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Taguchi’s method is a popular methodology utilized within many different industries in order to improve product quality 
and process performance. Digital dynamic systems denote the problems where both the input and output are digital values 
in Taguchi’s method. When the signal factor levels are classified into two classes and the output is classified into two or 
more classes, two or more errors will occur in experiments. The digital dynamic systems are generally applied in the fields 
of telecommunication, computer operations, chemistry and tests of detection of medicine or environmental pollution. The 
SN ratio recommended by Taguchi is based on the errors with the same loss coefficient to optimize the problems. However, 
the losses due to the errors are not equal in practice. This paper proposes a general model for optimizing parameter design 
and selecting threshold value for the digital dynamic systems where the output is classified into four classes. The 
implementation and the effectiveness of the proposed approach are illustrated through two case studies. 
 
Significance: The digital dynamic systems are usually applied in the fields of telecommunication, computer operations, 
chemistry and tests of detection of medicine or environmental pollution. This article presents an effective method to 
optimize such problem. 
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1. INTRODUCTION 

 
   Stringent market competitiveness has driven manufacturers to enhance product quality. Taguchi’s method (robust 
design) is a widely used methodology in many different industries for improving product quality and process performance 
of both static and dynamic systems. In dynamic systems, if a product or process to be optimized has a signal input that 
directly decides the output, the optimization involves determining the best control factor levels so that the input/output ratio 
is closest to the ideal function. In the digital dynamic system, the ideal function is that whenever an input signal is “Input 1”, 
the output should be “Input 1”, and whenever the input signal is “Input 2”, the output should be “Input 2”.  
   Several researchers have studied robust design problems concerning dynamic systems. Kapur and Chen (1988) 
developed the SN ratio for four cases of dynamic characteristic problems. They also presented the method to compute SN 
ratios both equispaced and non-equispaced intervals for levels of signal factors. Phadke and Dehnad (1988) derived a 
two-step procedure for optimizing the designs of products and processes. Taguchi (1992) proposed the SN ratio based on 
the errors with the same loss coefficient to optimize the problems. Miller and Wu (1996a) classified signal-response systems 
into two broad types: measurement systems and multiple target systems to analyze the dynamic systems. Miller and Wu 
(1996b) pointed out the deficiencies in Taguchi’s dynamic SN ratio approach and then provided two strategies for modeling 
and analyzing data of dynamic systems. Wasserman (1996) illustrated the parameter design of dynamic system with the 
regression perspective. Lunani, Nair and Wasserman (1997) demonstrated the limitations of data analysis methods 
recommended by Taguchi and then proposed two graphical methods for identifying suitable measures of dispersion and for 
data analysis. McCaskey and Tsui (1997) developed an appropriate two-step procedure for dynamic systems under an 
additive model. This procedure reduces the dimension of the optimization problem and allows for future changes of the 
target slope without re-optimization. Su and Hsieh (1998) presented an approach based on neural network technique to 
achieve optimization of dynamic systems. Tsui (1999) investigated the response model analysis under an additive model 
and a linear response-to-signal relationship. Su, Chiu and Chang (2000) employed the neural network and genetic algorithm 
to search for the optimal parameter combination. Li (2001) presented three models for the establishment of the optimal 
parameter conditions by selection of the optimal threshold value for digital dynamic system. Miller (2002) covered three 
approaches, including the use of Taguchi's dynamic signal-to-noise ratio, a graphical technique and joint effects plot for 
analyzing the dynamic system. Nair, Taam and Ye (2002) analyzed the location and dispersion effects for optimizing the 
performance over a range of input-output values. Tong and Wang (2002) presented an alternative approach based on 
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principal component analysis and grey relational analysis to determine an overall quality performance index for multiple 
responses. Tong, Wang, Houng and Chen (2002) used the dual response surface method to optimize the dynamic 
multi-response problems. Chen (2003) provided a stochastic optimization modeling procedure to accommodate dynamic 
characteristics. The advantage of this method is that it does not require any performance measure as the SN ratio. 
