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The traditional RAP (Redundancy Allocation Problem) is to consider only the component redundancy at the lowest-level. A 
system can be functionally decomposed into system, module, and component levels. Modular redundancy can be more 
effective than component redundancy at the lowest-level. We consider a MMRAP (Multiple Multi-level Redundancy 
Allocation Problem) in which all available items for redundancy (system, module, and component) can be simultaneously 
chosen. A tabu search (TS) of memory-based mechanisms that balances intensification with diversification via the 
short-term and long-term memory is proposed for its solution. To the best of our knowledge, this is the first attempt to use a 
TS for MMRAP. Our algorithm is compared with the existing genetic algorithm(GA) for MMRAP on the new composed 
test problems as well as the benchmark problems in the literature. Computational results show that the TS outstandingly 
outperforms the GA for all test problems. 
 
Significance: To evaluate the performance of metaheuristic approaches for the MMRAP, the existing GA was coded in C/ 
C++  programming language and a TS algorithm was developed. From computational results, we noticed that the proposed 
TS substantially outperformed the existing GA. 
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1. INTRODUCTION 
 
The reliability of a system can be increased by properly allocating redundant units to subsystems under various resource 
and technological constraints. A well-known Redundancy Allocation Problem (RAP) is to determine the optimal number of 
redundant component in order to maximize the system reliability constrained to resource restrictions or system-level 
constraints for cost and weight, etc. The RAP has become an important issue for system designs such as semiconductor 
integrated circuits, nanotechnology, and most electronic systems. The RAP is typically classified into the five categories 
such as series, parallel, series-parallel, parallel-series, and complex systems. In this study, we only focus on the 
series-parallel systems. Solutions for the series-parallel RAP have been suggested by many authors. Fyffe et al. (1968) 
originally set up the problem and suggested a solution algorithm utilizing a dynamic programming approach. Nakagawa 
and Miyazaki (1981) developed 33 variations of Fyffe’s problem, where the weight constraint varied its value from 159 to 
191. Coit and Liu (2000) proposed zero-one integer programming for small size of problems. They constrained the solution 
space so that only the identical component type can be allowed for each subsystem.  
   On the contrary, Coit and Smith (1996) extended Fyffe’s problem in such a way that the parallel system could be more 
flexible. They allowed a mixing of component types within a subsystem and employed a genetic algorithm to obtain 
optimal solutions. Better solutions have been presented by tabu search (Kulturel-Konak et al., 2004), ant colony 
optimization (Liang & Smith, 2004), variable neighborhood search (Liang & Chern, 2007), and hybrid metaheuristics 
(Nahas et al., 2007; Ouzineb et al., 2010). The above all methods proposed for only best solutions for 14-subsystem  
problems (Coit & Smith, 1996) without referring to their global optimal solutions. However, Kim and Kim (2006) 
suggested the global optimal solutions for these problems by the transformation of binary integer programming, and also 
showed that all solutions suggested by Kulturel-Konak et al. (2004) for the 14-subsystem problems were the global 
optimum. For lager problems with up to 56-subsystem, Bae et al. (2007) compared metaheuristics with global optimal 
solutions.  
   In the meanwhile, Yun and Kim (2004) proposed a new kind of RAP, that is, MRAP (Multi-level RAP). The traditional 
RAP is to consider only the component redundancy at the lowest-level. A system can be functionally decomposed into 
system, module, and component levels. Modular redundancy can be more effective than component redundancy at the 
lowest-level. MRAP is to consider all cases of the redundancy for system, module, and component levels. MRAP, however, 
has a strong restriction that only one level among component, module and system can be an alternative for redundancy in 
RAP. Yun et al. (2007) extended MRAP to the multiple MRAP (MMRAP) in which all available items for redundancy 
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(system, module, and component) can be simultaneously chosen, by relaxing the strong restriction of MRAP, and also 
proposed a simple GA in order  to obtain the optimal solution for MMRAP. In this paper, we propose a TS of 
memory-based mechanisms, balancing intensification with diversification, for MMRAP. To the best of our knowledge, this 
is the first attempt to use a TS for MMRAP. Our TS is also compared with the existing GA (Yun et al.,  2007)  for MMRAP 
on the new composed test problems as well as the benchmark problems in the literature. Computational results show that 
the TS outstandingly outperforms the GA (Yun et al.,  2007)   for all test problems. 
   The rest of this paper is organized as follows: in section 2 we describe the MMRAP. In section 3, we propose a TS for 
MMRAP. In section 4 and 5, numerical examples and computational results for the performance of TS are provided with 
the benchmark problems. Finally, conclusions are discussed in section 6. 
 
