
University of Business and Technology in Kosovo
UBT Knowledge Center

UBT International Conference 2018 UBT International Conference

Oct 27th, 10:45 AM - 12:15 PM

Efficiency of calculating GCD through computer
with help of modified Euclidean algorithm
Emin Emini
University for Business and Technology, ee37811@ubt-uni.net

Azir Jusufi
University for Business and Technology, azir.jusufi@ubt-uni.net

Ruhada Emini
University for Business and Technology, re30018@ubt-uni.net

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference

Part of the Computer Sciences Commons, and the Digital Communications and Networking
Commons

This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It has been accepted for inclusion in
UBT International Conference by an authorized administrator of UBT Knowledge Center. For more information, please contact
knowledge.center@ubt-uni.net.

Recommended Citation
Emini, Emin; Jusufi, Azir; and Emini, Ruhada, "Efficiency of calculating GCD through computer with help of modified Euclidean
algorithm" (2018). UBT International Conference. 90.
https://knowledgecenter.ubt-uni.net/conference/2018/all-events/90

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Business and Technology in Kosovo: UBT Knowledge Center Collections

https://core.ac.uk/display/268080848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://knowledgecenter.ubt-uni.net?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/2018?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/conference/2018/all-events/90?utm_source=knowledgecenter.ubt-uni.net%2Fconference%2F2018%2Fall-events%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

Efficiency of calculating GCD through computer

with help of modified Euclidean algorithm

Emin Emini1, Azir Jusufi2, Ruhada Emini3

1 Student of Computer Science and Engineering, Bachelor

Degree ee37811@ubt-uni.net

2 Professor of Mathematics and Discrete Structures

azir.jusufi@ubt-uni.net

3 Student of Computer Science and Engineering, Master

Degree re30018@ubt-uni.net

Abstract. Euclid’s algorithm remains to be the most efficient method for

finding the greatest common divisor of two full numbers. This method for

finding the greatest common division of two positive integers has been analysed

radically for ages. Almost all mathematical segments use the GCD and the

Euclid algorithm. If this algorithm is not applied, that means that the actual

segment is not investigated in depth. This research paper is going to present a

program made with Swift, as the most effective and modern programming

language, which has improved the actual existing application for finding GCD.

By using the meaning of congruences this research paper will make a

modification in the note of Euclid’s algorithm by removing some not important

steps, but doing the modulation and simplification of every step. Here are

discussed both classic and modified methods, by putting appropriate codes and

observe the duration of the calculation through the computer.    

Keywords: Algorithm, Euclid, GCD, modification, congruence.

1 Introduction

Nowadays we are living in the age of computer where all the sciences are connected

with mathematics. The mathematics itself is divided into algebra and geometry.

Almost every part of algebra is dependent from greatest common division (GCD)

which uses Euclidean algorithm [3]. But not only algebra needs GCD, also sometimes

the algorithm is used in geometry. Before using this method you have to know how to

divide. When there are no more digits to divide, the final difference is the remainder.

Mathematically, the greatest common divisor of two integers, is the largest integer

that divides both two integers. In the sections below we are going to discuss about

GCD and its types, then the Euclidean algorithm will be explained in depth and in the

end we are going to present our method of calculating GCD.

2 The Greatest Common Divisor (GCD) - Euclid’s Algorithm

There are three main methods to find GCD [1]. The first one is the easy method of

inspection which is applied between two numbers a and b by finding the one number

which divides both of them and so on until the result is found. The other method is

prime factorization method. In this method the first step is to break each number into

the prime factorization and then define all the factors that they have in common and

after that by multiplying these together we find the GCD. And the las one is the

method in which we were focused the most, it is the Euclidean algorithm method [2],

which performs division first from smaller then to the larger of two numbers,

followed by the reminder, until the reminder is zero.  
This algorithm has been studied since the Gaussian time and nowadays with the

development of new sciences the focus on this algorithm has grown [4]. In this

research we are focused on the Euclidean algorithm for finding the greatest common

division by simplifying the Euclidean algorithm with modulation. The GCD is

described and defined in the mathematical way:
 

Definition 1.1 The largest common division of integers !1 2 n is called the

largest natural number that completes each of the given numbers.

