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n the past few decades, tissue engineering has been seen unprecedented escalation driving the field of 
artificial tissue and organ construct and brought metamorphosis in regenerative medicine. Prime 
advancement has been attained through the expansion of novel biomanufacturing approaches to 

devise and convene cells in three dimensions to fabricate tissue contrive. Accompaniment manufacturing 
differently known as 3D bioprinting is leading prime innovation in a number of applications in life 
sciences such as tissue and organ construct, personalized drug dosing, cancer model and heart tissue 
engineering. Overall, this review summarizes most prevalent bioprinting technologies; including laser-
based bioprinting, extrusion bioprinting, injection bioprinting, stereolithography as well as biomaterial 
such as bioink. It also explores 3D industries, approaches such as Biomimicry, autonomous self-assembly, 
mini tissues and biomedical applications. Existing challenges that impede clinical mileage of bioprinting 
are also discussed along with future prospective. 
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Introduction  
Bioprinting is a computational process for the assembly 
and designing of living and non-living materials and 
harvesting biologically engineered structures. It’s an 
alliance of technology, engineering, and sciences, using 
biomaterials and living cells for the generation of 2D and 
3D complex biological constructs [1]. Most prevalent 3D 
bioprinting approaches are biomimicry, autonomous 
self-assembly, and mini tissue building blocks [2]. 
Biomimicry is the first approach in which skin and 
several organs are mimicked. Replication of organ 
occurs at micro-scale. The material which is constructed 
is similar to human organs [3,4].  

In autonomous self-assembly approach, embryonic 
organ accounts further development and provide guides 
of replication. In the early stage of development, cells 
require adequate extracellular components, signaling, 
arrangement, and patterns homologous to organ [5]. 
Mini-tissue approach is evolved by a combination of 
biomimicry and autonomous self-assembly whose 
ultimate goal is to fabricate bigger tissues or organs from 
smaller components [3]. 

Current research emphasizes on new technologies in 
tissue engineering [6]. A noteworthy benefit is that 
bioprinting is complex and coherent designing either on 
the desktop or on an industrial scale. Comprehensively, 
3D printing has been developed for a number of perks 
through operation of printing extracellular matrix or 
living cells components on the solid or liquid substrate. 
Three main modalities are offered by bioprinting which 
includes laser based [7], extrusion-based [8], and 
droplet-based [9]. Acellular techniques are also offered 
which usually comprises of stereolithography [10]. The 
most challenging aspect in this field is biomaterial 
development. Hydrogels and cell aggregates based 
biomaterials are also reported in the literature [1]. 

With notable benefits, propounded by bioprinting a 
wide range of applications including skin, heart and 
bone tissue engineering has been emerged [11]. Recent 
trends emboss regenerative medicine, drug discovery 
and tissue models [12], having the potential to substitute 
artifact. Currently, Bio-printing is widely used in many 
industries, such as the pharmaceutical industry, as well 
as in the ink-jet printers [13]. As an incipient and 
transpire field, several hurdles need to be overcome for 
triumphant transplantation of bioprinting particularly 

under consideration of technical, operative and 
regulatory matters [11,14]. 

In general, this review summarizes the data relevant 
to bioprinting, its approaches, technologies, and 
implementation on different fields including 
regenerative medicines, disease modeling and in tissue 
fabrication. In future 3D bio-printing will be a new 
frontier for the manufacturing of numerous materials 
used in surgery, medicine, cartilage replacement etc. 
[15]. 

Methods 
Literature search strategy and selection sriteria 
A well-organized search was directed through Google 
scholar, PubMed Central and science direct, providing 
keywords “3D-Bioprinting a fate swap technology, 
“Approaches of Bioprinting”, “Bioinks for 3D 
bioprinting”, “Manufacturing technologies for 3D 
bioprinting”, “3D bioprinting medical application” etc. 
According to the particular contents further literature 
was screened and analyzed. In this study 80 research 
articles were selected to make a comprehensive review. 

