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ABSTRACT: Model refinement is a key step in crystallographic 
structure determination that ensures final atomic structure of 
macromolecule represents measured diffraction data as good 
as possible. Several decades have been put into developing 
methods and computational tools to streamline this step. In this 
manuscript we provide a brief overview of major milestones 
of crystallographic computing and methods development 
pertinent to structure refinement.
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RESUMEN: El refinamiento es un paso clave en el proceso de 
determinación de una estructura cristalográfica al garantizar 
que la estructura atómica de la macromolécula final represente 
de la mejor manera posible los datos de difracción. Han hecho 
falta varias décadas para poder desarrollar nuevos métodos y 
herramientas computacionales dirigidas a dinamizar esta etapa. 
En este artículo ofrecemos un breve resumen de los principales 
hitos en la computación cristalográfica y de los nuevos métodos 
relevantes para el refinamiento de estructuras.
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WHAT IS CRYSTALLOGRAPHIC MODEL REFINEMENT 
AND WHY IT IS NEEDED?

Crystallographic models are constructed as a so-
lution to an inverse problem (notion formally intro-
duced by Ambartsumian, 1929): knowing the results 
of the experiment (having experimental data), one 
seeks to obtain the model that reproduces these data. 
In fact, an atomic model is an interpretation of a phys-
ical entity, a distribution of the electron density in a 
crystal (nuclear density in case of neutron diffraction). 
This density is generated by atoms that are not point 
scatterers but are in motion so their positions slight-
ly vary from one unit cell of a crystal to another. In 
spite of this difference between unit cells the density 
distribution in a crystal is considered to be a three-
dimensional periodic function. In turn this makes it 
possible to represent the electron density distribu-
tion as an infinite three-dimensional set of Fourier 

coefficients that are complex numbers identified by 
three integer indices. A diffraction experiment does 
not capture the electron density distribution directly 
but measures the diffracted intensities of the light 
source scattered from the periodic, regular lattice of 
the crystal. These intensities result in a three-dimen-
sional finite subset of amplitudes (but not phases!) of 
complex Fourier coefficients that describes the crystal 
content. In crystallography, these Fourier coefficients, 
which we note Fobs(h,k,l)eiφ(h,k,l), with integer numbers 
h,k,l, {(h,k,l)}=S, are called structure factors. Note 
that phases φ(h,k,l) are not available experimentally 
and need to be determined somehow. The amount 
and quality of measured intensities defines the qual-
ity of final crystal structure model. The better the crys-
tal and more accurate the experiment, the larger this 
subset S of amplitudes (a crystallographer says: “the 
higher the resolution of the data set”).

INTRODUCTION

Crystallographic structure determination is a com-
plex procedure that involves a number of very diverse 
steps, shown in Figure 1. It begins with identifying an 
object of interest (bio-macromolecule), and extract-
ing a sample of it that is sufficiently pure such it can 
be crystallized. These crystals (that are required to 
increase the signal from a single molecule) are then 
used to carry out a diffraction experiment that results 
in the recorded intensities of diffracted beams (that 
can be, for example, X-rays, neutrons, electrons). The 
fundamental problem is that the diffraction experi-
ment does not directly provide an image of the con-
tents of the crystal but instead only provides the in-
tensities of light scattered from the crystal, while the 
corresponding phases necessary to reconstruct the 
image are not measured and therefore lost. This con-

stitutes the phase problem – the most fundamental 
problem in crystallography. Luckily, the phase prob-
lem can be solved with a number of different methods 
that provide approximate phases. These phases can 
be used to calculate a Fourier image of the molecule 
in question. In turn this image can be used to build 
an atomic model of the macromolecule. This atomic 
model along with its image can be improved itera-
tively by means of the procedure called refinement. 
Once no further improvement can be obtained the fi-
nal structure is subject to thorough checks in order to 
assess its correctness physically, chemically and crys-
tallographically. Finally, the validated structure is typi-
cally deposited at the Protein Data Bank (Bernstein et 
al., 1977; Berman et al., 2000) as well as analyzed of 
its biological function. In this manuscript we focus on 
just one step of this procedure – structure refinement.

Figure 1. Typical crystallographic structure determination workflow

http://dx.doi.org/10.3989/arbor.2015.772n2005
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The goal of crystallographic studies is to recover the 
electron density distribution from measured intensi-
ties and interpret this in terms of individual atoms. For 
small molecules and high-resolution diffraction data, 
it is possible to recover the atomic information direct-
ly from amplitudes. For large molecules and less well 
diffracting crystals, one first tries to solve an interme-
diate problem of obtaining phases corresponding to 

the measured amplitudes. Measured amplitudes and 
recovered approximate phases are then used to cal-
culate the corresponding Fourier synthesis, which is 
a finite-resolution image of the electron density. This 
image of the electron density is the subject of inter-
pretation in terms of an atomic model. Depending on 
the data resolution and quality of initial phases the 
quality of this image may vary substantially (Figure 2).