The greatest common division of numbers !1 2 n is symbolically marked with

!(a1, a2, …, an).

Definition 1.2 Two full numbers !1 and ! 2 are called simple between each other or

mutually simple, if ! 1 2 n.

Theorem 1.1 (The subdivision algorithm) We have a given natural number b!.

Each integer ! can only be presented in the form:

!a = bq + r (1)

Where ! and ! are integers and !r = (1,2,3,…, b − 1).

In the section below we are going to prove that the equation a! = bq + r appears

always in this form. Where a is the first number of the algorithm for finding GCD,
and b is the second number. In this case ! is called the quotient while! the remainder

during divide of the number ! with !b.

Proof:

We mark !bq with the largest multiple of !b that does not exceed ! , then we will have:

!bq ≤ a < (q + 1)b

Consequently, ! will be equal to one of the numbers:

!bq, bq + 1,bq + 2,…, bq + (b − 1)

So, " can appear in the form !a = bq + r.

Let’s show that the appearance of the number ! in the form a! = bq + r is single.

Suppose that the number " can also appear in the form

!a = bq1 + r1 (2)

Where ! 1 and !1 are integers and !r1 = (0,1, 2, .. , b − 1).

From (1) and (2) we have:

!bq + r = bq1 + r1

!b(q − q1) = r − r1

Therefore ! 1 is multiple of !b, but since ! r − r1 | < b

then we must have !r − r1 = 0 , ! 1 consequently !

and !

1.

1 is multiple of !b,

In this way we provide the existence and uniqueness of the appearance of the number

! in the form !a = bq + r .

Example 1.1 Let it be !b = 4. Now we have:

! 16 = 4 × 4 + 0 0 = 0 < 4

 ! 3 = 4 × 3 + 1 0 < 1 < 4

 !−10 = 4 × (−3) + 2 0 < 2 < 4

There are several methods to find the GCD of two numbers, one of which is the

Euclid algorithm.

Based on the Theorem 1.1, during division of the number ! and !b we have:

!a = bq1 + r2 !0 ≤ r2 < b

where ! 1 is the queue and !2 is the remaining partition of the number ! with !b.

If !r2 = 0 process is considered completed, if !r2 ≠ 0 we divide !b with !2 and we have:

!b = r2q2 + r3 !0 ≤ r3 < r2

If !r3 = 0 process is considered completed, if !r3 ≠ 0 we divide ! 2 with !3 and we

have:

!2 = r3q3 + r4 !0 ≤ r4 < r3 etc.

It continues in this way until the residue becomes zero. The final reconciliation of this

process will be:

!
n−1 n n

In this way, from the above process, we draw the reconciliations:

!a = bq1 + r2 !0 ≤ r2 < b

!b = r2q2 + r3 !0 ≤ r3 < r2

(1) !2 = r3q3 + r4 !0 ≤ r4 < r3

……………………….………………………………….
!
n−2

=

r
n−1

q
n−1

+

r
n !0 ≤ rn < rn−1

!
n−1n n

Let us consider equalization (1). While taking in consideration given Theorem 1.1.1
and Theorem 1.1.2, it is easy to notice that the common divisor of numbers ! and !b

matches with the common divisor of numbers b! and !2, likewise they are common

divisors of numbers !2 and !3, numbers !3 and !4 , numbers !n−1 and ! n, finally

with the divisors of the number ! n
In addition we have:

! a , b) = (b, r2) = … = (rn−1, rn) = rn

So, !n is the last remaining different from zero and basically this is the largest

common divisor of numbers ! and !b.

Example 1.2 by using the Euclid’s algorithm, find the largest common divisor of

numbers !520 and !125.

 !520 = 125 · 4 + 20

! 125 = 20 · 6 + 5

 !20 = 5 · 4 + 0

The last residue different from zero is 5. Therefore, the largest common divisor of

numbers 520 and 125 is 5.

Theorem 1.2 ([1], page 12). To find the largest common divisor of numbers

!
 1 2 n we calculate the following:

!(a1, a2) = d2, !(d2, a3) = d3 , …, !(dn−1, an) = dn, so !(a1, a2, …, an) = dn

Example 1.3 Find the largest common divisor of numbers:

"0,14,32,98.