   Lesperance and Park (2003) proposed a joint generalized linear model based on standard regression modelling 
techniques. The model uses all of the data rather than relying on summary statistics, and the approach is applicable to a 
wide range of dynamic systems. Tong, Wang, Chen and Chen (2004) utilized the principal component analysis to simplify 
the dynamic multi-response problems and determine the optimization direction by using the variation mode chart. The 
proposed procedure transforms the correlated multiple responses into uncorrelated components through PCA, thereby 
simplifying the optimization process. Hsieh, Tong, Chiu and Yeh (2005) proposed a procedure utilizing the statistic 
regression analysis and desirability function to optimize the multiresponse problem. The approach can effectively departure 
those control factors which significant affect the response's variability or system's sensitivity and the requirement of 
minimizing variability and adjusting system's sensitivity can be achieved. Su, Chen and Chan (2005) used the neural 
networks to simulate the relationship between the control factor values and corresponding responses and then employed the 
scatter search to obtain the optimal parameter settings. Wang and Tong (2005) proposed a procedure including the 
technique for order preference by similarity to ideal solution, the multiple attribute decision-making method and the grey 
relational analysis to assess the respective response performance. The proposed procedure simultaneously considers the 
ideal and negative ideal solutions of each response so that it can explicitly depict the multiresponse performances and 
accurately determine an optimal factor/level combination. Wu and Yeh (2005) presented an approach to optimize multiple 
dynamic problems based on quality loss. The objective of proposed method is to minimize the total average quality loss for 
multiple dynamic quality characteristics experiment. 
   Bae and Tsui (2006) developed a two-step optimization procedure to substantially reduce the process variance by 
dampening the effect of both explicit and hidden noise variables based on a generalized linear model. The proposed method 
provides more reliable results through iterative modeling of the residuals from the fitted response model. Chang (2006) 
proposed an approach based on backpropagation neural networks and desirability functions to optimizing parameter design 
of the dynamic multi-response. The response model can predict all possible multi-responses of the system by presenting full 
parameter combinations. Through evaluating the performance measurement of the predicted dynamic multi-response, the 
best parameter setting can be obtained by maximizing the single index. Lee and Kim (2007) proposed a multiple response 
optimization model which minimizes quality loss function by extending the concept of a dual response surface approach to 
the multiple response systems. The overall performance of a multiple response problem is evaluated by obtaining mean and 
variance responses for each quality characteristic, and covariance responses among quality characteristics Wang (2007) 
developed a procedure using principal component analysis (PCA) and multiple criteria evaluation of the grey relation 
model to optimize dynamic multi-responses. PCA can consider the correlations among multiple quality characteristics to 
obtain uncorrelated components. These components are then substituted into multiple criteria evaluation of the grey relation 
model to determine the optimal factor level combination. Wu (2007) deduced the quality loss function of digital-digital 
dynamic system based on the two error rates with unequal loss coefficient. The model corrects the inappropriate formula 
suggested by Taguchi for optimizing the control factor settings. Chang (2008) employed the artificial neural networks to 
build a system’s response function model and then used the desirability functions to evaluate the performance measures of 
multiple responses. Finally, he applied the simulated annealing algorithm to obtain the best factor settings through the 
response function model. The obtained best factor settings can be any values within their upper and lower bounds so that 
the system’s multiple responses have the least sensitivity to noise factors along the magnitude of the signal factor. 
   Tong, Wang and Tsai (2008) presented a procedure for optimizing a dynamic system based on data envelopment 
analysis. The relative efficiencies of location effects and dispersion effects resulting from DEA are used as quality 
performance measures for the product/process mean and variance, respectively.  
   This paper gives a general model to optimize the digital dynamic system where the signal is classified into two classes 
and the output is classified into four classes. Two examples demonstrate the computation of error rates, threshold and 
standardized SN ratio, and the optimization of the problem. 
 
