has not been 
solved to this day.

The way I work is to take a given area and to look at 
problems which look as if they might be tractable, as 
we thought the genetic code would be.

(see Wolpert and Richards, 1988 for the whole in-
terview). One may wonder if a mathematical theory 
of developmental was tractable at all in the absence 
of sufficient computer power. This came soon after-
wards, though, and its staggering increase since the 
late sixties has definitely shifted the balance in mod-
ellers minds from theory to large-scale simulations, a 
trend that is clearly dominant nowadays. As a matter 
of fact, even the comparatively low computing level in 
the early seventies was enough to take a step further 
form (Turing, 1952), as we will see next.

2.1. Beyond linearity. Activator-inhibitor systems

In the context of morphogenesis, one had to wait 
for twenty years until a further significant step with 
respect to (Turing, 1952) was provided. This was 
achieved by the nonlinear activator-inhibitor theory 
due A. Gierer and H. Meinhardt (1972). The authors 
summarized their approach in that work as follows:

…The hypothesis is being stated that the elementary 
process in pattern formation may be the formation of 
a primary pattern of two morphogens, one acting as 

http://dx.doi.org/10.3989/arbor.2013.763n5011
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activator, and one with inhibitory effect, the inhibition 
being derived from, and extending into a wider area. 
Activator and inhibitor react auto -and cross catalyti-
cally on their sources…

A key point is now immediately made:

… Since linear relations will not suffice, non-linear 
equations have to be postulated…

As a striking difference with the situation in 1952, 
the basic nonlinear activator-inhibitor proposed in 
Gierer and Meinhardt (1972) could be easily simu-
lated in 1972, and the results of such simulations re-
vealed the emergence of patterns that are rendered 
stable by the effect of the nonlinearity retained in the 
model. Actually, since the publication of Gierer and 
Meinhardt (1972), the study of systems of this type 
(see for instance Koch and Meinhardt, 1994) has been 
mostly done by means of numerical simulations. Fully 
rigorous analysis (proving in particular existence and 
uniqueness of solutions) has indeed become a rarity 
in this context. See however (Rothe, 1984), where 
the systems proposed in Gierer and Meinhardt (1972) 
were rigorously studied.

As a matter of fact, there are understandable reasons 
for this shift from theory to simulations. It is beyond 
question that biological processes are exceedingly 
complex, and therefore most models, if manageable, 
have to keep to a few assumptions and disregard the 
rest, including obviously those that remain unknown at 
the time. To compare various modelling alternatives, 
there seems to be no better way than to check what 
their predictions are, and computational methods help 
in this respect more than any other mathematical tech-
nique. In particular rigorous analysis, with its charac-
teristically long time scale to achieve results, and the 
difficulties inherent to its own method, is no match for 
educated computer guesses when it comes to explor-
ing a largely unknown field. This has contributed to 
widening the gap between theory and simulations that 
shows no signs as yet of being filled.

In the years since Gierer and Meinhardt (1972) was 
published, a large number of articles using reaction-
diffusion equations to address biological (and not 
merely developmental) problems has been produced; 
see for instance Murray (2003) and its references. In 
this way, the subject of Mathematical Biology has es-
tablished itself as a branch of contemporary Mathe-
matics that attracts a large following. Its status among 
biologists is however quite a different matter, as we 
shall discuss below.

2.2. The Impact of Turing´s work in Biology

While the interest in using mathematical models 
in Biology has been steadily increasing among math-
ematicians and physicists ever since (and arguably be-
fore) the publication of (Turing, 1952), the situation 
is quite different as far as biologists are concerned. 
In fact, Turing’s approach, and mathematical model-
ling in general, has yet to be accepted in most Biology 
quarters, with the single possible exception of Ecology 
and related fields. It is beyond the scope of this article 
to provide a full account, not to say a reasonable ex-
planation, of the reasons behind biologists’ misgivings 
with respect to Mathematics. Instead, we shall con-
tent ourselves with sketching a few points which will 
hopefully shed some light onto that situation.

