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SLS design of FRP reinforced concrete beams based on different 

calculation of effective moment of inertia 

Enio Deneko1, Anjeza Gjini2  
12Polytenchnic University of Tirana, Faculty of Civil Engineering, Tirana, Albania 

eniodeneko@hotmail.com1, anjezagjini@hotmail.com2 

Abstract. In this paper, reference is made to the key features of ACI, EC2 and other models, regarding 

SLS calculations of FRP reinforcement concrete and the comparison with steel reinforcement concrete 

formulas, especially focusing on deflection. Mechanical characteristics of FRP materials, such as lower 

elastic modulus, lower ratio between Young’s modulus and the tensile strength, lower bond strength of 

FRP bars and concrete, compared to steel reinforcement, make that SLS results determine the design 

of FRP reinforced concrete, based on the serviceability requirements. Different parameters influences 

affect the stresses in materials, maximum crack width and the allowed deflections. In this study we 

have calculated only the deflections of FRP-RC beams. Concrete beams reinforced with glass-fiber 

(GFRP) bars, exhibit large deflections compared to steel reinforced concrete beams, because of low 

GFRP bars elasticity modulus. For this purpose we have used equations to estimate the effective 

moment of inertia of FRP-reinforced concrete beams, based on the genetic algorithm, known as the 

Branson’s equation. The proposed equations are compared with different code provisions and previous 

models for predicting the deflection of FRP-reinforced concrete beams. In the last two decades, a 

number of researchers adjusted the Branson’s equation to experimental equations of FRP-RC members. 

The values calculated were also compared with different test results. Also it is elaborated a numerical 

example to check the deflection of a FRP-RC beam based on various methods of calculation of effective 

moment of inertia and it is made a comparison of results. 

Keywords: SLS design, FRP bars, reinforced concrete beams, serviceability, deflection, effective 

moment of inertia, modulus of elasticity, tension stiffening. 

1   Introduction 

Steel reinforcing bars has not performed well in applications where members were subjects to corrosive 

environments. For this reasons FRP bars can be effectively used in this kind of applications because of 

their corrosion resistant property. The problems seem similar with those of steel RC, but solutions, 

limits and analytic models are different, because of the very large band of FRP bars on the market, with 

a large variety of mechanical characteristics. There are many types of fibers including glass (GFRP), 

carbon (CFRP) and aramid (AFRP), with different grades of tensile strength and modulus of elasticity. 

The behavior of FRP-RC beams differs from steel reinforcing beams, because FRP bars display a linear 

elastic behavior up to the point of failure and do not demonstrate ductility. Also the bond strength of 

FRP bars and concrete is lower than that of steel bars, leading to an increase in the depth of cracking, a 

decrease of stiffening effect, and so an increase of the deflection of FRP-RC beams for an equivalent 

cross-section of reinforcement of steel reinforced concrete beams. 

FRP-RC beams have lower elastic modulus than steel bars, for example, the modulus of elasticity of 

GFRP bars is only 20-25% of that in steel bars. Because of this low modulus of elasticity, the deflection 

criterion may control the design of long FRP-RC beams. Consequently a method is needed in order to 

know the expected service load deflections with a high degree of accuracy. 

Only some countries have developed a code in FRP-RC design and these codes are still in preparation 

phase, so is very difficult to operate in this new field. Following a presentation of the key concepts, the 

paper discusses topics for future implementation and sample applications. 

mailto:eniodeneko@hotmail.com
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2   Methodology 

FRP are anisotropic materials and are characterized by high tensile strength with no yielding in the 

direction of the reinforcing fibers. An FRP-RC member is designed on its required strength and then 

checked for serviceability and ultimate state criteria (e.g., deflection, crack width, fatigue and creep 

rapture). In most instances, serviceability criteria will control the design. 

Safety checks for FRP-RC at SLS are more important than that for steel reinforced concrete because of 

the mechanical characteristics of FRP and especially the low ratio between Young’s modulus and the 

tensile strength of FRP reinforcement. 

