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Abstract. Euclid’s algorithm remains to be the most efficient method for 

finding the greatest common divisor of two full numbers. This method for 

finding the greatest common division of two positive integers has been analysed 

radically for ages. Almost all mathematical segments use the GCD and the 

Euclid algorithm. If this algorithm is not applied, that means that the actual 

segment is not investigated in depth. This research paper is going to present a 

program made with Swift, as the most effective and modern programming 

language, which has improved the actual existing application for finding GCD. 

By using the meaning of congruences this research paper will make a 

modification in the note of Euclid’s algorithm by removing some not important 

steps, but doing the modulation and simplification of every step. Here are 

discussed both classic and modified methods, by putting appropriate codes and 

observe the duration of the calculation through the computer.     
 

Keywords: Algorithm, Euclid, GCD, modification, congruence. 

 

1 Introduction 

 
Nowadays we are living in the age of computer where all the sciences are connected 

with mathematics. The mathematics itself is divided into algebra and geometry. 

Almost every part of algebra is dependent from greatest common division (GCD) 

which uses Euclidean algorithm [3]. But not only algebra needs GCD, also sometimes 

the algorithm is used in geometry. Before using this method you have to know how to 

divide. When there are no more digits to divide, the final difference is the remainder. 

Mathematically, the greatest common divisor of two integers, is the largest integer 

that divides both two integers. In the sections below we are going to discuss about 



 
 
 
 
 
 

 

GCD and its types, then the Euclidean algorithm will be explained in depth and in the 

end we are going to present our method of calculating GCD. 

 

2 The Greatest Common Divisor (GCD) - Euclid’s Algorithm 

 

There are three main methods to find GCD [1]. The first one is the easy method of 

inspection which is applied between two numbers a and b by finding the one number 

which divides both of them and so on until the result is found. The other method is 

prime factorization method. In this method the first step is to break each number into 

the prime factorization and then define all the factors that they have in common and 

after that by multiplying these together we find the GCD. And the las one is the 

method in which we were focused the most, it is the Euclidean algorithm method [2], 

which performs division first from smaller then to the larger of two numbers, 

followed by the reminder, until the reminder is zero.    
This algorithm has been studied since the Gaussian time and nowadays with the 

development of new sciences the focus on this algorithm has grown [4]. In this 

research we are focused on the Euclidean algorithm for finding the greatest common 

division by simplifying the Euclidean algorithm with modulation. The GCD is 

described and defined in the mathematical way:  
  

Definition 1.1 The largest common division of integers !1  2 n is called the 

largest natural number that completes each of the given numbers.  

The greatest common division of numbers !1  2 n is symbolically marked with 

!(a1, a2, …, an).   

Definition 1.2 Two full numbers !1 and ! 2 are called simple between each other or 

mutually simple, if ! 1 2 n. 

 
Theorem 1.1 (The subdivision algorithm) We have a given natural number b!. 

Each integer ! can only be presented in the form: 

 
!a = bq + r (1) 

 

Where ! and ! are integers and !r = (1,2,3,…, b − 1). 

 

In the section below we are going to prove that the equation a! = bq + r appears 

always in this form. Where a is the first number of the algorithm for finding GCD,  
and b is the second number. In this case ! is called the quotient while! the remainder 

during divide of the number ! with !b. 



 
 
 
 
 
 

 

Proof: 

 

We mark !bq with the largest multiple of !b that does not exceed ! , then we will have: 

 

!bq ≤ a < (q + 1)b 

 

Consequently, ! will be equal to one of the numbers: 

 

!bq, bq + 1,bq + 2,…, bq + (b − 1) 

 

So, " can appear in the form !a = bq + r. 

 

Let’s show that the appearance of the number !  in the form a! = bq + r is single. 
 

Suppose that the number " can also appear in the form 
 

!a = bq1 + r1 (2)  

Where ! 1 and !1 are integers and !r1 = (0,1, 2, .. , b − 1). 

 

From (1) and (2) we have: 
 

!bq + r = bq1 + r1 
 

!b(q − q1) = r − r1 
 

 

Therefore ! 1 is multiple of !b, but since ! r − r1 | < b 
 

then we must have !r − r1 = 0 , ! 1 consequently ! 

 

 

and ! 
 
1. 

 

 

1 is multiple of !b, 

 
In this way we provide the existence and uniqueness of the appearance of the number 

 
! in the form !a = bq + r . 

 

Example 1.1 Let it be !b = 4. Now we have: 

 

! 16 = 4 × 4 + 0 0 = 0 < 4 

 ! 3 = 4 × 3 + 1 0 < 1 < 4 

 !−10 = 4 × (−3) + 2 0 < 2 < 4 



 
 
 
 
 
 

 

There are several methods to find the GCD of two numbers, one of which is the 

Euclid algorithm. 
 