Discussion 
Bioprinting: A fate swap approach: 
Bioprinting is an emerging technology, used for 
fabricating and manufacturing the artificial tissues. It’s 
an alliance of technology, engineering, and sciences, 
using biomaterials and living cells for the generation of 
2D and 3D complex biological constructs. Organ 
transplantation is challenging owing to tissue rejection. 
Moreover, the incredible scarcity of human organ is 
accessible for transplant which later acts as a channel to 
develop tissue engineering. Tissue engineering is an 
integrative field used to restore damaged tissues or 
organs but has a number of limitations such as 
restricted cell density and accuracy in cell targeting. 
These obstructions are solved with the invention of the 
novel approach termed as bioprinting, playing an 
astonishing role in order to fabricate tissues or organs 
and their targeted placement in the body. It has also 
been exploited for skin purposes, by replacing damaged 
skin with 3D-printed skin [16]. The major applications 
of 3D bioprinting are described further in the review. 

Approaches of bioprinting: 
In order to print 3D organs with efficient structural and 
functional properties biomimicry, autonomous self-
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assembly, mini tissues approach or combinations of 
these are considered [17]. 

Biomimicry: 
Biomimicry provides a solution of organ replacement 
by constructing organs and tissues that provide the 
same environment as the human body. This results in 
the construction of tissues or organs with constituents 
identical to tissue or organs of the body [18] Figure 1A. 
Several factors regarding this approach must be 
considered such as knowledge about 
microenvironment, soluble or insoluble factors 
gradient, arrangement of cell types, the composition of 
medium and nature of forces in the microenvironment. 
The success of this approach is reliable in several fields 
such as imaging, medicine, biophysics, cell biology and 
engineering [19,20]. 

Autonomous self-assembly: 
Embryonic organ development plays an astonishing 
role in production of biological tissues [5]. 
Autonomous self-assembly relies on factors like 
structural and functional properties, localization as well 
as composition of tissues. For success of this approach, 
it is mandatory to have a complete knowledge of 
embryonic as well as organ developmental mechanism 
Figure 1B [21,22].  

Mini tissues:  
Mini tissue referred to as very small structural as well as 
a functional unit of tissue.  It is a fundamental part of 
organ development [23]. Biomimicry and autonomous 
self-assembly are interrelated with mini tissues 
approach. Mini tissues and smaller building blocks 
result in the development of organ and tissue. To 
fabricate mini tissues into a larger one, self-assembly 
and rational design approach or combination are used 
Figure 1C [24]. It is based on two strategies. One is Cell 
spheres; which is self-assembled and arranged in a 
manner to construct microtissue followed by the 
biological organization. Other is the construction of 
tissue unit with high accuracy and resolution that are 
then assembled into micro tissue [3,22]. 

Imaging and designing: 
It is an essential requirement to understand 
organization and composition of components for 
construction of tissues and organs which are 

heterogeneous in nature. To predict 3-D structure and 
function, medical imaging and designing play a 
remarkable role. For this two methods are commonly 
used which are given below: 
 Magnetic resonance imaging (MRI) 
 Computed tomography (CT)  [25] 

 
Figure 1: Bioprinting approaches: (A) illustrates biomimicry 
approach in which tissues or organs that are replica of body tissue or 
organ are synthesized (B) illustrate autonomous self-assembly 
approach in which tissues are self-assembled (C) illustrates mini- 
tissue approach  in which mini tissues assembled to form a larger one 
[3]. 

Computed tomography (CT): 
It is used for diagnostic as well as therapeutic purposes. 
Its principle is based on the absorption rate of X-rays by 
tissues. To generate complex visual designs for tissue, 
computer-aided designs are also used. X-ray source 
surrounds the object and penetrates in the body which 
is then measured by sensors and results are recorded 
[26].  

Magnetic resonance imaging (MRI): 
In magnetic resonance imaging, an efficient spatial 
resolution is provided in soft tissues which rely on the 
strong magnetic field so; nuclei are easily aligned for 
imaging, in close proximity with high resolution. Any 
disturbances in energy states are sensed by the 
production of radio frequency signals. Iodine 30, 
barium 29 and metalloproteins 33 are also used to 
increase the contrast of biological structures such as 
blood vessels [27].  

3D Bioprinting Techniques: 
Bioprinting modalities being classified into three main 
groups comprising, laser, extrusion, and inkjet-based 
bioprinters. Despite these, acellular techniques are also 
available which are comprised of Stereolithography [1].  