2. DIGITAL DYNAMIC SYSTEM 
 
   In digital dynamic systems, if signal (Input 1 or Input 2) and response (output: y) are classified into two classes, the 
output is a continuous random variable affected by control factors and noise factors, the criterion for judging the output is 
the threshold value R. Since the transmission process is affected by noise factors, we do not have the ability to observe the 
distributions of the continuous variable received at the output terminal when “Input 1” or “Input 2” is transmitted. The 
optimal parameter design is performed to minimize the quality loss that occurred by two error rates p and q. This can be 
accomplished by a leveling operation, such as changing the threshold. Figure 1 shows the relationship between error rates 
and threshold. 
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Figure 1. Error rates p and q are not equal when the threshold is at R 
 
   The digital dynamic system is widely applied in the fields of telecommunication, computer operations, chemistry and 
tests of detection of medicine or environmental pollution. For example, the chemical processes of metal refinement, 
element extraction and element separation can be viewed as a digital dynamic system that has two kinds of errors. In the 
health sciences field, a widely used application of experiments is found in the evaluation of screening tests and diagnostic 
criteria. An enhanced ability to correctly predict the presence or absence of a particular disease from a knowledge of test 
results (positive or negative) and/or the status of presenting symptoms (present or absent) is of interest to clinicians. The 
evaluation of screening tests and diagnostic criteria is based on the sensitivity and specificity. The disease status and 
screening test result can be viewed as a digital dynamic system that has two kinds of errors (false-positive and 
false-negative). 
   Suppose the signal is classified into two classes and the output is classified into four classes. The criterions for judging 
the output have two threshold values for signals “Input 1” and “Input 2”, respectively. When signal is “Input 1”, if output y 
is larger than R1, the output y is judged as “Good 1”; if output y is between R1 and R, the output y is judged as “Bad 1” 
(error rate p1); if output y is smaller than R, the output y is judged as “Bad 2” (error rate p2). When signal is “Input 2”, if 
output y is smaller than R2, the output y is judged as “Good 2”; if output y is between R2 and R, the output y is judged as 
“Bad 2” (error rate q2); if output y is larger than R, the output y is judged as “Bad 1” (error rate q1). An input/output table 
can be developed, as shown in Table 1 
 

Table 1. Input/output table in terms of error rate 
 

Output 
Input Good 1 Bad 1 Bad 2 Good 2 Total 

Input 1    0 1 
Input 2 0    1 
Total     2 

 
   To obtain one accurate output “Good 1”, on average, we have to obtain  pieces wrong output “Bad 1” 

and  pieces wrong output “Bad 2” when signal is “Input 1”. Similarly, on average, we have to obtain 

 pieces wrong output “Bad 1” and  pieces wrong output “Bad 2” for obtaining one 
accurate output “Good 2” when signal is “Input 2”. Hence, the data in Table 1 can be converted into those in Table 2 for 
processing one accurate output. 
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Table 2. Input/output table in terms of processing one accurate output 
 

Output 
Input Good 1 Bad 1 Bad 2 Good 2 

Input 1 1   0 

Input 2 0   1 
 
   Since the distributions of the continuous variable received at the output terminal are unknown, when signals “Input 1” 
and “Input 2” are transmitted, the thresholds values, R1 and R2, are fixed in the original system design. The optimal 
parameter design is performed to minimize the quality loss occurred by error rates p1, p2, q1 and q2. This can be 
accomplished by a leveling operation to change the threshold R to R′. Figure 2 shows the relationship among error rates and 
thresholds. 
 
 

 
 
 

Figure 2. Relationship among error rates and thresholds 
 
3. OPTIMIZATION OF ROBUST DESIGN FOR DIGITAL DYNAMIC SYSTEMS 
 
   Let K11 be the loss coefficient when signal is “Input 1” and output is “Bad 1”; K12 be the loss coefficient when signal is 
“Input 1” and output is “Bad 2”; K21 be the loss coefficient when signal is “Input 2” and output is “Bad 1”; K22 be the loss 
coefficient when signal is “Input 2” and output is “Bad 2”. The total quality loss (L) can be expressed as 

 
… (1) 

   
   Suppose that random variable X of signal “Input1” is normal distribution  and random variable Y of signal 

“Input2” is normal distribution . The following equalities hold. 