Based on the Theorem 1.1, during division of the number ! and !b we have: 
 

!a = bq1 + r2 !0 ≤ r2 < b 

 

where ! 1 is the queue and !2 is the remaining partition of the number ! with !b. 
 

If !r2 = 0 process is considered completed, if !r2 ≠ 0 we divide !b with !2 and we have: 
 

!b = r2q2 + r3 !0 ≤ r3 < r2 
 

If !r3 = 0 process is considered completed, if !r3 ≠ 0 we divide ! 2 with !3 and we 

have: 
 

!2 = r3q3 + r4 !0 ≤ r4 < r3 etc. 

 

It continues in this way until the residue becomes zero. The final reconciliation of this 

process will be: 
 

!
n−1 n  n 

 
In this way, from the above process, we draw the reconciliations: 

 

!a = bq1 + r2 !0 ≤ r2 < b  

!b = r2q2 + r3 !0 ≤ r3 < r2 

(1) !2 = r3q3 + r4 !0 ≤ r4 < r3 

……………………….………………………………….  
!
n−2 

=
 
r
n−1

q
n−1 

+
 
r
n !0 ≤ rn < rn−1  

!
n−1n  n   

Let us consider equalization (1). While taking in consideration given Theorem 1.1.1 
and Theorem 1.1.2, it is easy to notice that the common divisor of numbers ! and !b 

matches with the common divisor of numbers b! and !2, likewise they are common 

divisors of numbers !2 and !3, numbers !3 and !4 , numbers !n−1 and ! n, finally 

with the divisors of the number ! n  
In addition we have: 

 

! a , b) = (b, r2) = … = (rn−1, rn) = rn 



 
 
 
 
 

 

So, !n is the last remaining different from zero and basically this is the largest 

common divisor of numbers ! and !b. 
 

Example 1.2 by using the Euclid’s algorithm, find the largest common divisor of 

numbers !520 and !125. 

 !520 = 125 · 4 + 20 

! 125 = 20 · 6 + 5 

 !20 = 5 · 4 + 0 
 

The last residue different from zero is 5. Therefore, the largest common divisor of 

numbers 520 and 125 is 5. 
 

Theorem 1.2 ([1], page 12). To find the largest common divisor of numbers 

!
 1  2 n we calculate the following: 

!(a1, a2) = d2, !(d2, a3) = d3 , …, !(dn−1, an) = dn, so !(a1, a2, …, an) = dn 
 

Example 1.3 Find the largest common divisor of numbers: 

 

"0,14,32,98. 

 

!(10,14) = 2, !(2,32) = 2, !(2,98) = 2, so!(10,14,32,98) = 2 
 
 

 

3 New Proposal - Modifying the Euclidean algorithm 

 

As this algorithm is one of the most discussed algorithms of mathematics it also has 

many theoretical and practical applications. One of its approaches is a key element of 

the RSA algorithm, a public-key encryption method used in e-commerce. The 

modification is based on the use of remainder, where appropriate, which can reduce 

the number of iteration steps substantially. There are modified Euclidean algorithms 

which extend it to find the result but with lest steps to complete it. If we consider the 

following system of modular equations 
 

"x ≡ c1(m od b1), "x ≡ c 2(m od b 2), …, "x ≡ cn(m od bn).   

 

Where "bi and "ci are integers, and "bi, "i= 1,2,...,n are pairwise relatively prime [5]. 
 

The result is used to solve the system of linear modular equations in one variable. 



 
 
 
 
 
 

 

Definition 2.1. Let it be "m ∈ ℕ and "∀a,b ∈ ℤ, we say that " is "b congruent with 

the module " then and only then if "m |(a − b).  
If " is congruent with "b based on the module, this fact symbolically is marked: 

 

"a ≡ b (mod m) 

 

By using the congruence we make a modification in the presentation of the Euclid’s 

algorithm. 
 

Let suppose that "a, b ∈ N and "a > b. 
 

1. We calculate "a ≡ r1(m od b), where "0 ≤ r1 < b, if "r1 > 0, if, then  
 

2. We calculate "b ≡ r2(m odr1), where "0 ≤ r2 < r1 if "r2 > 0, then   
 

3. We calculate "r1 ≡ r3(m odr2), where "0 ≤ r3 < r2 if "r3 > 0, then   
 

4. We calculate "r2 ≡ r4(m odr3), where "0 ≤ r4 < r3 if "r4 > 0, then 

 
 
 

…………………………………………………………… 
 

5. We calculate r"k−2 ≡ rk(m odrk−1), where 0" ≤ rk < rk−1 , since the residues 

are coming down, then 
 

There is the moment when we take "rk−1 ≡ 0(m odrk ). 
 

The last remaining different from zero, so "k is GCD of numbers " and "b. 