Laser-based Bioprinting: 
In 1990, Odde and Renn introduce laser based systems 
[7]. Laser-direct writing (LDW) is the most common 
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method in laser bioprinting. The basic principle 
involves laser pulse, heating the slide comprising energy 
absorbing layer and cell’s solution. The laser pulse 
spawns sublimation or material’s vanishing, dislodging 
the cells on the opposite side. Thus, unequivocally 
depositing cells on the substrate Figure.2 

 
Figure 2: Schematic principle of LDW, exhibiting laser induced 
droplet deposited on Bioink consequence to printed cells 

LDW comprises two methodologies, one is laser-
induced forward transfer (LIFT) and the other is matrix-
assisted pulse laser evaporation direct writing (MAPLE 
DW) [28]. MAPLE DW is just similar to LIFT, but uses 
low-intensity laser and permits small 3D structures e.g. 
keratinocytes/fibroblast and human mesenchymal stem 
cells (hMSC), fabrication through direct deposition of 
cells [29]. Cellular constructs, myoblasts, pulmonary 
artery and breast cancer cells are formed by MAPLE DW 
[30]. 

LDW is a nozzle-free technique, permits the use of 
high viscosity bio links. Barron et al. auspiciously 
printed mammalian cells on hydrogels [31]. Despite this 
system considers regulated printing for cells, there 
remain a few confinements that ought to be recognized. 
The heat produced from laser vitality or laser light might 
harm cells or influence the capability in final construct. 
In general, cell viability decline by laser-based 
bioprinting than that of inkjet-based bioprinting [32]. 

Extrusion based Bioprinting: 
Extrusion or pressure based bioprinting commonly 
includes pressure or crew/plunger actuated dispensing 
fluid containing cells or biomaterials. The thin bioink is 
ideal for extrusion based bioprinting as it permits 
minimum resistance under glide but it chemically or 
bodily crosslinks successive layers [8]. 

Furthermore, shear forces must be considered for cell 
viability [33]. The key advantage, using a pneumatically 

driven device is numerous types and bio inks viscosities 
that are allotted by harmonizing the stress and valve 
gating time. During bioprinting, bio-ink is defrayed over 
deposited device under computational control, 
crosslinked via chemical, thermal transitions and light 
[32], ensuing in precise cells deposition encapsulated in 
cylindrical filaments of preferred 3D custom-shaped 
structures for diagrammatic illustration Figure 3. 

 
Figure 3: Schematic processing of Extrusion-based Bioprinting, a 
Layer-by-layer deposition of material-cell suspensions onto a pre-
defined location (thermal crosslinking optional) 

For example, Yan et al. have deposited distinctive 
hepatocytes loaded with an extensive range of 
biocompatible hydrogels using extrusion-based 
bioprinting [34]. Even though, fabrication time lag to 
attain excessive-resolution, complicated structures are 
effectively tested by extrusion based bioprinting for the 
fabrication of clinically relevant scaffolds for tissue 
engineering [35]. 

Although, this era is taken into consideration because 
the maximum accessible approach for tissue and organ 
fabrication procedure, endures some limitations, 
consisting shear pressure and restrained fabric choice, 
for fast encapsulation of cells through gelation [36]. A 
higher allotting pressure avow ejecting viscous bioinks, 
but may boom the shear strain, which lessens cellular 
viability [37]. 

Inkjet based Bioprinting: 
The roots of bioprinters are coined with inkjet printers, 
firstly they were used in offices then in personal 
computers in the 1980s. With a small lap, in 2000s 
traditional printer ink retrieved with cells. Cui et al. 
manifest a step-by-step approach to convert traditional 
printer to 3D bioprinter [38]. Inkjet bioprinting is a 
powerful method of depositing cell to create a 3D 
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scaffold with fixed fluid volume using the software. It is 
the most popular method for cell-laden construct 
fabrication which mimics native tissues and organs [39]. 
Different inkjet printers are available, but thermal or 
piezoelectric drop-on are being in demand. It consists of 
the chamber of ink with a number of small nozzles along 
heating element. To generate ink-droplet, a current 
pulse is provided to the heating element. Thereupon a 
heating element flow of ink increases forcing a bubble to 
come out of a nozzle [40]. 