Figure 2. Illustrative example of an exact electron density distribution (a) and its Fourier images at 2, 3 and 6 Å 
resolutions (panels b, c, and d, correspondingly)

http://dx.doi.org/10.3989/arbor.2015.772n2005
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This means that models obtained from building 
atoms into maps calculated using initial approxi-
mate phases are often inexact and in most cases are 
insufficient to derive the required structural conclu-
sions: “Structure determination by the methods of X-
ray crystallography may be divided into two classes: 
those in which the object of the investigation is to 
determine the positions of the atoms with sufficient 
accuracy to give a general picture of the crystal struc-

ture, and those in which the object is to measure as 
accurately as possible the bond lengths and bond 
angles between the atoms.” (Cochran, 1948). A pro-
cedure called refinement needs to be applied to 
improve the quality of models obtained by original 
interpretation of diffraction data. In what follows we 
focus on the refinement procedure, the history of its 
development, principal programs (Table 1) and their 
main features.

Table 1. Macromolecular refinement programs using reciprocal-space refinement targets. Programs limited to 
pure geometry idealization or real-space refinement only are not included. All programs except MOPRO/MOLLY 
use a spherical atom model with isotropic or anisotropic scattering factors. MOPRO/MOLLY uses a multipolar 
atom description. Some information may be approximate since program descriptions in literature do not always 
correspond to the actual program versions and technical documentation is not available for all programs. Here: 
LS – least-square (amplitudes, F, or intensities, I), ML - maximum likelihood, ML* - maximum likelihood via LS 
(Adams et al., 1997; Afonine, Lunin and Urzhumtsev, 2003), Pφ - phase target, (Δd)2 - geometric target expressed 
via quadratic distances, RE – energy distortion (bond lengths, bond angles, etc), wRE – weighted energy terms, 
Rref – different kinds of reference models, RG – rigid groups, TA – torsion angles, ∇ - various gradient methods, 
PGD – preconditioned conjugate directions, MD – molecular dynamics, ∇2 - second-matrix derivatives methods; 
FFTX – FFT used to calculate structure factors, FFT∇ – FFT used to calculate the gradient. Non-geometric restraints 
include those on ADPs, on parameters of rigid groups, various potentials, etc.

http://dx.doi.org/10.3989/arbor.2015.772n2005


ARBOR Vol. 191-772, marzo-abril 2015, a219. ISSN-L: 0210-1963 doi: http://dx.doi.org/10.3989/arbor.2015.772n2005

Pavel V. Afonine, Alexandre U
rzhum

tsev and Paul D. Adam
s

5

a219

Diffraction theory (Ewald, 1913) shows that each 
atom contributes to each structure factor. The simplest 
comparison of diffraction data calculated from the 
model with experimental data can be performed us-
ing the standard least-square target for structure factor 
amplitudes (Hughes, 1941; Booth, 1947). This means 
that if the structure is composed of K independent at-
oms (for macromolecules, K is of order 104 or larger) 
and we have M Fourier coefficients (structure factors; 
for macromolecules, M is also of order 104 or larger), 
then the number of computer operations to calculate 
a single set of structure factors from a model and com-
pare their amplitudes with the experimental values 
would require an order of 1010 computer operations. 

Steepest descent is a simple and powerful optimi-
zation method that can be employed to minimize a 
refinement target. Using this method requires a vec-
tor of partial derivatives (gradient) of the refinement 
target with respect to the model parameters. These 
derivatives can be calculated either by formulae or by 
finite difference methods. It’s worthwhile to note that 
the calculation of each partial derivative is as compu-
tationally expensive as calculation of the target func-
tion itself. In both cases, the number of operations 
required to calculate a single gradient value is pro-
portional to the number of model parameters (with 
respect to which this gradient is calculated) giving a 
number of operations larger than 1015 ~ 10 ∙ 104 ∙ 1010 

HOW REFINEMENT CAN BE PERFORMED AND WHY 
IT IS DIFFICULT

Improving a model means modification of its pa-
rameters, resulting in another model that better 
describes the experimental data. A way to link the 
parameters describing the model to the available ex-
perimental data is to define some function (target) 
such that its value consistently decreases (or increas-
es) as model improves. Thus refinement of atomic 
models (simply “refinement” in what follows) can 
be thought of as an optimization problem (Hughes, 
1941; Booth, 1947). 

Since refinement can be formulated as an optimi-
zation problem the following needs to be defined: a) 
the model and parameters describing the model, b) a 
function that relates the model parameters to experi-
mental data (target or goal function) and c) an optimi-
zation method that will be used to optimize (typically 

minimize) the target function with respect to model 
parameters (see for example, Afonine et al., 2012).