 

Example 2.1: Calculate GCD (3768, 1701) 

 

3768 ☰ 366 (mod 1701) 
 

1701 ☰ 237 (mod 366)  
366 ☰ 129 (mod 237)  
237 ☰ 108 (mod 129)  
129 ☰ 21 (mod 108)  
108 ☰ 3 (mod 21)  
21 ☰ 0 (mod 3) 

 
So, GCD (3768, 1701) = 3   

 
  



 
 
 
 
 
 

 

3.1 Test and Results 

 

Pseudo-code: The next section will explain the code that enables the GCD 

calculation. As shown below, we have three different functions for computation and 

reaching to the result, where in Figure 1 there is a function without recursion, in the 

second with recursion, whereas the third represents the function of the Euclid’s 

algorithm step by step. 

 

func gcdModified(a: Int, b: Int) -> Int 

{ var a = abs(a) 
 

var b = abs(b) 

 
repeat { 

 
let x = a % b  
a = b  
b = x  

} while (b > 0) 

 
return a 

 
} 

 
Fig. 1 - Function for GCD without recursion 

 

From Fig. 1 we see that a function (method) is created, which returns the integer 

value and accepts two parameters a and b, which are also integer value. Then two 

variables a and b are declared which values take from the function parameters by 

attaching the absolute value that we use in this case as: var a = abs(a). 

Further, a loop that is repeated is the variable b to reach the value 0. Within the 

loop overwrite the value of variables a and b, where in the first case the variable a 

receives the value of the variable b, whereas the variable b is equal to the module of 

variables a of b. Once the loop is initialized, the result is returned which will be stored 

in the variable a and at the end the function returns the value of the result through the 

variable a. 
 

func gcdRecursion(a: Int, b: Int) -> Int 

{ if b == 0 { 
 

return a  
}  
return gcdRecursion(a: b, b: a % b)  

} 

 
Fig. 2 - Function of GCD with recursion 



 
 
 
 
 
 
 

 

Fig. 2 presents the calculation of GCD with recursive method, which also in its 

function contains two variables a and b which are integer type and also the whole 

function returns integer value. Then an if statement is created, in which condition we 

have the equation b with the zero value, so this condition will only occur when b is 

the value 0. If this condition is valid then no additional calculations are performed and 

the function ends by returning the variable a. But if the condition is not met, then the 

function with different parameters or variables is rewritten by assigning the parameter 

a to the parameter value b, while parameter b modulating a and b.  
The function shown in Figure 3 as mentioned above is the introduction of the 

GCD result through the Euclid’s algorithm, which also initially creates a method that 

returns the integer value and also accepts two parameters a and b which are equal to 

the integer value. Furthermore, the variables a and b are stated, which are taken from 

the function. The same loop is used as in the above function which repeats until b gets 

the value 0. The loop contains a variable that gains the value by dividing a with b and 

another variable r whose value is derived from the residue of a and b.  
Then the inscription of the variable a with the variable b, and the variable b with 

that r. The result of the function is also stored in the variable a which is given once the 

function is executed. 

 
 

 
func gcdEuclid(a: Int, b: Int) -> Int 

{ var a = abs(a) 

var b = abs(b) 

 
repeat { 

 
let q: Int = a / b  
let r: Int = a - (b * q) 

 
a = b 

 
b = r  

} while (b > 0) 

 
return a 

 
} 

 
Fig. 3 - Euclid’s Algorithm for calculating GCD 



 
 
 
 
 
 

 
Table 1. Classical Euclid’s Algorithm and modified one for finding GCD.  

 

GCD Tens Input Hundrends Thousands Longer 

  Input Input Input 
     

Classical 0.001507 sec 0.001485 sec 0.001376 sec 0.012106 sec 

Modified 0.000218 sec 0.000420 sec 0.000389 sec 0.000781 sec 
     

 

 

Table 1 presents the calculation time of GCD classical Euclidean algorithm and 

modified one. According to the table we see that the modified algorithm is faster up 

to 15 times than the classical one. In this example are used different inputs from the 

small values until the bigger ones. From this experiment the classical method takes 

more time to execute the result, while the modified one reminds almost the same, or 

increases just for 0.0004 sec. 
 

Programmed in Swift language with CoreFoundation and UIKit 

library. Tested in Apple MacBook 2013 Early, with performance:   

Processor: 2,4 GHz Intel Core i7   
Memory: 8 GB 1600 MHz DDR3 

 

4 Conclusion 

 

The focus of this dissertation was on one of the most famous algorithms used to find 

the greatest common divisor. It is our hope that this paper has been of interest to 

teachers of mathematics and to students of mathematics, computer science and other 

sciences where the algorithm is applied. 
 

The introduction to the Euclidean algorithm should be of interest as it is an easy and 

most usable way to find the greatest common divisor.  
Computer programme (in Swift) has been written to calculate the greatest common 

divisors of two integers by the Euclidean algorithm. By using the congruences this 

research paper has made a brief explanation of modified Euclid’s algorithm by 

removing some not important parts of it but doing the modulation and simplification 

of every step. 
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