2.  MULTIPLE MULTI-LEVEL REDUNDANCY ALLOCATION PROBLEM 
 
2.1 Acronym 

RAP      redundancy allocation problem 
MRAP      Multi-level RAP 
MMRAP  multiple MRAP 
GA       genetic algorithm 
TS       tabu search  
TSMMRAP   tabu search for MMRAP  
 

2.2 Notations 
n  the number of basic items 
m  the number of constraints 

ix   the number of redundancy allocated to the ith basic item 
)(xR  the system reliability 
)(xRp  the penalty function of the system reliability 
)(xg j  the jth constraint function 

ri                            the reliability of  the ith basic item 
ci                            the cost of  the ith basic item 

bj  the amount of allowable resource i 

il                  the lower bound of ix   

iu                 the upper bound of  ix  
 

2.3 Assumptions  
In MMRAP, the number of available redundancy structure increases exponentially as the size of problem becomes large. In 
this paper, two assumptions are set up to exclude impossible redundancy structures (Yun et al., 2007). 

(1) The combination of the basic items for redundancy should satisfy the function at the system level. If a basic item is 
used, all its sibling items should be used or its function should be satisfied by corresponding child items. 

(2) The basic items for redundancy should be used in parallel at one combination. 
 

2.4 Problem Formulation 
The MMRAP optimization model can be generally formulated as the following nonlinear integer programming problem: 
 
Maximize )(xR  

subject to )(xg j  ≤ bj  for j=1, 2, …, m 
li ≤ ix  ≤ ui 

ix is a positive integer number for i =1,2, …, n 

... (1) 

 
   This problem was proven to be a NP-hard problem (Chern, 1992). We refer interested readers to Yun et al. (2007) for the 
detailed formulation of MMRAP. 
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3.  TS ALGORITHM 
 
The TS algorithm, first proposed by F. Glover (1986), is a metaheuristic method to expand its search beyond local 
optimality using adaptive memory. The adaptive memory is a mechanism based on the tabu list of prohibited moves. The 
tabu list is one of the mechanism to prevent cycling and guide the search towards unexplored region of the solution space. 
The TS generally adopts the penalty function to allow to explore the search towards the attractive infeasible region. 
   The TS has been successfully applied to many combinatorial optimization problems such as vehicle routing problems, 
travelling salesman problems, time tabling problems, and resource allocation problems, etc. In RAP, Kultruel-Konak et al. ( 
2004) developed the TS algorithm for the RAP of series-parallel system, and it is hitherto known that their solutions are the 
best among the other metaheuristics such as genetic algorithm (Coit & Smith, 1996),  ant colony optimization (Liang & 
Smith, 2004), variable neighborhood search (Liang & Chern, 2007), and  hybrid metaheuristics (Nahas et al., 2007).  
Recent hybrid metaheuristic (Ouzineb et al.,  2010) obtained the same results of Kultruel-Konak et al. ( 2004). 
   In this paper, we develop a kind of TS called  TSMMRAP  which is based on the TS of Kultruel-Konak et al . (2004). The 
TSMMRAP consists of 4 parts which are  construction of initial solutions, the tabu list,  the penalty function, and the 
structure of generating the neighborhood solutions. Among them, the structure of generating the neighborhood solutions is 
usually different  according to the characteristics of the decision variables for the problem.  
   The TSMMRAP can then be summarized as follows: 
Step 0. Generate randomly an initial feasible solution. 
Step 1. Explore all the neighborhood solutions  for the defined moves. 
Step 2. If the best solution of the step 1 is in the tabu list and is not better than the current best,  

then repeat step 1 to find the next best. Otherwise, select the solution as the next best move. 
Step 3. If the stopping criterion is satisfied, then stop. Otherwise, go to step 1. 
   The initial solutions are randomly generated, and the scheme of randomly constructing the initial solutions is nearly 
identical to the general scheme. In our experiments, we try to find the optimal solution 10 times with different initial 
solutions for each problem. The stopping criterion of TSMMRAP  was defined as 500 iterations without  finding  an  
improvement in the best feasible solution. For the size of a tabu list, Kultruel-Konak et al. (2004) showed that the dynamic 
size of the tabu list plays a critical role in finding the better solutions for RAP. In our experiment, the size of the tabu list is 
reset every 20 iterations to the value of between [n, 3n] uniformly distributed for the long-term memory. Once the list is 
full, the oldest element of the tabu list should be removed as a new one is added. 
   The TS generally adopts the penalty function to allow to explore the search towards the promising  infeasible region. The 
the same type of the penalty function of Kultruel-Konak et al. (2004)  is adopted in our TSMMRAP. The penalty function 
for only one cost constraint  is as follows: 
 