Model parameters are the variables that describe 
the crystal and its content. For example, these may 
be coordinates of the atoms, parameters describing 
atomic vibrations, disorder, descriptors of the solvent 
continuum and so on. Once these parameters are de-
fined they can be used to calculate structure factors 
from the model. The amplitudes of calculated struc-
ture factors are then matched against the experimen-
tally measured structure factor amplitudes and the 
target function is evaluated. An optimization method 
is then used to decide how the model parameters can 
be changed such that the target function value de-
creases (in case of minimization). Once this decision 
is made, the new set of structure factors is calculated 
from the updated model and matched against the 
measured values again. This is repeated several times 
until convergence (Figure 3).

Figure 3. Schematic representation of the crystallographic structure refinement workflow

http://dx.doi.org/10.3989/arbor.2015.772n2005
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(each atom being characterized by 5-10 parameters). 
Since the optimization of the target typically requires 
many iterations to converge to a local minimum of the 
minimization target, the number of operations may 
easily rise to 1020.

As a quick illustration we cite Hughes (1941): 

“The reduction of the observational equations to 
normal equations can be carried through a reasonable 
time, say, three days or less, by an ordinary electrically 
powered calculator when the number of parameters 
is about twelve or less... In the case of the h0l data 
from melanine with over one hundred observations 
and 18 parameters such a calculation … might take 
over a week of extremely tiresome work. The calcula-
tions were actually carried through on an International 
Business Machines Co tabulator using the Hollerith 
punched card system. … 2 days to punch the cards and 
to check them and 4 hours of computations.”

Obviously, computer power has increased dramati-
cally since that time but the same is true for the size 
of the structural problems.

These computational difficulties (computational 
cost) are convoluted with methodological obstacles. 
For example, the optimization methods have limited 
convergence radius: the steepest descent method 
converges to the closest local minimum that may be 
far from the global minimum we are interested in. 
Even if the global minimum of the least-squares target 
is achieved, it may correspond to an incorrect struc-
ture since it does not take into account model incom-
pleteness. Indeed, since structure factors depend on 
a whole set of atoms, missing atoms in the model at 
intermediate refinement steps makes the direct com-
parison of calculated and measured structure factors 
by a least-squares target inappropriate and minimiza-
tion of the least-square target may make the structure 
worse (Lunin, Afonine and Urzhumtsev, 2002). Since 
diffraction data may be of limited quality (finite resolu-
tion, experimental errors in measured intensities) this 
in turn may have implications for the refined models: 
limited quality diffraction data will result in erroneous 
models. In fact, macromolecular diffraction data alone 
is almost always insufficient to obtain atomic models 
of acceptable quality. This highlights the need for the 
introduction of additional information in refinement. 
This information may be prior knowledge about the 
chemistry and physical properties of the molecule and 
can be used as restraints or constraints in refinement. 
For example, if the length between covalently bonded 
atoms is known, restraints will enable the refinement 

to maintain this length approximately close to the 
known value, while constraints will enforce that the 
model value exactly match the known value.

AN HISTORICAL PERSPECTIVE: THE FIRST REFINEMENT 
PROGRAMS AND RESULTS

The development of refinement programs closely 
followed the progress of macromolecular structure 
solution. By the middle of 1960s the first macromo-
lecular atomic structures were reported and comput-
ers became accessible to crystallographers. In 1971 R. 
Diamond reported the first common-use refinement 
program that employed a number of methodological 
advances. First, to reduce the number of independent 
parameters and to avoid distortion of covalent bond-
ing geometry due to insufficient experimental data 
resolution, Diamond used torsion angles as the vari-
able atomic model parameters. While requiring less 
variables, the parameterization in torsion angle space 
may limit refinement convergence as any changes in 
atomic coordinates need to be propagated along the 
chain. Second, to avoid the time-consuming calculation 
of structure factors from the model, Diamond suggest-
ed using Fourier maps calculated with the experimental 
amplitudes and the best available approximate phases 
as the target for fitting the atomic model parameters. 
Phases, being approximate, may be inaccurate enough 
to lead to an incorrectly refined model. 