Conversely, piezoelectric inkjet uses a piezo crystal, 
when a current pulse is provided, crystal vibration cause 
ink out of the nozzle Figure 4 [40].  

 
Figure 4: inkjet bioprinter (a) schematic working of thermal-based 
bioprinter (b) schematic working of piezoelectric bioprinter 

Attributes Laser-based[7,45-48] Extrusion based 
[49-52] 

Inkjet based 
[47,52,53] 

Resolution 
Droplet size 
Cell viability 
Hydrogel viscosity 
Fabrication time 
Accuracy rate 
Advantages 
 
 
Disadvantages 

High 
≥20µm 
Medium 
Medium 
Long 
High 
High accuracy, single 
cell manipulation, a 
high-viscosity material 
Cell-unfriendly, low 
scalability, low 
viscosity prevents 
build-up in 3D 

Medium-low 
100µm-1mm 
Medium-high 
High 
Short 
Medium-low 
compositions, 
good mechanical 
properties 
Shear stress on 
nozzle tip wall, 
limited 
biomaterial used, 
relatively low 

Medium 
50-30µm 
High 
Low 
Medium-long 
Medium 
Affordable, 
versatile 
 
Low viscosity 
prevents 
build-up in 
3D, low 
strength 

Table 1: Brief comparison between Bioprinting modalities 

The biggest adverse effect happens inside the nozzle 
orifice by temperature. There is a need to mitigate this 
trouble [41]. Lorber et al. had been capable of efficiently 
printing retinal ganglion and glia cells harvested from 
the adult important anxious machine without inflicting 
a destructive impact on cellular viability [42]. 
Additionally, researchers have effectively tested a multi-
head inkjet-based technique for bioprinting a couple of 

cell  lines  into  heterogeneous  scaffolds  for  tissue 
engineering [43,44]. A brief comparison of the formerly 
discussed Bioprinting modalities is given in Table 1. 

Acellular scaffold fabrication:
The multi-axis positioning system is an additive method 
of  3D  scaffold  fabrication.  Firstly,  a  model  is  created 
with computer-aided design (CAD), then it is conveyed 
to  a  file,  making  a  3D  mesh  in  space  as  in 
stereolithography.  “Slicer”  a  CAD  program,  translates 
data to  a  constructed  model.  These  provide  a  high 
precision and versatility [54]. 

Stereolithography (SLA):
Stereolithography  is  an  additive  process  that  permits 
fabrication by CAD. Firstly, the 3D model is built with 
CAD, then SLA coordinates with model and constructs 
a 3D model, layer by layer usually ranging between 25- 
100µm  [55].  Bottom-up  and  top-down  are  two 
approaches used in stereolithography, but top-down is 
mostly applied. 

 Commercially,  a  limited  number  of  resins  are 
available.  The  resin  should  readily  coagulate  by 
illuminating with light [56]. SLA is reported to fabricate 
molds implants for cranial surgery [57]. Overall, SLA is 
a  versatile  technique,  owning  precision  for  creating  a 
tissue engineering scaffold, but, limited biocompatibility 
to one material is a big challenge faced in this method 
[6]. 

3D Bioprinting materials: Bioink 
Most  challenging  demeanor  in  bioprinting  is 
biomaterial, referred to as cell inclusions in biomaterial. 
Bio  link  is  the  principal  unit  in  3D  construction.  The 
physio-chemical  parameters  including  swelling 
properties,  rheological  behavior,  and  gelatin  kinetics 
must come in count as important factors for printability 
[58].  Two  bioprinting  materials  reported  in  the 
literature are hydrogels and cell aggregates [59]. 

Hydrogels:
Hydrogels,  in  bioprinting,  marked  as  the  delivery 
vehicle of bio-ink. In biomanufacturing fields, hydrogels 
are  widely  used  for  cell  encapsulation  in  a  hydrated 
environment  with  computation.  Hydrophilicity  is  the 
primary  element  to  determine  the  biocompatibility  of 
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hydrogels, consequently making it appealing in the 
fabrication of tissue constructs [60]. 

In bioprinting, hydrogels are used as bioink because 
cells remain feasible, when encapsulated, including 
chondrocytes, hepatocytes, fibroblasts, smooth muscle 
cells, stem cells and adipocytes [61]. In TE, hydrogels 
either classified as natural or synthetic polymers. The 
natural polymers include alginate, fibrin, and chitosan 
while PEG (Polyethylene glycol and Pluronic are 
synthetic polymers [51].  