In this paper are taken into account different models for the deflection design of FRP-RC beams, some 

of them already used for steel-RC, and some others are brand new ones, used only for FRP-RC beams. 

FRP are anisotropic materials and are characterized by high tensile strength with no yielding in the 

direction of the reinforcing fibers.  

3   Deflection and deformation 

A well-known deflection model for Steel-RC is proposed by ACI and EC2, later modified for FRP-RC. 

In both of them the Mcr/Mmax ratio is very important for the deflection design, where: Mmax is the 

maximal moment acting on the examined element; Mcr is the cracking moment at the same cross section 

of Mmax. This deflection model simulates the real behavior of the structure by taking into account 

cracking, but not the tension-stiffening effect of concrete. 

ACI 318-95 is based on Branson [1968-1977] formulae of the effective moment of inertia for Steel-RC: 

 

 𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3
· 𝐼𝑔 + ⌈ 1 − (

𝑀𝑐𝑟

𝑀𝑎
)

3
⌉ · 𝐼𝑐𝑟 ≤  𝐼𝑔 .                  (1)                       

 

where, Ie is the effective moment of inertia, Mcr is the cracked section moment, Ig is the total moment 

of inertia, Ma is the maximum moment in member at the deflection stage, Icr is the cracked section 

moment of inertia. 

 

ACI 440R-96 proposed new formulae of the effective moment of inertia for FRP-RC: 

 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

· 𝛽𝑑 · 𝐼𝑔 + ⌈ 1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

⌉ · 𝐼𝑐𝑟 ≤  𝐼𝑔 .                     (2) 

 

where, βd is a reduction coefficient related to the reduced tension-stiffening exhibited by FRP-RC 

members. Based on evaluation of experimental results  

 

𝛽𝑑 =
1

5
(

𝜌𝑓

𝜌𝑓𝑏
) ≤  1 .                                                (3) 

 

This equation is valid only if Ma ≥ Mcr. If Ma ≤ Mcr, than Ie = Ig and if Ma ≈ Mcr, or slightly less, than Ie 

= Icr, because shrinkage and temperature may cause section cracking. 

Some other models based on ACI give this formula: 

 

𝐼𝑒 =
𝐼𝑔 

𝛽
· (

𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
)

3

+ 𝛼 · 𝐼𝑐𝑟 ⌈ 1 − (
𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
)

3

⌉ ≤  𝐼𝑔 .                     (4) 

 

where, α and β are coefficients of bond properties of FRP and   

 

 
1

𝛽
= 𝛼∗ (

𝐸𝑓𝑟𝑝

𝐸𝑠
+ 1) ≤  1 .                                           (5) 
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where,  𝛼∗ is a coefficient that increases with the bond quality. When no experimental results are given 

than 𝛼∗= 0, 5 and α = 1. 

 

EuroCode 2 propose a simplified model for Steel-RC    

 

𝑣 = 𝑣1·𝛾+𝑣2·(1 − 𝛾) where 𝛾 = 𝛽 ∙ (
𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
)

𝑚

 .                         (6) 

 

In this equation v1 and v2 are calculated taking into account that the moment of inertia of the section is 

constant and respectively I1 and I2 (or Ig and Icr). For steel bars the coefficients β and m, including the 

tension-stiffening effect of concrete are to be taken as given in the table. 

 
Table 1. Coefficient β and m for steel bars 

 

 

 

 

 

 

 

If other materials are used (e.g. FRP bars), these coefficients must be reconsidered through experimental 

tests. 