The availability of Diamond’s refinement program de-
signed specifically for macromolecules, and progress in 
macromolecular structure solution in general (Waten-
paugh et al., 1973) prompted the active development 
of new methods and tools for crystallographic structure 
refinement. New refinement programs emerged dur-
ing the latter half of the 1970s used amplitude based 
least-squares target functions combined with terms 
introducing some prior knowledge about molecular ge-
ometry (Steigemann, 1974; Konnert, 1976; Sussman et 
al., 1977; Jack and Levitt, 1978; Konnert and Hendrick-
son, 1980). These terms, called geometry restraints, are 
typically quadratic functions that are penalties for de-
viations of the model geometry (such as bond lengths, 
bond angles) from ‘ideal’ (postulated as a library) val-
ues and calculated through interatomic distances. For 
example, a restraint on covalent angles was defined as 
a sum of restraints on distances between the three at-
oms defining that angle. At that time a quadratic form 
of the target was believed to be important for easy and 
fast calculation of the gradients. However, Jack and Lev-
itt (1978) suggested that a general form of potential-
energy function could be used.

http://dx.doi.org/10.3989/arbor.2015.772n2005
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Some of these programs (Sussman et al., 1977) 
used the idea of geometric constraints (Scheringer, 
1963) with some atomic groups considered rigid and 
therefore parameterized by their position and orien-
tation. The use of constraints decreases the number 
of refinable parameters and may increase the radius 
of convergence of minimization methods. Overall, the 
introduction of constrained-restrained refinement ob-
soleted a previously used practice of unrestrained re-
finement followed by model idealization (for example 
see Freer et al., 1975; Dodson et al., 1976; Ten Eyck et 
al., 1976) . At that time each structure refinement was 
an event. Several discoveries in computing and crys-
tallographic methods at the end of 1970s and begin-
ning of the 1980s prepared the ground for the devel-
opment of a new generation of refinement programs.

IMPORTANT ADVANCEMENTS IN COMPUTATIONAL 
MATHEMATICS AND CRYSTALLOGRAPHIC METHODS 
THAT HELPED IMPROVE CRYSTALLOGRAPHIC 
REFINEMENT

The first major advance was a result of the intuition 
of D. Sayre (1951). He proposed that while structure 
factors can be expressed by relatively simple functions 
of the atomic parameters, their numeric calculation 
through the Fourier transformation of the electron 
density could be made more efficient. If the electron 
density is calculated on a regular grid composed of N 
grid nodes, and we calculate M Fourier coefficients 
(usually M has the same order of magnitude as N), then 
the total number of operations is proportional to NM. 
When the Fourier transformation is applied to a peri-
odic function calculated in a regular grid, many coef-
ficients of this linear transformation are similar. This al-
lows a dramatic reduction in the number of operations 
making it much closer to linear instead of quadratic, 
Nln(M) instead of NM. Since each atom contributes to 
the electron density only locally, the calculation of an 
electron density from an atomic model is proportional 
to the number of atoms K, where K is much less than N. 
Thus, introduction of an additional step in the process 
“atoms – electron density – structure factors” made 
the calculations not slower but much faster!

The practically useful algorithm for performing Fou-
rier transforms efficiently is known as the Fast Fourier 
Transformation (FFT) had been suggested by Cooley 
and Tukey (1965) with other important prerequisite 
works dating back to the beginning of the 20th cen-
tury (Runge and Koënig, 1924) and even a hundred 
years earlier than that. It is interesting to note that 
Cooley, at the time of the development of the FFT 
with Tukey, shared a laboratory with Sayre. The FFT 

was introduced into crystallography by L. F. Ten Eyck 
(1973) who finalized the algorithm of the fast and ac-
curate calculation of structure factors using an inter-
mediate electron density step (Ten Eyck, 1977).

The rapid progress of computer hardware stimu-
lated the development of other numerical methods 
including those of optimization. In particular, Heste-
nes and Stiefel (1952) and Lanczos (1952) proposed 
the method of conjugate directions that is frequently 
and erroneously referred to as the method of con-
jugate gradients. Practically equivalent in runtime to 
the steepest descent method (per iteration), the new 
method largely improved the convergence of the min-
imization process and became the method of choice 
for majority of refinement programs. At that point 
the most time-consuming step, the calculation of the 
gradients of the refinement target, was yet to be ad-
dressed. In 1978 Agarwal noted that for the particu-
lar least-squares crystallographic target the gradient 
can be calculated much faster. Similarly to Sayre’s idea 
of performing calculations through an intermediate 
electron density, Agarwal’s procedure used four inter-
mediate density-like functions each calculated from 
structure factors using the FFT. Lunin (personal com-
munication) and Lifchitz (in Agarwal, 1981) suggested 
how to reduce this to a single FFT. An inconvenience 
of Agarwal’s procedure was that it could not use re-
straints and required repetitive geometry idealiza-
tions between refinement cycles and it was limited to 
the particular least-squares target. 

The problem of fast gradient calculation was not 
specific to crystallographic refinement. Baur and 
Strassen (1983) and Kim, Nesterov and Cherkassky, 
(1984) demonstrated a general approach for any 
function calculated with a computer. The simple idea 
that computation of a function value is a chain of four 
arithmetic operations made it possible to reach this 
important conclusion:

If a function value is computed for a time T, then 
it is possible to build an algorithm that calculates its 
exact gradient for a time less than 4T regardless the 
number of parameters. There is a simple constructive 
way to build such an algorithm.