( ) ( ) ( )
k

c
feasallp NFT

ΔcRRxRxR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=   

... (2) 

  
where allR  is the unpenalized (feasible or infeasible) system reliability of the best solution found so far, feasR  is the system 
reliability of the best feasible solution found so far, and Δc  represent the magnitude for the violation of the cost constraint. 
The value of cNFT is used to control the range of  explored infeasible region. Namely, If the current move is feasible, 

cNFT  has a property of encouraging to search the neighborhood solutions towards the infeasible region by decreasing the 
penalized value of  (2). Reversely, if the current move is infeasible, cNFT is controlled to  increase the penalized value  for 
exploring the search towards the feasible region. The initial value of cNFT  is  set  to 1% of  the constraint  limit for the cost 
and k is set to 1, though computational results are insensitive to these values.  
   In  TSMMRAP, the structure of the neighborhood solutions is generated by simple two moves. The first move is to add 
one for all the allocated redundant number of the module or component. The second move is to subtract one for all the 
allocated number of the module or component. For example, let us consider the following system structure of multi-level in 
Table 1. The cost function is ix

iii xcxg λ+=)( for i=1, 2,…, n. The constraint limit for the cost is set to 95. The system 
structure is shown in Fig. 1. Let us assume the current solution during the iterations of TSMMRAP to obtain the optimal 
solution for our problem to be given in Table 2, that is, the encoding status of (0, 2, 1, 1, 1, 1, 1). From the current solution, 
all possible neighborhood solutions by the first and second move  are 7 and 5 cases shown in Table 2, respectively. 
Specifically,  when the value of any component or module  equals to 1, the second move is somewhat complicated. Namely, 
if the value of any component is 1, then the values of all components in the same subsystem is set to zero and the value of 
the module in the same subsystem is compensated to the appropriate values to maintain the feasible solution, and vice versa. 
For example, in Table 2, when the value of component (112) is 1, it is replaced with the appropriate values (1 or 2) of 
module (11). That is, the redundant value of module (11) can be assigned up to the maximum redundant value of all 
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components ((111), (112), and (113)). Reversely, when the value of module (12) equals to 1, it is replaced with the value of 
all components added to each component by 1, (121, 122) = (2, 2). Namely, it is allowed to add the redundant value of all 
components up to the redundant value of module (12). 
 

Table 1. The input data for an illustration 
 

Basic Item Parent unit ri ci λi 
1(system) - 0.40029 72 2 

11 1 0.72675 26 2 
12 1 0.76500 19 3 

111 11 0.90000 5 3 
112 11 0.95000 6 4 
113 11 0.85000 5 4 
121 12 0.90000 6 4 
122 12 0.85000 7 4 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. The system structure of Table 1 
 
 

   In Table 2, the system reliability for each neighborhood solution is evaluated by the penalty function of the equation (2).   
The neighborhood solution (1, 2, 1, 1, 1, 1, 1), which has the maximum value of  0.8930 among the 12 cases, is selected for 
the next best move in our TSMMRAP.  

 
Table 2. All possible neighborhood solutions by two moves 

 
 x=(11, 111, 112, 113,  12,  121, 122) )(xg  ( )xRp  

current solution ( 0,  2,   1,   1,   1,   1,   1) 81 0.7553 

first move 

( 1,  2,   1,   1,   1,   1,   1) 
( 0,  3,   1,   1,   1,   1,   1) 
( 0,  2,   2,   1,   1,   1,   1) 
( 0,  2,   1,   2,   1,   1,   1) 
( 0,  2,   1,   1,   2,   1,   1) 
( 0,  2,   1,   1,   1,   2,   1) 
( 0,  2,   1,   1,   1,   1,   2) 

109 0.8930 
104 0.7621 
99 0.7930 
98 0.8686 

106 0.7891 
99 0.7696 

100 0.7768 

second move 

( 0,  1,   1,   1,   1,   1,   1) 
( 1,  0,   0,   0,   1,   1,   1) 
( 2,  0,   0,   0,   1,   1,   1) 
( 0,  2,   1,   1,   0,   2,   2) 
( 0,  2,   1,   1,   2,   0,   0) 

70 0.6866 
71 0.6866 
99 0.8742 
96 0.7736 
85 0.7553 

 
 
 

S

11 12

111 113112 121 122
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4. NUMERICAL EXAMPLES 
 
We consider two examples to evaluate the performance of the existing GA (Yun et al., 2007)  and the proposed 
TSMMRAP. Two algorithms are coded in C/C++ programming language, and  the numerical experiments are executed on  
an  IBM-PC 