EC2 hasn’t proposed yet a model for FRP-RC deflection design, but the Italian Code CNR-DT 

203/2006, based on experimental tests, shows that the model for EC2 can be deemed suitable for FRP-

RC too. Therefore the EC2 equations to compute deflection “f” must be reconsidered: 

 

𝑓 = 𝑓1 · 𝛽1 · 𝛽2 · (
𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
)

𝑚

+ 𝑓2 · ⌈ 1 − 𝛽1 · 𝛽2 · (
𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
)

𝑚

⌉ .             (7) 

 

where, f1 gives the deflection of non-cracked section, f2 gives the deflection of cracked section, β1 = 0,5 

is the coefficient of bond properties of FRP bars, β2 is the coefficient of the duration of loading and is 

taken β2=1 for short-time loads and β2=0,5 for long-time cycling loads, Mmax is the maximum moment 

acting on the examined element, Mcr is the cracking moment calculated at the same cross section of 

Mmax, m = 2. 

 

In the last two decades a number of researchers tried to adjust the Branson’s equation, comparing to 

experimental results of FRP-RC member tests. The experimental results show that Branson’s equation 

overestimated the moment of inertia Ie and underestimates the deflection, because the Branson’s 

equation was calibrated for RC beams where Ig/Icr ≤ 3 [Bischoff 2005], but not for most members that 

have  5 ≤
𝐼𝑔 

𝐼𝑐𝑟 
≤  25 [Bischoff 2009]. Also the bond behavior between FRP bars and concrete differs 

from the bond behavior between steel and concrete, so the tension stiffening effect must be re-evaluated. 

 

Benmokrane [1996], added two reduction factors and adjusted this equation: 

 

 𝐼𝑒 = 𝛼 · 𝐼𝑐𝑟 + (
𝐼𝑔 

𝛽
− 𝛼 · 𝐼𝑐𝑟 ) · (

𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
)

3

≤  𝐼𝑔 .                                   (8) 

 

From experimental data α=0.84 and β=7, because of the nature of FRP reinforcement, with larger 

deflection and greater reduction of compressed concrete section when applied Mcr. 

 

Faza and Gangarao [1992], proposed a model for two concentrated point loads based on the assumption 

that a concrete section between the point loads is fully cracked, while the end sections are partially 

cracked. 

 

Model β m 

EC2 1,0 2,0 

CEB 0,8 1,0 
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 𝐼𝑚 =
23·𝐼𝑐𝑟·𝐼𝑒

8·𝐼𝑐𝑟+15·𝐼𝑒
  Where   𝐼𝑒 = (

𝑀𝑐𝑟

𝑀𝑎
)

3

· 𝐼𝑔 + ⌈ 1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

⌉ · 𝐼𝑐𝑟 .           (9) 

 

The maximum deflection is calculated as follows: 

 

 𝛥𝑚𝑎𝑥 =
23·𝑃·𝐿3

648·𝐸𝑐·𝐼𝑒
 .                                               (10) 

 

Toutanji and Saafi [2000] adjusted the ratio Mcr/Ma to take into account the modulus of elasticity of 

FRP bars (Efrp) and the reinforcement ratio (ρf). They took a set of 13 GFRP-RC beams with a ratio 13 ≤
𝐼𝑔 

𝐼𝑐𝑟 
≤  25. The model proposed was:  

 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

𝑚

· 𝐼𝑔 + ⌈ 1 − (
𝑀𝑐𝑟

𝑀𝑎
)

𝑚

⌉ · 𝐼𝑐𝑟 ≤  𝐼𝑔 .                             (11) 

 

where: 𝑚 = 6 −
10·𝐸𝑓

𝐸𝑠
· 𝜌𝑓 ,  if   

𝐸𝑓

𝐸𝑠
· 𝜌𝑓 <  0.3 and 𝑚 = 3,  if   

𝐸𝑓

𝐸𝑠
· 𝜌𝑓 ≥  0.3 

 

Brown and Bartholomew [1996], used quite the same model based on tests of two GFRP-RC beams 

with the ratio 
𝐼𝑔 

𝐼𝑐𝑟 
≈  11 and used  𝑚 = 5, while A-Sayed [2000] proposed 𝑚 = 5,5.     