 … (2) 

 
 … (3) 
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  … (4) 

   
 … (5) 

     
   Since the original thresholds R1, R and R2 are known and error rates p1, p2, q1 and q2 can be obtained from the 
observations of experiment, from equations (2)-(5), the expected values and variances of random variables X and Y can be 
solved by 

 
… (6) 

 

 
… (7) 

    

 
… (8) 

    

 
… (9) 

    
   From the above analysis, we propose an approach to the digital dynamic systems where output is classified into four 
classes, as described in the following: 
Step 1. Evaluate the loss coefficients K11, K12, K21 and K22, and then calculate the four error rates p1, p2, q1 and q2. 
Step 2. Compute the expected values and variances of random variables X and Y of signals “Input 1” and “Input 2”, and 

then build the quality loss function using equation (1) for each test. 
Step 3. Find error rates p1′, p2′, q1′ and q2′, and threshold value R′ after leveling operation by mathematical programming 

for minimizing the quality loss, and then calculate the SN ratio by following equation for each test. 
 

 
… (10) 

 
Step 4. Construct the main effects of factor levels table according to the SN ratio and then determine those factors that have 

a strong effect on the quality characteristic of interest. 
Step 5. Compute the predicted average SN ratio of optimal parameter settings, and then find the error rates, threshold value 

and quality loss after leveling operation. 
 
4. INDUSTRY APPLICATION 
 
Case 1: Digital receiving 
   The effectiveness of the proposed optimization procedure is demonstrated in a digital receiving case presented by 
Taguchi (1992). RS-232 is a complete interface standard developed by the Electronics Industry Association. A high level 
voltage (+3V to +15V) for the driver output is defined as is defined as logic 0 and is historically referred to as “Space”. A 
low level voltage (-3V to -15V) for the driver output is defined as is defined as a logic 1 and is referred to as “Mark”. If the 
received pulse is near zero positive voltage, it is referred to as “Bad Space”. If the received pulse is near zero negative 
voltage, it is referred to as “Bad Mark”. The current digital receiving status is as shown in Table 3. 
   Seven factors with two levels each were selected and assigned to an L8 orthogonal array for improvement. The current 
conditions are the first levels. For each test, 10,000 spaces and marks each were transmitted and the observed status was as 
shown in the Table 4. 
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Table 3. Current digital receiving status 

 
Receiving 

Input Good Space Bad Space Bad Mark Good Mark Total (%) 

Space (S) 99.8735 0.1221 0.0044 0.0000 100.0000 
Mark (M) 0.0000 0.0030 0.0845 99.9125 100.0000 
Total (%) 99.8735 0.1251 0.0889 99.9125 200.0000 

 
Table 4. Factor assignment and experimental data 

 
Layout Types of Received Pulse Expt. 

No. A B C D E F G 
Input 
Pulse Good 

Space 
Bad 

Space 
Bad 

Mark 
Good 
Mark 

Total 

Space 9678 310 12 0 10000 1 1 1 1 1 1 1 1 
Mark 0 6 238 9756 10000 
Space 9892 104 4 0 10000 2 1 1 1 2 2 2 2 Mark 0 3 72 9925 10000 
Space 9971 28 1 0 10000 3 1 2 2 1 1 2 2 Mark 0 1 42 9957 10000 
Space 9009 956 35 0 10000 4 1 2 2 2 2 1 1 Mark 0 52 1426 8522 10000 
Space 9874 119 7 0 10000 5 2 1 2 1 2 1 2 Mark 0 5 85 9910 10000 
Space 9957 42 1 0 10000 6 2 1 2 2 1 2 1 Mark 0 0 32 9968 10000 
Space 9963 35 2 0 10000 7 2 2 1 1 2 2 1 Mark 0 3 49 9948 10000 
Space 7942 1980 78 0 10000 8 2 2 1 2 1 1 2 Mark 0 110 2820 7070 10000 

 
   Suppose that the error rate of the received pulse is “Bad Space” is pS and error rate of the received pulse is “Bad Mark” 
is pM while input pulse is “Space”; the error rate of the received pulse is “Bad Space” is qS and error rate of the received 
pulse is “Bad Mark” is qM while input pulse is “Mark”. Let KSS present the loss coefficient of judging the received pulse is 
“Bad Space” and KSM present the loss coefficient of judging the received pulse is “Bad Mark” while input pulse is “Space”; 
KMS present the loss coefficient of judging the received pulse is “Bad Space” and KMM present the loss coefficient of judging 
the received pulse is “Bad Mark” while input pulse is “Mark”. Hence, the total quality loss L is expressed as 
 

 
… (11) 

 
   From Table 4, the input/output table in terms of error rate is tabulated in Table 5. Suppose the random variables of input 
pulse are “Space” and “Mark” are normal distributions  and , then the following equalities hold. 