To begin with, many biologists consider living beings 
to be simply too complex to be amenable to anything 
close to mathematical modelling, whose realm should 
be accordingly confined to that of inorganic matter. 
This belief runs deep both in science and philosophy 
since the very origins of scientific thought. No less a 
master than Aristotle (ca 384 BC - 322 BC) pronounced 
Mathematics valid only to deal with immaterial things 
with these terse words:

…The minute accuracy of mathematics is not to be 
demanded in all cases, but only in the case of things 
which have no matter. Hence (mathematical) meth-
od is not that of natural science; for presumably the 
whole of nature has matter…

(see Aristotle, 1998; see also the web link: http://clas-
sics.mit.edu/Aristotle/metaphysics.html). It has taken 
Mathematics almost two thousand years to gain a sol-
id grasp as a key method in Physics, and only after such 
minds as Galileo and Newton have made their mark 
there. In our days no one would seriously challenge 
the principle that Mathematics is the tool to under-
stand matter, from atoms to stars. When it comes to 
living beings, however, the situation is very different.

An illuminating view on the stance taken by many 
biologists with respect to Mathematics is given by 
Evelyn Fox Keller in (Keller, 2002). She provides there 
a penetrating account of what she refers to as “un-
timely births of Mathematical Biology”. An example of 
that situation is provided by the career of Nicholas Ra-
shevsky (1899-1972), founder of a journal that even-
tually became the Bulletin of Mathematical Biology, 
currently one of the leading publications in that field. 
In 1934 Rashevsky, presented at Cold Spring Harbor 
(CSH), then at the initial stages of its current role as a 
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beacon for cutting-edge Biology worldwide, his math-
ematical model of cell division. Rashevsky´s approach 
was a classical one in physics, where simplified situa-
tions are considered first (for instance, cells may as-
sumed spherical to start with) to be later generalized 
once a few relevant conclusions have been derived 
from such simplified cases. The answer found in CSH 
to his approach was disappointing. In particular, as re-
called in (Keller, 2002), E. B. Wilson, a leading biologist 
of his generation, prepared a short paper discussing 
Rashevsky´s proposals, which contained statements 
as the following:

…Science need not be mathematical,  
Simply because a subject is mathematical it need not 
therefore be scientific…

Moreover, to summarize the exchanges between 
Rashevsky and Wilson, E. Ponder, director of CSH at 
that time wrote:

…One point upon which there seems to be pretty gen-
eral agreement is that there is little relation between 
the amount of which has been done on the mathe-
matics of (biological) growth and the clarification of 
the subject which has resulted…

…It is futile to conjure up in the imagination a system of dif-
ferential equations for the purpose of accounting for facts 
which are not only very complex, but largely unknown…

…What we require at the present time is more meas-
urement and less theory…

These words, written less than twenty years before 
the publication of (Turing, 1952) represent an antici-
pated and complete rebuttal of Turing´s approach. 
There is an ominous ring in a sentence declaring 
that what we need is “more measurement and less 
theory”. Indeed, theories, so appreciated in Physics, 
are looked down upon by many distinguished devel-
opmental biologists, to keep to the field that Turing 
himself selected to study. This statement is plainly ex-
plained by Hans Meinhardt in (Gordon and Beloussov, 
2006). There he says:

…Why do models (in Biology) have only a limited rep-
utation? My own experience is that experimentalists 
are not very enthusiastic if it turns out that a process 
was correctly predicted. They worked hard to find the 
basic principles by themselves. Frequently the predic-
tion is then handled more as a speculation, if not com-
pletely ignored.

This is very different to the habit in physics where an 
experimental observation would be in no way dimin-
ished if it is preceded by a theoretical prediction, on 
the contrary…

A bit later in Gordon and Beloussov (2006), Mein-
hardt provides a pungent comment that could be ex-
tended to the difficulties that new ideas usually find 
when they are formulated:

…The reception of some of my models had a strange 
history. First they were regarded as unrealistic or 
misleading: “cannot be”. More or less abruptly this 
changed later into: “that is trivial, how else should it 
be?” This switch had different time constants in differ-
ent communities. Both attitudes provide the freedom 
to ignore the theoretical work…