 

ACI 440.1 R-01 adopted the modification proposed by GAO [1998]:  

 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

· 𝛽𝑑 · 𝐼𝑔 + ⌈ 1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

⌉ · 𝐼𝑐𝑟 ≤  𝐼𝑔  .                     (12) 

 

where, βd = 0,6 based on Masmoudi (1998) and Theriault & Benmokrane [1998] studies. They 

recommended, 

 

𝛽𝑑 = 𝛼𝑏 (
𝐸𝑓𝑟𝑝

𝐸𝑠
+ 1) ≤   𝐼𝑔 .                                           (13) 

 

where, αb is a bond dependented coefficient: αd =0.5 for GFRP [GAO 1998] and later based on 

experimental tests of 48 GFRP-RC and the amount of the longitudinal reinforcement:   

 

  𝛼𝑏 = 0,064 · (
𝜌𝑓

𝜌𝑓𝑏
) + 0,13 .                                            (14) 

 

Recently Rafi and Nadjai [2009], introduced γ factor, that reduces the portion of cracked moment of 

inertia:   

 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

· 𝛽𝑑 · 𝐼𝑔 + ⌈ 1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

⌉ ·
𝐼𝑐𝑟

𝛾 𝑐𝑟 
≤  𝐼𝑔  .                    (15) 

 

𝛾 = 0,86 · (1 +
𝐸𝑓

400
) .                                               (16) 

 

 

 𝛽𝑑 =
1

5
(

𝜌𝑓

𝜌𝑓𝑏
) .                                                     (17) 

 

ISIS Canada [2001], based on Ghali and Azarnejad [1999], when service load level is less that cracked 

moment, Mcr, the immediate deflection can be evaluated using the transformed moment of inertia, It, 

instead of effective moment of inertia, Ie , used when service moments exceed the cracked moment. 
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Mota [2006] examined a number of the suggested formulations for Ie and found an equation that 

provided the most conservative results over the entire range of experimental results of test specimens.    

 

            𝐼𝑒 =
𝐼𝑡 ·𝐼𝑐𝑟 

𝐼𝑐𝑟 +⌈ 1−
1

2
(

𝑀𝑐𝑟
𝑀𝑎

)
2

⌉·(𝐼𝑡 −𝐼𝑐𝑟 )
  .                                          (18) 

 

 Where, It is the moment of inertia of a non-cracked concret section, and  

 

𝐼𝑐𝑟 =
𝑏·(𝑘∙𝑑)3

3
+  𝑛𝑓𝑟𝑝 ∙ 𝐴𝑓𝑟𝑝 ∙ (𝑑 − 𝑘 ∙ 𝑑)2 .                            (19) 

 

𝑘 = √(𝜌 ∙  𝑛𝑓𝑟𝑝)
2

+ 2 ∙ 𝜌 ∙  𝑛𝑓𝑟𝑝 − 𝜌 ∙  𝑛𝑓𝑟𝑝 .                           (20) 

 

𝑛𝑓𝑟𝑝 =
𝐸𝑓𝑟𝑝

𝐸𝑐
 .                                                              (𝟐𝟏)   

 

  𝜌 =
𝐴𝑓𝑟𝑝

𝑏∙𝑑
 .                                                            (22)    

 

 where, b represent the width of cross-section (mm) and d the depth to FRP layer (mm). 

 

CAN/CSA-S806 [2002] used Razqapur methodology which assumes that tension stiffening is 

insignificant in cracked regions on FRP-RC beams, using Ec·Ig when Ma < Mcr, and Ec·Icr when Ma > 

Mcr, to integrate the curvature M/EI along the beam span. This leads to a simple expression for beam 

deflection δmax, for a four-point bending configuration with two point loads at a distance a from the 

supports, assuming Lg, the distance that the beam is uncracked:      

 

𝛿𝑚𝑎𝑥 =
𝑃𝐿3

24𝐸𝑐𝐼𝑐𝑟
[3 (

𝑎

𝐿
) − 4 (

𝑎

𝐿
)

3

− 8 (1 −
𝐼𝑐𝑟

𝐼𝑔
) (

𝐿𝑔

𝐿
)

3

].              (23) 

 

Saikia [2007], used the same expression in his tests and found the same agreement with his experimental 

data. 