 … (12) 

 
 … (13) 

    
 … (14) 

    
 … (15) 

       
   Suppose the original thresholds are ,  and , then from equations (12)-(15), we can find the 
parameters of normal distributions for input pulses are “Space” and “Mark”, shown as Table 6. 
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Table 5. Input/output table in terms of error rate 
 

Layout Types of Received Pulse Expt. 
No. A B C D E F G 

Input 
Pulse Good 

Space 
Bad 

Space 
Bad 

Mark 
Good 
Mark 

Total 

Space 0.9678 0.0310 0.0012 0.0000 1 1 1 1 1 1 1 1 1 
Mark 0.0000 0.0006 0.0238 0.9756 1 
Space 0.9892 0.0104 0.0004 0.0000 1 2 1 1 1 2 2 2 2 Mark 0.0000 0.0003 0.0072 0.9925 1 
Space 0.9971 0.0028 0.0001 0.0000 1 3 1 2 2 1 1 2 2 Mark 0.0000 0.0001 0.0042 0.9957 1 
Space 0.9009 0.0956 0.0035 0.0000 1 4 1 2 2 2 2 1 1 Mark 0.0000 0.0052 0.1426 0.8522 1 
Space 0.9874 0.0119 0.0007 0.0000 1 5 2 1 2 1 2 1 2 Mark 0.0000 0.0005 0.0085 0.9910 1 
Space 0.9957 0.0042 0.0001 0.0000 1 6 2 1 2 2 1 2 1 Mark 0.0000 0.0000 0.0032 0.9968 1 
Space 0.9963 0.0035 0.0002 0.0000 1 7 2 2 1 1 2 2 1 Mark 0.0000 0.0003 0.0049 0.9948 1 
Space 0.7942 0.1980 0.0078 0.0000 1 8 2 2 1 2 1 1 2 Mark 0.0000 0.0110 0.2820 0.7070 1 

 
Table 6. The parameters of normal distributions for input pulse 

 
Layout Space Mark Expt. 

No. A B C D E F G     
1 1 1 1 1 1 1 1 7.67701 2.52893 -7.65967 2.36491 
2 1 1 1 2 2 2 2 9.52981 2.84235 -10.30272 3.00230 
3 1 2 2 1 1 2 2 11.62026 3.12455 -10.22215 2.74862 
4 1 2 2 2 2 1 1 5.73737 2.12744 -5.06931 1.97847 
5 2 1 2 1 2 1 2 10.02162 3.13700 -10.67303 3.24356 
6 2 1 2 2 1 2 1 10.22215 2.74862 -10.02695 2.57723 
7 2 2 1 1 2 2 1 12.32337 3.48110 -11.84164 3.45075 
8 2 2 1 2 1 1 2 4.54236 1.87845 -3.93596 1.71848 

 
   Suppose the loss coefficients are , ,  and . The error rates, threshold, quality loss 
and SN ratio for each test can be obtained by steps 1-3, shown as Table 7. 
 

Table 7. The error rates and SN ratio after leveling operation for each test 
 

Error rates after leveling operation Expt. 
No. Layout     

Threshold 
 Loss 

SN 
ratio ( ) 

1 0.03131 0.00089 0.00083 0.02357 -0.22532 0.06006 12.21442 
2 0.01047 0.00033 0.00036 0.00714 -0.14007 0.01917 17.17349 
3 0.00279 0.00011 0.00009 0.00421 0.05094 0.00743 21.29170 
4 0.09455 0.00455 0.00394 0.14386 0.18789 0.29310 5.32978 
5 0.01202 0.00058 0.00060 0.00840 -0.17111 0.02304 16.37586 
6 0.00423 0.00007 0.00007 0.00313 -0.20607 0.00767 21.15045 
7 0.00345 0.00025 0.00024 0.00496 0.19307 0.00943 20.25339 
8 