The principal idea is that for steps involved in the 
calculation of the target function the calculation of 
the gradient involves the same steps but in a back-
ward direction. This means that as soon as a fast algo-
rithm for calculation of an arbitrary target function is 
available, the fast algorithm for calculation of its gra-
dients is guaranteed to be available too. 

http://dx.doi.org/10.3989/arbor.2015.772n2005
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This important result had a number of implications 
for the development of refinement programs and 
methods. First, this showed that the Agarwal’s algo-
rithm was a particular case of a general approach. 
Second, this indicated that there was no need for the 
refinement targets to be quadratic; the fast gradients 
can be calculated for any function and therefore the 
crystallographers could focus on the best choice of 
the targets from a structural rather than computation-
al point of view. Third, this showed that the crystal-
lographic target can include any type of restraint, and 
not be limited to quadratic functions of coordinates 
or distances. Overall, this principle allowed deconvo-
lution of the three basic components of the optimi-
zation problem: the choice of the model parameters, 
choice of the target, and model optimization method.

FURTHER PROGRESS IN REFINEMENT METHODOLOGY

A next important question is whether it is possible 
to propose a general way of development refinement 
programs given varieties of models and refinement 
targets. The considerations above suggest that the 
determining step is the calculation of the target from 
initial independent parameters.

The key step of the refinement is generating structure 
factors from a crystal model (here we assume atomic 
model) and comparing them with the experimental 
data via evaluation of the target function. Using con-
straints means atomic parameters (coordinates and/
or scattering parameters) are not independent and are 
obtained from some other parameters that are varied 
(refined) independently. An example is a rigid body re-
finement where groups of atoms are considered rigid 
(Scheringer, 1963). In this case the position and orien-
tation of the rigid group are defined by 3 angular and 
3 positional parameters. Knowing the atomic coordi-
nates and the rigid-groups parameters one can recal-
culate the coordinates of all atoms for any position of 
this group. Another example is a torsion angle descrip-
tion (Diamond, 1971; Abagyan, Totrov and Kuznetsov, 
1994; Rice and Brunger, 1994). Other independent 
parameters may be characteristics of individual libra-
tions and vibrations describing atomic displacement 
parameters through the TLS model (Schomaker and 
Trueblood, 1968). One more example is riding model 
for hydrogens (Sheldrick and Schneider, 1997) where 
coordinates and displacement parameter values are 
generated by purely geometric considerations knowing 
the parameters of their neighboring atoms. The mod-
ule of a refinement program corresponding to such a 
step is specific for a given choice of constraints (in other 

words, for the type of the model) and it converts these 
independent parameters into atomic parameters. Ob-
viously, if no constraints used atomic parameters them-
selves are independent variables. If a program uses 
different constraints, several such moduli can be used 
simultaneously.

Once parameters of all atoms are known, the den-
sity map in the crystal is generated using spherical 
or multipolar (Hansen and Coppens, 1978) atoms or 
other kinds of scatterers such as simple geometric ob-
jects (for example, Kalinin, 1980). At this step some 
non-atomic components such as bulk solvent can be 
added. Depending on diffraction experiment, density 
map may be electron or neutron, for example.

The next step is also common for most refinement 
programs: density map is converted into a set of its 
Fourier coefficients (structure factors). For this any 
efficient Fourier transform algorithm, and not neces-
sarily FFT (Cooley and Tukey, 1965), can be used. At 
this step an extra contribution can be added to the 
calculated values of structure factors; for example this 
may be the contribution from a fixed part of the mod-
el (Urzhumtsev, Lunin and Vernoslova, 1989) or that 
from bulk solvent (for example, Afonine et al., 2013).

If a real space target is used, for example the target 
comparing a model map with a known cryoEM map 
point by point, one more step is needed to calculate 
a model map with a subset of structure factors ob-
tained at the previous step, those in the sphere of a 
limited resolution. Since this requires more calcula-
tions, no one of the known programs does this in this 
strict way. One possibility to avoid this calculation 
is to convert the experimental map into its Fourier 
coefficients and use them for comparison with the 
model structure factors. Another possibility is to es-
timate a shape of individual atoms in the maps of the 
same resolution as the experimental one (Diamond, 
1971; Lunin and Urzhumtsev, 1984; Chapman, 1995, 
and references therein; strictly speaking, one must 
take into account also the weighting scheme and the 
reflections missed) and consider the experimental 
map as a ‘density distribution’ for such kind of atom-
ic shapes. Nevertheless, it is clear that these targets 
are not fully equivalent to the correct one and are 
only approximations to it.