All through bioprinting, a hydrogel with pendulous 
cells is processed into a 3D construct, successively fixed 
with gelation. Gelation is a crosslinking material, 
triggered by the physio-chemical process. Physical 
crosslinking is a reversible interaction that relies on 
meshes of excessive molecular polymer chains, ionic 
interactions and hydrogen bridges [47]. This type of 
crosslinking is compatible to living cells. The ionotropic 
gelatin between alginate anionic group (COO) with 
divalent meats ion (Ca2+) is one of its examples [47]. The 
poor mechanical properties, a key drawback in physical 
cross-linking. To overcome, additional cross-linking 
materials are used.  Hydrogel viscosity is a second major 
aspect in bioprinting. Increased polymer concentration 
resulted in gel stiffness that minimizes cell mobility in 
an aqueous environment, thus forming a dense polymer 
network [62].  

Cell aggregates: 
During embryonic development, the cell undergoes self-
organization, thus, forming tissues and organs evenly to 
a whole individual. Like this, bio printed cells undergo 
self-assembly resulting a final construct through cell-to-
cell adhesion [63]. 

Cell aggregation success coined with the non-adhesive 
substrate, scaffold material and nutrients in a liquid 
medium. Collagen, a natural hydrogel used as a 
substrate for embryonic stem cell and bone marrow 
stem cells. Cell aggregates may be homogenous and 
heterogeneous comprising one type or more than one 
type of cells [64]. Bio link selection is a critical task in 
bioprinting and must be done according to construct 
nature and cell type. 

Medical application of 3D Bioprinting: 
3D bioprinting in the field of medical application 
broaden its spectrum and it’s expected to bring 
revolution in healthcare facilities. Medical application of 

3D bioprinting covers a broad range of fields like tissue 
and organ regeneration, personalized drug dosing, 
cancer microenvironment and anatomical animals. 
Despite a number of benefits, 3D bioprinting still need a 
lot of research to overcome limitations associated with 
it. 

Bioprinting tissues and organs or skin tissue 
engineering: 
A condemnatory medical problem with the increase of 
diseases, age, accidents, and birth defects is tissue or 
organ failure. Its treatment predominantly depends 
upon organ transplant from a donor which may be 
living or deceased [65]. However, incredible scarcity of 
human organ is accessible for transplant. In 2017 almost 
118,511 candidates were waiting for an organ. As of 
early 2016, 33,597 patients were on a waiting list. The 
major drawback of organ transplantation is its cost and 
the strenuous chore of finding a donor having similar 
genetic makeup [66].  

 
Figure 5: Components required for 3D tissue engineering 

This pitfall is abolished by using stem cells of the 
patient to build the whole organ in substitution of 
damage organ which would reduce the peril of tissue 
rejection or use of immunosuppressant. The possible 
solution for organ transplantation is to regenerate a 
person’s own organs which are done by tissue 
engineering. In conventional tissue engineering 
approach small tissue sample of patient is isolated, stem 
cells are extracted, mixed with growth factors and 
allowed to culture in lab by placing them onto a support 
called scaffolds from  which the whole organ is 
regenerated. 3D bioprinting provide an additional 
salient benefit over conventional tissue engineering as 
having high control over concentration, volume, 
diameter and resolution of printed cells and producing 
them either layer by layer or directly into final 3D tissue-
like structure Figure 5 [32]. Presently, ReCell® Spray-On 
Skin has been approved to be used for reconstructive 
burn by using patient own stem cells eradicating tissue 
rejection [26]. 
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Personalized drug dosing: 
The main objective of drug development is to lessen the 
menace of detrimental reactions and to increase its 
efficacy which can be attained through 3D printing to 
create personalized medicine [67]. The oral formulation 
is the most widely accepted dosage form because of pain 
avoidance, better acceptance, easy manufacturing and 
precise dosage. However, there is no feasible method 
accessible for personalized solid dosage form like tablets. 
Currently, tablets are prepared through processes such 
as milling, granulation, and mixing of constituents that 
are devised into a tablet by squeezing or shaping. Major 
hindrances during these steps are drug breakdown or 
swap resulting in difficulty with the formulation. 
Moreover, conventional processes are inappropriate to 
produce personalized medicine and limit the aptness to 
design dosage conceive with protracting strength, 
complex geometries and novel drug release profile [67]. 
Another perspective of 3D printing is to fabricate 
personalized medicine in new medication form such as 
pills that comprises multiple active components either 
as single or multilayer printed tablets. The Patients 
having multiple diseases could have liniments printed 
on one multidose form that is counterfeit and would 
revamp patient acquiescence. Amalgamate pharmacies 
could allocate 3D printed drugs by already intimating 
their customer to procure customized medicine [66]. 