 
Table 3. The input data for the first example  

 
Basic Item Parent unit ri ci λi 
1(system) - 0.4003 72 2 

11 1 0.7268 26 2 
12 1 0.7650 19 3 
13 1 0.7200 21 2 

111 11 0.9000 5 3 
112 11 0.9500 6 4 
113 11 0.8500 5 4 
121 12 0.9000 6 4 
122 12 0.8500 7 4 
131 13 0.9000 8 3 
132 13 0.8000 7 4 

 
compatible with a Pentium IV 3.0 GHz. Two benchmark examples are taken from Yun et al. (2007). The data for the first 
and the second example are shown in Table 3 and 4, respectively. The first example consists of 11 basic items and 20 test 
problems varying the cost limit from 150 to 340. The second example consists of 16 basic items and 10 test problems 
varying the cost limit from 260  to 350.  
   For the two examples, we compared the TSMMRAP with the existing  GA (Yun et al.,  2007). Computational results for 
the first and second example are shown in Table 5 and 6, respectively. As the results in Table 5 indicate, GA and 
TSMMRAP obtain the same results for 20 test problems for the first example. For larger size of the second example, 
however, TSMMRAP obtains the better optimal solutions for 7 cases of 10 test problems than the GA (Yun et al.,  2007). 
   In addition, to show the difference between MMRAP and MRAP, the system structure of the optimal solution for 
MMRAP and MRAP for the cost limit of 160 of  the first example are shown in Fig. 2(a) and Fig. 2(b), respectively. In this 
case, the system reliability for MMRAP and MRAP are given by 0.8316 and 0.8309, respectively. This result indicates that 
MMRAP considering the redundancy for the module and component simultaneously, provides the possibility of having the 
better system reliability than MRAP. 
 

Table 4. The input data for the second example  
 

Basic Item Parent unit ri ci λi 
1(system) - 0.3338 130 2 

11 1 0.7650 15 2 
12 1 0.8572 32 3 
13 1 0.7650 14 2 
14 1 0.8200 25 2 
15 1 0.8114 24 3 

111 11 0.9000 6 3 
112 11 0.8500 5 3 
121 12 0.9600 8 5 
122 12 0.9500 7 4 
123 12 0.9400 6 3 
131 13 0.9000 5 3 
132 13 0.8500 4 3 
151 15 0.9200 7 4 
152 15 0.9000 5 3 
153 15 0.9800 3 3 
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Table 5. Computational results for the first example 
 

No. Cost limit 
Metaheuristic methods 

GA TSMMRAP 
1 150 0.8057 0.8057 
2 160 0.8316 0.8316 
3 170 0.8576 0.8576 
4 180 0.8773 0.8773 
5 190 0.8920 0.8920 
6 200 0.9136 0.9136 
7 210 0.9319 0.9319 
8 220 0.9457 0.9457 
9 230 0.9535 0.9535 

10 240 0.9587 0.9587 
11 250 0.9641 0.9641 
12 260 0.9694 0.9694 
13 270 0.9739 0.9739 
14 280 0.9773 0.9773 
15 290 0.9808 0.9808 
16 300 0.9835 0.9835 
17 310 0.9861 0.9861 
18 320 0.9888 0.9888 
19 330 0.9903 0.9903 
20 340 0.9918 0.9918 

 
 
 
 
 
 
 
 
 
 
 
 

(a) MMRAP 
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(b) MRAP 
 
 

Figure 2. The system structure for MMRAP and MRAP 
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Table 6. Computational results for the second example 
 

No. Cost limit 
Metaheuristic methods 

GA TSMMRAP 
1 260 *0.8632 *0.8632 
2 270 *0.8780 *0.8780 
3 280 0.8939 *0.8955 
4 290 0.9021 *0.9129 
5 300 0.9165 *0.9188 
6 310 0.9221 *0.9248 
7 320 0.9291 *0.9380 
8 330 0.9440 *0.9450 
9 340 *0.9502 *0.9502 

10 350 0.9546 *0.9554 
*: the case of obtaining the best solution  

 
5. COMPUTATIONAL RESULTS 

 
To additionally evaluate the performance of the existing GA (Yun et al.,  2007)  and the TSMMRAP, the new test problems 
for lager size of system structure are designed. They are composed of combining the first example with the second 
example. The resulting data for the composed problem is shown in Table 7. The system structure is shown in Fig. 3. This 
problem consists of 26 basic items and the system cost constraints ranges from 700 to 880 in step size of 20. They are 
composed of 10 sets of 10 test problems. Totally, 100 test benchmark problems are designed. 
   Two algorithms are coded in C/C++ programming language, and experiments are performed on a Pentium IV 3.0 GHz 
PC. Performances of GA and TSMMRAP are assessed in terms of average relative error (A), maximum relative error (M), 
optimality rate (O) and average execution time (sec.) of 100 problems (T) defined as follows. 