As each step shown above we have different kinds 
of crystal description, i.e. its parameterization in 
terms of different parameters: independent (that cor-
respond to certain constraints), atomic (or more gen-
erally – parameters of geometric models including 

http://dx.doi.org/10.3989/arbor.2015.772n2005
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their scattering factors), electron (neutron, etc), den-
sity distribution, structure factors, Fourier maps (that 
may be different from the density generated from a 
model). It is straightforward to move from one kind of 
parameters to the next one. However the inverse step 
may be not trivial (determine atomic parameters from 
a density distribution; determine a full set of structure 
factors from a map of a limited resolution, etc), so 
that these transitions are naturally ordered. 

Following the steps above that describe the model, 
the target to be minimized is traditionally expressed 
as a weighted sum of various targets where each one 
is naturally expressed through the corresponding kind 
of parameters. The most of the modern refinement 
programs use the diffraction targets (least-squares, 
maximum-likelihood, phase target) and the targets 
expressed through the atomic parameters - geometric 
restraints and restraints on displacement parameters. 
A few programs use real-space targets. 

The overall calculation algorithm is a chain of transi-
tions between different kinds of crystal descriptions; 
each transition depends neither on the previous steps 
nor on further steps. Obviously, a transition may pass 
through its internal intermediate steps. For each kind 
of parameters various targets can be introduced that 
are fully independent of the parameters of other kinds. 
For example, one can envision targets (restraints) on 
the independent parameters in case of constraints 
(Urzhumtsev, Lunin and Vernoslova, 1989): for exam-
ple an interdiction of rigid groups to move far from 
the original position, etc. If a program is constructed 
from such blocks (Lunin and Urzhumtsev, 1983, 1985; 
Tronrud, Ten Eyck and Matthews, 1987; Urzhumtsev, 
Lunin and Vernoslova, 1989), many of them are com-
mon for different purposes and can be reused in dif-
ferent contexts.

The fact that the global target to be optimized is a 
sum of the composited targets allows an independent 
calculation of their gradients with respect to the in-
dependent parameters. The algorithms to calculate 
the gradient for each of them with respect to their 
own variables are obtained by inverting each transi-
tion one by one. Then using the chain rule these gra-
dients are recalculated to the gradients with respect 
to the independent parameters (Lunin and Urzhumt-
sev, 1985). The sum of these individual gradients gives 
the total gradient, that along with the target function 
value are the inputs to an optimizer. The choice of the 
optimizer is independent on the choice of the model 
and the target. 

There are very many advances in macromolecu-
lar refinement due to computational progress and 
methodological understanding; we give only a few 
examples. Disconnection of a choice of the model, 
targets and optimization procedure for crystallo-
graphic refinement allowed Brünger, Kuriyan and 
Karplus (1987) to introduce a powerful molecular 
dynamics based approach to minimize the “energy” 
of the macromolecule as a sum of geometric and 
diffraction targets. This method greatly increased 
the radius of convergence of refinement, avoiding 
a great deal of extremely time consuming manual 
model building for much of a structure. Other mini-
mization methods have been also discussed, for ex-
ample by Tronrud (1992).

This also allowed for the straightforward introduc-
tion of a number of new diffraction targets such as 
a maximum-likelihood (Pannu and Read, 1996; Bri-
cogne and Irwin, 1996; Murshudov, Vagin and Dod-
son, 1997; Adams et al., 1997; Lunin, Afonine and 
Urzhumtsev 2002) or a probability-based phase 
target (Lunin and Urzhumtsev, 1985; Pannu et al., 
1998). The ML targets are extremely important since 
they use a better error model and take into account 
model incompleteness. 

Finally, new parameters could be introduced with-
out the need to reformulate either the target calcu-
lation, or the minimization procedure. In particular, 
this concerns non-atomic parameters such as new 
bulk-solvent models (for example, Jiang and Brunger, 
1994; Fenn, Schnieders and Brünger, 2010; Afonine 
et al., 2013).

CURRENT STATE OF THE ART 

Table 1 traces the history of refinement program 
development from today back to the beginning of 
the 1970s. Today’s software for carrying out crystal-
lographic structure refinement of macromolecules 
is highly sophisticated. Many of the decision-making 
steps that used to be the responsibility of the re-
searcher are now performed automatically by the re-
finement program. Programs allow a broad range of 
model parameterizations depending on data quality. 
The choice of refinement target is almost exclusively 
maximum-likelihood, as this target assumes a more 
appropriate error model and statistically accounts for 
model incompleteness. Optimization tools are not 
limited to gradient-driven methods, and other tech-
niques such as local grid (systematic) searches and 
simulated annealing are in use.

http://dx.doi.org/10.3989/arbor.2015.772n2005
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As can be seen from the preceding sections, a refine-
ment program is typically a large suite composed of 
many modules each one designed to perform a specific 
task. While older programs are mostly written using 
FORTRAN as a programming language (one of principal 
developers of which was D. Sayre), most recently de-
veloped tools such as Phenix (Adams et al., 2010) use 
modern concepts of software development using object 
oriented languages such as C++ and Python. This allows 
a high degree of extensibility, easier maintenance and 
promotes collaboration between scientific groups.