Bioprinting the cancer microenvironment: 
One of the prime roots of mortality in the world is 
‘cancer’ approximately 8.8 million deaths were reported 
due to cancer in 2015 and this rate would be 70% over 
the next two decades. Therefore it is the need of the hour 
to comprehend cancer for its therapy. The most 
widespread types of cancer have the same characteristics 
and quirky microenvironment including both physical 
and chemicals signs like growth factor, interstitial 
pressure etc. At each stage of cancer this 
microenvironment is highly effective with 
distinguishing key factors, therefore its prime 
prerequisite to degrade and apprehend all elements 
involved in tumor metastasis and relocation [68]. To 
fully comprehend the complications of the cancer 
emergence, growth, progression, and metastasis human 
cancer models are required but they are not 
apprehended to imitate cancer in vivo 

microenvironment,  therefore,  3D  printing  is  used  to 
engineered in vitro cancer microenvironment [69, 70]. 
Spheroid culture has been eventually used for 3D cancer 
models based on usage of 3D matrices either hydrogel or 
spongy supports called scaffold closely resemble human 
cancer microenvironment [71]. 

Heart tissue engineering:
Using  a  hydrogel  which  is  a  mixture  of  methacrylate 
hyaluronic  acid  and  methacrylate  gelatin  a  heart  valve 
was formed by Duan et al through bioprinting. Firstly, 
the hydrogel was placed onto printed machine extended 
by  nozzle  on  the  platform  and  photo  cross  linked  to 
from bioprinted heart valves having high viability. Thus 
bioprinting proved to be a stepping stone for heart tissue 
engineering [26,72]. 

3D-Bioprinting industries:
In  commercial  industry  3D,  bio-printing  is  swiftly 
developing  and  manifesting  the  eminence  of  a  mature 
market with mountainous potential. Several companies 
are already established the bio-printing technology and 
raising  their  finance  through  various  paths. 
EnvisionTEC was  founded  in  2002,  has  high  status  for 
manufacturing the reliable  manufacturing  system.  The 
product of EnvisionTEC is 3D-Bioplotter® System, which 
is  used  to  organize  the  biomaterials  using  a computer. 
Organovo  was  developed  in  2003  to  print  the  organs, 
applications  of  drug  discovery,  and  producing  fully 
human  tissues.  Hydrogels  are  used  as  a  temporary 
support. The printing process starts with bio-ink.  Using 
hydrogel and bio-ink, the Blood vessel is designed layer- 
by-layer. (Courtesy of Organovo Inc.). GeSiM is another 
privately held company having the properly controlled 
software. The product of this company is Bio Scaffolder 
that  is  able  to  print  scaffolds  as  well  as  living  cells.  It 
consists  of  a  Z  - stepper.  Z-drives  discretely  prints 
enormous  materials.  It  is  a  standard  instrument 
platform which can fix up to four independent Z axes for 
relinquish  materials.  Cyfuse  Biomedical  K.K. Also 
develops  3D  tissues  and  their  Product  is (Regenova®). 
They create 3D cellular structures by putting the cellular 
spheroids in needle arrays. It consists of three steps, in 
first  step  cell  Spheroids  are  loaded  and  3D  data  is 
prepared  than in  2nd step  3Dprinting,  spheroids  are 
arranged into a 3D construct, and placed into a needle 
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array in the third step that is maturing, 3D tissues are 
constructed into bio-reactors. [26,73-75] (Table 2). 