Bischoff [2005], Bischoff [2007a], Bischoff and Scanlon [2007], proposed an equation derived from 

integration of curvatures along the beam taking into account the tension-stiffening effect:  

 

 𝐼𝑒 =
𝐼𝑐𝑟 

1−(1−
𝐼𝑐𝑟
𝐼𝑔

)·(
𝑀𝑐𝑟
𝑀𝑎

)
2 .                                           (24) 

 

 

Abdalla, El-Badry and Rizkalla introduced a model similar to EC2-CEB, suggesting α=0.85 and β=0.5 

 

𝑣 = (
𝑀𝑐𝑟

𝑀𝑎
) · 𝛽 · 𝑣1 + ⌈ 1 − 𝛽 (

𝑀𝑐𝑟

𝑀𝑎
)⌉ · 𝛼 · 𝑣2  .                    (25) 

 

 

But Abdalla [2002] gave also a model based on ACI:   

 

𝐼𝑒 =
𝐼𝑔 ∙𝐼𝑐𝑟 

𝐼𝑐𝑟 ∙𝜉+1,15·𝐼𝑔(1−𝜉)
 .                                         (26)  

 

where,  𝜉 =
0,5𝑀𝑐𝑟

𝑀𝑎
. This equation has a coefficient of 1.15 (or better 1/0.85), that takes into account the 

reduction of tension-stiffening effect in the fully cracked FRP concrete section. 

The Norwegian Code (Eurocrete), calculates the deflections taking:  Im = Icr (so the the section 

considered fully cracked). 
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The Japanese Code (JSCE), consent only the use of CFRP bars with Young modulus comparable with 

the Young modulus of the steel, and suggests conserving the same models used for traditional steel 

reinforced beams. 

4   The Result Comparison  

To compare the result, we have made calculation for a simply supported, normal weight interior beam 

with a span length 𝑙 = 4 𝑚 and𝑓𝑐
′ = 30 𝑀𝑃𝑎 . It is designed to carry a service live load of 𝑤𝐿𝐿 =

6 𝑘𝑁/𝑚 and a superimposed service dead load of 𝑤𝑆𝐷𝐿 = 3 𝑘𝑁/𝑚. The cross section of the beam is to 

be taken as 250 mm x 400 mm. 4 Ø 16 GFRP bars are selected as main beam reinforcement and Ø 9.5 

GFRP bars are selected as shear beam reinforcement. Material properties of GFRP bars are: tensile 

strength 𝑓𝑓𝑢
∗ = 320 MPa, rupture strain 휀𝑓𝑢

∗ =0.014 and Modulus of elasticity Ef = 44 800 MPa. The results 

are given in the table below.  

 

Table 2. Results taken from different methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Branson’s equation, the effective moment of inertia  𝐼𝑒  , at different levels of loading, 

takes values between the moment of inertia of non-cracked gross concrete section 𝐼𝑔 , and the moment 

of inertia of the cracked section 𝐼𝑐𝑟 . Here, the effective moment of inertia 𝐼𝑒  is always less than𝐼𝑐𝑟 , but 

it approaches it after cracking occurs.  

For this reason, is calculated the mid span displacements of a GFRP reinforced concrete beam, based 

on different equations for effective moments of inertia  𝐼𝑒 , using different values of span lengths, 

different levels of loading (only different service dead loads, while the service live load is maintained 

constant), in normal reinforced ratio (
𝜌𝑓𝑟𝑝

𝜌𝑓𝑏
≈ 1) and in high reinforced ratio (

𝜌𝑓𝑟𝑝

𝜌𝑓𝑏
≥ 2.5). All the results 

are included in comparative charts in order to find out some theoretical conclusions. 