Ignored 

0.19551 0.01029 0.00814 0.28486 0.19278 0.69803 1.56126 
 
   From Table 7, the main effects of factor levels according to the SN ratio are listed in Table 8 and the optimal factor 
settings are B1C2D1F2. 
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Table 8. Factor effects (SN ratio) 
 

Factor 
Level  A B C D E F G 

Level 1 14.00235 16.72856 12.80064 17.53384 14.05446 8.87033 14.73701 
Level 2 14.83524 12.10903 16.03695 11.30375 14.78313 19.96726 14.10058 

difference 0.83289 4.61953 3.23631 6.23010 0.72867 11.09693 0.63643 
 
   The predicted average SN ratio is 
 

 … (16) 

  
   Hence, the total quality loss before leveling operation for the optimal factor settings is , and the 
predicted error rates are , ,  and  for input pulses are 
“Space” and “Mark”, respectively. The random variables of input pulses “Space” and “Mark” are normal distributions 

 and . 

   The error rates and threshold after leveling operation are , , , 

 and . The quality loss reduces to 0.00198. The comparison of current and optimal factor 
settings is tabulated in Table 9. 
 

Table 9. Comparison of current and optimal factor settings 
 

Current Factor Settings Receiving 
Input Good Space Bad Space Bad Mark Good Mark Loss 

Space 0.998735 0.001221 0.000044 0.000000 
Mark 0.000000 0.000030 0.000845 0.999125 0.00222 

 
Optimal Factor Settings Receiving 

Input Good Space Bad Space Bad Mark Good Mark Loss 
Space 0.9988423 0.0011560 0.0000017 0.0000000 
Mark 0.0000000 0.0000017 0.0008154 0.9991829 0.00198 

 
Case 2: Evaluation of the performance of tests for the detection of HBsAg 
   The qualitative analysis for the detection of a virus in medicine often causes a patient's doubt about inspection accuracy 
that is due to the critical value (threshold) varying with different laboratories and manufacturers. Randrianirina et al. (2008) 
evaluated four rapid immunochromatographic assays – DetermineTM HBsAg, Virucheck® HBsAg, Cypress HBsAg 
Dipstick® and Hexagon® HBsAg – for human hepatitis B surface antigen (HBsAg) detection in human serum. 
   A collection of reference serum samples (91 HBsAg positive and 109 HBsAg negative) stored at -80oC was used. The 
tests evaluated were (1) DetermineTM HBsAg rapid immunochromatographic test (storage temperature: 2-30 oC), which 
requires 50 µl of serum and gives a readout in 15 min; (2) Virucheck® HBsAg (storage temperature: 4-30 oC), which 
requires 100 µl of serum and gives a readout in 15 min; (3) Cypress HBsAg Dipstick® (storage temperature: 2-30 oC), 
requiring 250-500 µl of serum and gives a readout in 10 min; (4) Hexagon® HBsAg (storage temperature: 2-30 oC), that 
necessitates from 250 to 500 µl of serum and gives a readout in 20 min. All these tests give visual readout. If no red bar 
appeared in the test window, then the test was considered to be negative. If any red coloration was visible in the test 
window, the sample was considered to have tested positive. If no bar was observed in the control window, the test was 
rejected. The results of four immunochromatographic assays with reference serum samples for HBV infection are listed in 
Table 10. 
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Table 10. Results of evaluation for HBV infection 
 

Immunochromatographic assays Output 
Input Negative Positive Total 

Negative 109 0 109 DetermineTM HBsAg 
Positive 2 89 91 
Negative 107 2 109 Virucheck® HBsAg Positive 4 87 91 
Negative 105 4 109 Cypress HBsAg Dipstick® Positive 3 88 91 
Negative 105 4 109 Hexagon® HBsAg Positive 4 87 91 

 
   It is quite obvious that the cost of false-positive is different to the cost of false-negative. Let’s assume the loss 
coefficients are K1=1 (false-positive) and K2=5 (false-negative). The input/output table in terms of sensitivity and 
specificity are presented in Table 11 and the data in Table 11 can be converted into those in Table 12 for processing one 
accurate output. 