Despite a general unfriendly welcome, the use of 
Reaction-Diffusion models to address biological prob-
lems has slowly gained ground as time has elapsed. 
Even hardliners nowadays consider it appropriate to 
refer to it, although not without due reservations. 
For instance, in the book Principles of Development 
(Wolpert et al., 1999), whose principal author is Lewis 
Wolpert (already mentioned here), Reaction-Diffusion 
mechanisms are dealt with in page 317 in Chapter 10 
(devoted to organogenesis) in the 1999 edition. An 
interesting description of stripe formation in fishes is 
provided as a possible example of application of these 
mathematical methods. The text referred concludes, 
though, with the following cautionary statement:

…Nevertheless, there is as yet no direct evidence for 
a reaction-diffusion system patterning any developing 
organism… (chapter 10, p. 317).

However, a number of molecular agents have been 
identified as candidates to mediate such processes, and 
their number continues to increase (Meinhardt, 2008).

3. CONCLUdING REMARKS

Despite the obstacles found, some of which have 
been briefly addressed here, there is currently a larger 
interaction between biomedical scientists, mathema-
ticians and physicists that has ever been in the past. 
It is beyond the scope of this note to report on some 
of the exciting scientific frontiers where this collabo-
ration is already bearing fruit. Of course, the sheer 
complexity of living beings represents a formidable 
barrier that has to be overcome case by case for this 
collaboration to succeed. That was certainly foreseen 
in the concluding sentence in (Turing, 1952) which ac-
curately summarized what was achieved there:

http://dx.doi.org/10.3989/arbor.2013.763n5011
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…It must be admitted that the biological examples 
which it has been possible to give in the present paper 
are very limited. This can be ascribed quite simply to 
the fact that biological phenomena are usually very 
complicated. Taking this in combination with the rela-
tively elementary mathematics used in this paper one 
could hardly expect to find that many observed bio-
logical phenomena would be covered. It is thought, 
however, that the imaginary biological systems which 
have been treated, and the principles which have 
been discussed, should be of some help in interpreting 
real biological forms…

There is a long way to go following the path laid out 
in Turing´s celebrated paper. This seems to be a task 
for many generations of scientists, and it appears to 
be currently well on its way.
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APPENdIX: TURING’S INSTABILITy IN A NUTSHELL

The following argument, taken from pages 42 and 
43 in Turing (1952), illustrates the manner in which 
breakdown of symmetry or homogeneity sets in 
the case of a pair of contiguous cells, having initially 
nearly the same contents.

Consider two cells I and II, and two substances (mor-
phogens) X, Y present on them (c.f. Figure A below).

Chemical reactions will be assumed among X and Y 
of a linear nature and given by

(A1)

(A2)

Note that if both morphogens have concentrations 
X = Y = 1 in both cells, there is equilibrium of a stable 
nature, as can be seen from the study of the eigenva-
lues associated to (A1), (A2). Suppose now that, due 

Figure A: Two similar cells (I and II) where two morpho-
gens X,Y are present. The respective concentrations in 
I and II are denoted by means of indexes I and II.

perhaps to some fluctuation, the initial values in I and 
II turn out to be:

(A3)

According to (A1), (A2), X and Y are produced by 
chemical action at rates 0.18 and 0.22 in the first cell, 
and destroyed at the same rate in the second. As a 
consequence of the heterogeneity introduced by (A3), 
a diffusion mechanism sets in. Suppose that flow due 
to diffusion from the first cell to the second occurs at 
a rate 0.5 for the first morphogen , and 4.5 for the 
second (Note that the ratio of the second diffusivity 
to the first one is 9, about one order of magnitude). 
The combined reaction-diffusion process may now be 
represented by the following equations:

(A4) 

(A5)

Let ξ(t) be the perturbation induced in each mor-
phogen starting from an initial value ξ(0)=0.02 in (A3). 
It then follows from (A4), (A5) that for any t>0,

(A6)  

so that an exponential drift away from equilibrium 
is induced by the initial perturbation (A3). Note that 
negative values for morphogen concentrations should 
be discarded. Actually, when application of the pre-
vious formulae result in the concentration of a mor-
phogen in a cell becoming negative, it should be un-
derstood that it is instead removed only at the rate at 
which it is reaching that cell by diffusion.
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