!(10,14) = 2, !(2,32) = 2, !(2,98) = 2, so!(10,14,32,98) = 2

3 New Proposal - Modifying the Euclidean algorithm

As this algorithm is one of the most discussed algorithms of mathematics it also has

many theoretical and practical applications. One of its approaches is a key element of

the RSA algorithm, a public-key encryption method used in e-commerce. The

modification is based on the use of remainder, where appropriate, which can reduce

the number of iteration steps substantially. There are modified Euclidean algorithms

which extend it to find the result but with lest steps to complete it. If we consider the

following system of modular equations

"x ≡ c1(m od b1), "x ≡ c 2(m od b 2), …, "x ≡ cn(m od bn).  

Where "bi and "ci are integers, and "bi, "i= 1,2,...,n are pairwise relatively prime [5].

The result is used to solve the system of linear modular equations in one variable.

Definition 2.1. Let it be "m ∈ ℕ and "∀a,b ∈ ℤ, we say that " is "b congruent with

the module " then and only then if "m |(a − b).
If " is congruent with "b based on the module, this fact symbolically is marked:

"a ≡ b (mod m)

By using the congruence we make a modification in the presentation of the Euclid’s

algorithm.

Let suppose that "a, b ∈ N and "a > b.

1. We calculate "a ≡ r1(m od b), where "0 ≤ r1 < b, if "r1 > 0, if, then 

2. We calculate "b ≡ r2(m odr1), where "0 ≤ r2 < r1 if "r2 > 0, then  

3. We calculate "r1 ≡ r3(m odr2), where "0 ≤ r3 < r2 if "r3 > 0, then  

4. We calculate "r2 ≡ r4(m odr3), where "0 ≤ r4 < r3 if "r4 > 0, then

……………………………………………………………

5. We calculate r"k−2 ≡ rk(m odrk−1), where 0" ≤ rk < rk−1 , since the residues

are coming down, then

There is the moment when we take "rk−1 ≡ 0(m odrk).

The last remaining different from zero, so "k is GCD of numbers " and "b.

Example 2.1: Calculate GCD (3768, 1701)

3768 ☰ 366 (mod 1701)

1701 ☰ 237 (mod 366)
366 ☰ 129 (mod 237)
237 ☰ 108 (mod 129)
129 ☰ 21 (mod 108)
108 ☰ 3 (mod 21)
21 ☰ 0 (mod 3)

So, GCD (3768, 1701) = 3  

 

3.1 Test and Results

Pseudo-code: The next section will explain the code that enables the GCD

calculation. As shown below, we have three different functions for computation and

reaching to the result, where in Figure 1 there is a function without recursion, in the

second with recursion, whereas the third represents the function of the Euclid’s

algorithm step by step.

func gcdModified(a: Int, b: Int) -> Int

{ var a = abs(a)

var b = abs(b)

repeat {

let x = a % b
a = b
b = x

} while (b > 0)

return a

}

Fig. 1 - Function for GCD without recursion

From Fig. 1 we see that a function (method) is created, which returns the integer

value and accepts two parameters a and b, which are also integer value. Then two

variables a and b are declared which values take from the function parameters by

attaching the absolute value that we use in this case as: var a = abs(a).

Further, a loop that is repeated is the variable b to reach the value 0. Within the

loop overwrite the value of variables a and b, where in the first case the variable a

receives the value of the variable b, whereas the variable b is equal to the module of

variables a of b. Once the loop is initialized, the result is returned which will be stored

in the variable a and at the end the function returns the value of the result through the

variable a.

func gcdRecursion(a: Int, b: Int) -> Int

{ if b == 0 {

return a
}
return gcdRecursion(a: b, b: a % b)

}

Fig. 2 - Function of GCD with recursion

Fig. 2 presents the calculation of GCD with recursive method, which also in its

function contains two variables a and b which are integer type and also the whole

function returns integer value. Then an if statement is created, in which condition we

have the equation b with the zero value, so this condition will only occur when b is

the value 0. If this condition is valid then no additional calculations are performed and

the function ends by returning the variable a. But if the condition is not met, then the

function with different parameters or variables is rewritten by assigning the parameter

a to the parameter value b, while parameter b modulating a and b.
The function shown in Figure 3 as mentioned above is the introduction of the