 
Table 11. Input/output table in terms of sensitivity and specificity 

 

Immunochromatographic assays Output 
Input Negative Positive Total 

Negative 1.00000 ( ) 0.00000* ( ) 1 
DetermineTM HBsAg 

Positive 0.02198 ( ) 0.97802 ( ) 1 
Negative 0.98165 ( ) 0.01835 ( ) 1 

Virucheck® HBsAg 
Positive 0.04396 ( ) 0.95604 ( ) 1 
Negative 0.96330 ( ) 0.03670 ( ) 1 

Cypress HBsAg Dipstick® 
Positive 0.03297 ( ) 0.96703 ( ) 1 
Negative 0.96330 ( )  0.03670 ( ) 1 

Hexagon® HBsAg 
Positive 0.04396 ( ) 0.95604 ( ) 1 

* As an approximation, it is assumed that  suggested by Taguchi (1992) when .  
 

Table 12. Input/output table in terms of processing one accurate output 
 

Immunochromatographic assays Output 
Input Negative Positive Total 

Negative 1 0.00461 1.00461 DetermineTM HBsAg 
Positive 0.02247 1 1.02247 
Negative 1.00000 0.01869 1.01869 Virucheck® HBsAg Positive 0.04598 1 1.04598 
Negative 1 0.03810 1.03810 Cypress HBsAg Dipstick® Positive 0.03409 1 1.03409 
Negative 1 0.03810 1.03810 Hexagon® HBsAg Positive 0.04598 1 1.04598 

 
  Hence, the total quality loss L is expressed as 

 … (17) 

    
  The following equality holds for minimizing the total quality loss by adjusting the threshold value. 
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… (18) 

  
 Thus, the rates of false-negative and false-positive  and  after adjustment are given by: 

 
… (19) 

 

 
… (20) 

    
   The rates of false-positive and false-negative after leveling operation, quality loss and SN ratio for each assay can be 
obtained by equations (19-20), shown as Table 13. 
 

Table 13. Results of evaluation for HBV infection 
 

Immunochromatographic assays False-positive False-negative Threshold  Quality loss SN ratio ( ) 

DetermineTM HBsAg 0.02225 0.00453  0.04551 13.41895 
Virucheck® HBsAg 0.06152 0.01294  0.13110 8.82392 

Cypress HBsAg Dipstick® 0.07457 0.01586  0.16116 7.92730 
Hexagon® HBsAg 0.08557 0.01837  0.18716 7.27779 

 
   From Table 13, the DetermineTM HBsAg test appears to be the most suitable for Madagascar based on the SN ratio, 
which is consistent with the results of Randrianirina et al.  

 
5. CONCLUSIONS 
 
   Analyzing the sensitivity and specificity from Table 11, the differences between the tests were not significant to 
evaluate which is better between Virucheck® HBsAg and Cypress HBsAg Dipstick®. Although the sensitivity (95.604 %) 
of Virucheck® HBsAg test is lower than the sensitivity (96.703 %) of Cypress HBsAg Dipstick® test, the specificity (98.165 
%) of Virucheck® HBsAg test is better than the specificity (96.330 %) of Cypress HBsAg Dipstick® test. Traditional 
evaluation of the performance of tests in medicine is based on the sensitivity and specificity separately. The SN ratio can 
evaluate the performance of the sensitivity and specificity simultaneously. From Table 13, the performance of Virucheck® 
HBsAg test is better than Cypress HBsAg Dipstick® test by SN ratio. 
   Robust design is conventionally used for off-line quality control and the digital communication systems, chemical 
separation processes, detections of virus or toxicity, etc., where the signal factor and the quality characteristic are digital, 
are examples of the digital dynamic system. To reduce the quality loss occurred by errors in digital dynamic system, it is 
important to calibrate by error rates of so-called leveling operation and calculate the SN ratio after leveling operation. The 
SN ratio recommended by Taguchi is based on the errors with the same loss coefficient to optimize the digital dynamic 
systems. However, the losses due to the errors are not equal in practice. This paper proposes a general model for optimizing 
parameter design and selecting threshold value for the digital dynamic systems where the output is classified into four 
classes. The implementation and the effectiveness of the proposed approach are illustrated through two case studies. 
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