 

 

 

 

Reference 𝑰𝒆  𝜟 𝑳𝑻
 

ACI 318R-95 (1995), Branson 13,08 · 108 𝑚𝑚4    1,36𝑚𝑚 

Benmokrane (1996) 1,887 · 108 𝑚𝑚4 9,45𝑚𝑚 

ACI 440.1R-03 (2003) 8,011 · 108 𝑚𝑚4 2,22𝑚𝑚 

Yost (2003) based on ACI 3,128 · 108 𝑚𝑚4 5,70𝑚𝑚 

ACI 440.1R -06 (2006) 2,641 · 108 𝑚𝑚4 6,75𝑚𝑚 

Rafi & Nadjai (2009) 2,642 · 108 𝑚𝑚4 6,75𝑚𝑚 

EC2-CEB, Italian Code CNR-DT 

203/2006 

 8,72𝑚𝑚 

Toutanji & Saafi (2000) 12,89 · 108 𝑚𝑚4 1,39𝑚𝑚 

Alsayed Model A (2000) 12,83 · 108 𝑚𝑚4 1,38𝑚𝑚 

Alsayed Model B (2000) 1,649 · 108 𝑚𝑚4 10,82𝑚𝑚 

Bischoff (2005,2007) & Scanlon (2007) 11,81 · 108 𝑚𝑚4 1,51𝑚𝑚 

Abdalla based on ACI (2002) 2,075 · 108 𝑚𝑚4 8,60𝑚𝑚 

Abdalla, Rizkalla & El Badry  (EC2)  5,34𝑚𝑚 

ISIS Canada (2001) & Mota (2006) 2,514 · 108 𝑚𝑚4 7,48𝑚𝑚 

Hall & Ghali (2000) 2,514 · 108 𝑚𝑚4 7,48𝑚𝑚 
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Fig. 1. Relation between span length and mid span displacement 
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Fig. 4. Relation between service dead load and mid span displacement for  
 𝛒𝐟𝐫𝐩
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Fig. 5. Legend of methods 
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Fig. 2. Relation between service dead load and mid span displacement for  
𝛒𝐟𝐫𝐩

𝛒𝐟𝐛
≈ 𝟏 

Fig. 3. Relation between service dead load and mid span displacement for  
𝛒𝐟𝐫𝐩

𝛒𝐟𝐛
≈

𝟐. 𝟓𝟑 
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5     Summary and results 

As shown in figure 1, all methods lead to quite the same result: increasing the span length, we get bigger 

mid span displacements until the maximum allowed deflection is reached. But we can see that the 

Branson’s equation is just an envelope for the other methods, for short beams we get smaller deflections 

than other methods and for longer ones we get bigger displacement than other methods. This because 

Branson’s equation doesn’t takes into account the type of FRP used as reinforcement, so it hasn’t used 

any reduction factor based on the  
Efrp

Es
 ratios, or even on the quantity of the reinforcement used so the 

ρfrp

ρfb
 ratios, as other methods do. So this equation is more generalized and conservative.  

A tentative was made using ACI 440.1R -03 [2003], where a reduction factor based on the  
Efrp

Es
 

ratios is taken into account, but not the reinforcement ratio, or ACI 440.1R -06 [2006] where only the 

reinforcement ratio is taken into account. The results show that the second part of Branson’s equation 

outweighs the first part in concrete beams reinforced with FRP bars, so the most important of the two 

reduction coefficients is the one based on reinforcement ratio. Yost (2003) based on ACI and Rafi & 

Nadjai [2009] are the most reliable methods because they use both reduction factors, but also ACI 

440.1R -06 [2006] gives satisfactory results. For this reason, the three methods, based on ACI code, 

gives more accurate results for beams with lower reinforcement ratios. 