GCD result through the Euclid’s algorithm, which also initially creates a method that

returns the integer value and also accepts two parameters a and b which are equal to

the integer value. Furthermore, the variables a and b are stated, which are taken from

the function. The same loop is used as in the above function which repeats until b gets

the value 0. The loop contains a variable that gains the value by dividing a with b and

another variable r whose value is derived from the residue of a and b.
Then the inscription of the variable a with the variable b, and the variable b with

that r. The result of the function is also stored in the variable a which is given once the

function is executed.

func gcdEuclid(a: Int, b: Int) -> Int

{ var a = abs(a)

var b = abs(b)

repeat {

let q: Int = a / b
let r: Int = a - (b * q)

a = b

b = r

} while (b > 0)

return a

}

Fig. 3 - Euclid’s Algorithm for calculating GCD

Table 1. Classical Euclid’s Algorithm and modified one for finding GCD.

GCD Tens Input Hundrends Thousands Longer

 Input Input Input

Classical 0.001507 sec 0.001485 sec 0.001376 sec 0.012106 sec

Modified 0.000218 sec 0.000420 sec 0.000389 sec 0.000781 sec

Table 1 presents the calculation time of GCD classical Euclidean algorithm and

modified one. According to the table we see that the modified algorithm is faster up

to 15 times than the classical one. In this example are used different inputs from the

small values until the bigger ones. From this experiment the classical method takes

more time to execute the result, while the modified one reminds almost the same, or

increases just for 0.0004 sec.

Programmed in Swift language with CoreFoundation and UIKit

library. Tested in Apple MacBook 2013 Early, with performance:  

Processor: 2,4 GHz Intel Core i7  
Memory: 8 GB 1600 MHz DDR3

4 Conclusion

The focus of this dissertation was on one of the most famous algorithms used to find

the greatest common divisor. It is our hope that this paper has been of interest to

teachers of mathematics and to students of mathematics, computer science and other

sciences where the algorithm is applied.

The introduction to the Euclidean algorithm should be of interest as it is an easy and

most usable way to find the greatest common divisor.
Computer programme (in Swift) has been written to calculate the greatest common

divisors of two integers by the Euclidean algorithm. By using the congruences this

research paper has made a brief explanation of modified Euclid’s algorithm by

removing some not important parts of it but doing the modulation and simplification

of every step.

References

1. Cohen, E. Arithmetical Functions of a Greatest Common Divisor, III. Cesàro's

Divisor Problem. Proceedings of the Glasgow Mathematical Association, 5(02),

p.67, 1961

2. Altarawneh, H. A Comparison of Several Greatest Common Divisor 'GCD' Algorithms.

International Journal of Computer Applications, 26(5), pp.24-31, 2011

3. Peck, J. Algorithm 237: Greatest common divisor. Communications of the ACM,

7(8), p.481, 1964
4. Gathern, J. V. and Gerhard, J. Modern Computer Algebra. Cambridge University

Press, second edition, 2003.

5. I. Z. Milovanovic, C. B. Dolicanin, M. K. Stojcev, E. I. Milovanovic, Modification of

Euclidian Algorithm for Solving Modular Equations vol. 4, 2, 41-44, 2012

Bibliography

1. William Stein, Elementary Number Theory: Primes, Congruences, and Secrets, 2017

2. Kenneth H. Rosen, Elementary Number Theory and lts Applications, ADDISON-
WESLEY PUBLISHING COMPANY, 1986

3. Lars-˚Ake Lindahl, Lectures on Number Theory, 2002
4. J.S. Milne, Algebraic Number Theory, 2017
5. J. Dine, K. Hila, Teoria e numrave, 2015
6. Apple Inc., The Swift Programming Language, 2014

	University of Business and Technology in Kosovo
	UBT Knowledge Center
	Oct 27th, 10:45 AM - 12:15 PM

	Efficiency of calculating GCD through computer with help of modified Euclidean algorithm
	Emin Emini
	Azir Jusufi
	Ruhada Emini
	Recommended Citation

	tmp.1559660527.pdf.japl0