In spite of the effort required to develop an efficient 
and robust refinement program, nowadays the crys-
tallographic community has access to a large number. 
Most popular are SHELXL (Sheldrick and Schneider, 
1997), CNS (Brünger et al., 1998), BUSTER-TNT (Blanc 
et al., 2004; Tronrud, Ten Eyck and Matthews, 1987), 
MAIN (Turk, 1992), REFMAC (Murshudov, Vagin and 
Dodson, 1997), and phenix.refine (Afonine et al., 
2012). These programs share the same basic principles 
but differ in technical implementation making differ-
ent choices for different circumstances. For example, 
SHELXL and REFMAC make use of minimizers based on 
the second derivatives of the target and are typically 
better suited for refinement with high-resolution data. 
BUSTER uses advanced statistical approaches both in 
the description of the model and in the target func-
tion. REFMAC and phenix.refine have advanced tools 
for refinement at low resolution. phenix.refine also 
permits efficient refinement at ultra-high resolution 
(Afonine et al., 2007), highly automated rigid-body 
refinement (Afonine et al., 2009), employs advanced 
scaling and bulk-solvent modeling protocols (Afonine 
et al., 2013) and also permits refinement against two 
diffraction data sets, X-ray and neutron, simultane-
ously. Using such complementary information about 
electrons and nuclei results in models that are better 
than those obtained by refinement against individual 
each data set (Adams et al., 2009). 

A refinement run for a moderately-sized macromo-
lecular model nowadays takes from a few minutes (for 
a small size protein) to several hours (for structures 
as large as a ribosome). This acceleration is obviously 
due to both the availability of new powerful comput-
ers and efficient algorithms implemented in refine-
ment programs. 

SOME CURRENT CHALLENGES AND FUTURE GOALS 

Steps from phasing to final structure report (Figure 
1) are now typically highly automated (e.g. Adams et 
al., 2010). However, structure refinement remains the 

least automated step. This stems from the fact that 
data quality can be very diverse: from high to low 
resolution, it may be incomplete or affected by vari-
ous crystal growth disorders such as twinning, quality 
limiting factors during data collection or limitations 
of data processing tools. In turn this generates an 
array of possible model parameterizations that may 
need to be employed in order to adequately describe 
these data. All together, diversity of data and model 
parameterizations are convoluted with the fact that 
atomic models are an approximate representation of 
the true crystal content. Depending on how far the 
current model is from the true structure different 
optimization methods and tools are needed in order 
to bring the current model as close as possible to the 
true one. While some decision-making steps are auto-
mated and performed exclusively by software there is 
still great opportunity for a researcher to intervene in 
the process and make decisions that may, in the end, 
determine whether structure solution is successful. 
Further efforts put into the automation of refinement 
workflow are therefore critical for streamlining this 
step and ensuring that the resulting refined models 
are of high quality.

Improvements in crystallization and data collection 
techniques have increased the number of low-resolu-
tion datasets being collected. Typically this data cor-
responds to crystals of large molecules that may have 
substantial mobility. Low-resolution maps combined 
with the size of the problem (large models result in 
a large amount of data) make model building and re-
finement extremely challenging. First, low resolution 
maps do not readily permit the accurate building of 
models, so initial models often possess poor geom-
etry and may have gross stereochemical imperfec-
tions. Given unfavorable data-to-parameter ratios 
subsequent refinement often may not yield signifi-
cant improvement. The lack of experimental data at 
these resolutions means that successful refinement is 
highly dependent on prior knowledge – the restraints. 
While the traditional stereochemistry restraints used 
in refinement are sufficient at medium to high reso-
lution, they do not provide enough additional infor-
mation at low resolution (Headd et al., 2012, 2014). 
Therefore, more prior information is needed to make 
low-resolution refinement feasible. Such information 
might include secondary structure organization (he-
lices and sheets in proteins or specific arrangements 
of nucleobases in DNA/RNA) or extra symmetry aris-
ing from specific crystal packing (non-crystallographic 
symmetry, NCS). Extracting and using this information 
correctly can be challenging. 

http://dx.doi.org/10.3989/arbor.2015.772n2005
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As mentioned above, the geometry restraints that 
are used in refinement programs can be simple and 
relatively naïve, mostly designed to preserve basic 
model geometry and prevent a model from deteriora-
tion in the case of insufficient quality data, which is al-
most always the case for macromolecules. As a result 
these restraints tend to generate unrealistic models if 
data resolution is limited. An alternative to extending 
these restraints with additional information is to de-
sign better potential functions, which may be not as 
sophisticated as those used in the molecular simula-
tion field but more tailored to the context of structure 
refinement. Another approach is the use of QM/MM 
(quantum mechanics/molecular mechanic) methods 
to generate accurate structures of small molecules 
in macromolecular structures or even whole macro-
molecular structures (Canfield et al., 2006; Reimers, 
2011; Falköf, Collyer and Reimers, 2012).