Also, Hall& Gali, ISIS Canada [2001] and the Canadian Code [CAN/CSA-S806 2002], using different 

equation instead of Branson’s one, where is introduced It, the moment of inertia of a non-cracked section 

transformed to concrete taking into account not only the reinforcement and modulus of elasticity ratios, 

but also a coefficient characterizing the bond properties of reinforcement bars, gives accurate and 

similar results as the others above. The only discrepancy of these methods (including Bischoff &Scanlon 

2007), is the negative values of mid span displacements for very short beams because those take into 

account also the tension-stiffening effect. 

EC2-CEB, Italian Code CNR-DT 203/2006 gives good results that don’t depend on the effective 

moment of inertia, but only on displacements of non-cracked cross concrete section and the cracked 

section. It takes into account the bond properties of reinforcement and the type of load: short time loads 

or long-time cycling loads, but doesn’t depend on reinforcement and modulus of elasticity ratios. 

Figure 2 shows the relation between service dead load and mid span displacements for 
ρfrp

ρfb
≈ 1. For 

normal reinforcement ratio  
ρfrp

ρfb
≤ 2.5 , at different levels of loading, Ie is still less than   Icr , regardless 

the chosen method we use to calculate the Ie .  As shown in figure 3, if reinforcement ratios increases, 

especially for 
ρfrp

ρfb
> 2.5, than deflections decreases. This happens because the cracking moment of the 

beam increases and few cracks appear at the same level of loading. The compressive strength of concrete 

increases too, but this effect on beam’s deflection is not considerable in high reinforcement ratios. The 

increase of Icr, for high levels of loading and reinforcement ratios may exceed the values of  Ie . 

It is interesting the fact that, the deflections calculated using most of these methods, are more consistent 

with each other in high levels of loading and reinforcement ratios. This occurs in most of methods where 

the minimum effective moments of inertia   Ie  are quite equal to the cracked moment of inertia   Icr . 

The deflections seem to be the same for quite all methods. Some deviations are presented by 

Benmokrane where Ie  < Icr  independently from the level of loading and Abdalla,Rizkalla & El Badry  

(based on EC2) and also EC2, because they don’t use Ie .  

In figure 4 are selected the most used and reliable methods for better comparison. 
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6  Conclusions 
 

Results show that deflection values calculated using ACI 440.1R -06 [2006] code are more accurate 

than those using ACI 440.1R -03 [2003] for beams with low reinforcement ratio but not much 

satisfactory if  
ρfrp

ρfb
> 2.5,  especially if 

ρfrp

ρfb
> 3. 

Based on a lot of experimental results, the reinforcement ratio and the elastic modulus of FRP bars are 

the most significant variables to calculate deflections. Yost [2003] based on ACI and Rafi & Nadjai 

[2009] and also ACI 440.1R -06 [2006] are the most reliable methods because they use both reduction 

factors taking into account these variables and give good results, so this three methods, based on ACI 

code, gives more accurate results for beams with low and high reinforcement ratios. 

Also, Hall& Gali, ISIS Canada [2001] and the Canadian Code (CAN/CSA-S806 2002), using a different 

method instead of Branson’s equation and taking into account also the bond properties of reinforcement 

bars gives good results and after all the deflections calculated using these methods based on Canadian 

Code are more conservative of those based on ACI code.  

All the equations can better predict deflections for Ie  < Icr , especially at high levels of loading and 

reinforcement ratios. For Ie  ≥ Icr ,  we don’t get reliable results because we get very high deflections 

for low levels of loading. 

In this study is used only a type of GFRP bar but exist different types of FRP reinforcements with very 

large properties, so different results are taken based on different methods. For this reason a lot of 

researchers, based on a large numbers of experimental tests are modifying and optimizing Branson’s 

equation, so that the predicted values of deflection approach the experimental values. New models are 

going to be developed based on experimental results and elaborated genetic algorithm used to evaluate 

the effects of several parameters and reevaluate the power m in Branson’s equation as a lot of 

researchers are doing like Toutanji & Saafi [2000], Alsayed Model A [2000], Mousavi& Esfahani 

[2011], etc. 
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