Challenges and future prospective: 
One of the major complications to construct human 
structure by 3D bioprinting is a dearth of coherency and 
mechanical strength to tolerate external stress and 
maintenance of shape after implantation. Significant 
research is conducted to intensify the resolution but 
despite fabrication of 3D structure, it’s not doable to 
maintain the actual inner structure, therefore, its need of 
the hour to further improve the 3D construct resolution 
[80].To make 3D construct survive prime issue to be 
resolved is vascularization of engineered tissue as these 
constructs require sufficient amount of nutrients and 
oxygen. Neo- vascularization is observed in case of 3D 
engineered tissue researches made their effort to make 
3D printed structure fully vascularized however further  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
advancement in this field is required [74]. Another 
obstacle in 3D bioprinting is processing time for 
fabrication. Extrusion bioprinting although increase the 
speed of construct fabrication but shear stress prompt 
cell damage so this pitfall must be solved before it is 
clinically implanted. As these challenges are resolved it 
will act as an outlook for the utility of bioprinting 
technologies on large scale as well as the integration of 
3D printed cells and tissue will create a novel 
microenvironment for a number of life sciences 
application like cancer model, heart tissue engineering 
[81], personalized drug dosing and regenerative 
medicine [82]. 

In future, 3D bio-printing will be a new frontier for 
the manufacturing of numerous materials used in 
defense, and space industries as well as it would be an 
essential tool in the field of medical-biotechnology [16]. 

Industries Founded year 3D-printers Process Factors affecting printer 
quality 

Applications 

EnvisionTEC 2002 3D-

Bioplotter® 

System 

 Pressure is applied through 
syringes, containing the 
viscous material 

 Syringe moves horizontally 
while liquid remain 
deposited 

 

Strand thickness, Interior 
structure design 

Dental, 
Education 
Electronics 
Medical 
Bio-fabrication 

Organovo 2007 NovoGen 
MMX 
Bioprinter™ 

 Generation of building 
blocks (which is called bio-
ink) 

 Post-processing stage occurs 
in incubator results in the 
formation of structure 

Proper heating and cooling 
temperature, 
High efficiency, High cell 
density is required 

Medical use 
Construction 
of blood vessels 

GeSiM 1995 bioscaffold  Fix up to four independent 
Z axes for relinquishing 
materials. The printable 
materials include 
biopolymers (e.g. Collagen 
and alginate). 

Fixing of all the four z-axes Print the living 
cells 

Cyfuse 
Biomedical 
K.K. 

2010 Regenova®  Cell spheroids are loaded and 

3D data are prepared 

 3Dprinting Maturation 

Proper 3D arrangement Creates 3D 
cellular 
structures 

Fujifilm 1935 Dimatix 
Materials 
Printer (DMP 

Inkjet bio printing works same as 
the bio - printing technology 

High shear strain during 
jetting 

Printing of 
structures for 
prototype 
creation and 
process 
verification 

Table 2: Bioprinting Industries and their applications in Life Sciences [76-79] 
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Conclusion 
3D bioprinting has inimitable advantages towards organ 
development,  personalized  medicines  and  cancer 
microenvironment  that  are  in  preclinical  trials.  It’s  an 
integrative  technology  that  covers  multiple  disciplines 
such  as  biology,  material,  engineering,  as  well  as 
medicine.3D  printing  is  emanate  discipline  that 
accompaniment  another  imaging  process  in  the 
implementation  of  composite  procedures.  Overall  this 
review  summarized  accompaniment  manufacturing 
process  particularly  known  as  3D  bioprinting  and 
narrates a wide range of bioprinting techniques. It uses 
multiple approaches like Biomimicry, autonomous self- 
assembly  and  mini  tissues  that  have  depicted  huge 
research on organ and tissue development as described 
in  this  review.  Currently  working  3D  industries  with 
bioprinting approaches are described as well. Besides all 
these, this paper gives the reader an outlook of current 
progression,  limitations  and  future  prospective  of  3D 
bioprinting  that  will  permit  possible  solution  for  wide 
range  of  bioprinting  applications  in  a  number  of  the 
field  such  as  pharmaceutical  and  tissue  and  organ 
engineering.3D  bioprinting  in  the  field  of  tissue  and 
organ  transplantation  have  auspicious  clinical 
prospective for organ regeneration. 
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