 
( )

∑
=

−
=

10

1j
*
j

j
*
j

R
RR

10
1A  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

= *
j

j
*
j

R
RR

maxM , for  j=1, 2 …, 10 

O = the number of times (out of 10 problems) that each method yields the best solution. 
 

jR = the system reliability obtained by each method for each test problem j. 
 
*
jR = the best system reliability obtained by both of GA and TSMMRAP.  

 
   In our experiments, the stopping criterion of TSMMRAP was defined as 500 iterations without finding an improvement 
in the best feasible solution, and TSMMRAP was applied 10 times with different starting initial solutions.  The 
computational results for evaluating the performance between the GA (Yun et al.,  2007)  and TSMMRAP are summarized 
in Table 8.  As the results in Table 8 indicate, TSMMRAP  outstandingly outperformed  the GA.  TSMMRAP obtained the 
higher system reliability for all test problems than the GA. The GA failed to obtain the best solution for all cases of 100 test 
problems. Even for the best case of cost limit (880), the average relative error (A) of GA is very poor, scoring the value of 
0.0299. In particular, for the case of cost limit (700), GA has the worst value of maximum relative error (M=0.042). In 
terms of computing time, however, we noticed that TSMMRAP requires almost 2 times as much as the computing time of 
GA. 

 
6. CONCLUSIONS 
 
In this study, a new version of TS called TSMMRAP was proposed for MMRAP (Multiple Multi-level Redundancy 
Allocation Problem) in which all available items for redundancy (system, module, and component) can be simultaneously 
chosen. To the best of our knowledge, this is the first attempt to use a TS for MMRAP. The TSMMRAP was also compared 
with the existing GA (Yun et al., 2007)  on the new composed test problems as well as benchmark problems in the 
literature.  
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Table 7. The input data for larger system 
 

Basic Item Parent unit ri ci λi 
1(system) - 0.1336 210 2 

11 1 0.72675 26 2 
12 1 0.7650 19 3 
13 1 0.7200 21 2 
14 1 0.7650 15 2 
15 1 0.8572 32 3 
16 1 0.7650 14 2 
17 1 0.8200 25 2 
18 1 0.8114 24 3 

111 11 0.9000 5 3 
112 11 0.9500 6 4 
113 11 0.8500 5 4 
121 12 0.9000 6 4 
122 12 0.8500 7 4 
131 13 0.9000 8 3 
132 13 0.8000 7 4 
141 14 0.9000 6 3 
142 14 0.8500 5 3 
151 15 0.9600 8 5 
152 15 0.9500 7 4 
153 15 0.9400 6 3 
161 16 0.9000 5 3 
162 16 0.8500 4 3 
181 18 0.9200 7 4 
182 18 0.9000 5 3 
183 18 0.9800 3 3 

 
 

 
 
 
 
 
 
 

 
 
 

 
Figure 3. System structure 

 
 

From the computational results, TSMMRAP substantially outperformed the GA (Yun et al., 2007). The TSMMRAP 
obtained the higher system reliability for all test problems than the GA, even though TSMMRAP required almost 2 times as 
much as the computing time of GA. In terms of solution quality, our TSMMRAP is recommended as a promising 
metaheuristic in this field. To achieve the better solution quality, the development of more powerful metaheuristics  for 
MMRAP would be performed in the future research.  
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Table 8. Computational results 
 

No. Cost limit GA TSMMRAP 
A M O A M O 

1 700 0.0510 0.0742 0/10 0.0 0.0 10/10 
2 720 0.0487 0.0739 0/10 0.0 0.0 10/10 
3 740 0.0452 0.0692 0/10 0.0 0.0 10/10 
4 760 0.0415 0.0589 0/10 0.0 0.0 10/10 
5 780 0.0363 0.0590 0/10 0.0 0.0 10/10 
6 800 0.0381 0.0551 0/10 0.0 0.0 10/10 
7 820 0.0376 0.0536 0/10 0.0 0.0 10/10 
8 840 0.0309 0.0518 0/10 0.0 0.0 10/10 
9 860 0.0332 0.0454 0/10 0.0 0.0 10/10 

10 880 0.0299 0.0420 0/10 0.0 0.0 10/10 
  T  5.24(sec.) T  9.67(sec.) 
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