Hydrogen is a weak X-ray scatterer and therefore it 
is barely observable in maps derived from X-ray dif-
fraction experiments. Historically this has prompted 
macromolecular crystallographers to generate mod-
els without H atoms. Only in ultra-high resolution X-
ray diffraction experiments is it possible to visualize 
some, but typically not all, hydrogen atoms. These ul-
tra-high resolution structures constitute only 0.002% 
of all structures in PDB. At the same time H atoms con-
stitute nearly half of the atoms in a protein structure, 
they mediate most of interatomic contacts, often play 
key roles in catalytic activities of enzymes, and partici-
pate in ligand binding. While most hydrogen positions 
can be inferred from the local geometry, there are still 
10-15% of H atoms that have rotational degrees of 
freedom and thus cannot be predicted based on local 
stereochemistry alone. Neutron diffraction is there-
fore a technique of some importance (for review, 
see for example Afonine et al., 2010). Hydrogen, and 
deuterium, atoms diffract neutrons almost as well as 
other typical protein atoms (C, N and O). Therefore, in 
principle, a neutron diffraction experiment can yield 
a complete model that contains hydrogen and non-
hydrogen atoms. However, this is not without difficul-
ty. First, the neutron scattering length of a H atom is 
negative: this results in H atoms having negative den-
sity in Fourier maps. The consequence of this is can-
cellation effects where the local density map arising 
from H atoms cancels out the positive density from 
heavier atoms in the vicinity. To minimize this problem 
it is necessary to deuterate samples, where molecules 
have their H atoms fully or partially replaced with 
deuterium (D atoms scatter neutrons as strongly as C 
or N). Another challenge is that until recently neutron 

data collection required very large crystals, which are 
usually challenging to obtain for macromolecules. Re-
cent advances in instrumentation are poised to reduce 
this bottleneck. The combination of X-ray and neutron 
data from isomorphous crystals of a macromolecule is 
a rich source of information from which it is possible 
to derive a complete atomic model. Although, appro-
priate use of both data sets simultaneously in refine-
ment is another challenging task

While it is rather rare that crystals of macromol-
ecules diffract to ultra-high resolution, better than 
approximately 0.9Å, there are ~500 structures in PDB 
solved at this resolution. The typical Gaussian model 
parameterization used at lower resolution is insuffi-
cient in these extreme cases. Instead, more complex 
models are needed such as multipolar representa-
tions for electron density distributions. However, 
this approach approximately triples the number of 
parameters per atom. This poses some fundamental 
problems. One is that the FFT based method of struc-
ture factor and gradient calculation cannot be readily 
used for a non-gaussian (multipolar) parameterization 
while a progress has been reported (Schnieders et al., 
2009). This makes the calculation times for macromo-
lecular structures prohibitively slow even on today’s 
fastest computers. The other problem is a numerical 
one, and is due to the fact that multipolar parameters 
are very diverse in scale and some of them are highly 
correlated with each other and other atomic parame-
ters that are non-multipole specific, such as occupan-
cy and displacement parameters. This requires special 
care when developing methods for optimization of 
these parameters. 

Recent improvements in the field of cryo-electron 
microscopy (cryo-EM) have made it possible to gen-
erate structural information at resolutions approach-
ing low-resolution X-ray crystallography (3.5 Å and 
lower). The result of the cryo-EM experiment is a map 
that can be used to build and refine an atomic model. 
Most refinement tools available today were designed 
for X-ray or neutron crystallography, and therefore 
designed to perform complete model refinement 
against diffraction data (amplitudes or intensities of 
measured structure factors) and not maps. Also, typi-
cally these are very large structures. Since the resolu-
tion is low the maps are challenging to interpret and 
provide limited information for model refinement. 
Therefore, new methods need to be developed, such 
as real space refinement approaches that can effi-
ciently perform rapid refinement of large macromol-
ecules to generate models of high chemical quality. 

http://dx.doi.org/10.3989/arbor.2015.772n2005
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Structure validation is a process that aims to perform 
thorough assessment of model quality. Traditionally 
structure validation was performed at the very end of 
structure determination. However, it is now accepted 
that this is suboptimal because errors created and un-
noticed at the beginning of structure determination 
may propagate and become very difficult to detect and 
address later on. Therefore active structure validation 
should be performed constantly through the entire 
process of structure determination and not only at the 
very end. This changes the paradigm of the structure 
determination workflow and thus requires significant 
changes in the corresponding software.
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